AD AD7400AYNSZ

Isolated Sigma-Delta Modulator
AD7400A
Preliminary Technical Data
FEATURES
GENERAL DESCRIPTION
10 MHz clock rate
Second-order modulator
16 bits no missing codes
±2 LSB INL typical at 16 bits
3.5 µV/°C maximum offset drift
On-board digital isolator
On-board reference
Low power operation: 18 mA maximum at 5.25 V
−40°C to +125°C operating range
16-lead SOIC, 8-lead gull-wing surface mount DIP packages
AD7401A, external clock version
Safety and regulatory approvals
UL recognition
3750 V rms for 1 minute per UL 1577
CSA Component Acceptance Notice #5A
VDE Certificate of Conformity
DIN EN 60747-5-2 (VDE 0884 Part 2): 2003-01
DIN EN 60950 (VDE 0805): 2001-12; EN 60950: 2000
VIORM = 891 V peak
The AD7400A1 is a second-order, Σ-Δ modulator that converts
an analog input signal into a high speed, 1-bit data stream with
on-chip digital isolation based on Analog Devices, Inc.
iCoupler® technology. The AD7400A operates from a 5 V power
supply and accepts a differential input signal of ±200 mV
(±320 mV full scale). The analog input is continuously sampled
by the analog modulator, eliminating the need for external
sample-and-hold circuitry. The input information is contained
in the output stream as a density of ones with a data rate of
10 MHz. The original information can be reconstructed with an
appropriate digital filter. The serial I/O can use a 5 V or a 3 V
supply (VDD2).
The serial interface is digitally isolated. High speed CMOS,
combined with monolithic air core transformer technology,
means the on-chip isolation provides outstanding performance
characteristics superior to alternatives such as optocoupler
devices. The part contains an on-chip reference. The AD7400A
is offered in a 16-lead SOIC and 8-lead gull-wing surface mount
DIP and has an operating temperature range of −40°C to
+125°C.
APPLICATIONS
AC motor controls
Data acquisition systems
A/D + opto-isolator replacements
FUNCTIONAL BLOCK DIAGRAM
VDD1
VDD2
AD7400A
VIN+
T/H
Σ-∆ ADC
UPDATE
ENCODE
BUF
REF
CONTROL LOGIC
UPDATE
ENCODE
WATCHDOG
DECODE
MDAT
WATCHDOG
MCLKOUT
DECODE
GND2
GND1
04718-001
VIN–
Figure 1.
1
Protected by U.S. Patents 5,952,849; 6,873,065; and 7,075,329. Other patents pending.
Rev. PrA
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700
www.analog.com
Fax: 781.461.3113
©2008 Analog Devices, Inc. All rights reserved.
AD7400A
Preliminary Technical Data
TABLE OF CONTENTS
Features .............................................................................................. 1
Typical Performance Characteristics ..............................................9
Applications....................................................................................... 1
Terminology .................................................................................... 12
General Description ......................................................................... 1
Theory of Operation ...................................................................... 13
Functional Block Diagram .............................................................. 1
Circuit Information.................................................................... 13
Revision History ............................................................................... 2
Analog Input ............................................................................... 13
Specifications..................................................................................... 3
Differential Inputs ...................................................................... 14
Timing Specifications .................................................................. 4
Digital Filter ................................................................................ 14
Insulation and Safety-Related Specifications............................ 5
Application Information................................................................ 17
Regulatory Information............................................................... 5
Grounding and Layout .............................................................. 17
DIN EN 60747-5-2 (VDE 0884 Part 2) Insulation
Characteristics .............................................................................. 6
Evaluating the AD7400A Performance ................................... 17
Absolute Maximum Ratings............................................................ 7
Outline Dimensions ....................................................................... 18
ESD Caution.................................................................................. 7
Ordering Guide ....................... Error! Bookmark not defined.
Insulation Lifetime ..................................................................... 17
Pin Configuration and Function Descriptions............................. 8
REVISION HISTORY
Rev. PrA | Page 2 of 19
Preliminary Technical Data
AD7400A
SPECIFICATIONS
VDD1 = 4.5 V to 5.25 V, VDD2 = 3 V to 5.5 V, VIN+ = −200V to +200mV, and VIN− = 0 V (single-ended); TA = TMIN to TMAX,
fMCLK = 10 MHz, tested with Sinc3 filter, 256 decimation rate, as defined by Verilog code, unless otherwise noted.1
Table 1.
