a FEATURES Low On Resistance (300 ⍀ typ) Fast Switching Times t ON 250 ns max t OFF 250 ns max Low Power Dissipation (3.3 mW max) Fault and Overvoltage Protection (–40 V to +55 V) All Switches OFF with Power Supply OFF Analog Output of ON Channel Clamped Within Power Supplies If an Overvoltage Occurs Latch-Up Proof Construction Break Before Make Construction TTL and CMOS Compatible Inputs 4/8 Channel Fault-Protected Analog Multiplexers ADG508F/ADG509F/ADG528F* FUNCTIONAL BLOCK DIAGRAMS ADG508F/ADG528F ADG509F S1 S1A DA S4A D S1B DB S4B S8 ADG528F ONLY WR RS APPLICATIONS Existing Multiplexer Applications (Both Fault-Protected and Nonfault-Protected) New Designs Requiring Multiplexer Functions 1 OF 8 DECODER 1 OF 4 DECODER A0 A1 A2 EN A0 A1 EN GENERAL DESCRIPTION 2. ON channel turns off while fault exists. The ADG508F, ADG509F and ADG528F are CMOS analog multiplexers, the ADG508F and ADG528F comprising eight single channels and the ADG509F comprising four differential channels. These multiplexers provide fault protection. Using a series n-channel, p-channel, n-channel MOSFET structure, both device and signal source protection is provided in the event of an overvoltage or power loss. The multiplexer can withstand continuous overvoltage inputs from –40 V to +55 V. During fault conditions, the multiplexer input (or output) appears as an open circuit and only a few nanoamperes of leakage current will flow. This protects not only the multiplexer and the circuitry driven by the multiplexer, but also protects the sensors or signal sources that drive the multiplexer. 3. Low RON. Model1 Temperature Range Package Option2 The ADG508F and ADG528F switch one of eight inputs to a common output as determined by the 3-bit binary address lines A0, A1 and A2. The ADG509F switches one of four differential inputs to a common differential output as determined by the 2bit binary address lines A0 and A1. The ADG528F has on-chip address and control latches that facilitate microprocessor interfacing. An EN input on each device is used to enable or disable the device. When disabled, all channels are switched OFF. ADG508FBN ADG508FBRN ADG508FBRW ADG508FTQ –40°C to +85°C –40°C to +85°C –40°C to +85°C –55°C to +125°C N-16 R-16N R-16W Q-16 ADG509FBN ADG509FBRN ADG509FBRW ADG509FTQ –40°C to +85°C –40°C to +85°C –40°C to +85°C –55°C to +125°C N-16 R-16N R-16W Q-16 PRODUCT HIGHLIGHTS ADG528FBN ADG528FBP ADG528FTQ –40°C to +85°C –40°C to +85°C –55°C to +125°C N-18 P-20A Q-18 1. Fault Protection. The ADG508F/ADG509F/ADG528F can withstand continuous voltage inputs from –40 V to +55 V. When a fault occurs due to the power supplies being turned off, all the channels are turned off and only a leakage current of a few nanoamperes flows. *Patent Pending. 4. Fast Switching Times. 5. Break-Before-Make Switching. Switches are guaranteed break-before-make so that input signals are protected against momentary shorting. 6. Trench Isolation Eliminates Latch-up. A dielectric trench separates the p and n-channel MOSFETs thereby preventing latch-up. ORDERING GUIDE NOTES 1 To order MIL-STD-883, Class B processed parts, add /883B to T grade part numbers. 