ETC NCV4949DR2

L4949, NCV4949
100 mA, 5.0 V, Low Dropout
Voltage Regulator with
Power-On Reset
The L4949 is a monolithic integrated 5.0 V voltage regulator with a
very low dropout and additional functions such as power–on reset and
input voltage sense.
It is designed for supplying the micro–computer controlled systems
especially in automotive applications.
• Operating DC Supply Voltage Range 5.0 V to 28 V
• Transient Supply Voltage Up to 40 V
• Extremely Low Quiescent Current in Standby Mode
• High Precision Standby Output Voltage 5.0 V ±1%
• Output Current Capability Up to 100 mA
• Very Low Dropout Voltage Less Than 0.4 V
• Reset Circuit Sensing The Output Voltage
• Programmable Reset Pulse Delay With External Capacitor
• Voltage Sense Comparator
• Thermal Shutdown and Short Circuit Protections
http://onsemi.com
MARKING
DIAGRAMS
PDIP–8
N SUFFIX
CASE 626
8
8
L4949N
AWL
YYWW
1
1
8
SO–8
D SUFFIX
CASE 751
8
1
L4949
ALYWD
1
A
WL, L
YY, Y
WW, W
=
=
=
=
Assembly Location
Wafer Lot
Year
Work Week
PIN CONNECTIONS
Representative Block Diagram
Output
Voltage (Vout)
VZ 3
8
Supply
Voltage (VCC)
CT 4
Preregulator
6.0 V
1
2.0 µA
+
-
Sense
Input
(Si)
Vout
Si
2
7
So
VZ
3
6
Reset
CT
4
5
Gnd
(Top View)
Sense
Output
(So)
ORDERING INFORMATION
See detailed ordering and shipping information in the package
dimensions section on page 8 of this data sheet.
7
2
+
-
1.23 Vref
1.23 V
Sense
5
 Semiconductor Components Industries, LLC, 2002
April, 2002 – Rev. 4
8
2.0 V
Reset
Vs
1
Reset
6
Regulator
VCC
Gnd
1
Publication Order Number:
L4949/D
L4949, NCV4949
ABSOLUTE MAXIMUM RATINGS (Absolute Maximum Ratings indicate limits beyond which damage to the device may occur.)
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
Á
ÁÁÁÁ
ÁÁÁ
Á
ÁÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
Á
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
Symbol
Value
Unit
VCC
28
V
VCC TR
40
V
Output Current
Iout
Internally
Limited
–
Output Voltage
Rating
DC Operating Supply Voltage
Transient Supply Voltage (t < 1.0 s)
Vout
20
V
Sense Input Current
ISI
±1.0
mA
Sense Input Voltage
VSI
VCC
–
Output Voltages
Reset Output
Sense Output
VReset
VSO
20
20
Output Currents
Reset Output
Sense Output
IReset
ISO
5.0
5.0
Preregulator Output Voltage
VZ
7.0
V
Preregulator Output Current
IZ
5.0
mA
ESD Protection at any pin
Human Body Model
Machine Model
–
–
2000
400
V
mA
V
Thermal Resistance, Junction–to–Air
P Suffix, DIP–8 Plastic Package, Case 626
D Suffix, SO–8 Plastic Package, Case 751
°C/W
RθJA
100
200
Maximum Junction Temperature
TJ
150
°C
Storage Temperature Range
Tstg
–65 to +150
°C
NOTE:
ESD data available upon request.
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
Á
ÁÁÁ
ÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
Á
ÁÁÁ
ÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ELECTRICAL CHARACTERISTICS (VCC = 14 V, –40°C < TJ < 125°C, unless otherwise specified.)