Parameter
STATIC PERFORMANCE
Resolution
Integral Nonlinearity3
Differential Nonlinearity3
Offset Error3
Offset Drift vs. Temperature3
Offset Drift vs. VDD1
Gain Error3
Gain Error Drift vs. Temperature3
Gain Error Drift vs. VDD13
ANALOG INPUT
Input Voltage Range
Dynamic Input Current
Input Capacitance
DYNAMIC SPECIFICATIONS
Signal-to-(Noise + Distortion) Ratio (SINAD)3
Signal-to-Noise Ratio (SNR)3
Total Harmonic Distortion (THD)3
Peak Harmonic or Spurious Noise (SFDR)3
Effective Number of Bits (ENOB)3
Isolation Transient Immunity3
LOGIC OUTPUTS
Output High Voltage, VOH
Output Low Voltage, VOL
POWER REQUIREMENTS
VDD1
VDD2
IDD14
IDD25
Y Version1, 2
Unit
Test Conditions/Comments
16
±15
±25
±0.9
±0.5
±50
3.5
1
120
±1
23
110
Bits min
LSB max
LSB max
LSB max
mV max
µV typ
µV/°C max
µV/°C typ
µV/V typ
mV max
µV/°C typ
µV/V typ
Filter output truncated to 16 bits
−40°C to +85°C; ±2 LSB typical
>85°C to 105°C
Guaranteed no missing codes to 16 bits
±200
±7
±0.5
10
mV min/mV max
µA max
µA typ
pF typ
For specified performance; full range ±320 mV
VIN+ = 400 mV, VIN− = 0 V
VIN+ = VIN− = 0 V
70
65
79
71
−88
−88
11.5
25
30
dB min
dB min
dB typ
dB min
dB typ
dB typ
Bits
kV/µs min
kV/µs typ
VDD2 − 0.1
0.4
V min
V max
IO = −200 µA
IO = +200 µA
4.5/5.25
3/5.5
12
6
4
V min/V max
V min/V max
mA max
mA max
mA max
VDD1 = 5.25 V
VDD2 = 5.5 V
VDD2 = 3.3 V
1
Temperature range is −40°C to +125°C except where specified.
All voltages are relative to their respective ground.
See the Terminology section.
4
See Figure 15.
5
See Figure 16.
2
3
Rev. PrA | Page 3 of 19
TA = 25°C
−40°C to +105°C
−40°C to +105°C
VIN+ = 35 Hz, 400 mV p-p sine
−40°C to +85°C
>85°C to 105°C
−40°C to +105°C
AD7400A
Preliminary Technical Data
TIMING SPECIFICATIONS
VDD1 = 4.5 V to 5.25 V, VDD2 = 3 V to 5.5 V, TA = TMAX to TMIN, unless otherwise noted.1
Table 2.
Parameter
fMCLKOUT2
t13
t23
t3
t4
Limit at TMIN, TMAX
10
9/11
40
10
0.4 × tMCLKOUT
0.4 × tMCLKOUT
Unit
MHz typ
MHz min/MHz max
ns max
ns min
ns min
ns min
Description
Master clock output frequency
Master clock output frequency
Data access time after MCLK rising edge
Data hold time after MCLK rising edge
Master clock low time
Master clock high time
1
Sample tested during initial release to ensure compliance.
Mark space ratio for clock output is 40/60 to 60/40.
3
Measured with the load circuit of Figure 2 and defined as the time required for the output to cross 0.8 V or 2.0 V.
2
200µA
+1.6V
CL
25pF
200µA
04718-002
TO OUTPUT
PIN
IOL
IOH
Figure 2. Load Circuit for Digital Output Timing Specifications
t4
t1
t2
MDAT
Figure 3. Data Timing
Rev. PrA | Page 4 of 19
t3
04718-003
MCLKOUT
Preliminary Technical Data
AD7400A
INSULATION AND SAFETY-RELATED SPECIFICATIONS
Table 3.
Parameter
Input-to-Output Withstand Momentary Withstand Voltage
Minimum External Air Gap (Clearance)
Symbol
VISO
L(I01)
Value
3750 min
7.46 min
Unit
V
mm
Minimum External Tracking (Creepage)
L(I02)
8.1 min
mm
Minimum Internal Gap (Internal Clearance)
Tracking Resistance (Comparative Tracking Index)
Isolation Group
CTI
0.017 min
>175
IIIa
mm
V
Conditions
1-minute duration
Measured from input terminals to output
terminals, shortest distance through air
Measured from input terminals to output
terminals, shortest distance path along body
Insulation distance through insulation
DIN IEC 112/VDE 0303 Part 1
Material group (DIN VDE 0110, 1/89, Table 1)
REGULATORY INFORMATION
Table 4.
UL1
Recognized Under 1577
Component Recognition Program1
3750 V rms Isolation Voltage
File E214100
1
2
CSA
Approved under CSA Component
Acceptance Notice #5A
Reinforced insulation per
CSA 60950-1-03 and IEC 60950-1,
630 Vrms maximum working
voltage
File 205078
VDE2
Certified according to DIN EN 60747-5-2
(VDE 0884 Part 2): 2003-012
Basic insulation, 891 V peak
Complies with DIN EN 60747-5-2 (VDE 0884 Part 2): 2003-01,
DIN EN 60950 (VDE 0805): 2001-12; EN 60950: 2000
Reinforced insulation, 891 V peak
File 2471900-4880-0001
In accordance with UL 1577, each AD7400A is proof tested by applying an insulation test voltage ≥ 4500 V rms for 1 second (current leakage detection limit = 7.5 µA).
In accordance with DIN EN 60747-5-2, each AD7400A is proof tested by applying an insulation test voltage ≥ 1671 V peak for 1 second (partial discharge detection
limit = 5 pC).
Rev. PrA | Page 5 of 19
AD7400A
Preliminary Technical Data
DIN EN 60747-5-2 (VDE 0884 PART 2) INSULATION CHARACTERISTICS
This isolator is suitable for basic electrical isolation only within the safety limit data. Maintenance of the safety data is ensured by means
of protective circuits.