2 N = Plastic DIP; P = Plastic Leaded Chip Carrier (PLCC); Q = Cerdip; RN = 0.15" Small Outline IC (SOIC), RW = 0.3" Small Outline IC (SOIC). REV. C Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781/329-4700 World Wide Web Site: http://www.analog.com Fax: 781/326-8703 © Analog Devices, Inc., 1998 ADG508F/ADG509F/ADG528F–SPECIFICATIONS1 Dual Supply (V DD = +15 V ⴞ 10%, VSS = –15 V ⴞ 10%, GND = 0 V, unless otherwise noted) Parameter ANALOG SWITCH Analog Signal Range RON B Version –40ⴗC to +25ⴗC +85ⴗC 300 VSS + 3 VDD – 1.5 350 T Version –55ⴗC to +25ⴗC +125ⴗC VSS + 3 VDD – 1.5 400 300 400 RON Drift RON Match LEAKAGE CURRENTS Source OFF Leakage IS (OFF) Drain OFF Leakage I D (OFF) ADG508F/ADG528F ADG509F Channel ON Leakage I D, IS (ON) ADG508F/ADG528F ADG509F FAULT Output Leakage Current (With Overvoltage) Input Leakage Current (With Overvoltage) Input Leakage Current (With Power Supplies OFF) DIGITAL INPUTS Input High Voltage, V INH Input Low Voltage, VINL Input Current IINL or IINH CIN, Digital Input Capacitance DYNAMIC CHARACTERISTICS 2 tTRANSITION tOPEN tON (EN, WR) tOFF (EN, RS) tSETT, Settling Time 0.1% 0.01% ADG528F Only tW, Write Pulsewidth tS, Address, Enable Setup Time tH, Address, Enable Hold Time tRS, Reset Pulsewidth Charge Injection OFF Isolation CS (OFF) CD (OFF) ADG508F/ADG528F ADG509F POWER REQUIREMENTS IDD ISS 0.6 5 ± 0.02 ±1 ± 0.04 ±1 ±1 ± 0.04 ±1 ±1 450 0.6 5 ± 50 ± 60 ± 30 ± 60 ± 30 ± 0.02 ±2 ±2 ± 0.005 ±2 ± 0.001 ±2 ± 0.02 ±1 ± 0.04 ±1 ±1 ± 0.04 ±1 ±1 ±1 200 300 50 25 200 250 200 250 ± 200 ± 100 400 10 400 400 200 300 50 25 200 250 200 250 nA typ nA max nA typ nA max nA max nA typ nA max nA max VS = VD = ± 10 V; Test Circuit 4 VS = ± 33 V, VD = 0 V, Test Circuit 3 VS = ± 25 V, VD = ⫿10 V, Test Circuit 5 VS = ± 25 V, VD = VEN = A0, A1, A2 = 0 V Test Circuit 6 V min V max ±1 µA max pF typ VIN = 0 or VDD 400 ns typ ns max ns typ ns min ns typ ns max ns typ ns max RL = 1 MΩ, CL = 35 pF; VS1 = ± 10 V, VS8 = ⫿10 V; Test Circuit 7 RL = 1 kΩ, CL = 35 pF; VS = +5 V; Test Circuit 8 RL = 1 kΩ, CL = 35 pF; VS = +5 V; Test Circuit 9 RL = 1 kΩ, CL = 35 pF; VS = +5 V; Test Circuit 9 1 2.5 µs typ µs typ RL = 1 kΩ, CL = 35 pF; VS = +5 V 200 100 10 100 400 10 400 4 68 50 5 50 25 50 25 pF typ pF typ 0.1 0.1 VD = ± 10 V, VS = ⫿10 V; Test Circuit 2 VD = ± 10 V, VS = ⫿10 V; Test Circuit 3 2.4 0.8 4 68 50 5 0.2 0.1 100 –10 V < VS < +10 V, IS = 1 mA; VDD = +15 V ± 10%, VSS = –15 V ± 10% Ω max –10 V < VS < +10 V, IS = 1 mA; VDD = +15 V ± 5%, VSS = –15 V ± 5% %/°C typ VS = 0 V, IS = 1 mA % max VS = 0 V, IS = 1 mA ns min ns min ns min ns min pC typ dB typ dB min pF typ 0.1 0.1 120 100 10 100 Test Conditions/Comments V min V max Ω typ nA typ µA max µA typ µA max µA typ µA max 5 1 2.5 100 ± 200 ± 100 ± 0.02 ±2 ± 0.005 ±2 ± 0.001 ±2 2.4 0.8 5 ± 50 Units 0.2 0.1 mA max mA max VS = 0 V, RS = 0 Ω, CL= 1 nF; Test Circuit 12 RL = 1 kΩ, CL = 15 pF, f = 100 kHz; VS = 7 V rms; Test Circuit 13 VIN = 0 V or 5 V NOTES 1 Temperature ranges are as follows: B Version: –40°C to +85°C; T Version: –55°C to +125°C. 2 Guaranteed by design, not subject to production test. Specifications subject to change without notice. –2– REV. C ADG508F/ADG509F/ADG528F Table I. ADG508F Truth Table Table