U4091BM Programmable Telephone Audio Processor Description The programmable telephone audio processor U4091BM is a linear integrated circuit for use in feature phones, answering machines and fax machines. It contains the speech circuit, tone-ringer interface with DC/DC converter, sidetone equivalent and ear-protection rectifiers. The circuit is line-powered and contains all components necessary for signal amplification and adaptation to the line. The U4091BM can also be supplied via an external power supply. An integrated voice switch with loudspeaker amplifier enables hands-free or loudhearing operation. With an anti-feedback function, acoustical feedback during loudhearing can be reduced significantly. The generated supply voltage is suitable for a wide range of peripheral circuits. Features Benefits D Speech circuit with anti-clipping D No piezoelectric transducer for tone ringing necessary D Tone-ringer interface with DC/DC converter D Complete system integration of analog signal processing on one chip D Speaker amplifier with anti-distortion D Power-supply management (regulated, unregulated) and a special supply for electret microphone D Voice switch D Interface for answering machine and cordless phone D Very few external components Applications Feature phone, answering machine, fax machine, speaker phone, cordless phone Block Diagram Speech circuit Voice switch Audio amplifier Clock Data Reset Serial bus MCU Tone ringer DTMF Ordering Information Extended Type Number Package U4091BM-MFN SSO44 U4091BM-MFNG3 SSO44 Rev. A3, 27-Oct-00 Remarks Taped and reeled 1 (32) 2 43 44 1 39 42 38 9 10 8 17 TXACL 15 5 Power supply STBAL 16 4 12 AGATX 3 11 MICRO AGARX V MIC TXA 30 Figure 1. Detailed block diagram Offset canceler 40 DTMF/ melody 22 Offset canceler Filter AGCO AMPB LRX DTMF MIC 21 Ringing power converter MUX 19 ADC AGCI AMREC EPO RXLS V RING 20 Switch matrix AGC LTX LIDET VMP RFDO 41 7 6 18 REG POR BIDIR serial bus 1/8/16/32 DIV. RA AFS control SACL SA OSC. 3.58 MHz Rev. A3, 27-Oct-00 14 13 35 34 37 36 33 31 32 24 25 23 26 27 29 28 µC RECO1 MICO V MP U4091BM Detailed Block Diagram 2 (32) VL U4091BM Pin Description Pin Symbol Function Pin Symbol Function 1 RECIN Receive amplifier input 19 VRING Input for ringer supply 2 TXACL Time-constant adjustment for transmit anti-clipping 20 IMPA Input for adjusting the ringer input impedance 3 MIC3 Microphone input for hands-free operation 21 COSC 70-kHz oscillator for ringing power converter 4 MIC2 Input of symmetrical microphone amplifier with high common-mode rejection ratio 22 23 INT Interrupt line for serial bus 5 MIC1 Input of symmetrical microphone amplifier with high common-mode rejection ratio 24 SCL Clock input for serial bus 25 SDA Data line for serial bus SWOUT Output for driving the external switch resistor 6 RECO2 Output of the receive amplifier 26 OSCIN Input for 3.58-MHz oscillator 7 RECO1 Output of the receive amplifier, also used for sidetone network 27 OSCOUT Clock output for the microcontroller 8 IND The internal equivalent inductance of the circuit is proportional to the value of the capacitor at this pin. A resistor connected to ground may be used to adjust the DC mask. 28 RESET Reset output for the microcontroller 29 ES Input for external supply indication 30 ADIN Input of A/D converter 31 BNMR 9 VL Positive supply-voltage input to the device in speech mode Output of background-noise monitor receive 32 BNMT 10 SENSE Input for sensing the available line current Output of background-noise monitor transmit 33 CT 11 GND Ground, reference point for DCand AC signals 34 TLDR 12 VB Unstabilized supply voltage for speech network Time constant of receive-level detector 35 INLDR Input of receive-level detector 13 SAO2 Negative output of speaker amplifier (push-pull only) 36 INLDT Input of transmit-level detector 14 SAO1 Positive output of speaker amplifier (single ended and push-pull operation) 37 TLDT Time constant of transmit-level detector 38 IMPSW Unregulated supply voltage for the microcontroller (via series regulator to VMP) 39 MICO Microphone preamplifier output 40 AMPB Input for playback signal of answering machine 41 15 VMPS 16 VMP Regulated output voltage for supplying the microcontroller (typ. 3.3 V/ 6 mA in speech mode) 17 VMIC Reference node for microphone amplifier, supply for electret microphones 18 TSACL Time constant for speaker amplifier anti-clipping Time constant for mode switching of voice switch Switch for aditional line impedance AMREC Output for recording signal of answering machine 42 STO Output for connecting the sidetone network 43 STC Input for sidetone network 44 STRC Input for sidetone network Remark: The protection device at Pin RECIN is disconnected. Rev. A3, 27-Oct-00 3 (32) U4091BM DC Line Interface and Supply-Voltage Generation RECIN 1 44 STRC TXACL 2 43 STC MIC3 3 42 STO MIC2 4 41 AMREC MIC1 5 40 AMPB RECO2 6 39 MICO RECO1 7 38 IMPSW IND 8 37 TLDT VL 9 36 INLDT SENSE 10 35 INLDR The U4091BM contains two identical series regulators which provide a supply voltage VMP of 3.3 V suitable for a microprocessor. In speech mode, both regulators are active because VMPS and VB are charged simultaneously by the DC line interface. The output current is 6 mA. The capacitor at VMPS is used to provide the microcomputer with sufficient power during long line interruptions. Thus, long flash pulses can be bridged or an LCD display can be turned on for more than 2 seconds after going on-hook. When the system is in ringing mode, VB is charged by the on-chip ringing power converter. In this mode, only one regulator is used to supply VMP with maximum 3 mA. GND 11 34 TLDR Supply Structure of the Chip VB 12 33 CT A main benefit of the U4091BM is the easy implementation of various applications due to the flexible system structure of the chip. SAO2 13 32 BNMT Possible applications: SAO1 14 31 BNMR VMPS 15 30 ADIN VMP 16 29 ES VMIC 17 28 TSACL 18 27 OSCOUT VRING 19 26 OSCIN IMPA 20 25 SDA COSC 21 24 SCL SWOUT 22 23 INT L=2 RSENSE CIND (RDC R30) / (RDC + R30) D Group listening phone D Hands-free phone Figure 2. Pinning 4 (32) The DC line interface consists of an electronic inductance and a dual-port output stage which charges the capacitors at VMPS and VB. The value of the equivalent inductance is given by: RESET D Phones which feature ringing with the built-in speaker amplifier D Answering machine with external supply The special supply topology for the various functional blocks is illustrated in figure 3. There are four major supply states: 1. 2. 3. 