Table 5.
Description
INSTALLATION CLASSIFICATION PER DIN VDE 0110
For Rated Mains Voltage ≤ 300 V rms
For Rated Mains Voltage ≤ 450 V rms
For Rated Mains Voltage ≤ 600 V rms
CLIMATIC CLASSIFICATION
POLLUTION DEGREE (DIN VDE 0110, Table 1)
MAXIMUM WORKING INSULATION VOLTAGE
INPUT-TO-OUTPUT TEST VOLTAGE, METHOD B1
VIORM × 1.875 = VPR, 100% Production Test, tm = 1 sec, Partial Discharge < 5 pC
INPUT-TO-OUTPUT TEST VOLTAGE, METHOD A
After Environmental Test Subgroup 1
VIORM × 1.6 = VPR, tm = 60 sec, Partial Discharge < 5 pC
After Input and/or Safety Test Subgroup 2/3
VIORM × 1.2 = VPR, tm = 60 sec, Partial Discharge < 5 pC
HIGHEST ALLOWABLE OVERVOLTAGE (TRANSIENT OVERVOLTAGE, tTR = 10 sec)
SAFETY-LIMITING VALUES (MAXIMUM VALUE ALLOWED IN THE EVENT OF A FAILURE, ALSO SEE Figure 4)
Case Temperature
Side 1 Current
Side 2 Current
INSULATION RESISTANCE AT TS, VIO = 500 V
250
SIDE #2
200
150
SIDE #1
100
50
50
100
150
CASE TEMPERATURE (°C)
200
04718-026
SAFETY-LIMITING CURRENT (mA)
300
0
Figure 4. Thermal Derating Curve, Dependence of Safety-Limiting Values
with Case Temperature per DIN EN 60747-5-2
Rev. PrA | Page 6 of 19
Characteristic
Unit
VIORM
I–IV
I–II
I–II
40/105/21
2
891
V peak
1671
V peak
1426
V peak
1069
V peak
VTR
6000
V peak
TS
IS1
IS2
RS
150
265
335
>109
°C
mA
mA
Ω
VPR
VPR
350
0
Symbol
Preliminary Technical Data
AD7400A
ABSOLUTE MAXIMUM RATINGS
TA = 25°C, unless otherwise noted. All voltages are relative to
their respective ground.
Table 6.
Parameter
VDD1 to GND1
VDD2 to GND2
Analog Input Voltage to GND1
Output Voltage to GND2
Input Current to Any Pin Except Supplies1
Operating Temperature Range
Storage Temperature Range
Junction Temperature
SOIC Package
θJA Thermal Impedance
θJC Thermal Impedance
Resistance (Input-to-Output), RI-O
Capacitance (Input-to-Output), CI-O2
Pb-Free Temperature, Soldering
Reflow
ESD
1
2
Rating
−0.3 V to +6.5 V
−0.3 V to +6.5 V
−0.3 V to VDD1 + 0.3 V
−0.3 V to VDD2 + 0.3 V
±10 mA
−40°C to +125°C
−65°C to +150°C
150°C
89.2°C/W
55.6°C/W
1012 Ω
1.7 pF typ
Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.
Table 7. Maximum Continuous Working Voltage1
Parameter
AC Voltage,
Bipolar Waveform
AC Voltage,
Unipolar Waveform
DC Voltage
1
260 (+0)°C
1.5 kV
Transient currents of up to 100 mA do not cause SCR to latch up.
f = 1 MHz.
Max
565
Unit
VPK
Constraint
50-year minimum lifetime
891
VPK
891
V
Maximum CSA/VDE
approved working voltage
Maximum CSA/VDE
approved working voltage
Refers to continuous voltage magnitude imposed across the isolation
barrier. See the Insulation Lifetime section for more details.
ESD CAUTION
Rev. PrA | Page 7 of 19
AD7400A
Preliminary Technical Data
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS
VDD1 1
VIN+ 2
16 GND2
AD7400A
15 NC
VIN– 3
TOP VIEW 14 VDD2
(Not to Scale)
13 MCLKOUT
NC 4
NC 5
12 NC
NC 6
11 MDAT
GND1 8
1
VIN+
2
VIN-
3
GND1
4
AD7400A
8
VDD2
7
MCLKIN
TOP VIEW
6 MDAT
(Not to Scale)
5 GND2
NC = NO CONNECT
Figure 6 Pin Configuration (NS-8)
10 NC
9
GND2
NC = NO CONNECT
04718-004
VDD1 7
VDD1
Figure 5. Pin Configuration (RW-16)
Table 8. Pin Function Descriptions
Mnemonic
VDD1
VIN+
VIN−
NC
GND1
GND2
MDAT
MCLKOUT
VDD2
Description
Supply Voltage, 4.5 V to 5.25 V. This is the supply voltage for the isolated side of the AD7400A and
is relative to GND1.
Positive Analog Input. Specified range of ±200 mV.
Negative Analog Input. Normally connected to GND1.
No Connect.
Ground 1. This is the ground reference point for all circuitry on the isolated side.
Ground 2. This is the ground reference point for all circuitry on the nonisolated side.
Serial Data Output. The single bit modulator output is supplied to this pin as a serial data stream.
The bits are clocked out on the rising edge of the MCLKOUT output and valid on the following
MCLKOUT rising edge.