II. ADG509F Truth Table A2 A1 A0 EN ON SWITCH A1 A0 EN ON SWITCH PAIR X 0 0 0 0 1 1 1 1 X 0 0 1 1 0 0 1 1 X 0 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 NONE 1 2 3 4 5 6 7 8 X 0 0 1 1 X 0 1 0 1 0 1 1 1 1 NONE 1 2 3 4 X = Don’t Care X = Don’t Care Table III. ADG528F Truth Table A2 A1 A0 EN WR RS ON SWITCH X X X 0 0 0 0 1 1 1 1 X X X 0 0 1 1 0 0 1 1 X X X 0 1 0 1 0 1 0 1 X X 0 1 1 1 1 1 1 1 1 g X 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 1 1 1 Retains Previous Switch Condition NONE (Address and Enable Latches Cleared) NONE 1 2 3 4 5 6 7 8 X = Don’t Care TIMING DIAGRAMS (ADG528F) 3V 3V WR RS 50% 50% 50% 0V tRS tOFF (RS) tW tS tH 3V A0, A1, A2 EN VO 0.8VO SWITCH OUTPUT 2V 0.8V 0V 0V Figure 1. Figure 2. Figure 1 shows the timing sequence for latching the switch address and enable inputs. The latches are level sensitive; therefore, while WR is held low, the latches are transparent and the switches respond to the address and enable inputs. This input data is latched on the rising edge of WR. REV. C 50% 0V Figure 2 shows the Reset Pulsewidth, tRS, and the Reset Turnoff Time, tOFF (RS). Note: All digital input signals rise and fall times are measured from 10% to 90% of 3 V. tR = tF = 20 ns. –3– ADG508F/ADG509F/ADG528F ADG508F/ADG509F PIN CONFIGURATIONS ABSOLUTE MAXIMUM RATINGS* (TA = +25°C unless otherwise noted) DIP/SOIC VDD to VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .+44 V VDD to GND . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to +25 V VSS to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . +0.3 V to –25 V VEN, VA Digital Input . . . . . . . – 0.3 V to VDD + 2 V or 20 mA, Whichever Occurs First VS, Analog Input Overvoltage with Power ON . . . . . VSS – 25 V to VDD + 40 V VS, Analog Input Overvoltage with Power OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .–40 V to +55 V Continuous Current, S or D . . . . . . . . . . . . . . . . . . . . . 20 mA Peak Current, S or D (Pulsed at 1 ms, 10% Duty Cycle max) . . . . . . . . . . . 40 mA Operating Temperature Range Industrial (B Version) . . . . . . . . . . . . . . . . . –40°C to +85°C Extended (T Version) . . . . . . . . . . . . . . . . –55°C to +125°C Storage Temperature Range . . . . . . . . . . . . . –65°C to +150°C Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . +150°C Cerdip Package θJA, Thermal Impedance 16-Lead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76°C/W 18-Lead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73°C/W Lead Temperature, Soldering (10 sec) . . . . . . . . . . . +300°C Plastic Package θJA, Thermal Impedance 16-Lead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117°C 18-Lead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110°C Lead Temperature, Soldering (10 sec) . . . . . . . . . . . +260°C SOIC Package θJA, Thermal Impedance Narrow Body . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77°C/W Wide Body . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75°C/W Lead Temperature, Soldering Vapor Phase (60 sec) . . . . . . . . . . . . . . . . . . . . . . +215°C Infrared (15 sec) . . . . . . . . . . . . . . . . . . . . . . . . . . +220°C PLCC Package θJA, Thermal Impedance . . . . . . . . . . . . . . . . . . . . . 