Characteristic
Symbol
Min
Typ
Max
Unit
Output Voltage (TJ = 25°C, Iout = 1.0 mA)
Vout
4.95
5.0
5.05
V
Output Voltage (6.0 V < VCC < 28 V, 1.0 mA < Iout < 50 mA)
Vout
4.9
5.0
5.1
V
Output Voltage (VCC = 35 V, t < 1.0 s, 1.0 mA < Iout < 50 mA)
Vout
4.9
5.0
5.1
V
Dropout Voltage
Iout = 10 mA
Iout = 50 mA
Iout = 100 mA
Vdrop
–
–
–
0.1
0.2
0.3
0.25
0.40
0.50
VIO
–
0.2
0.4
V
Line Regulation (6.0 V < VCC < 28 V, Iout = 1.0 mA)
Regline
–
1.0
20
mV
Load Regulation (1.0 mA < Iout < 100 mA)
Regload
–
8.0
30
mV
105
–
200
100
400
–
Input to Output Voltage Difference in Undervoltage Condition
(VCC = 4.0 V, Iout = 35 mA)
V
Current Limit
Vout = 4.5 V
Vout = 0 V
ILim
Quiescent Current (Iout = 0.3 mA, TJ < 100°C)
IQSE
–
150
260
µA
IQ
–
–
5.0
mA
Quiescent Current (Iout = 100 mA)
http://onsemi.com
2
mA
L4949, NCV4949
ELECTRICAL CHARACTERISTICS (continued) (VCC = 14 V, –40°C < TJ < 125°C, unless otherwise specified.)
Characteristic
Symbol
Min
Typ
Max
VResth
–
Vout – 0.5
–
Unit
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
Á
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
RESET
Reset Threshold Voltage
Reset Threshold Hysteresis
@ TJ = 25°C
@ TJ = –40 to +125°C
V
VResth,hys
mV
50
50
100
–
200
300
Reset Pulse Delay (CT = 100 nF, tR ≥ 100 µs)
tResD
55
100
180
ms
Reset Reaction Time (CT = 100 nF)
tResR
–
5.0
30
µs
Reset Output Low Voltage (RReset = 10 kΩ to Vout, VCC ≥ 3.0 V)
VResL
–
–
0.4
V
Reset Output High Leakage Current (VReset = 5.0 V)
IResH
–
–
1.0
µA
Delay Comparator Threshold
VCTth
–
2.0
–
V
VCTth, hys
–
100
–
mV
VSOth
1.16
1.23
1.35
V
VSOth,hys
20
100
200
mV
Sense Output Low Voltage (VSI ≤ 1.16 V, VCC ≥ 3.0 V, RSO = 10 kΩ to Vout)
VSOL
–
–
0.4
V
Sense Output Leakage (VSO = 5.0 V, VSI ≥ 1.5 V)
ISOH
–
–
1.0
µA
ISI
–1.0
0.1
1.0
µA
VZ
–
6.3
–
V
Delay Comparator Threshold Hysteresis
SENSE
Sense Low Threshold (VSI Decreasing = 1.5 V to 1.0 V)
Sense Threshold Hysteresis
Sense Input Current
PREREGULATOR
Preregulator Output Voltage (IZ = 10 µA)
PIN FUNCTION DESCRIPTION
Pin
Symbol
Description
1
VCC
Supply Voltage
2
Si
Input of Sense Comparator
3
VZ
Output of Preregulator
4
CT
Reset Delay Capacitor
5
Gnd
Ground
6
Reset
Output of Reset Comparator
7
SO
Output of Sense Comparator
8
Vout
Main Regulator Output
TYPICAL CHARACTERIZATION CURVES
5.02
6.0
VCC = 14 V
Iout = 1.0 mA
Vout , OUTPUT VOLTAGE (V)
Vout , OUTPUT VOLTAGE (V)
5.04
5.0
4.98
4.96
-40
-20