4. Speech condition Power down (pulse dialing) Ringing External supply 1. In speech condition, the system is supplied by the line current. If the LIDET-block detects a line voltage above approximately 2 V, the internal signal VLON is activated. This is detected via the serial bus, all the blocks which are needed have to be switched on via the serial bus. Rev. A3, 27-Oct-00 U4091BM For line voltages below 2 V, the switches remain in quiescent state as shown in the diagram. 2. When the chip is in power-down mode (Bit LOMAKE), e.g., during pulse dialing, all internal blocks are disabled via the serial bus. In this condition, the voltage regulators and their internal bandgap are the only active blocks. 3. During ringing, the supply for the system is fed into VB via the Ringing Power Converter (RPC). Normally, the speaker amplifier in single-ended mode is used for ringing. The frequency for the melody is generated by the DTMF/Melody generator. 4. In an answering machine, the chip is powered by an external supply via Pin VB. The answering machine connections can be directly put to U4091BM. The answering machine is connected to the Pin AMREC. For the output AMREC, an AGC function is selectable via the serial bus. The output of the answering machine will be connected to the Pin AMPB, which is directly connected to the switching matrix, and thus enables the signal to be switched to every desired output. VL RSENSE 10 Ω 5.5 V C 470µF 1 µF IND R VMPS – + – + R 300 kΩ + – 3.3 V 5.5 V VMP 47 µF VB V 220µF Figure 3. Supply generator Ringing Frequency Detector (RFD) The U4091BM provides an output signal for the microcontroller. This output signal is always double the value of the input signal (ringing frequency). It is generated by a current comparator with hysteresis. The levels for the on-threshold are programmable in 16 steps; the off-level is fixed. Every change of the comparator output generates a high level at the interrupt output INT. The information can then be read out by means of a serial bus with either normal or fast read mode. The block RFD is always enabled. ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ Clock Output Divider Adjustment RINGTH[0:3] VRING 0 7V 15 22 V step 1V The Pin OSCOUT is a clock output which is derived from the crystal oscillator. It can be used to drive a microcontroller or another remote component and thereby reduces the number of crystals required. The oscillator frequency can be divided by 1, 8, 16, 32. During power-on reset, the divider will be reset to 1 until it is changed by setting the serial bus. ÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁ Serial Bus Interface CLK[0:1] Divider Frequency 0 1 3.58 MHz 1 8 447 kHz 2 16 224 kHz 3 32 112 kHz The circuit is controlled by an external microcontroller through the serial bus. The serial bus is a bi-directional system consisting of a one-directional clock line (SCL) which is always driven by the microcontroller, and a bi-directional data-signal line. It is driven by the microcontroller as well as from the U4091BM (see figure 23). Ringing Power Converter (RPC) The serial bus requires external pull-up resistors as only pull-down transistors (Pin SDA) are integrated. The RPC transforms the input power at VRING (high voltage/ low current) into an equivalent output power at VB (low voltage/ high current) which is capable of driving the low-ohmic loudspeaker. The input impedance at VRING is adjustable from 3 kΩ to 12 kΩ by RIMPA (ZRING = RIMPA / 100) and the efficiency of the stepdown converter is approximately 65%. WRITE: Rev. A3, 27-Oct-00 The data is a 12-bit word: A0 – A3: address of the destination register (0 to 15) D0 – D7: content of the register The data line must be stable when the clock is high. Data must be shifted serially. After 12 clock periods, the write indication is sent. Then, the transfer to the destination register is (internally) generated by a strobe signal transition of the data line when the clock is high. 5 (32) U4091BM READ: There is a normal and a fast-read cycle. In the normal read cycle, the microcontroller sends a 4-bit address followed by the read indicator, then an 8-bit word is read out. The U4091BM drives the data line. The fast read cycle is indicated by a strobe signal. With the following two clocks the U4091BM reads out the status bits RFDO and LIDET which indicate that a ringing signal or a line signal is present (see figures 4, 5 and 6). DTMFF[2:3] in DTMF Mode Frequency Error / % 0 00 1209 –0.110 1 01 1336 0.123 2 10 1477 –0.020 3 11 1633 –0.182 ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ DTMF Dialing ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁ ÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁÁ ÁÁ ÁÁ ÁÁÁ ÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁ ÁÁ ÁÁ ÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁ ÁÁÁÁ ÁÁ Á ÁÁÁ ÁÁ ÁÁ ÁÁÁ ÁÁ ÁÁÁ ÁÁÁÁ Á ÁÁÁ ÁÁ ÁÁÁÁ ÁÁ ÁÁ ÁÁÁ ÁÁ ÁÁÁ Á ÁÁÁ ÁÁ ÁÁÁÁ ÁÁ ÁÁ ÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁ ÁÁÁÁ Á ÁÁÁ ÁÁ ÁÁÁÁ ÁÁ ÁÁ ÁÁÁ ÁÁ ÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁÁ ÁÁ ÁÁ ÁÁÁ Melody – Confidence Tone Generation ÁÁ ÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁÁ ÁÁ ÁÁ ÁÁÁ ÁÁ ÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁÁ ÁÁ ÁÁ ÁÁÁ ÁÁ ÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁÁ ÁÁ ÁÁ ÁÁÁ ÁÁ ÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁÁ ÁÁ ÁÁ ÁÁÁ ÁÁ ÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁÁ ÁÁ ÁÁ ÁÁÁ ÁÁ ÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁÁ ÁÁ ÁÁ ÁÁÁ Á ÁÁÁ ÁÁ ÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁÁ ÁÁ ÁÁ ÁÁÁ ÁÁ ÁÁÁ ÁÁÁÁ Á ÁÁÁ ÁÁ ÁÁÁÁ ÁÁ ÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ Á ÁÁÁ ÁÁ ÁÁÁÁ ÁÁ ÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁ ÁÁÁ Á ÁÁÁ ÁÁ ÁÁÁÁ ÁÁ ÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁ ÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁÁ ÁÁ ÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁÁ ÁÁ ÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁÁ ÁÁ ÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁ ÁÁÁÁ ÁÁ Á ÁÁÁ ÁÁ ÁÁ ÁÁÁ ÁÁ ÁÁÁ ÁÁÁÁ Á ÁÁÁ ÁÁ ÁÁÁÁ ÁÁ ÁÁ ÁÁÁ ÁÁ ÁÁÁ Á ÁÁÁ ÁÁ ÁÁÁÁ ÁÁ ÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁ ÁÁÁ Á ÁÁÁ ÁÁ ÁÁÁÁ ÁÁ ÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁ ÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁÁ ÁÁ ÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ The DTMF generator sends a multi-frequency signal through the matrix to the line. The signal is the result of the sum of two frequencies and is internally filtered. The frequencies are chosen from a low and a high frequency group. The circuit conforms to the CEPT recommendation concerning DTMF option. Two different levels for the low level group and two different pre-emphasis (2.5 dB and 3.5 dB) can be chosen by means of the serial bus (rec. T/CF 46–03). Melody/confidence tone frequencies are given in the table below. The frequencies are provided at the DTMF input of the switch matrix. A sinus wave, a square wave or a pulsed wave can be selected by the serial bus. Square signal means the output is half of frequency cycle high and half low. Pulsed signal means between the high and low phases are high impedance phases of 1/6 of the period. 