Master Clock Logic Output. 10 MHz typical. The bit stream from the modulator is valid on the rising edge
of MCLKOUT.
Supply Voltage. 3 V to 5.5 V. This is the supply voltage for the nonisolated side and is relative to GND2.
Rev. PrA | Page 8 of 19
Preliminary Technical Data
AD7400A
TYPICAL PERFORMANCE CHARACTERISTICS
TA = 25°C, using 20 kHz brickwall filter, unless otherwise noted.
–90
100
200mV p-p SINEWAVE ON VDD1
NO DECOUPLING
VDD1 = VDD2 = 4.5V TO 5.25V
90
80
–70
70
–60
SINAD (dB)
60
PSRR (dB)
VDD1 = VDD2 = 5V
–80
50
40
–50
–40
–30
30
–20
20
0
100
200
300
400
500
600
700
800
900
0
0.195
1000
04718-008
0
–10
04718-005
10
0.215
0.275
0.295
0.315
Figure 10. SINAD vs. VIN
Figure 7. PSRR vs. Supply Ripple Frequency Without Supply Decoupling
(1 MHz Filter Used)
–90
0.5
–80
0.4
VIN+ = –200mV TO +200mV
VIN– = 0V
0.3
DNL ERROR (LSB)
VDD1 = VDD2 = 4.5V
–60
–50
–40
VDD1 = VDD2 = 5.25V
VDD1 = VDD2 = 5V
–30
0.2
0.1
0
–0.1
–0.2
–10
–0.3
04718-006
–20
0
500
1000
1500
2000
2500
3000
3500
–0.4
4000
04718-009
–70
SINAD (dB)
0.255
± INPUT AMPLITUDE (V)
SUPPLY RIPPLE FREQUENCY (kHz)
0
0.235
0
10000
20000
0.8
0
8192 POINT FFT
fIN = 35Hz
SINAD = 79.6991dB
THD = –92.6722dB
DECIMATION BY 256
–40
40000
50000
60000
Figure 11. Typical DNL, ±200 mV Range
(Using Sinc3 Filter, 256 Decimation Rate)
Figure 8. SINAD vs. Analog Input Frequency for Various Supply Voltages
–20
30000
CODE
INPUT FREQUENCY (Hz)
VIN+ = –200mV TO +200mV
VIN– = 0V
0.6
0.4
INL ERROR (LSB)
–60
dB
–80
–100
–120
0.2
0
–0.2
–140
0
2
4
6
8
10
12
14
FREQUENCY (kHz)
16
18
20
Figure 9. Typical FFT, ±200 mV Range
(Using Sinc3 Filter, 256 Decimation Rate)
–0.4
–0.6
04718-010
–180
04718-007
–160
0
10000
20000
30000
CODE
40000
50000
Figure 12. Typical INL, ±200 mV Range
(Using Sinc3 Filter, 256 Decimation Rate)
Rev. PrA | Page 9 of 19
60000
AD7400A
Preliminary Technical Data
100
0.0036
50
IDD2 @ +85°C
0.0035
0
0.0034
IDD2 (A)
VDD1 = VDD2 = 5V
–50
–100
IDD2 @ –40°C
0.0033
0.0032
VDD1 = VDD2 = 5.25V
04718-014
0.34
0.30
0.26
0.22
0.18
0.14
0.10
0.06
0.02
–0.02
–0.06
–0.10
–0.14
–0.18
–0.22
TEMPERATURE (°C)
–0.26
0.0030
5 15 25 35 45 55 65 75 85 95 105
–0.30
–200
–45 –35 –25 –15 –5
0.0031
–0.34
–150
04718-011
OFFSET (µV)
VDD1 = VDD2 = 5V
IDD2 @ +25°C
VDD1 = VDD2 = 4.5V
VIN DC INPUT VOLTAGE (V)
Figure 16. IDD2 vs. VIN at Various Temperatures
Figure 13. Offset Drift vs. Temperature for Various Supply Voltages
9
0.20
VDD1 = VDD2 = 4.5V TO 5.25V
0.15
6
0.10
VDD1 = VDD2 = 5V
IIN (µA)
GAIN (%)
3
VDD1 = VDD2 = 4.5V
0.05
0
–0.05
0
–3
–0.10
0.30
0.25
0.20
0.15
0.10
0.05
–0.05
–0.10
–0.15
–0.20
–0.25
–0.30
TEMPERATURE (°C)
0.35
04718-012
–9
15 25 35 45 55 65 75 85 95 105
–0.35
5
0
–0.20
–45 –35 –25 –15 –5
04718-015
–6
VDD1 = VDD2 = 5.25V
–0.15
VIN+ DC INPUT (V)
Figure 17. IIN vs. VIN+ DC Input
Figure 14 . Gain Error Drift vs. Temperature for Various Supply Voltages
0.0099
0
VDD1 = VDD2 = 5V
0.0098
–10
0.0097
TA = +85°C
0.0096
–20
TA = +25°C
–30
CMRR (dB)
0.0094
TA = –40°C
0.0093
0.0092
–40
–50
–60
–70
0.30
0.26
0.22
0.18
0.14
0.10
0.06
0.02
–0.02
–0.06
–0.10
–0.14
–0.18
–0.22
–0.26
–0.30
0.0089
VIN DC INPUT VOLTAGE (V)
–80
04718-016
0.0090
0.34
04718-013
0.0091
–0.34
IDD1 (A)
0.0095
–90
–100
0.1
1
10
100
1000
RIPPLE FREQUENCY (kHz)
Figure 18. CMRR vs. Common-Mode Ripple Frequency
Figure 15. IDD1 vs. VIN at Various Temperatures
Rev. PrA | Page 10 of 19
10000
Preliminary Technical Data
AD7400A
11.0
1.0
BANDWIDTH = 100kHz
10.8
0.8
10.6
10.0
9.8
VDD1 = VDD2 = 5.25V
9.6
04718-024
VDD1 = VDD2 = 5V
95
TEMPERATURE (°C)
VIN DC INPUT (V)
Figure 19. RMS Noise Voltage vs. VIN DC Input
Figure 20. MCLKOUT vs. Temperature for Various Supplies
Rev. PrA | Page 11 of 19
105
85
75
65
55
45
35
25
–5
–15
9.0
–25
9.2
–45
04718-017
0.30
0.25
0.20
0.15
0.10
0.05
0