90°C/W Lead Temperature, Soldering Vapor Phase (60 sec) . . . . . . . . . . . . . . . . . . . . . . +215°C Infrared (15 sec) . . . . . . . . . . . . . . . . . . . . . . . . . . +220°C DIP/SOIC A0 1 16 A1 A0 1 EN 2 15 A2 EN 2 15 GND VSS 3 14 GND VSS 3 14 VDD S1 4 S2 5 S3 6 S4 7 D 8 9 ADG508F 16 A1 ADG509F S1A 4 S2A 5 13 S1B TOP VIEW (Not to Scale) 12 S2B 11 S6 S3A 6 11 S3B 10 S7 S4A 7 10 S4B DA 8 9 13 VDD TOP VIEW (Not to Scale) 12 S5 S8 DB ADG528F PIN CONFIGURATIONS 16 A2 4 ADG528F 15 GND S1 5 S2 6 TOP VIEW 14 VDD (Not to Scale) 13 S5 S3 7 12 S6 S4 8 11 S7 D 9 10 S8 RS 20 19 A1 1 18 A2 EN 4 VSS 5 ADG528F 17 GND S1 6 TOP VIEW (Not to Scale) 16 VDD S2 7 15 S5 S3 8 14 S6 9 10 11 12 13 S7 3 2 S8 EN VSS 3 WR 17 A1 NC 18 RS 2 D 1 A0 S4 WR NC PLCC A0 DIP NC = NO CONNECT *Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time. CAUTION ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although these devices feature proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality. –4– WARNING! ESD SENSITIVE DEVICE REV. C ADG508F/ADG509F/ADG528F TERMINOLOGY Typical Performance Graphs Most positive power supply potential. VSS Most negative power supply potential. 2000 GND Ground (0 V) reference. 1750 RON Ohmic resistance between D and S. 1500 RON Drift Change in RON when temperature changes by one degree Celsius. 1250 Difference between the RON of any two channels. IS (OFF) Source leakage current when the switch is off. ID (OFF) Drain leakage current when the switch is off. ID, IS (ON) Channel leakage current when the switch is on. VD (VS) Analog voltage on terminals D, S. CS (OFF) Channel input capacitance for “OFF” condition. CD (OFF) Channel output capacitance for “OFF” condition. CD, CS (ON) “ON” switch capacitance. CIN Digital input capacitance. tON (EN) Delay time between the 50% and 90% points of the digital input and switch “ON” condition. tOFF (EN) tTRANSITION 0 –15 –10 –5 0 5 VD (VS) – Volts 10 15 1m VDD = 0V VSS = 0V VD = 0V 100m 10m 1m 100n 10n OPERATING RANGE 1n 100p 10p 1p –50 –40 –30 –20 –10 0 10 20 30 VIN – INPUT VOLTAGE – Volts 40 50 60 Figure 4. Input Leakage Current as a Function of VS (Power Supplies OFF) During Overvoltage Conditions VINL Maximum input voltage for Logic “0”. 1m VINH Minimum input voltage for Logic “1”. 100m IINL (IINH) Input current of the digital input. Off Isolation A measure of unwanted signal coupling through an “OFF” channel. Charge Injection A measure of the glitch impulse transferred from the digital input to the analog output during switching. I D – INPUT LEAKAGE – A “OFF” time measured between 80% points of both switches when switching from one address state to another. Negative supply current. VDD = +15V VSS = –15V Figure 3. On Resistance as a Function of VD (VS) tOPEN ISS VDD = +10V VSS = –10V 250 Delay time between the 50% and 90% points of the digital inputs and the switch “ON” condition when switching from one address state to another. Positive supply current. VDD = +5V VSS = –5V 1000 500 Delay time between the 50% and 90% points of the digital input and switch “OFF” condition. IDD TA = +258C 750 IS – INPUT LEAKAGE – A RON Match RON – V VDD VDD = +15V VSS = –15V VD = 0V 10m 1m 100n 10n OPERATING RANGE 1n 100p 10p 1p –50 –40 –30 –20 –10 0 10 20 30 VIN – INPUT VOLTAGE – Volts 40 50 60 Figure 5. Output Leakage Current as a Function of VS (Power Supplies ON) During Overvoltage Conditions REV. C –5– ADG508F/ADG509F/ADG528F 2000 100 1750 1500 RON – V 1250 1000 750 +85 C 500 +125 C VDD = +15V VSS = –15V VD = +10V VS = –10V 10 LEAKAGE CURRENTS – nA VDD = +15V VSS = –15V ID (OFF) 1 IS (OFF) 0.1 ID (ON) 250 +25 C 0 –15 –10 –5 0 5 VD (VS) – Volts 10 0.01 25 15 Figure 6. On Resistance as a Function of VD (VS) for Different Temperatures 45 105 115 125 VIN = +2V VDD = +15V VSS = –15V VD = 0V 10m 240 220 tON (EN) 1m 200 t – ns 100n 10n OPERATING RANGE 180 tTRANSITION 160 1n 100p 140 10p 120 tOFF (EN) 1p –50 –40 –30 –20 –10 0 10 20 30 VIN – INPUT VOLTAGE – Volts 40 50 100 10 60 Figure 7. Input Leakage Current as a Function of VS (Power Supplies ON) During Overvoltage Conditions 11 12 13 VSUPPLY – Volts 14 15 Figure 10. Switching Time vs. Power Supply 0.3 280 260 VDD = +15V VSS = –15V 240 TA = +258C IS (OFF) VDD = +15V VSS = –15V VIN = +5V tON (EN) 220 0.1 ID (OFF) t – ns LEAKAGE CURRENTS – nA 85 95 65 75 TEMPERATURE – 8C 260 100m 0.2 55 Figure 9. Leakage Currents as a Function of Temperature 1m IS – INPUT LEAKAGE – A 35 0.0 200 tTRANSITION 180 160 ID (ON) –0.1 140 –0.2 –14 100 25 120 –10 –6 –2 2 VS, VD – Volts 6 10 14 Figure 8. Leakage Currents as a Function of VD (VS) tOFF (EN) 45 65 85 TEMPERATURE – 8C 105 125 Figure 11. Switching Time vs. Temperature –6– REV. C ADG508F/ADG509F/ADG528F n-channel threshold voltage (VTN). When a voltage more negative than VSS is applied to the multiplexer, the p-channel MOSFET will turn off since the analog input is more negative than the difference between VSS and the p-channel threshold voltage (VTP). Since VTN is nominally 1.5 V and VTP is typically 3 V, the analog input range to the multiplexer is limited to –12 V to +13.5 V when a ± 15 V power supply is used. THEORY OF OPERATION The ADG508F/ADG509F/ADG528F multiplexers are capable of withstanding overvoltages from –40 V to +55 V, irrespective of whether the power supplies are present or not. Each channel of the multiplexer consists of an n-channel MOSFET, a pchannel MOSFET and an n-channel MOSFET, connected in series. When the analog input exceeds the power supplies, one of the MOSFETs will switch off, limiting the current to submicroamp levels, thereby preventing the overvoltage from damaging any circuitry following the multiplexer. Figure 12 illustrates the channel architecture that enables these multiplexers to withstand continuous overvoltages. When the power supplies are present but the channel is off, again either the p-channel MOSFET or one of the n-channel MOSFETs will turn off when an overvoltage occurs. Finally, when the power supplies are off, the gate of each MOSFET will be at ground. A negative overvoltage switches on the first n-channel MOSFET but the bias produced by the overvoltage causes the p-channel MOSFET to remain turned off. With a positive overvoltage, the first MOSFET in the series will remain off since the gate to source voltage applied to this MOSFET is negative. When an analog input