0 1 2 3 4 5 6 7 0 DTMFM[0:2] 000 001 010 011 100 101 110 111 DTMF generator OFF Confidence tone melody on (sinus) Ringer melody (pulse) Ringer melody (square signal) DTMF (high level) DTMF (low level) DTMFF[0:1] in DTMF Mode Frequency 00 697 Error / % –0.007 1 01 770 –0.156 2 10 852 0.032 3 11 941 0.316 6 (32) 0 DTMFF [0:4] f Hz ToneName Error/% DTMF Key 00000 440.0 a1 –0.008 697 1209 1 1 00001 466.2 b1 –0.016 770 1209 4 2 00010 493.9 h1 –0.003 852 1209 7 3 00011 523.2 c2 0.014 941 1209 * 4 00100 554.4 des2 0.018 697 1336 2 –0.023 770 1336 5 –0.129 852 1336 8 5 00101 587.3 d2 6 00110 622.3 es2 7 00111 659.3 e2 0.106 941 1336 0 8 01000 698.5 f2 –0.216 697 1477 3 9 01001 740.0 ges2 –0.222 770 1477 6 10 01010 784.0 g2 0.126 852 1477 9 11 01011 830.0 as2 –0.169 941 1477 # 12 01100 880.0 a2 0.288 697 1633 A 13 01101 932.3 b2 –0.014 770 1633 B 14 01110 987.8 h2 –0.004 852 1633 C 15 01111 1046.5 c3 –0.335 941 1633 D 16 10000 1108.7 des3 –0.355 697 1209 1 –0.023 770 1209 4 –0.129 852 1209 7 17 10001 1174.7 d3 18 10010 1244.5 es3 19 10011 1318.5 e3 0.106 941 1209 * 20 10100 1396.9 f3 –0.214 697 1336 2 21 10101 1480.0 ges3 –0.222 770 1336 5 22 10110 1568.0 g3 0.126 852 1336 8 1661.2 as3 –0.241 941 1336 0 23 10111 24 11000 1760.0 a3 –0.302 697 1477 3 25 11001 1864.6 b3 –0.014 770 1477 6 26 11010 1975.5 h3 0.665 852 1477 9 27 11011 2093.0 c4 0.367 941 1477 # 0.387 697 1633 A 0.771 770 1633 B 28 11100 2217.5 des4 29 11101 2349.3 d4 30 11110 2663.3 ––– 852 1633 C 31 11111 2983.0 ––– 941 1633 D Rev. A3, 27-Oct-00 U4091BM DTMFF4 in DTMF mode ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ Pre-Emphasis Selection 0 2.5 dB 1 3.5 dB Write cycle CLOCK DATA D7 D6 D5 D4 D3 D2 D1 D0 A3 A2 A1 A0 R/W=0 Data fromµP Strobe fromµP Figure 4. Write cycle Normal read cycle CLOCK DATA A3 A2 A1 A0 R/W=1 Data fromµP D7 D6 Strobe fromµP D5 D4 D3 D2 D1 D0 Data from U4091BM Figure 5. Normal read cycle Fast read cycle CLOCK DATA D7=IZC D6=IVE Strobe from µP Data from U4091BM Figure 6. Fast read cycle Rev. A3, 27-Oct-00 7 (32) U4091BM Table 1. Names and functions of the serial bus registers Register R0 R1 R2 R3 R4 8 (32) Group Enables Enables Matrix Matrix Matrix No Name Description Status R0B0 ENRING Enable ringer R0B1 ERX Enable receive part 0 1 R0B2 ETX Enable transmit part 0 R0B3 ENVM Enable VM–generator R0B4 ENMIC Enable microphone 0 R0B5 ENSTBAL Enable sidetone 0 R0B6 MUTE Muting earpiece amplifier 0 R0B7 ENRLT Enable POR low threshold R1B0 ENSACL Enable anti-clipping for speaker amplifier 0 R1B1 ENSA Enable speaker amplifier and AFS 0 R1B2 ENSAO Enable output stage speaker amplifier 0 R1B3 ENAM Enable answering machine connections 0 R1B4 ENAGC Enable AGC for answering machine 0 R1B5 free 0 R1B6 free 0 R1B7 FOFFC Speed up offset canceller 0 R2B0 I1O1 Switch on MIC / LTX 0 R2B1 I1O2 Switch on MIC / SA 0 R2B2 I1O3 Switch on MIC / EPO 0 R2B3 I1O4 Switch on MIC / AMREC 0 R2B4 I1O5 Switch on MIC / AGCI 0 R2B5 I2O1 Switch on DTMF / LTX 0 R2B6 I2O2 Switch on DTMF / SA 0 R2B7 I2O3 Switch on DTMF / EPO 0 R3B0 I2O4 Switch on DTMF / AMREC 0 R3B1 I2O5 Switch on DTMF / AGCI 0 R3B2 I3O1 Switch on LRX / LTX 0 R3B3 I3O2 Switch on LRX / SA 0 R3B4 I3O3 Switch on LRX / EPO 0 R3B5 I3O4 Switch on LRX / AMREC 0 R3B6 I3O5 Switch on LRX / AGCI 0 R3B7 I4O1 Switch on AMPB / LTX 0 R4B0 I4O2 Switch on AMPB / SA 0 R4B1 I4O3 Switch on AMPB / EPO 0 R4B2 I4O4 Switch on AMPB / AMREC 0 R4B3 I4O5 Switch on AMPB / AGCI 0 R4B4 I5O1 Switch on AGCO / LTX 0 R4B5 I5O2 Switch on AGCO / SA 0 R4B6 I5O3 Switch on AGCO / EPO 0 R4B7 I5O4 Switch on AGCO / AMREC 0 1 1 Rev. A3, 27-Oct-00 U4091BM Register R5 R6 R7 R8 Group Name Description Status R5B0 EAFS Enable AFS block 0 MICLIM R5B1 AGATX0 Gain transmit AGA LSB 0 R5B2 AGATX1 Gain transmit AGA 0 R5B3 AGATX2 Gain transmit AGA MSB 0 R5B4 MICHF Select RF-microphone input 0 R5B5 DBM5 Max. transmit level for anti-clipping 0 R5B6 MIC0 Gain microphone amplifier LSB 0 R5B7 MIC1 Gain microphone amplifier MSB 0 Shut down R6B0 SD Shut down 0 Sidetone R6B1 free R6B2 SL0 Slope adjustment for sidetone LSB 0 R6B3 SL1 Slope adjustment for sidetone MSB 0 R6B4 LF0 Low frequency adjustment for sidetone LSB 0 R6B5 LF1 Low frequency adjustment for sidetone 0 R6B6 LF2 Low frequency adjustment for sidetone 0 R6B7 LF3 Low frequency adjustment for sidetone MSB 0 Sidetone R7B0 P0 Pole adjustment for sidetone LSB 0 AGARX R7B1 P1 Pole adjustment for sidetone 0 R7B2 P2 Pole adjustment for sidetone 0 R7B3 P3 Pole adjustment for sidetone 0 R7B4 P4 Pole adjustment for sidetone MSB 0 R7B5 AGARX0 Gain receive AGC LSB 0 R7B6 AGARX1 Gain receive AGC 0 R7B7 AGARX2 Gain receive AGC MSB 0 R8B0 EA0 Gain earpiece amplifier LSB 0 EARA Line imp. R9 No AGATX AFS Rev. A3, 27-Oct-00 0 R8B1 EA1 Gain earpiece amplifier 0 R8B2 EA2 Gain earpiece amplifier 0 R8B3 EA3 Gain earpiece amplifier 0 R8B4 EA4 Gain earpiece amplifier MSB 0 R8B5 IMPH Line impedance selection (1 = 1 kΩ) 0 R8B6 LOMAKE Short circuit during pulse dialing 0 R8B7 AIMP Switch for additional external line impedance 0 R9B0 AFS0 AFS gain adjustment LSB 0 R9B1 AFS1 AFS gain adjustment 0 R9B2 AFS2 AFS gain adjustment 0 R9B3 AFS3 AFS gain adjustment 0 R9B4 AFS4 AFS gain adjustment 0 R9B5 AFS5 AFS gain adjustment MSB 0 R9B6 AFS4PS Enable 4–point sensing 0 R9B7 free 0 9 (32) U4091BM Register R10 R11 R12 R13 R14 10 (32) Group SA ADC DTMF No Name Description Status R10B0 SA0 Gain speaker amplifier LSB 0 R10B1 SA1 Gain speaker amplifier 0 R10B2 SA2 Gain speaker amplifier 0 R10B3 SA3 Gain speaker amplifier 0 R10B4 SA4 Gain speaker amplifier MSB 0 R10B5 SE Speaker amplifier single-ended mode 0 R10B6 LSCUR0 Speaker amplifier charge-current adjustment LSB 0 R10B7 LSCUR1 Speaker amplifier charge-current adjustment MSB 0 R11B0 ADC0 Input selection ADC 0 R11B1 ADC1 Input selection ADC 0 R11B2 ADC2 Input selection ADC 0 R11B3 ADC3 Input selection ADC 0 R11B4 NWT Network tuning 0 R11B5 SOC Start of ADC conversion 0 R11B6 ADCR Selection of ADC range 0 R11B7 MSKIT