–0.05
–0.10
–0.15
–0.20
–0.25
0
9.4
–35
0.2
5
0.4
VDD1 = VDD2 = 4.5V
10.2
15
MCLKOUT (MHz)
0.6
–0.30
NOISE (mV)
10.4
AD7400A
Preliminary Technical Data
TERMINOLOGY
Differential Nonlinearity
Differential nonlinearity is the difference between the measured
and the ideal 1 LSB change between any two adjacent codes
in the ADC.
Integral Nonlinearity
Integral nonlinearity is the maximum deviation from a straight
line passing through the endpoints of the ADC transfer function.
The endpoints of the transfer function are specified negative
full scale, −200 mV (VIN+ − VIN−), Code 12,288 for the 16-bit
level, and specified positive full scale, +200 mV (VIN+ − VIN−),
Code 53,248 for the 16-bit level.
Offset Error
Offset is the deviation of the midscale code (Code 32,768 for
the 16-bit level) from the ideal VIN+ − VIN− (that is, 0 V).
Gain Error
This includes both positive full-scale gain error and negative
full-scale gain error. Positive full-scale gain error is the
deviation of the specified positive full-scale code (53,248 for the
16-bit level) from the ideal VIN+ − VIN− (+200 mV) after the
offset error is adjusted out. Negative full-scale gain error is the
deviation of the specified negative full-scale code (12,288 for
the 16-bit level) from the ideal VIN+ − VIN− (−200 mV) after the
offset error is adjusted out. Gain error includes reference error.
Signal-to-(Noise + Distortion) Ratio (SINAD)
This ratio is the measured ratio of signal-to-(noise + distortion)
at the output of the ADC. The signal is the rms amplitude of the
fundamental. Noise is the sum of all nonfundamental signals up
to half the sampling frequency (fS/2), excluding dc. The ratio is
dependent on the number of quantization levels in the digitization
process; the more levels, the smaller the quantization noise. The
theoretical signal-to-(noise + distortion) ratio for an ideal N-bit
converter with a sine wave input is given by
Signal-to-(Noise + Distortion) = (6.02N + 1.76) dB
Therefore, for a 12-bit converter, this is 74 dB.
Effective Number of Bits (ENOB)
The ENOB is defined by
ENOB = (SINAD − 1.76)/6.02
Total Harmonic Distortion (THD)
THD is the ratio of the rms sum of harmonics to the
fundamental. For the AD7400A, it is defined as
THD(dB) = 20 log
V2 2 + V3 2 + V4 2 + V5 2 + V6 2
V1
where:
V1 is the rms amplitude of the fundamental.
V2, V3, V4, V5, and V6 are the rms amplitudes of the second
through the sixth harmonics.
Peak Harmonic or Spurious Noise
Peak harmonic or spurious noise is defined as the ratio of the
rms value of the next largest component in the ADC output
spectrum (up to fS/2, excluding dc) to the rms value of the
fundamental. Normally, the value of this specification is
determined by the largest harmonic in the spectrum, but for
ADCs where the harmonics are buried in the noise floor, it is a
noise peak.
Common-Mode Rejection Ratio (CMRR)
CMRR is defined as the ratio of the power in the ADC output at
±200 mV frequency, f, to the power of a 200 mV p-p sine wave
applied to the common-mode voltage of VIN+ and VIN− of
frequency fS as
CMRR (dB) = 10log(Pf/PfS)
where:
Pf is the power at frequency f in the ADC output.
PfS is the power at frequency fS in the ADC output.
Power Supply Rejection Ratio (PSRR)
Variations in power supply affect the full-scale transition but
not converter linearity. PSRR is the maximum change in the
specified full-scale (±200 mV) transition point due to a change
in power supply voltage from the nominal value (see Figure 7).
Isolation Transient Immunity
The isolation transient immunity specifies the rate of rise/fall of
a transient pulse applied across the isolation boundary beyond
which clock or data is corrupted. (It was tested using a transient
pulse frequency of 100 kHz.)