0
20
40
60
80
100
4.0
RL = 5.0 k
RL = 100 Ω
3.0
2.0
1.0
0
120
TJ = 25°C
5.0
0
TJ, JUNCTION TEMPERATURE (°C)
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
VCC, SUPPLY VOLTAGE (V)
Figure 2. Output Voltage versus
Supply Voltage
Figure 1. Output Voltage versus
Junction Temperature
http://onsemi.com
3
9.0
10
L4949, NCV4949
TYPICAL CHARACTERIZATION CURVES (continued)
0.40
TJ = 25°C
Vdrop , DROPOUT VOLTAGE (mV)
Vdrop , DROPOUT VOLTAGE (mV)
250
200
150
100
50
0
0.1
1.0
Iout = 50 mA
0.20
Iout = 10 mA
0.10
0
-40
100
10
Iout = 100 mA
0.30
-20
0
Iout, OUTPUT CURRENT (mA)
80
100
120
3.0
VCC = 14 V
TJ = 25°C
2.5
IQ, QUIESCENT CURRENT (mA)
IQ, QUIESCENT CURRENT (mA)
60
Figure 4. Dropout Voltage versus
Junction Temperature
3.0
2.0
1.5
1.0
0.5
0.1
1.0
10
2.0
RL = 100 Ω
1.5
1.0
0.5
0
100
TJ = 25°C
2.5
RL = 5.0 k
0
5.0
10
Iout, OUTPUT CURRENT (mA)
VReset , RESET THRESHOLD VOLTAGE (V)
TJ = 25°C
5.0
Resistor 10 k
from Reset Output
to 5.0 V
3.0
2.0
1.0
0
4.0
4.1
4.2
4.3
4.4
4.5
4.6
4.7
20
25
30
Figure 6. Quiescent Current versus
Supply Voltage
6.0
4.0
15
VCC, SUPPLY VOLTAGE (V)
Figure 5. Quiescent Current versus
Output Current
VReset , RESET OUTPUT (V)
40
TJ, JUNCTION TEMPERATURE (°C)
Figure 3. Dropout Voltage versus
Output Current
0
20
4.8
4.9
5.0
4.7
4.66
4.62
Upper Threshold
4.58
4.54
4.5
Lower Threshold
4.46
4.42
-40
-20
0
20
40
60
80
100
TJ, JUNCTION TEMPERATURE (°C)
Vout, OUTPUT VOLTAGE (V)
Figure 8. Reset Thresholds versus
Junction Temperature
Figure 7. Reset Output versus
Regulator Output Voltage
http://onsemi.com
4
120
L4949, NCV4949
TYPICAL CHARACTERIZATION CURVES (continued)
1.4
5.0
TJ = 25°C
4.0
Resistor 10 k
from Sense Output
to 5.0 V
3.0
VSI, SENSE INPUT VOLTAGE (V)
VSO , SENSE OUTPUT VOLTAGE (V)
6.0
2.0
1.0
0
1.0 1.05
1.1
1.15
1.2
1.25
1.3
1.35
1.4
1.45
1.38
1.36
Upper Threshold
1.34
1.32
1.3
1.28
1.26
Lower Threshold
1.24
1.22
1.2
-40
1.5
-20
0
20
40
60
80
100
120
TJ, JUNCTION TEMPERATURE (°C)
VSI, SENSE INPUT VOLTAGE (V)
Figure 9. Sense Output versus
Sense Input Voltage
Figure 10. Sense Thresholds versus
Junction Temperature
APPLICATION INFORMATION
Supply Voltage Transient
less than 8.0 V supply transients of more than 0.4 V/µs can
cause a reset signal perturbation. To improve the transient
behavior for supply voltages less than 8.0 V a capacitor at
Pin 3 can be used. A capacitor at Pin 3 (C3 ≤ 1.0 µF) reduces
also the output noise.