Mask for interrupt bits 0 R12B0 DTMFF0 DTMF frequency selection 0 R12B1 DTMFF1 DTMF frequency selection 0 R12B2 DTMFF2 DTMF frequency selection 0 R12B3 DTMFF3 DTMF frequency selection 0 R12B4 DTMFF4 DTMF frequency selection 0 R12B5 DTMFM0 Generator mode selection 0 R12B6 DTMFM1 Generator mode selection 0 R12B7 DTMFM2 Generator mode selection 0 CLK R13B0 CLK0 Selection clock frequency for µC 0 RTH R13B1 CLK1 Selection clock frequency for µC 0 TM R13B2 RTH0 Ringer threshold adjustment LSB 0 R13B3 RTH1 Ringer threshold adjustment 0 R13B4 RTH2 Ringer threshold adjustment 0 R13B5 RTH3 Ringer threshold adjustment MSB 0 R13B6 TME0 Test mode enable (low active) 0 R13B7 TME1 Test mode enable (high active) 0 TM R14B0 TME2 Test mode enable (high active) 0 CLOR R14B1 TME3 Test mode enable (low active) 0 R14B2 free R14B3 CLOR0 Adjustment for calculated receive log amp LSB 0 R14B4 CLOR1 Adjustment for calculated receive log amp 0 R14B5 CLOR2 Adjustment for calculated receive log amp 0 R14B6 CLOR3 Adjustment for calculated receive log amp 0 R14B7 CLOR4 Adjustment for calculated receive log amp MSB 0 0 Rev. A3, 27-Oct-00 U4091BM Register R15 Group CLOT No Name 0 R15B1 free 0 R15B2 free 0 R15B3 CLOT0 Adjustment for calculated transmit log amp LSB 0 R15B4 CLOT1 Adjustment for calculated transmit log amp 0 R15B5 CLOT2 Adjustment for calculated transmit log amp 0 R15B6 CLOT3 Adjustment for calculated transmit log amp 0 R15B7 CLOT4 Adjustment for calculated transmit log amp MSB 0 To avoid undefined states of the system when it is powered on, an internal reset clears the internal registers. The system (U4091BM + microcontroller) is woken up by any of the following conditions: VMP > 2.75 V and VB > 2.95 V line voltage (VL) or ringer (VRING) or external supply (ES) Rev. A3, 27-Oct-00 Status free Power-on Reset and Description R15B0 The power-down of the circuit is caused by a shut-down sent by the serial bus (SD = 1), low-voltage reset or by the watchdog function (see figures 8, 9 and 10). Watchdog Function To avoid the system operating the microcontroller in a wrong condition, the circuit provides a watchdog function. The watchdog has to be retriggered every second by triggering the serial bus (sending information to the IC or other remoted components at the serial bus). If there has been no bus transmission for more than one second, the watchdog initiates a reset. The watchdog provides a reset for the external µC, but does not change the U4091BM’s registers. 11 (32) U4091BM Acoustic Feedback Suppression Acoustical feedback from the loudspeaker to the handsfree microphone may cause instability of the system. The U4091BM has a very efficient feedback-suppression circuit which offers a 4-point- or alternatively a 2-pointsignal-sensing topology (see figure 7). under all operating conditions. Two attenuators (TXA and SAI) reduce the critical loop gain via the serial bus either in the transmit or in the receive path. The overall loop gain remains constant The voice-switch topology can be selected by the serial bus. In 2-point-sensing mode, AFSCON is controlled directly by the LOG outputs. The LOGs produce a logarithmically-compressed signal of the TX- and RX-envelope curve. The block AFSCON determines whether the TX or the RX signal has to be attenuated. MICRO AGATX TXA MICO STO CTU CTLO CBNMT TLDT BNMT RTU INLDT LOG CALCT LOG BNM Mode control Line BNM AGARX LOG CALCR LOG INLDR CT BNMR TLDR RRU CCT CBNMR CRLO CRU RECO1 AFSCON HV DTD SA RECO2 SAI Figure 7. Basic system configurations. 12 (32) Rev. A3, 27-Oct-00 U4091BM Line LID IVDD OSCOUT ton VMP Reset trt trt – ton = 4.5 ms ton = start–up oscillator Figure 8. Power-on reset (line) VRING VB IVDD VMP OSCOUT Reset ton trt Figure 9. Power-on reset (ringing) Line LID VMP LVI LVR LVI Reset OSCOUT Figure 10. Power-on reset (low voltage reset) Rev. A3, 27-Oct-00 13 (32) U4091BM Dial-Tone Detector D The output of the receive log (LOGR) – designated I2 The dial-tone detector is a comparator with one side connected to the speaker amplifier input and the other to VM with a 35-mV offset (see figure 11). If the circuit is in idle mode, and the incoming signal is greater than 35 mV (25 mVrms), the comparator’s output will change disabling the receive idle mode. This circuit prevents the dial tone (which would be considered as continuous noise) from fading away as the circuit would have the tendency to switch to idle mode. By disabling the receive idle mode, the dial tone remains at the normally expected full level. D The output of the transmit background-noise monitor (BNMT) – designated I3 Background-Noise Monitors This circuit distinguishes speech (which consists of bursts) from background noise (a relatively constant signal level). There are two background-noise monitors * one for the receive path and the other for the transmit path. The receive background-noise monitor is operated on by the receive level detector, while the transmit background noise monitor is operated on by the transmit level detector (see figure 12). They monitor the background noise by storing a DC voltage representative of the respective noise levels in capacitors at CBNMR and CBNMT. The voltages at these pins have slow rise times (determined by the internal current source and an external C), but fast decay times. If the signal at TLDR (or TLDT) changes slowly, the voltage at BNMR (or BNMT) will remain more positive than the voltage at the noninverting input of the monitor’s output comparator. When speech is present, the voltage at the non-inverting input of the comparator will rise quicker than the voltage at the inverting input (due to the burst characteristic of speech), causing its output to change. This output is sensed by the mode-control block. 4-Point Sensing In 4-point sensing mode, the receive- and the transmitsensing path include additional CLOGs (Calculated Logarithmical amplifier). The block MODECON compares the detector output signals and decides whether receive-, transmit- or idle mode has to be activated. Depending on the mode decision, MODECON generates a differential voltage to control AFSCON. The MODECON block has seven inputs: D The output of the transmit log (LOGT) the comparison of LOGT, CLOGR D The output of the receive clog (CLOGR) – designated I1 D The output of the transmit clog (CLOGT) the comparison of CLOGT, LOGR 14 (32) D The output of the receive background-noise monitor (BNMR) – designated I4 D The output of the dial-tone detector The differential output (AFST, AFSR) of the block MODECON controls AFSCON. The effect of I1-I4 is as follows: ÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁ Inputs Output I1 I2 I3 I4 Mode T T S X Transmit T R Y Y Change mode R T Y Y Change mode R R X S Receive T T N X Idle T R N N Idle R T N N Idle R R X N Idle X = don’t care; Y = I3 and I4 are not both noise. LOGT > CLOGR LOGT < CLOGR LOGR < CLOGT LOGR > CLOGT BNMT detects speech BNMT detects noise BNMR detects speech BNMR detects noise I1=T I1=R I2=T I2=R I3=S I3=N I4=S I4=N Term Definitions 1. ‘Transmit’ means the transmit attenuator is fully on, and the receive attenuator is at maximum attenuation. 