Rev. PrA | Page 12 of 19
Preliminary Technical Data
AD7400A
THEORY OF OPERATION
CIRCUIT INFORMATION
The AD7400A isolated Σ-Δ modulator converts an analog input
signal into a high speed (10 MHz typ), single-bit data stream;
the time average of the modulator’s single-bit data is directly
proportional to the input signal. Figure 23 shows a typical
application circuit where the AD7400A is used to provide
isolation between the analog input, a current sensing resistor,
and the digital output, which is then processed by a digital filter
to provide an N-bit word.
ANALOG INPUT
The differential analog input of the AD7400A is implemented
with a switched capacitor circuit. This circuit implements a
second-order modulator stage that digitizes the input signal
into a 1-bit output stream. The sample clock (MCLKOUT)
provides the clock signal for the conversion process as well as
the output data-framing clock. This clock source is internal on
the AD7400A. The analog input signal is continuously sampled
by the modulator and compared to an internal voltage
reference. A digital stream that accurately represents the
analog input over time appears at the output of the converter
(see Figure 21).
A differential input of 320 mV results in a stream of ideally all
ones. This is the absolute full-scale range of the AD7400A,
while 200 mV is the specified full-scale range, as shown in Table
9.
Table 9. Analog Input Range
Analog Input
Full-Scale Range
Positive Full Scale
Positive Specified Input Range
Zero
Negative Specified Input Range
Negative Full Scale
Voltage Input
+640 mV
+320 mV
+200 mV
0 mV
−200 mV
−320 mV
To reconstruct the original information, this output needs to be
digitally filtered and decimated. A Sinc3 filter is recommended
because this is one order higher than that of the AD7400A
modulator. If a 256 decimation rate is used, the resulting
16-bit word rate is 39 kHz, assuming a 10 MHz internal clock
frequency. Figure 22 shows the transfer function of the
AD7400A relative to the 16-bit output.
65535
MODULATOR OUTPUT
+FS ANALOG INPUT
53248
ANALOG INPUT
SPECIFIED RANGE
ADC CODE
04718-019
–FS ANALOG INPUT
Figure 21. Analog Input vs. Modulator Output
0
–320mV
–200mV
+200mV +320mV
04718-020
12288
A differential signal of 0 V results (ideally) in a stream of ones
and zeros at the MDAT output pin. This output is high 50% of
the time and low 50% of the time. A differential input of
200 mV produces a stream of ones and zeros that are high
81.25% of the time. A differential input of −200 mV produces a
stream of ones and zeros that are high 18.75% of the time.
ANALOG INPUT
Figure 22. Filtered and Decimated 16-Bit Transfer Characteristic
ISOLATED
5V
+
INPUT
CURRENT
NONISOLATED
5V/3V
VDD1
AD7400
VIN+
Σ-∆
MOD/
ENCODER
VDD2
VDD
SINC3 FILTER
DECODER
VIN–
MDAT
MDAT
MCLKOUT
MCLK
CS
SCLK
SDAT
RSHUNT
GND1
ENCODER
GND2
Figure 23. Typical Application Circuit
Rev. PrA | Page 13 of 19
GND
04718-018
DECODER
AD7400A
Preliminary Technical Data
DIFFERENTIAL INPUTS
DIGITAL FILTER
The analog input to the modulator is a switched capacitor
design. The analog signal is converted into charge by highly
linear sampling capacitors. A simplified equivalent circuit
diagram of the analog input is shown in Figure 24. A signal
source driving the analog input must be able to provide the
charge onto the sampling capacitors every half MCLKOUT cycle
and settle to the required accuracy within the next half cycle.
A Sinc3 filter is recommended for use with the AD7400A. This
filter can be implemented on an FPGA or a DSP. The following
Verilog code provides an example of a Sinc3 filter implementation
on a Xilinx® Spartan-II 2.5 V FPGA. This code can possibly be
compiled for another FPGA, such as an Altera® device. Note
that the data is read on the negative clock edge in this case;
although, it can be read on the positive edge, if preferred. Figure 29
shows the effect of using different decimation rates with various
filter types.
φA
VIN–
1kΩ
MCLKOUT
φB
2pF
φA
2pF
/*`Data is read on negative clk edge*/
module DEC256SINC24B(mdata1, mclk1, reset,
DATA);
input mclk1;
input reset;
input mdata1;
filtered*/
φB
φA φB φA φB
04718-027
VIN+
1kΩ
/*used to clk filter*/
/*used to reset filter*/
/*ip data to be
output [15:0] DATA;
Figure 24. Analog Input Equivalent Circuit
Since the AD7400A samples the differential voltage across its
analog inputs, low noise performance is attained with an input
circuit that provides low common-mode noise at each input.
The amplifiers used to drive the analog inputs play a critical role in
attaining the high performance available from the AD7400A.
integer location;
integer info_file;
/*filtered op*/
reg [23:0]
ip_data1;
reg [23:0]
acc1;
reg [23:0]
acc2;
When a capacitive load is switched onto the output of an op
amp, the amplitude momentarily drops. The op amp tries to
correct the situation and, in the process, hits its slew rate limit.