of VSS + 3 V to VDD – 1.5 V is applied to the ADG508F/ADG509F/ADG528F, the multiplexer behaves as a standard multiplexer, with specifications similar to a standard multiplexer, for example, the on-resistance is 400 Ω maximum. However, when an overvoltage is applied to the device, one of the three MOSFETs will turn off. Figures 12 to 15 show the conditions of the three MOSFETs for the various overvoltage situations. When the analog input applied to an ON channel approaches the positive power supply line, the n-channel MOSFET turns OFF since the voltage on the analog input exceeds the difference between VDD and the +55V OVERVOLTAGE Q1 Q2 Q3 +55V OVERVOLTAGE n-CHANNEL MOSFET IS OFF VDD VSS n-CHANNEL MOSFET IS ON VSS Q1 Q2 VDD Q2 Q3 Figure 14. +55 V Overvoltage with Power OFF –40V OVERVOLTAGE Q3 n-CHANNEL MOSFET IS ON p-CHANNEL MOSFET IS OFF Q1 Q2 Q3 p-CHANNEL MOSFET IS OFF Figure 15. –40 V Overvoltage with Power OFF Figure 13. –40 V Overvoltage on an OFF Channel with Multiplexer Power ON REV. C Q1 n-CHANNEL MOSFET IS OFF Figure 12. +55 V Overvoltage Input to the ON Channel –40V OVERVOLTAGE During fault conditions, the leakage current into and out of the ADG508F/ADG509F/ADG528F is limited to a few microamps. This protects the multiplexer and succeeding circuitry from over stresses as well as protecting the signal sources which drive the multiplexer. Also, the other channels of the multiplexer will be undisturbed by the overvoltage and will continue to operate normally. –7– ADG508F/ADG509F/ADG528F Test Circuits IDS VDD VSS VDD VSS ID (ON) D S1 V1 A S2 VD S8 D S +2.4V EN VS VS RON = V1 /IDS Test Circuit 4. ID (ON) Test Circuit 1. On Resistance VDD VSS A IS (OFF) VDD VDD VSS VDD VSS S1 D S2 VSS S8 S1 A S2 VS EN D VD +0.8V VS S8 +0.8V EN VD Test Circuit 5. Input Leakage Current (with Overvoltage) Test Circuit 2. IS (OFF) VDD VSS 0V 0V 0V VDD VSS A2 A1 VSS VDD A0 S1 RS A S8 VS D GND VD +0.8V EN A S8 EN ID (OFF) D S2 S1 ADG528F* WR VS * SIMILAR CONNECTION FOR ADG508F/ADG509F Test Circuit 6. Input Leakage Current (with Power Supplies OFF) Test Circuit 3. ID (OFF) VDD VSS 3V VDD A2 VIN 50V A1 EN S1 VS1 50% 50% S2–S7 A0 +2.4V ADDRESS DRIVE (VIN) VSS S8 VS8 ADG528F* D RS GND WR 90% VOUT RL 1MV CL 35pF VOUT 90% tTRANSITION * SIMILAR CONNECTION FOR ADG508F/ADG509F tTRANSITION Test Circuit 7. Switching Time of Multiplexer, tTRANSITION –8– REV. C ADG508F/ADG509F/ADG528F VDD VSS 3V VIN A0 S2–S7 ADG528F* S8 RS +2.4V VS S1 A1 50V ADDRESS DRIVE (VIN) VSS VDD A2 D EN VOUT RL 1kV WR GND VOUT CL 35pF 80% 80% tOPEN * SIMILAR CONNECTION FOR ADG508F/ADG509F Test Circuit 8. Break-Before-Make Delay, tOPEN VDD VSS 3V VDD A2 VSS S1 VS A1 RS 50V 50% tOFF (EN) ADG528F* EN VIN 50% 0V S2–S8 A0 +2.4V ENABLE DRIVE (VIN) VO D GND 0.9VO VOUT RL 1kV WR CL 35pF 0.9VO OUTPUT 0V tON (EN) * SIMILAR CONNECTION FOR ADG508F/ADG509F Test Circuit 9. Enable Delay, tON (EN), tOFF (EN) VSS VDD 3V VDD A2 S1 A1 A0 0V S2–S8 ADG528F tON (WR) VO RS WR VWR 50% VS EN +2.4V VRS WR VSS D GND VOUT RL 1kV CL 35pF OUTPUT 0.2VO 0V Test Circuit 10. Write Turn-On Time, tON (WR) REV. C –9– ADG508F/ADG509F/ADG528F VDD VSS 3V VSS VDD A2 RS 0V S2–S8 A0 50% 50% VS S1 A1 tRS tOFF (RS) ADG528F +2.4V EN D