2. ‘Receive’ means the receive attenuator is fully on, and the transmit attenuator is at maximum attenuation. 3. In ‘Idle’ mode, the transmit- and receive attenuator are at the half of their maximum attenuation. a) ‘Change mode’ means both transmit and receive speech are present in approximately equal levels. The attenuators are quickly switched (30 ms) to the opposite mode until one speech level dominates the other. b) ‘Idle’ means speech has ceased in both transmit and receive paths. The attenuators are then slowly switched (1.5 seconds) to idle mode. 4. Switching to the full transmit or receive modes from idle mode is at the fast rate (30 ms). Rev. A3, 27-Oct-00 U4091BM Summary of the Truth Table 1. The circuit will switch to transmit mode if a) Both transmit level detectors sense higher signal levels than the respective receive level detectors and b) The transmit background-noise monitor indicates the presence of speech. 2. The circuit will switch to receive mode if a) Both receive level detectors sense higher signal levels than the respective transmit level detectors, and D To switch to receive mode, IRX is turned on (ITX is off), increasing the voltage on the capacitor to +240 mV with respect to VM. D To switch to reverse mode, the current sources ITX, IRX are turned off, and the current source IFI is switched on, discharging the capacitor to VM. D To switch to idle mode, the current sources ITX, IRX, IFI are turned off, and the current source ISI is charging the capacitor to VM. b) The receive background-noise monitor indicates the presence of speech. IN + – 3. The circuit will switch to the reverse mode if the level detectors disagree on the relative strengths of the signal levels, and at least one of the backgroundnoise monitors indicates speech. OUT 35 mV VM to mode control I4 DTD Figure 11. Dial tone detector 4. The circuit will switch to idle mode when a) Both talkers are quiet (no speech present), or b) When one talker’s speech level is continuously overridden by noise at the other speaker’s location. The time required to switch the circuit between transmit, receive and idle is determined by internal current sources and the capacitor at Pin CT. A diagram of the CT circuitry is shown in figure 13. It operates as follows: V B BNMR (BNMT) TLDR (TLDT) D To switch to transmit mode, ITX is turned on (IRX is off), charging the external capacitor to –240 mV below VM. (An internal clamp prevents further charging of the capacitor.) C CT 36 mV I4 (I3) VM Figure 12. Background noise monitor AFS control CT – + 56 k Ω 33 k Ω D CCT is typically 4.7 µF. 1 µF – + + – to attenuators I RX 10µA I TX 10µA IFI Control circuit 4 I 1–4 I SI Dial tone det. V M V M Figure 13. Generation of control voltage (CT) for mode switching Rev. A3, 27-Oct-00 15 (32) U4091BM TXA MICRO LOG Line AFS control LOG SA SAI Figure 14. Block diagram hands-free mode U4091BM 2-point signal sensing TXA MICRO CLOGT LOGT BNMT Line Mode control BNMR CLOGR LOGR CT CCT AFS control DTD SA SAI Figure 15. Block diagram hands-free mode U4091BM 4-point signal sensing 16 (32) Rev. A3, 27-Oct-00 U4091BM Analog-to-Digital Converter ADC This circuit is a 7-bit successive approximation analogto-digital converter in switched capacitor technique. An internal bandgap circuit generates a 1.25-V reference voltage which is the equivalent of 1 MSB. 1LSB = 19.5 mV. The possible input voltage at ADIN is 0 to 2.48 V. The ADC needs an SOC (Start Of Conversion) signal. In the ‘High’ phase of the SOC signal, the ADC is reset. 50 µs after the beginning of the ‘Low’ phase of the SOC signal, the ADC generates an EOC (End Of Conversion) signal which indicates that the conversion is finished. The rising edge of EOC generates an interrupt at the INT output. The result can be read out by the serial bus. SOC 50 µs EOC Figure 16. Timing of ADC SOC IL 20mV/(1mA S) Voltages higher than 2.45 V have to be divided. The signal which is connected to the ADC is determined by 5 bits: ADC0, ADC1, ADC2, ADC3 and NWT. TLDR/TLDT measuring is possible relative to a preceding reference measurement. The current range of IL can be doubled by ADCR. If ADCR is ‘High’, S has the value 0.5, otherwise S = 1. The source impedance at ADIN must be lower than 250 kΩ. Accuracy: 1 LSB + 3% ADIN 0.4 VB MSB 0.4 VMPS BIT5 0.75 VMP BIT4 ADC 8 (TLDR–REF) BIT3 8 (TLDT–REF) BIT2 0.4 SAO1 BIT1 0.4 OFF1 LSB 0.4 OFF2 0.4 OFF3 EOC Figure 17. ADC input selection ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ Table 2 Input selection AD converter ADC[1:4] Value 0 00000 OFF 1 00001 IL I1 = S 2 00010 ADIN extern V2 = 2.5 V 3 00011 VB V3 = (2.5 V / 0.4) D / 127 4 00100 VMPS V4 = (2.5 V / 0.4) D / 127 5 00101 VMP V5 = (2.5 V / 0.75) 6 00110 TLDR V6 = 8 (Vp – Ref) D / 127 7 00111 TLDT V7 = 8 (Vp – Ref) D / 127 8 01000 free 9 01001 SAO1 10 01010 Offcan1 11 01011 Offcan2 12 01100 Offcan3 13 01101 free 14 01110 free 15 01111 free 16–31 1XXXX 127 mA D / 127 D / 127 (max. 2.5 V) V4 = (2.5 V / 0.4) D / 127 D / 127 Atmel Wireless & Microcontrollers internal use NWT (TLDR) D = measured digital word (0 < = D < = 127) S = programmable gain 0.5 or 1 Vp = peak value of the measured signal Rev. A3, 27-Oct-00 17 (32) U4091BM Switch Matrix The switch matrix has 5 inputs and 5 outputs. Every pair of input and output except AGCO and AGCIN can be connected. The inputs and outputs used must be enabled. If 2 or more inputs are switched to an output, the sum of the inputs is available at the output. The inputs MIC and LRX have offset cancellers with a 3-dB corner frequency of 270 Hz. AMPB has a 60-kΩ input impedance. The TXO output has a digitallyprogrammable gain stage with a gain of 2, 3 to 9 dB depending on AGATX0 (LSB), AGATX1, AGATX2 (MSB) and a first order low-pass filter with 0.5 dB damping at 3300 Hz and 3 dB damping at 9450 Hz. The outputs RXLS, EPO and AMREC have a gain of 0 dB. The offset at the outputs of the matrix is less than 30 mV. If a switch is open, the path has a damping of more than 60 dB. AGCO AMPB LRX DTMF MIC Offset canceller I5 I4 I3 I2 