This nonlinear response, which can cause excessive ringing, can
lead to distortion. To remedy the situation, a low-pass RC filter
can be connected between the amplifier and the input to the
AD7400A. The external capacitor at each input aids in
supplying the current spikes created during the sampling process,
and the resistor isolates the op amp from the transient nature of the
load.
reg [23:0]
acc3;
reg [23:0]
acc3_d1;
reg [23:0]
acc3_d2;
reg [23:0]
diff1;
reg [23:0]
diff2;
reg [23:0]
diff3;
reg [23:0]
diff1_d;
reg [23:0]
diff2_d;
reg [15:0]
DATA;
The recommended circuit configuration for driving the differential
inputs to achieve best performance is shown in Figure 25. A
capacitor between the two input pins sources or sinks charge
to allow most of the charge that is needed by one input to be
effectively supplied by the other input. The series resistor again
isolates any op amp from the current spikes created during the
sampling process. Recommended values for the resistors and
capacitor are 22 Ω and 47 pF, respectively.
reg [7:0]
word_count;
R
C
VIN–
AD7400A
R
04718-028
VIN+
reg word_clk;
reg init;
Figure 25. Differential Input RC Network
Rev. PrA | Page 14 of 19
Preliminary Technical Data
AD7400A
/*Perform the Sinc ACTION*/
always @ (mdata1)
if(mdata1==0)
ip_data1 <= 0;
to a -1 for 2's comp */
else
ip_data1 <= 1;
Z = one sample delay
WORD_CLK = output word rate
*/
/* change from a 0
/*ACCUMULATOR (INTEGRATOR)
Perform the accumulation (IIR) at the speed
of the modulator.
MCLKOUT
ACC2+
Z
+
ACC3
Z
+
04718-021
Z
+
Figure 26. Accumulator
else
begin
diff1 <= acc3 - acc3_d2;
diff2 <= diff1 - diff1_d;
diff3 <= diff2 - diff2_d;
acc3_d2 <= acc3;
diff1_d <= diff1;
diff2_d <= diff2;
end
Z = one sample delay
MCLKOUT = modulators conversion bit rate
*/
always @ (negedge mclk1 or posedge reset)
if (reset)
begin
/*initialize acc registers on reset*/
acc1 <= 0;
acc2 <= 0;
acc3 <= 0;
end
else
begin
/*perform accumulation process*/
acc1 <= acc1 + ip_data1;
acc2 <= acc2 + acc1;
acc3 <= acc3 + acc2;
end
/*DECIMATION STAGE (MCLKOUT/ WORD_CLK)
*/
always @ (posedge mclk1 or posedge reset)
if (reset)
word_count <= 0;
else
word_count <= word_count + 1;
always @ (word_count)
word_clk <= word_count[7];
/*DIFFERENTIATOR ( including decimation
stage)
Perform the differentiation stage (FIR) at a
lower speed.
+
ACC3
DIFF1
+
–
+
Z–1
DIFF3
–
Z–1
04718-022
Z–1
DIFF2
–
WORD_CLK
Figure 27. Differentiator
/* Clock the Sinc output into an output
register
WORD_CLK
DIFF3
DATA
04718-023
ACC1+
IP_DATA1
always @ (posedge word_clk or posedge reset)
if(reset)
begin
acc3_d2 <= 0;
diff1_d <= 0;
diff2_d <= 0;
diff1 <= 0;
diff2 <= 0;
diff3 <= 0;
end
Figure 28. Clocking Sinc Output into an Output Register
WORD_CLK = output word rate
*/
always @ (posedge word_clk)
begin
DATA[15]
DATA[14]
DATA[13]
DATA[12]
DATA[11]
DATA[10]
DATA[9]
DATA[8]
DATA[7]
DATA[6]
DATA[5]
DATA[4]
DATA[3]
DATA[2]
DATA[1]
DATA[0]
<=
<=
<=
<=
<=
<=
<=
<=
<=
<=
<=
<=
<=
<=
<=
<=
end
endmodule
Rev. PrA | Page 15 of 19
diff3[23];
diff3[22];
diff3[21];
diff3[20];
diff3[19];
diff3[18];
diff3[17];
diff3[16];
diff3[15];
diff3[14];
diff3[13];
diff3[12];
diff3[11];
diff3[10];
diff3[9];
diff3[8];
AD7400A
Preliminary Technical Data
90
SINC3
80
70
SINC2
50
40
SINC1
30
20
10
0
04718-025
SNR (dB)
60
1
10
100
1k
DECIMATION RATE
Figure 29. SNR vs. Decimation Rate for Different Filter Types
Rev. PrA | Page 16 of 19
Preliminary Technical Data
AD7400A
APPLICATION INFORMATION
GROUNDING AND LAYOUT
Supply decoupling with a value of 100 nF is strongly recommended on both VDD1 and VDD2. Decoupling on one or both
VDD1 pins does not significantly affect performance. In
applications involving high common-mode transients, care
should be taken to ensure that board coupling across the
isolation barrier is minimized. Furthermore, the board layout
should be designed so that any coupling that occurs equally
affects all pins on a given component side. Failure to ensure this
could cause voltage differentials between pins to exceed the
absolute maximum ratings of the device, thereby leading to
latch-up or permanent damage. Any decoupling used should be
placed as close to the supply pins as possible.
Series resistance in the analog inputs should be minimized to
avoid any distortion effects, especially at high temperatures. If
possible, equalize the source impedance on each analog input to
minimize offset. Beware of mismatch and thermocouple effects
on the analog input PCB tracks to reduce offset drift.
