L4949, NCV4949 100 mA, 5.0 V, Low Dropout Voltage Regulator with Power-On Reset The L4949 is a monolithic integrated 5.0 V voltage regulator with a very low dropout and additional functions such as power–on reset and input voltage sense. It is designed for supplying the micro–computer controlled systems especially in automotive applications. • Operating DC Supply Voltage Range 5.0 V to 28 V • Transient Supply Voltage Up to 40 V • Extremely Low Quiescent Current in Standby Mode • High Precision Standby Output Voltage 5.0 V ±1% • Output Current Capability Up to 100 mA • Very Low Dropout Voltage Less Than 0.4 V • Reset Circuit Sensing The Output Voltage • Programmable Reset Pulse Delay With External Capacitor • Voltage Sense Comparator • Thermal Shutdown and Short Circuit Protections http://onsemi.com MARKING DIAGRAMS PDIP–8 N SUFFIX CASE 626 8 8 L4949N AWL YYWW 1 1 8 SO–8 D SUFFIX CASE 751 8 1 L4949 ALYWD 1 A WL, L YY, Y WW, W = = = = Assembly Location Wafer Lot Year Work Week PIN CONNECTIONS Representative Block Diagram Output Voltage (Vout) VZ 3 8 Supply Voltage (VCC) CT 4 Preregulator 6.0 V 1 2.0 µA + - Sense Input (Si) Vout Si 2 7 So VZ 3 6 Reset CT 4 5 Gnd (Top View) Sense Output (So) ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 8 of this data sheet. 7 2 + - 1.23 Vref 1.23 V Sense 5 Semiconductor Components Industries, LLC, 2002 April, 2002 – Rev. 4 8 2.0 V Reset Vs 1 Reset 6 Regulator VCC Gnd 1 Publication Order Number: L4949/D L4949, NCV4949 ABSOLUTE MAXIMUM RATINGS (Absolute Maximum Ratings indicate limits beyond which damage to the device may occur.) ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ Á ÁÁÁÁ ÁÁÁ Á ÁÁÁ ÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ Á ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁ Symbol Value Unit VCC 28 V VCC TR 40 V Output Current Iout Internally Limited – Output Voltage Rating DC Operating Supply Voltage Transient Supply Voltage (t < 1.0 s) Vout 20 V Sense Input Current ISI ±1.0 mA Sense Input Voltage VSI VCC – Output Voltages Reset Output Sense Output VReset VSO 20 20 Output Currents Reset Output Sense Output IReset ISO 5.0 5.0 Preregulator Output Voltage VZ 7.0 V Preregulator Output Current IZ 5.0 mA ESD Protection at any pin Human Body Model Machine Model – – 2000 400 V mA V Thermal Resistance, Junction–to–Air P Suffix, DIP–8 Plastic Package, Case 626 D Suffix, SO–8 Plastic Package, Case 751 °C/W RθJA 100 200 Maximum Junction Temperature TJ 150 °C Storage Temperature Range Tstg –65 to +150 °C NOTE: ESD data available upon request. ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ Á ÁÁÁ ÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ Á ÁÁÁ ÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ELECTRICAL CHARACTERISTICS (VCC = 14 V, –40°C < TJ < 125°C, unless otherwise specified.) Characteristic Symbol Min Typ Max Unit Output Voltage (TJ = 25°C, Iout = 1.0 mA) Vout 4.95 5.0 5.05 V Output Voltage (6.0 V < VCC < 28 V, 1.0 mA < Iout < 50 mA) Vout 4.9 5.0 5.1 V Output Voltage (VCC = 35 V, t < 1.0 s, 1.0 mA < Iout < 50 mA) Vout 4.9 5.0 5.1 V Dropout Voltage Iout = 10 mA Iout = 50 mA Iout = 100 mA Vdrop – – – 0.1 0.2 0.3 0.25 0.40 0.50 VIO – 0.2 0.4 V Line Regulation (6.0 V < VCC < 28 V, Iout = 1.0 mA) Regline – 1.0 20 mV Load Regulation (1.0 mA < Iout < 100 mA) Regload – 8.0 30 mV 105 – 200 100 400 – Input to Output Voltage Difference in Undervoltage Condition (VCC = 4.0 V, Iout = 35 mA) V Current Limit Vout = 4.5 V Vout = 0 V ILim Quiescent Current (Iout = 0.3 mA, TJ < 100°C) IQSE – 150 260 µA IQ – – 5.0 mA Quiescent Current (Iout = 100 mA) http://onsemi.com 2 mA