Offset canceller Lowpass O4 O3 O2 O1 2.9 dB AGCI ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ R2 R3 R4 I1 AGC O5 Table 3 Table of bits and corresponding switches Register No. Name Description LTX AMREC EPO RXLS AGATX0 AGATX1 AGATX2 R2B0 I1O1 Switch on MIC / LTX R2B1 I1O2 Switch on MIC / RXLS R2B2 I1O3 Switch on MIC / EPO R2B3 I1O4 Switch on MIC / AMREC R2B4 I1O5 Switch on MIC / AGCI R2B5 I2O1 Switch on DTMF / LTX R2B6 I2O2 Switch on DTMF / RXLS R2B7 I2O3 Switch on DTMF / EPO R3B0 I2O4 Switch on DTMF / AMREC R3B1 I2O5 Switch on DTMF / AGCI R3B2 I3O1 Switch on LRX / LTX R3B3 I3O2 Switch on LRX / RXLS R3B4 I3O3 Switch on LRX / EPO R3B5 I3O4 Switch on LRX / AMREC R3B6 I3O5 Switch on LRX / AGCI R3B7 I4O1 Switch on AMPB / LTX R4B0 I4O2 Switch on AMPB / RXLS R4B1 I4O3 Switch on AMPB / EPO R4B2 I4O4 Switch on AMPB/ AMREC R4B3 I4O5 Switch on AMPB / AGCI R4B4 I5O1 Switch on AGCO / LTX R4B5 I5O2 Switch on AGCO / RXLS R4B6 I5O3 Switch on AGCO / EPO R4B7 I5O4 Switch on AGCO / AMREC TXO –10 dB STO Figure 18. Diagram for switch matrix 18 (32) Rev. A3, 27-Oct-00 U4091BM Sidetone System LINE LTX 8dB CK LRX 0–7dB + DIFF1 – AGARX STO_DIFF 9dB MOD –10dB STO AMP1 –10dB STOAMP AMP2 STO 8.2 kΩ Sidetone balancing g ZL RECIN LF STRC P CTO 33 nF SL STC f LF P SL Figure 19. Principle circuit of the sidetone balancing The SideTone Balancing (STB) has the task of reducing the crosstalk from LTX (microphone) to LRX (earpiece) in the frequency range of 0.3 to 3.4 kHz. The LTX signal is converted into a current in the MOD block. This current is transformed into a voltage signal (LINE) by the line impedance ZL. The LINE signal is fed into the summing amplifier DIFF1 via capacitor CK and attenuator AMP1. On the other hand the LTX buffered by STOAMP drives an external lowpass filter (RST, CST). The external lowpass filter and the internal STB have the transfer function drawn in the STB box. The amplified STB-output signal drives the negative input of the summing block. If both signals at the DIFF1 block are equal in level and phase, we have good suppression of the LTX signal. In this condition, the frequency and phase response of the STB block will represent the frequency curve on line. In real life the line impedance ZL varies strongly for different users. To obtain good suppression with one application for all different line impendances, the STB function is programmable. Rev. A3, 27-Oct-00 The 3 programmable parameters are: 1. LF (gain at low frequency) LF has 15 programming steps of 0.5 dB. LF(0) gives –2 dB gain, LF(15) gives 5.5 dB gain. STO_DIFF(LF) = (–10 dB – 2 dB + 0.5 dB LF + 9 dB) LTX 2. P (the pole position of the lowpass) The P adjustment has 31 steps. P(0) means the lowpass determined by the external application (RST, CST). The internally processed lowpass frequency is fixed by this equation 1 f(P) + 1.122 P 2 Pi CST RST 3. SL (sidetone slope; the pole frequency of the highpass) The SL has 3 steps. SL(0) is a lower frequency of the highpass. SL(3) is a higher frequency of the highpass. With SL, can be influenced the suppression at high frequencies. 19 (32) U4091BM –10dB Offset cancel –3dB ... –10dB and 7dB (NWT) ST Line 7dB→0dB and 20dB (NWT) Sidetone balancing VL 32dB→ –23dB Offset cancel LRX SAO1 RXLS Loud– speaker 6dB 1.5dB steps 1dB steps SAO2 26dB→ –3dB and –10dB (DTMF) DTMF generator Filter MIC1 Handset micro– phone Answering machine < –24dBm/ –22dBm > → 0dB 30dB→12dB Offset cancel RECO1 EPO DTMF Switching matrix 7dB→ –48dB MIC2 Intercom micro– phone DTMF 1dB steps RECO2 VL 8dB 1dB steps MIC3 6dB steps 0dB DTMF < –34dBm/ –32dBm > 9dB→2dB LTX MIC Earpiece Line MOD 1dB steps 0dB AMPB AMREC 0dB 0dB AGCO AGCI 0dB AMREC Answering machine AMPB AGC Figure 20. Audio frequency signal management U4091BM Absolute Maximum Ratings ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁ Parameter Symbol Value Unit Line current IL 140 mA DC line voltage VL 12 V IRING 15 mA Junction temperature Tj 125 °C Ambient temperature Tamb –25 to +75 °C Tstg –55 to +150 °C Ptot 0.9 W Maximum input current Storage temperature Total power dissipation, Tamb = 60°C Thermal Resistance ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁ Parameter Junction ambient 20 (32) SSO44 Symbol Value Unit RthJA 70 K/W Rev. A3, 27-Oct-00 U4091BM Electrical Characteristics f = 1 kHz, 0 dBm = 775 mVrms, IVMIC = 0.3 mA, IMP = 3 mA, RDC = 1.3 MΩ, Tamb = 25°C, Zear = 68 nF + 100 Ω, RLS = 50 Ω, ZM = 68 nF, resonator: f = 3.58 MHz, all bits in reset condition, unless otherwise specified. Parameter Test Conditions / Pins Symbol Min. Typ. Max. Unit Fig. ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ DC characteristics DC voltage drop-over cir- IL = 2 mA cuit IL = 14 mA IL = 60 mA IL = 100 mA VL 4.4 8.6 1.6 4.8 7.2 9.2 9.8 V V V V 47.7 dB 0 dB 5.2 Transmission amplifier, IL = 14 mA, VMIC = 2 mV, MICG[0:1] = 2, AGATX[0:2] = 7 ERX = ETX = ENMIC = ENSTBAL = I1O1 = I3O3 = 1, (GT = 48 dB) Transmit amplification MICG[0:1] = 2 AGATX[0:2] = 7 GT 45.3 Frequency response due to internal filters) IL ≥ 14 mA, f = 1 kHz to 3.4 kHz ∆GT –1 Gain change with current IL = 14 to 100 mA ∆GT ±0.5 dB Gain deviation Tamb = –10 to +60°C ∆GT ±0.5 dB CMRR of microphone amplifier CMRR Input resistance of MIC amplifier Ri 60 80 dB 50 kΩ Input resistance of MIC3 amplifier MICHF = 1 Ri Gain difference between MIC1, MIC2 to MIC3 MICHF = 1 Distortion at line IL ≥ 14 mA VL = 700 mVrms Maximum output voltage IL ≥ 19 mA, d < 5% VMIC = 10 mV CTXA = 1 µF DBM5 = 0 VLmax 1.8 Maximum output voltage DBM5 = 1 VLmax 4.8 Maximum output voltage VMIC = 20 m MICG[0:1] = 3 Noise at line psophometrically weighted IL ≥ 14 mA, MICG[0:1] = 2 AGATX[0:2] = 7 no – 73 Anti-clipping: attack time release time CTXA = 1 µF each 3 dB overdrive ta tr 2 80 Rev. A3, 27-Oct-00 300 kΩ ∆GT ±0.4 dB dt 2 % 3.0 4.2 dBm 6.0 6.6 dBm VMICOm 75 46.5 150 –4.2 dBm ax – 70 dBmp ms ms 21 (32) U4091BM Electrical Characteristics (continued) f = 1 kHz, 0 dBm = 775 mVrms, IVMIC = 0.3 mA, IMP = 3 mA, RDC = 1.3 MΩ, Tamb = 25°C, Zear = 68 nF + 100 Ω, RLS = 50 Ω, ZM = 68 nF, resonator: f = 3.58 MHz, all bits in reset condition, unless otherwise specified. ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ Parameter Test Conditions / Pins Symbol Min. 45 Gain at low operating current IL = 8 mA, IMP = 1 mA VMIC = 0.5 mV IVMIC = 300 µA GT Distortion at low operating current IL = 8 mA, IMP = 1 mA VMIC = 5 mV IVMIC = 300 µA dt Typ. Max. Unit 48 dB 5 % +17 dB 1 17 dB dB 0 dB Fig. Receiving amplifier IL = 14 mA, VGEN = 300 mV, ERX = ETX = ENMIC = ENSTBAL = I1O1 = I3O3 = 1, SL[0:1] = 0, LF[0:3] = 1, P[0:4] = 31, AFS[0:5] = 54, AGARX[0:2] = 0 Adjustment range of receiving gain Single ended, IL ≥ 14 mA, Mute = 1, EA[0:4] = 2 – 31 AGARX[0:2] = 0 – 7 Receiving amplification Differential AGARX[0:2] = 0 EA[0:4] = 15 EA[0:4] = 31 GR –19 GR –1 15 0 16 IL ≥ 14 mA, f = 1 kHz to 3.4 kHz ∆GRF Gain change with current IL = 14 to 100 mA ∆GR ±0.5 dB Gain deviation Tamb = –10 to +60°C ∆GR ±0.5 dB EP 3 Vrms Frequency response Ear protection differential IL ≥ 14 mA, VGEN = 11 Vrms EA[0:4] = 21 MUTE suppression IL = 14 mA, I101 = 0 (earpiece disconnect from matrix) Output voltage d < 2% differential IL = 14 mA Zear = 68 nF + 100 Ω EA[0:4] = 11 Maximum output current d < 2% Zear = 100 Ω EA[0:4] = 31 Receiving noise psophometrically weighted IL = 14 mA Zear = 68 nF + 100 Ω EA[0:4] = 15 Sidetone suppression Z = 600 Ω Output resistance Each output against GND 22 (32) ∆GR Iout –1 60 dB 0.775 Vrms 4 mAp – 79 – 76 20 Ro dBmp dB 10 Ω Rev. A3, 27-Oct-00 U4091BM Electrical Characteristics (continued) f = 1 kHz, 0 dBm = 775 mVrms, IVMIC = 0.3 mA, IMP = 3 mA, RDC = 1.3 MΩ, Tamb = 25°C, Zear = 68 nF + 100 Ω, RLS = 50 Ω, ZM = 68 nF, resonator: f = 3.58 MHz, all bits in reset condition, unless otherwise specified. ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ Parameter Test Conditions / Pins Symbol Min. Typ. Max. Unit Gain at low operating current (receive only) IL = 6.5 mA, IMP = 1 mA IM = 300 µA VGEN = 200 mV EA[0:4] = 21, ENMIC = ETX = I101 = 0 GR –2 0 2 dB Distortion at low operating current IL = 6.5 mA, IMP = 1 mA IM = 300 , EA[0:4] = 15, ENMIC = ETX = I101 = 0 dR 5 % Adjustment step: earpiece amplifier ∆EA[0:4] = 1 for EA[0:4] = 2 ... 3 0.8 1 1.2 dB Adjustment step: AGARX ∆AGARX[0:2] = 1 0.8 1 1.2 dB Gain for DTMF signal AMPB → RECO1/2 EA[0:4] = 1 AC impedance IMPH = 0 IMPH = 1 –10 Zimpl Zimph 595 980 625 1030 Fig. dB 655 1080 Ω Ω Receiving amplifier IL = 14 mA, VGEN = 300 mV, ERX = ETX = ENMIC = ENSTBAL = I1O1 = I3O3 = 1, SL[0:1] = 0, LF[0:3] = 1, P[0:4] = 31, AFS[0:5] = 54, AGARX[0:2] = 0 Adjustment range of receiving gain Single ended, IL ≥ 14 mA, Mute = 1, EA[0:4] = 2 – 31 AGARX[0:2] = 0 – 7 Receiving amplification Differential AGARX[0:2] = 0 EA[0:4] = 15 EA[0:4] = 31 GR –19 GR –1 15 0 16 +17 dB 1 17 dB dB 0 dB IL ≥ 14 mA, f = 1 kHz to 3.4 kHz ∆GRF Gain change with current IL = 14 to 100 mA ∆GR ±0.5 dB Gain deviation Tamb = –10 to +60°C ∆GR ±0.5 dB EP 3 Vrms Frequency response Ear protection differential IL ≥ 14 mA, VGEN = 11 Vrms EA[0:4] = 21 MUTE suppression IL = 14 mA, I101 = 0 (earpiece disconnect from matrix) Output voltage d < 2% differential Rev. A3, 27-Oct-00 IL = 14 mA Zear = 68 nF + 100 Ω EA[0:4] = 11 ∆GR –1 60 dB 0.775 Vrms 23 (32) U4091BM Electrical Characteristics (continued) f = 1 kHz, 0 dBm = 775 mVrms, IVMIC = 0.3 mA, IMP = 3 mA, RDC = 1.3 MΩ, Tamb = 25°C, Zear = 68 nF + 100 Ω, RLS = 50 Ω, ZM = 68 nF, resonator: f = 3.58 MHz, all bits in reset condition, unless otherwise specified. ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Parameter Test Conditions / Pins Symbol Min. Iout 4 Maximum output current d < 2% Zear = 100 Ω EA[0:4] = 31 Receiving noise psophometrically weighted IL = 14 mA Zear = 68 nF + 100 Ω EA[0:4] = 15 Sidetone suppression Z = 600 Ω Output resistance Each output against GND Ro Gain at low operating current (receive only) IL = 6.5 mA, IMP = 1 mA IM = 300 µA VGEN = 200 mV EA[0:4] = 21, ENMIC = ETX = I101 = 0 GR Distortion at low operating current IL = 6.5 mA, IMP = 1 mA IM = 300 , EA[0:4] = 15, ENMIC = ETX = I101 = 0 dR Adjustment step: earpiece amplifier ∆EA[0:4] = 1 for EA[0:4] = 2 ... 3 0.8 Adjustment step: AGARX ∆AGARX[0:2] = 1 0.8 Gain for DTMF signal AMPB → RECO1/2 EA[0:4] = 1 AC impedance IMPH = 0 IMPH = 1 Typ. Max. Unit mAp – 79 – 76 dBmp 20 –2 dB 10 Ω 2 dB 5 % 1 1.2 dB 1 1.2 dB 0 –10 Zimpl Zimph 595 980 Fig. 625 1030 dB Ω Ω 655 1080 DTMF, IL = 14 mA, ETX = I201 = 1, AGATX[0:2] = 7, DTMFM[0:2] = 4, DTMFF[0:4] = 0 Max. level at line Sum level, 600 Ω DTMFM[0:2] = 4 –5.1 –3.6 –2.1 dBm DTMF level at line (low gain) Sum level, 600 Ω DTMFM[0:2] = 5 –7.6 –6.1 –4.6 dBm Pre-emphasis 600 Ω DTMFF4 = 0 DTMFF4 = 1 2 3 2.5 3.5 3 4 dBm dBm 11 mA 38 dB ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ Speaker amplifier, differential mode AMPB → SAO1/2, ENSACL = ENSA = ENSAO = ENAM = I4O2 = 1, SA[0:4] = 31, ERX = ETX = ENMIC = ENSTBAL = I1O1 = I3O3 = 1 Minimum line current for operation ENAM = I4O2 = 0 SE = 0, I3O2 = 1 IMP 1 mA, VGEN = 300 mV Gain from AMPB to SAO VAMPB = 3 mV, IL = 15 mA, SA[0:4] = 31 SA[0:4] = 0 24 (32) ILmin GSA 36 37 –5.5 Rev. A3, 27-Oct-00 U4091BM Electrical Characteristics (continued) f = 1 kHz, 0 dBm = 775 mVrms, IVMIC = 0.3 mA, IMP = 3 mA, RDC = 1.3 MΩ, Tamb = 25°C, Zear = 68 nF + 100 Ω, RLS = 50 Ω, ZM = 68 nF, resonator: f = 3.58 MHz, all bits in reset condition, unless otherwise specified. ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ Parameter Test Conditions / Pins Adjustment step speaker amplifier SA[0:4] = –1 Output power single ended Load resistance: RLS = 50 Ω, d < 5% VAMPB = 40 mV, SE = 1 IL = 15 mA IL = 20 mA Max. output power differential Load resistance: RL = 50 Ω, d < 5% VAMPB = 60 mV, SE = 0 VB = 5 V Output noise (input AMPB open) psophometrically weighted IL > 15 mA Gain deviation IL = 15 mA Tamb = –10 to +60°C Symbol PSA PSA Min. Typ. Max. Unit 1.15 1.35 1.55 dB 3 7 20 mW mW 150 mW PSA nSA 240 mVpsoph ∆GSA ±1 dB Mute suppression IL = 15 mA, VL = 0 dBm, VAMPB = 4 mV I4O2 = 0 VSAO –56 dBm Gain change with current IL = 15 to 100 mA ∆GSA 1 dB Gain change with frequency IL = 15 mA f = 1 kHz to 3.4 kHz ∆GSA Attack time of anti-clipping 20 dB over drive Release time of anti-clipping Fig. dB –1 0 tr 2 ms tf 170 ms Adjustment step of charge current ENSAO = 0, SE = 1 ∆LSCUR[0:1] = 1 –480 –400 –320 µA Adjustment step of discharge current ENSAO = 0, SE = 0 ∆LSCUR[0:1] = 1 320 400 480 µA Charge current Pin SAO2 ENSAO = 0, SE = 1 LSCUR[0:1] = 3 ICHA –1.45 –1.2 –0.95 mA Discharge current Pin SAO2 ENSAO = 0, SE = 0 LSCUR[0:1] = 3 IDIS 0.95 1.2 1.45 mA Microphone amplifier, VB = 5 V, VMIC = 2 mV, VMIC3 = 2 mV, ENMIC = ENAM = I1O4 = 1, MICHF = 0 Gain MIC amp.: MIC1/2 → AMREC MICG[0:1] = 0 17.4 17.9 18.4 dB Gain MIC amp.: MICG[0:1] = 1 23.2 23.7 24.2 dB Gain MIC amp.: MICG[0:1] = 2 329.1 29.6 30.1 dB Rev. A3, 27-Oct-00 25 (32) U4091BM Electrical Characteristics (continued) f = 1 kHz, 0 dBm = 775 mVrms, IVMIC = 0.3 mA, IMP = 3 mA, RDC = 1.3 MΩ, Tamb = 25°C, Zear = 68 nF + 100 Ω, RLS = 50 Ω, ZM = 68 nF, resonator: f = 3.58 MHz, all bits in reset condition, unless otherwise specified. ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Parameter Test Conditions / Pins Symbol Min. Typ. Max. Unit Gain MIC amp.: MICG[0:1] = 3 35 35.5 36.0 dB MIC3 → AMREC MICHF = 1, MICG[0:1] =3 35 35.5 36.0 dB MICG[0:1] = 0, MICHF =0 60 dB MIC1/2 → MIC3 MICHF = 1 60 dB Settling time offset-cancellers 5 τ, FOFFC = 0 9 12 ms Settling time offset-cancellers in speed-up mode 5 τ, FOFFC = 1 1.8 2.4 ms Input suppression: MIC3 → MIC1/2 Fig. AGC for answering machine, AMPB → AMREC, ENAM = ENAGC = I4O5 = I5O4 = 1 Nominal gain VAMPB = 5 mV 24 26 28 dB Max. output level VAMPB = 50 mV, d< 5% 240 300 360 mVp Attack time 20 dB overdrive Release time 1 ms 45 ms Switching matrix, VL = 0, VB = 5 V, ENAM = I4O4 = 1, VAMPB = 0.6 Vrms Input impedance AMPB Gain AMPB → AMREC Max. input level AMPB I4O5 = I5O4 = 1, I4O4 = 0 Max. output level AMREC I4O4 = 1 Offset I4O4: 1 → 0 50 60 70 kΩ –0.7 –0.3 0.1 dB 600 mV VB– 600 mV VPP ±30 mV ∆VAMR EC Mute switching matrix I4O4 = 0 60 dB Power-on reset VL = 0, VMP = 3.3 V, VB = 5 V, U4091 in power-down mode Power-on reset by ES VB high, VMP threshold VB = 4 V, ES = 4 V, rise VMP until RESET go to low Power-on reset by ES VMP high, VB threshold VMP = 3 V, ES = 4 V, rise VB until RESET go to low VMPon VBon 2.65 2.75 3.2 2.85 V V Low-voltage interrupt VL = 0, VMP = 3.3 V, VB = 0 V 26 (32) Rev. A3, 27-Oct-00 U4091BM Electrical Characteristics (continued) f = 1 kHz, 0 dBm = 775 mVrms, IVMIC = 0.3 mA, IMP = 3 mA, RDC = 1.3 MΩ, Tamb = 25°C, Zear = 68 nF + 100 Ω, RLS = 50 Ω, ZM = 68 nF, resonator: f = 3.58 MHz, all bits in reset condition, unless otherwise specified. ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁ Parameter VMP decreasing Test Conditions / Pins Symbol Min. Typ. Max. Unit Decrease VMP until INT returns to high VLVI 2.5 2.6 2.7 V VLVR 2.35 2.45 2.55 V 100 150 0.6 0.9 Fig. Power-off reset VL = 0, VMP = 3.3 V, VB = 0 V Low-voltage reset Decrease VMP until RESET returns to low Difference voltage between low-voltage interrupt and reset VLVI – VLVR mV Logical part VMP = 3.3 V, VB = 5 V Output impedance at OSCOUT Pins SCL, SDA (input mode) Low level High level Input leakage current 0 < Vi < VMP –1 Pins INT, SDA (output mode) Output low (resistance to GND) 150 1.2 kΩ 0.2 VMP V V 1 A 350 Ω 5 µA 80 Ω 5 mA 0.8 VMP 230 Switch for additional impedance (Pin IMPSW) VMP = 3.3 V, VB = 3 V Switch-off leakage current 0 < Vi < VMP IMPSW = 0 Resistance to GND IMPSW = 1 Max. current IMPSW = 1 –0.5 50 –5 AFS (Acoustic Feedback Suppression), IL = 14 mA, VGEN = 300 mV, ERX = ETX = ENMIC = ENSTBAL = I1O1 = I3O3 = 1, SL[0:1] = 0, LF[0:3] = 1, P[0:4] = 31, AGARX[0:2] = 0 Adjustment range of attenuation IL ≥ 15 mA Attenuation of transmit gain IL ≥ 15 mA, IINLDT = 0 µA IINLDR = 10 µA ∆GT 47 Attenuation of speaker amplifier IL ≥ 15 mA, IINLDT = 10 µA IINLDR = 0 µA GSA 0 50 dB 50 53 dB 47 50 53 dB 3.1 3.3 3.5 V 5.5 V Supply voltages, VMIC = 25 mV, Tamb = – 10 to + 60°C VMP IL = 14 mA, RDC = 680 kΩ IMP = 3 mA VMP VMPS IL = 100 mA, RDC = inf., IMP = 0 mA VMPS Rev. A3, 27-Oct-00 27 (32) U4091BM Electrical Characteristics (continued) f = 1 kHz, 0 dBm = 775 mVrms, IVMIC = 0.3 mA, IMP = 3 mA, RDC = 1.3 MΩ, Tamb = 25°C, Zear = 68 nF + 100 Ω, RLS = 50 Ω, ZM = 68 nF, resonator: f = 3.58 MHz, all bits in reset condition, unless otherwise specified. ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ Parameter Test Conditions / Pins Symbol Min. VMIC IL 14 mA, RDC = 1.3 MΩ IM = 700 A VMIC 1.5 VB IB = +20 mA, IL = 0 mA Ringing power converter, IMP = 1 mA, IM = 0 VB 5.5 Max. Unit 4 V 6.3 V VRING = 20.6 V ENSA = ENSAO = SE = 1 Threshold VRING: high to low PSA 15 Threshold low to high, RINGTH [0:3] = 0 6.0 low to high RINGTH [0:3] = 15 Adjustment steps threshold Input impedance mW 7.4 V 6.7 7.4 V 19 21 23 V ∆RINGTH = 1 0.8 1 1.2 V VRING = 30 V 4.6 5.8 7.0 kΩ Max. input voltage Fig. RIMPA = 500 kW Maximum output power Threshold Typ. VRINGm 30 V ax Serial bus SCL, SDA, AS, VMP = 3.3 V, RSDA = RSCL = RINT = 12 kW Input voltage HIGH LOW SDA, SCL, ViBUS VDD 1.5 V V VO 0.4 V fSCL 100 kHz Rise time SDA, SCL tr 1 µs Fall time SDA, SCL tf 300 ns Output voltage Acknowledge LOW INT SDA ISDA = 3 mA Clock frequency Period of SCL HIGH LOW 3.0 0 SCL HIGH LOW tH tL 4.0 4.7 µs µs tsSTA tsDAT tsSTOP twSTA 4.7 250 4.7 4.7 µs ns µs µs thSTA thDAT 4.0 0 µs µs Setup time Start condition Data Stop condition Time space 1) Hold time Start condition DATA 1) This is a space of time where the bus must bee from data transmission and before a new transmission can be started 28 (32) Rev. A3, 27-Oct-00 Test Circuits Rev. A3, 27-Oct-00 PWL sin V + V PWL V A + V + 3.58 MHz 43 42 41 40 39 38 37 36 35 34 1 2 3 4 5 6 7 8 9 10 11 33 32 31 30 29 28 27 26 25 24 23 12 13 14 15 16 17 18 19 20 21 22 U4091BM Figure 21. Basic test circuit 44 10 Ω V C IND + R CD + V 50 Ω sin sin V V 29 (32) U4091BM V U4091BM 30 (32) 3.58 MHz 43 42 41 40 39 38 37 36 35 34 1 2 3 4 5 6 7 8 9 10 11 PWL + + 33 32 31 30 29 28 27 26 25 24 23 12 13 14 15 16 17 18 19 20 21 22 U4091BM Figure 22. Test circuit for ringing 44 PWL BC 556 2.2 mH 68 nF SD103A V 50 Ω V VB VB 14600 Rev. A3, 27-Oct-00 U4091BM Bus Timing SDA twSTA tr tf thSTA SCL P S thSTA thDAT tL tH tsSTA tsSTOP thDAT P P = Stop, S = Start Figure 23. Bus timing diagram Package Information Package SSO44 Dimensions in mm 9.15 8.65 18.05 17.80 7.50 7.30 2.35 0.3 0.25 0.10 0.8 0.25 10.50 10.20 16.8 44 23 technical drawings according to DIN specifications 13040 1 Rev. A3, 27-Oct-00 22 31 (32) U4091BM Ozone Depleting Substances Policy Statement It is the policy of Atmel Germany GmbH to 1. Meet all present and future national and international statutory requirements. 2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment. It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs). The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances. Atmel Germany GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents. 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively. Atmel Germany GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances. 4.5. We reserve the right to make changes to improve technical design and may do so without further notice. Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Atmel Wireless & Microcontrollers products for any unintended or unauthorized application, the buyer shall indemnify Atmel Wireless & Microcontrollers against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use. Data sheets can also be retrieved from the Internet: http://www.atmel–wm.com Atmel Germany GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 (0)7131 67 2594, Fax number: 49 (0)7131 67 2423 32 (32) Rev. A3, 27-Oct-00