These tests subjected populations of devices to continuous
cross-isolation voltages. To accelerate the occurrence of failures,
the selected test voltages were values exceeding those of normal
use. The time to failure values of these units were recorded and
used to calculate acceleration factors. These factors were then
used to calculate the time to failure under normal operating
conditions. The values shown in Table 7 are the lesser of the
following two values:
•
The value that ensures at least a 50-year lifetime of
continuous use.
•
The maximum CSA/VDE approved working voltage.
It should also be noted that the lifetime of the AD7400A varies
according to the waveform type imposed across the isolation
barrier. The iCoupler insulation structure is stressed differently
depending on whether the waveform is bipolar ac, unipolar ac,
or dc. Figure 30, Figure 31, and Figure 32 illustrate the different
isolation voltage waveforms.
RATED PEAK VOLTAGE
0V
Figure 30. Bipolar AC Waveform
RATED PEAK VOLTAGE
04718-030
A simple standalone AD7400A evaluation board is available
with split ground planes and a board split beneath the
AD7400A package to ensure isolation. This board allows access
to each pin on the device for evaluation purposes. External
supplies and all other circuitry (such as a digital filter) must be
provided by the user.
04718-029
EVALUATING THE AD7400A PERFORMANCE
0V
All insulation structures, subjected to sufficient time and/or
voltage, are vulnerable to breakdown. In addition to the testing
performed by the regulatory agencies, Analog Devices has
carried out an extensive set of evaluations to determine the
lifetime of the insulation structure within the AD7400A.
Figure 31. Unipolar AC Waveform
RATED PEAK VOLTAGE
04718-031
INSULATION LIFETIME
0V
Figure 32. DC Waveform
Rev. PrA | Page 17 of 19
AD7400A
Preliminary Technical Data
OUTLINE DIMENSIONS
10.50 (0.4134)
10.10 (0.3976)
9
16
7.60 (0.2992)
7.40 (0.2913)
1
1.27 (0.0500)
BSC
0.30 (0.0118)
0.10 (0.0039)
COPLANARITY
0.10
10.65 (0.4193)
10.00 (0.3937)
8
0.51 (0.0201)
0.31 (0.0122)
0.75 (0.0295)
0.25 (0.0098)
2.65 (0.1043)
2.35 (0.0925)
SEATING
PLANE
45°
8°
0°
1.27 (0.0500)
0.40 (0.0157)
0.33 (0.0130)
0.20 (0.0079)
112906-B
COMPLIANT TO JEDEC STANDARDS MS-013- AA
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.
Figure 33. 16-Lead Standard Small Outline Package [SOIC_W]
Wide Body
(RW-16)
Dimensions shown in millimeters and (inches)
9.90 (0.390)
9.65 (0.380)
9.40 (0.370)
5
1
4
MOLDED PIN 1
INDICATOR
6.60 (0.260)
6.35 (0.250)
6.10 (0.240)
9.90 (0.390)
9.65 (0.380)
9.40 (0.370)
1.40 (0.056)
1.08 (0.043)
0.76 (0.003)
2.54 (0.100)
BSC
4.19 (0.165)
MAX
7.87 (0.310)
7.62 (0.300)
7.37 (0.290)
0.255 (0.075)
0.010 (0.003)
0.64 (0.025)
0.51 (0.020)
0.38 (0.015)
1.19 (0.047)
MAX
1.78 (0.070)
MAX
LEAD COPLANARIT Y
0.102 (0.004) MAX
0.885 (0.035)
0.635 (0.025)
0.385 (0.015)
CONTROLLING DIMENSIONS ARE IN MILLIMETER; INCHES DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.
Figure 34 8-Lead Dual In Line Gull-wing Surface Mount Package [PDIP_SMD]
(NS-8)
Dimensions shown in millimeters and (inches)
Rev. PrA | Page 18 of 19
12° NOM
070207-A
8
Preliminary Technical Data
Model
AD7400AYRWZ1
AD7400AYRWZREELError! Bookmark
not defined.
AD7400AYRWZREEL7Error! Bookmark
not defined.
AD7400AYNSZError!
AD7400A
Temperature Range
−40°C to +125°C
−40°C to +125°C
Package Description
16-Lead Standard Small Outline Package (SOIC_W)
16-Lead Standard Small Outline Package (SOIC_W)
Package Option
RW-16
RW-16
−40°C to +125°C
16-Lead Standard Small Outline Package (SOIC_W)
RW-16
−40°C to +125°C
8-Lead Dual In Line Gull-wing Surface Mount Package (PDIP_SMD)
NS-8
−40°C to +125°C
8-Lead Dual In Line Gull-wing Surface Mount Package (PDIP_SMD)
NS-8
−40°C to +125°C
8-Lead Dual In Line Gull-wing Surface Mount Package (PDIP_SMD)
NS-8
Bookmark not defined.
AD7400AYNSZREELError! Bookmark
not defined.
AD7400AYNSZREEL7Error! Bookmark
not defined.
EVAL-AD7400AEBZError!
Standalone Evaluation Board
Bookmark not defined.
1
Z = Pb-free part.
©2008 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
PR07077-0-1/08(PrA)
Rev. PrA | Page 19 of 19