RS RL 1kV WR GND VIN VO VOUT CL 35pF 0.8VO SWITCH OUTPUT 0V Test Circuit 11. Reset Turn-Off Time, tOFF (RS) VDD VSS VDD A2 VSS A1 A0 S RS RS VIN LOGIC INPUT (VIN) +2.4V ADG528F* GND 0V D EN VS 3V VOUT CL 1nF DVOUT VOUT WR Q INJ = CL x DVOUT * SIMILAR CONNECTION FOR ADG508F/ADG509F Test Circuit 12. Charge Injection VDD VDD A2 A1 A0 +2.4V S1 S8 VIN ADG528F* RS D EN GND WR VSS VOUT RL 1kV VSS * SIMILAR CONNECTION FOR ADG508F/ADG509F Test Circuit 13. OFF Isolation –10– REV. C ADG508F/ADG509F/ADG528F OUTLINE DIMENSIONS Dimensions shown in inches and (mm). 16-Lead Plastic (N-16) 16-Lead Cerdip (Q-16) 0.840 (21.34) 0.745 (18.92) 0.005 (0.13) MIN 16 9 1 8 16 0.280 (7.11) 0.240 (6.10) PIN 1 0.210 (5.33) MAX PIN 1 0.200 (5.08) MAX 0.200 (5.08) 0.125 (3.18) 0.023 (0.58) 0.014 (0.36) 0.015 (0.381) 0.008 (0.204) 0.070 (1.77) SEATING 0.045 (1.15) PLANE 16-Lead SOIC (R-16N) (Narrow Body) 1 8 16 9 1 8 0.2440 (6.20) 0.2284 (5.80) 0.0688 (1.75) 0.0532 (1.35) 0.0196 (0.50) x 45° 0.0099 (0.25) PIN 1 SEATING PLANE 0.0500 (1.27) BSC 0.0192 (0.49) 0.0138 (0.35) 0.0099 (0.25) 0.0075 (0.19) 8° 0° 0.0118 (0.30) 0.0040 (0.10) 0.0500 (1.27) 0.0160 (0.41) 0.0500 (1.27) BSC REV. C 0.100 (2.54) BSC 0.015 (0.38) 0.008 (0.20) 15° 0° –11– 0.4193 (10.65) 0.3937 (10.00) 9 PIN 1 0.150 (3.81) MIN SEATING 0.070 (1.78) PLANE 0.030 (0.76) 0.320 (8.13) 0.290 (7.37) 0.4133 (10.50) 0.3977 (10.00) 16 0.0098 (0.25) 0.0040 (0.10) 0.060 (1.52) 0.015 (0.38) 16-Lead SOIC (R-16W) (Wide Body) 0.3937 (10.00) 0.3859 (9.80) 0.1574 (4.00) 0.1497 (3.80) 8 0.2992 (7.60) 0.2914 (7.40) 0.100 (2.54) BSC 1 0.840 (21.34) MAX 0.130 (3.30) MIN 0.160 (4.06) 0.115 (2.93) 9 0.310 (7.87) 0.220 (5.59) 0.325 (8.26) 0.300 (7.62) 0.195 (4.95) 0.115 (2.93) 0.060 (1.52) 0.015 (0.38) 0.022 (0.558) 0.014 (0.356) 0.080 (2.03) MAX 0.1043 (2.65) 0.0926 (2.35) 0.0291 (0.74) x 45° 0.0098 (0.25) 8° 0.0192 (0.49) 0° SEATING 0.0125 (0.32) 0.0138 (0.35) PLANE 0.0091 (0.23) 0.0500 (1.27) 0.0157 (0.40) ADG508F/ADG509F/ADG528F OUTLINE DIMENSIONS Dimensions shown in inches and (mm). 18-Lead Cerdip (Q-18) 0.925 (23.49) 0.845 (21.47) 0.005 (0.13) MIN 10 1 9 PIN 1 0.060 (1.52) 0.015 (0.38) 0.210 (5.33) MAX 0.160 (4.06) 0.115 (2.93) 0.022 (0.558) 0.014 (0.356) 18 0.280 (7.11) 0.240 (6.10) 0.070 (1.77) 0.045 (1.15) 0.310 (7.87) 0.220 (5.59) 0.325 (8.25) 0.300 (7.62) 0.195 (4.95) 0.115 (2.93) 1 9 PIN 1 0.960 (24.38) MAX 0.200 (5.08) MAX 0.130 (3.30) MIN 0.100 (2.54) BSC 10 0.200 (5.08) 0.125 (3.18) 0.023 (0.58) 0.014 (0.36) 0.015 (0.381) 0.008 (0.204) SEATING PLANE 0.060 (1.52) 0.015 (0.38) 0.320 (8.13) 0.290 (7.37) 0.150 (3.81) MIN 0.100 (2.54) BSC 0.070 (1.78) SEATING 0.030 (0.76) PLANE 15° 0° 0.015 (0.38) 0.008 (0.20) 20-Lead PLCC (P-20A) 0.180 (4.57) 0.165 (4.19) 0.048 (1.21) 0.042 (1.07) 0.048 (1.21) 0.042 (1.07) 0.056 (1.42) 0.042 (1.07) 19 18 PIN 1 IDENTIFIER 3 4 TOP VIEW (PINS DOWN) 8 9 0.020 (0.50) R 0.025 (0.63) 0.015 (0.38) 0.021 (0.53) 0.013 (0.33) 0.330 (8.38) 0.032 (0.81) 0.290 (7.37) 0.026 (0.66) 0.050 (1.27) BSC 14 13 0.040 (1.01) 0.025 (0.64) 0.356 (9.04) SQ 0.350 (8.89) 0.395 (10.02) SQ 0.385 (9.78) 0.110 (2.79) 0.085 (2.16) PRINTED IN U.S.A. 18 0.098 (2.49) MAX C1979c–0–8/98 18-Lead Plastic (N-18) –12– REV. C