L4949, NCV4949 ELECTRICAL CHARACTERISTICS (continued) (VCC = 14 V, –40°C < TJ < 125°C, unless otherwise specified.) Characteristic Symbol Min Typ Max VResth – Vout – 0.5 – Unit ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ Á ÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ RESET Reset Threshold Voltage Reset Threshold Hysteresis @ TJ = 25°C @ TJ = –40 to +125°C V VResth,hys mV 50 50 100 – 200 300 Reset Pulse Delay (CT = 100 nF, tR ≥ 100 µs) tResD 55 100 180 ms Reset Reaction Time (CT = 100 nF) tResR – 5.0 30 µs Reset Output Low Voltage (RReset = 10 kΩ to Vout, VCC ≥ 3.0 V) VResL – – 0.4 V Reset Output High Leakage Current (VReset = 5.0 V) IResH – – 1.0 µA Delay Comparator Threshold VCTth – 2.0 – V VCTth, hys – 100 – mV VSOth 1.16 1.23 1.35 V VSOth,hys 20 100 200 mV Sense Output Low Voltage (VSI ≤ 1.16 V, VCC ≥ 3.0 V, RSO = 10 kΩ to Vout) VSOL – – 0.4 V Sense Output Leakage (VSO = 5.0 V, VSI ≥ 1.5 V) ISOH – – 1.0 µA ISI –1.0 0.1 1.0 µA VZ – 6.3 – V Delay Comparator Threshold Hysteresis SENSE Sense Low Threshold (VSI Decreasing = 1.5 V to 1.0 V) Sense Threshold Hysteresis Sense Input Current PREREGULATOR Preregulator Output Voltage (IZ = 10 µA) PIN FUNCTION DESCRIPTION Pin Symbol Description 1 VCC Supply Voltage 2 Si Input of Sense Comparator 3 VZ Output of Preregulator 4 CT Reset Delay Capacitor 5 Gnd Ground 6 Reset Output of Reset Comparator 7 SO Output of Sense Comparator 8 Vout Main Regulator Output TYPICAL CHARACTERIZATION CURVES 5.02 6.0 VCC = 14 V Iout = 1.0 mA Vout , OUTPUT VOLTAGE (V) Vout , OUTPUT VOLTAGE (V) 5.04 5.0 4.98 4.96 -40 -20 0 20 40 60 80 100 4.0 RL = 5.0 k RL = 100 Ω 3.0 2.0 1.0 0 120 TJ = 25°C 5.0 0 TJ, JUNCTION TEMPERATURE (°C) 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 VCC, SUPPLY VOLTAGE (V) Figure 2. Output Voltage versus Supply Voltage Figure 1. Output Voltage versus Junction Temperature http://onsemi.com 3 9.0 10 L4949, NCV4949 TYPICAL CHARACTERIZATION CURVES (continued) 0.40 TJ = 25°C Vdrop , DROPOUT VOLTAGE (mV) Vdrop , DROPOUT VOLTAGE (mV) 250 200 150 100 50 0 0.1 1.0 Iout = 50 mA 0.20 Iout = 10 mA 0.10 0 -40 100 10 Iout = 100 mA 0.30 -20 0 Iout, OUTPUT CURRENT (mA) 80 100 120 3.0 VCC = 14 V TJ = 25°C 2.5 IQ, QUIESCENT CURRENT (mA) IQ, QUIESCENT CURRENT (mA) 60 Figure 4. Dropout Voltage versus Junction Temperature 3.0 2.0 1.5 1.0 0.5 0.1 1.0 10 2.0 RL = 100 Ω 1.5 1.0 0.5 0 100 TJ = 25°C 2.5 RL = 5.0 k 0 5.0 10 Iout, OUTPUT CURRENT (mA) VReset , RESET THRESHOLD VOLTAGE (V) TJ = 25°C 5.0 Resistor 10 k from Reset Output to 5.0 V 3.0 2.0 1.0 0 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 20 25 30 Figure 6. Quiescent Current versus Supply Voltage 6.0 4.0 15 VCC, SUPPLY VOLTAGE (V) Figure 5. Quiescent Current versus Output Current VReset , RESET OUTPUT (V) 40 TJ, JUNCTION TEMPERATURE (°C) Figure 3. Dropout Voltage versus Output Current 0 20 4.8 4.9 5.0 4.7 4.66 4.62 Upper Threshold 4.58 4.54 4.5 Lower Threshold 4.46 4.42 -40 -20 0 20 40 60 80 100 TJ, JUNCTION TEMPERATURE (°C) Vout, OUTPUT VOLTAGE (V) Figure 8. Reset Thresholds versus Junction Temperature Figure 7. Reset Output versus Regulator Output Voltage http://onsemi.com 4 120 L4949, NCV4949 TYPICAL CHARACTERIZATION CURVES (continued) 1.4 5.0 TJ = 25°C 4.0 Resistor 10 k from Sense Output to 5.0 V 3.0 VSI, SENSE INPUT VOLTAGE (V) VSO , SENSE OUTPUT VOLTAGE (V) 6.0 2.0 1.0 0 1.0 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.38 1.36 Upper Threshold 1.34 1.32 1.3 1.28 1.26 Lower Threshold 1.24 1.22 1.2 -40 1.5 -20 0 20 40 60 80 100 120 TJ, JUNCTION TEMPERATURE (°C) VSI, SENSE INPUT VOLTAGE (V) Figure 9. Sense Output versus Sense