High supply voltage transients can cause a reset output
signal perturbation. For supply voltages greater than 8.0 V
the circuit shows a high immunity of the reset output against
supply transients of more than 100 V/µs. For supply voltages
Vout
C3
VZ
(optional)
Vbat
VCC
Cs
3
CO
8
CT 4
Preregulator
6.0 V
1
2.0 µA
Reset
6
10 kΩ
+
-
Regulator
Vout
2.0 V
Reset
VCC
RSO 10 kΩ
So
Si
7
2
+
1.23 Vref
Sense
5 Gnd
NOTES: 1. For stability: Cs ≥ 1.0 µF, CO ≥ 4.7 µF, ESR < 10 Ω at 10 kHz
2. Recommended for application: Cs = CO = 10 µF
Figure 11. Application Schematic
http://onsemi.com
5
1.23 V
L4949, NCV4949
OPERATING DESCRIPTION
Vout
The L4949 is a monolithic integrated low dropout voltage
regulator. Several outstanding features and auxiliary
functions are implemented to meet the requirements of
supplying microprocessor systems in automotive
applications. Nevertheless, it is suitable also in other
applications where the present functions are required. The
modular approach of this device allows the use of other
features and functions independently when required.
Vout
5.0 V
Voltage Regulator
The voltage regulator uses an isolated Collector Vertical
PNP transistor as a regulating element. With this structure,
very low dropout voltage at currents up to 100 mA is
obtained. The dropout operation of the standby regulator is
maintained down to 3.0 V input supply voltage. The output
voltage is regulated up to the transient input supply voltage
of 35 V. With this feature no functional interruption due to
overvoltage pulses is generated.
The typical curve showing the standby output voltage as
a function of the input supply voltage is shown in Figure 13.
The current consumption of the device (quiescent current)
is less than 200 µA.
To reduce the quiescent current peak in the undervoltage
region and to improve the transient response in this region,
the dropout voltage is controlled. The quiescent current as
a function of the supply input voltage is shown in Figure 14.
0V
2.0 V
5.0 V
35 V
VCC
Figure 13. Output Voltage versus Supply Voltage
IQ, QUIESCENT CURRENT (mA)
3.0
Short Circuit Protection:
The maximum output current is internally limited. In case
of short circuit, the output current is foldback current limited
as described in Figure 12.
2.5
TJ = 25°C
2.0
RL = 100 Ω
1.5
1.0
0.5
0
0
RL = 5.0 k
5.0
10
15
20
25
30
VCC, SUPPLY VOLTAGE (V)
Figure 14. Quiescent Current versus Supply Voltage
10
Vout (V)
Preregulator
To improve the transient immunity a preregulator
stabilizes the internal supply voltage to 6.0 V. This internal
voltage is present at Pin 3 (VZ). This voltage should not be
used as an output because the output capability is very small
(≤ 100 µA).
This output may be used as an option when better transient
behavior for supply voltages less than 8.0 V is required. In
this case a capacitor (100 nF – 1.0 µF) must be connected
between Pin 3 and Gnd. If this feature is not used Pin 3 must
be left open.
5.0
0
20
100
200
Iout (mA)
Figure 12. Foldback Characteristic of Vout
http://onsemi.com
6
L4949, NCV4949
Reset Circuit
Standby output voltage drops below the reset threshold
only a bit longer than the reaction time results in a shorter
reset delay time.
The nominal reset delay time will be generated for
standby output voltage drops longer than approximately
50 µs. The typical reset output waveforms are shown in
Figure 16.
The block circuit diagram of the reset circuit is shown in
Figure 15.
The reset circuit supervises the output voltage. The reset
threshold of 4.5 V is defined with the internal reference
voltage and standby output divider.
The reset pulse delay time tRD, is defined with the charge
time of an external capacitor CT:
t
RD
Vout
C x 2.0 V
T
2.0 A
3.0 V
Out
t
tR
Reset
1.23 V Vref
22 k
Vout1
5.0 V
VRT + 0.1 V
UKT
The reaction time of the reset circuit originates from the
discharge time limitation of the reset capacitor CT and is
proportional to the value of CT. The reaction time of the reset
circuit increases the noise immunity.
40 V
Vin
tRD
2.0 µA
Reset
Switch On
CT
+
-
tRR
Input Drop
tRD
Dump
Output
Overload
Switch Off
Figure 16. Typical Reset Output Waveforms
2.0 V
Sense Comparator
The sense comparator compares an input signal with an
internal voltage reference of typical 1.23 V. The use of an
external voltage divider makes this comparator very flexible
in the application.