Input Voltage Figure 10. Sense Thresholds versus Junction Temperature APPLICATION INFORMATION Supply Voltage Transient less than 8.0 V supply transients of more than 0.4 V/µs can cause a reset signal perturbation. To improve the transient behavior for supply voltages less than 8.0 V a capacitor at Pin 3 can be used. A capacitor at Pin 3 (C3 ≤ 1.0 µF) reduces also the output noise. High supply voltage transients can cause a reset output signal perturbation. For supply voltages greater than 8.0 V the circuit shows a high immunity of the reset output against supply transients of more than 100 V/µs. For supply voltages Vout C3 VZ (optional) Vbat VCC Cs 3 CO 8 CT 4 Preregulator 6.0 V 1 2.0 µA Reset 6 10 kΩ + - Regulator Vout 2.0 V Reset VCC RSO 10 kΩ So Si 7 2 + 1.23 Vref Sense 5 Gnd NOTES: 1. For stability: Cs ≥ 1.0 µF, CO ≥ 4.7 µF, ESR < 10 Ω at 10 kHz 2. Recommended for application: Cs = CO = 10 µF Figure 11. Application Schematic http://onsemi.com 5 1.23 V L4949, NCV4949 OPERATING DESCRIPTION Vout The L4949 is a monolithic integrated low dropout voltage regulator. Several outstanding features and auxiliary functions are implemented to meet the requirements of supplying microprocessor systems in automotive applications. Nevertheless, it is suitable also in other applications where the present functions are required. The modular approach of this device allows the use of other features and functions independently when required. Vout 5.0 V Voltage Regulator The voltage regulator uses an isolated Collector Vertical PNP transistor as a regulating element. With this structure, very low dropout voltage at currents up to 100 mA is obtained. The dropout operation of the standby regulator is maintained down to 3.0 V input supply voltage. The output voltage is regulated up to the transient input supply voltage of 35 V. With this feature no functional interruption due to overvoltage pulses is generated. The typical curve showing the standby output voltage as a function of the input supply voltage is shown in Figure 13. The current consumption of the device (quiescent current) is less than 200 µA. To reduce the quiescent current peak in the undervoltage region and to improve the transient response in this region, the dropout voltage is controlled. The quiescent current as a function of the supply input voltage is shown in Figure 14. 0V 2.0 V 5.0 V 35 V VCC Figure 13. Output Voltage versus Supply Voltage IQ, QUIESCENT CURRENT (mA) 3.0 Short Circuit Protection: The maximum output current is internally limited. In case of short circuit, the output current is foldback current limited as described in Figure 12. 2.5 TJ = 25°C 2.0 RL = 100 Ω 1.5 1.0 0.5 0 0 RL = 5.0 k 5.0 10 15 20 25 30 VCC, SUPPLY VOLTAGE (V) Figure 14. Quiescent Current versus Supply Voltage 10 Vout (V) Preregulator To improve the transient immunity a preregulator stabilizes the internal supply voltage to 6.0 V. This internal voltage is present at Pin 3 (VZ). This voltage should not be used as an output because the output capability is very small (≤ 100 µA). This output may be used as an option when better transient behavior for supply voltages less than 8.0 V is required. In this case a capacitor (100 nF – 1.0 µF) must be connected between Pin 3 and Gnd. If this feature is not used Pin 3 must be left open. 5.0 0 20 100 200 Iout (mA) Figure 12. Foldback Characteristic of Vout http://onsemi.com 6 L4949, NCV4949 Reset Circuit Standby output voltage drops below the reset threshold only a bit longer than the reaction time results in a shorter reset delay time. The nominal reset delay time will be generated