It can be used to supervise the input voltage either before
or after the protection diode and to give additional
information to the microprocessor like low voltage warnings.
Reg
Figure 15. Reset Circuit
http://onsemi.com
7
L4949, NCV4949
ORDERING INFORMATION
Device
Operating Temperature Range
L4949N
L4949D
L4949DR2
TJ = –40°C
40°C to +125°C
NCV4949DR2*
Package
Shipping
DIP–8
50 Units / Rail
SO–8
98 Units / Rail
SO–8
2500 Units / Tape & Reel
SO–8
2500 Units / Tape & Reel
*NCV4949: Tlow = –40°C, Thigh = +125°C. Guaranteed by design. NCV prefix is for automotive and other applications requiring
site and change control.
http://onsemi.com
8
L4949, NCV4949
PACKAGE DIMENSIONS
N SUFFIX
PLASTIC PACKAGE
CASE 626–05
ISSUE L
8
NOTES:
1. DIMENSION L TO CENTER OF LEAD WHEN
FORMED PARALLEL.
2. PACKAGE CONTOUR OPTIONAL (ROUND OR
SQUARE CORNERS).
3. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
5
–B–
1
4
F
–A–
NOTE 2
L
C
J
–T–
N
SEATING
PLANE
D
H
M
K
G
0.13 (0.005)
M
T A
M
B
M
http://onsemi.com
9
DIM
A
B
C
D
F
G
H
J
K
L
M
N
MILLIMETERS
MIN
MAX
9.40
10.16
6.10
6.60
3.94
4.45
0.38
0.51
1.02
1.78
2.54 BSC
0.76
1.27
0.20
0.30
2.92
3.43
7.62 BSC
--10
0.76
1.01
INCHES
MIN
MAX
0.370
0.400
0.240
0.260
0.155
0.175
0.015
0.020
0.040
0.070
0.100 BSC
0.030
0.050
0.008
0.012
0.115
0.135
0.300 BSC
--10
0.030
0.040
L4949, NCV4949
PACKAGE DIMENSIONS
D SUFFIX
PLASTIC PACKAGE
CASE 751–07
ISSUE W
–X–
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A AND B DO NOT INCLUDE MOLD
PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER
SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN
EXCESS OF THE D DIMENSION AT MAXIMUM
MATERIAL CONDITION.
A
8
5
0.25 (0.010)
S
B
1
M
Y
M
4
K
–Y–
G
C
N
X 45 SEATING
PLANE
–Z–
0.10 (0.004)
H
M
D
0.25 (0.010)
M
Z Y
S
X
S
http://onsemi.com
10
J
DIM
A
B
C
D
G
H
J
K
M
N
S
MILLIMETERS
MIN
MAX
4.80
5.00
3.80
4.00
1.35
1.75
0.33
0.51
1.27 BSC
0.10
0.25
0.19
0.25
0.40
1.27
0
8
0.25
0.50
5.80
6.20
INCHES
MIN
MAX
0.189
0.197
0.150
0.157
0.053
0.069
0.013
0.020
0.050 BSC
0.004
0.010
0.007
0.010
0.016
0.050
0
8
0.010
0.020
0.228
0.244
L4949, NCV4949
Notes
http://onsemi.com
11
L4949, NCV4949
ON Semiconductor is a trademark and
is a registered trademark of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right
to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products
for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any
and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets
and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must
be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.
SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death
may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that
SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.
PUBLICATION ORDERING INFORMATION
Literature Fulfillment:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada
Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada
Email: [email protected]
JAPAN: ON Semiconductor, Japan Customer Focus Center
4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031
Phone: 81–3–5740–2700
Email: [email protected]
ON Semiconductor Website: http://onsemi.com
For additional information, please contact your local
Sales Representative.
N. American Technical Support: 800–282–9855 Toll Free USA/Canada
http://onsemi.com
12
L4949/D