for standby output voltage drops longer than approximately 50 µs. The typical reset output waveforms are shown in Figure 16. The block circuit diagram of the reset circuit is shown in Figure 15. The reset circuit supervises the output voltage. The reset threshold of 4.5 V is defined with the internal reference voltage and standby output divider. The reset pulse delay time tRD, is defined with the charge time of an external capacitor CT: t RD Vout C x 2.0 V T 2.0 A 3.0 V Out t tR Reset 1.23 V Vref 22 k Vout1 5.0 V VRT + 0.1 V UKT The reaction time of the reset circuit originates from the discharge time limitation of the reset capacitor CT and is proportional to the value of CT. The reaction time of the reset circuit increases the noise immunity. 40 V Vin tRD 2.0 µA Reset Switch On CT + - tRR Input Drop tRD Dump Output Overload Switch Off Figure 16. Typical Reset Output Waveforms 2.0 V Sense Comparator The sense comparator compares an input signal with an internal voltage reference of typical 1.23 V. The use of an external voltage divider makes this comparator very flexible in the application. It can be used to supervise the input voltage either before or after the protection diode and to give additional information to the microprocessor like low voltage warnings. Reg Figure 15. Reset Circuit http://onsemi.com 7 L4949, NCV4949 ORDERING INFORMATION Device Operating Temperature Range L4949N L4949D L4949DR2 TJ = –40°C 40°C to +125°C NCV4949DR2* Package Shipping DIP–8 50 Units / Rail SO–8 98 Units / Rail SO–8 2500 Units / Tape & Reel SO–8 2500 Units / Tape & Reel *NCV4949: Tlow = –40°C, Thigh = +125°C. Guaranteed by design. NCV prefix is for automotive and other applications requiring site and change control. http://onsemi.com 8 L4949, NCV4949 PACKAGE DIMENSIONS N SUFFIX PLASTIC PACKAGE CASE 626–05 ISSUE L 8 NOTES: 1. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL. 2. PACKAGE CONTOUR OPTIONAL (ROUND OR SQUARE CORNERS). 3. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 5 –B– 1 4 F –A– NOTE 2 L C J –T– N SEATING PLANE D H M K G 0.13 (0.005) M T A M B M http://onsemi.com 9 DIM A B C D F G H J K L M N MILLIMETERS MIN MAX 9.40 10.16 6.10 6.60 3.94 4.45 0.38 0.51 1.02 1.78 2.54 BSC 0.76 1.27 0.20 0.30 2.92 3.43 7.62 BSC --10 0.76 1.01 INCHES MIN MAX 0.370 0.400 0.240 0.260 0.155 0.175 0.015 0.020 0.040 0.070 0.100 BSC 0.030 0.050 0.008 0.012 0.115 0.135 0.300 BSC --10 0.030 0.040 L4949, NCV4949 PACKAGE DIMENSIONS D SUFFIX PLASTIC PACKAGE CASE 751–07 ISSUE W –X– NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. A 8 5 0.25 (0.010) S B 1 M Y M 4 K –Y– G C N X 45 SEATING PLANE –Z– 0.10 (0.004) H M D 0.25 (0.010) M Z Y S X S http://onsemi.com 10 J DIM A B C D G H J K M N S MILLIMETERS MIN MAX 4.80 5.00 3.80 4.00 1.35 1.75 0.33 0.51 1.27 BSC 0.10 0.25 0.19 0.25 0.40 1.27 0 8 0.25 0.50 5.80 6.20 INCHES MIN MAX 0.189 0.197 0.150 0.157 0.053 0.069 0.013 0.020 0.050 BSC 0.004 0.010 0.007 0.010 0.016 0.050 0 8 0.010 0.020 0.228 0.244 L4949, NCV4949 Notes http://onsemi.com 11 L4949, NCV4949 ON Semiconductor is a trademark and is a registered trademark of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. PUBLICATION ORDERING INFORMATION Literature Fulfillment: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: [email protected] JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031 Phone: 81–3–5740–2700 Email: [email protected] ON Semiconductor Website: http://onsemi.com For additional information, please contact your local Sales Representative. N. American Technical Support: 800–282–9855 Toll Free USA/Canada http://onsemi.com 12 L4949/D