Dual Channel, 12-Bit 105 MSPS IF Sampling A/D Converter with Analog Input Signal Conditioning AD10200 a FEATURES Dual, 105 MSPS Minimum Sample Rate Channel-Channel Isolation, >80 dB AC-Coupled Signal Conditioning Included Gain Flatness up to Nyquist: < 0.2 dB Input VSWR 1.1:1 to Nyquist 80 dB Spurious-Free Dynamic Range Two’s Complement Output Format 3.3 V or 5 V CMOS-Compatible Output Levels 0.850 W per Channel Industrial and Military Grade includes two wide-dynamic range ADCs. Each ADC has a transformer coupled front-end optimized for Direct-IF sampling. The AD10200 has on-chip track-and-hold circuitry, and utilizes an innovative architecture to achieve 12-bit, 105 MSPS performance. The AD10200 uses innovative high-density circuit design to achieve exceptional matching and performance while still maintaining excellent isolation, and providing for significant board area savings. The AD10200 operates with 5.0 V supply for the analog-todigital conversion. Each channel is completely independent allowing operation with independent encode and analog inputs. The AD10200 is packaged in a 68-lead ceramic chip carrier package. Manufacturing is done on Analog Devices, Inc. MIL38534 Qualified Manufacturers Line (QML) and components are available up to Class-H (–55°C to +125°C). APPLICATIONS Radar IF Receivers Phased Array Receivers Communications Receivers Secure Communications GPS Antijamming Receivers Multichannel, Multimode Receivers PRODUCT HIGHLIGHTS 1. Guaranteed sample rate of 105 MSPS. PRODUCT DESCRIPTION The AD10200 is a full channel ADC solution with on-module signal conditioning for improved dynamic performance and fully matched channel-to-channel performance. The module 2. Input signal conditioning with full power bandwidth to 250 MHz. 3. Fully tested/characterized performance at 121 MHz AIN. 4. Optimized for IF sampling. FUNCTIONAL BLOCK DIAGRAM AINA2 AINB2 7 63 D00A 34 (LSB) 50 D00B D01A 33 49 D01B (LSB) T1A T1B D02A 32 48 D02B D03A 31 50⍀ 47 D03B 50⍀ 46 D04B D04A 30 T/H D05A 29 T/H AD10200 45 D05B D06A 28 42 D06B D07A 25 ADC D08A 24 12 41 D07B ADC 12 12 40 D08B 12 39 D09B D09A 23 D10A 22 OUTPUT RESISTORS 38 D10B OUTPUT RESISTORS 37 D11B D11A 21 (MSB) (MSB) TIMING 18 REF 17 ENCODEA ENCODEA REF TIMING 3 56 53 54 REF_A_OUT REF_B_OUT ENCODEB ENCODEB REV. A Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781/329-4700 www.analog.com Fax: 781/326-8703 © Analog Devices, Inc., 2001 AD10200–SPECIFICATIONS1 (V DD = Parameter Temp 3.3 V, VCC = 5.0 V; ENCODE = 105 MSPS, unless otherwise noted) Test Level MIL Subgroup Min RESOLUTION Full Full Full Full Full IV IV I I I ANALOG INPUT Input Voltage Range Input Impedance Input VSWR3 Analog Input Bandwidth, High Analog Input Bandwidth, Low 25°C 25°C Full Full Full V V IV IV IV ANALOG REFERENCE Output Voltage Load Current Tempco Full 25°C Full SWITCHING PERFORMANCE Maximum Conversion Rate Minimum Conversion Rate Duty Cycle Aperture Delay (tA) Aperture Uncertainty (Jitter) Output Valid Time (tV)4 Output Propagation Delay (PD)4 Output Rise Time (tR) Output Fall Time (tF) DIGITAL INPUTS Encode Input Common Mode Differential Input (Enc, Enc) Logic “1” Voltage Logic “0” Voltage Input Resistance Input Capacitance POWER SUPPLY5 Power Dissipation6 Power Supply Rejection Ratio I (DVDD) Current I (AVCC) Current DYNAMIC PERFORMANCE Signal-to-Noise Ratio (SNR)7 (Without Harmonics) fIN = 10 MHz fIN = 41 MHz fIN = 71 MHz fIN = 121 MHz Max 12 DC ACCURACY Differential Nonlinearity Integral Nonlinearity No Missing Codes Gain Error2 Output Offset DIGITAL OUTPUTS Logic “1” Voltage4 Logic “0” Voltage4 Output Coding Typ 12 12 1, 2, 3 1, 2, 3 1, 2, 3 –0.99 –3 –9 –12 12 12 12 200 1 I V V 1, 2, 3 2.4 Full Full Full 25°C 25°C Full Full 25°C 25°C I IV IV V V IV IV V V 4, 5, 6 12 12 105 Full Full Full Full Full 25°C ± 0.5 ± 0.75 Guaranteed ±1 2.048 50 1.1:1 250 2.5 5 50 45 50 1.0 0.25 5.3 5.5 3.5 3.3 12 12 12 12 3.0 4.5 IV IV IV IV IV V 12 12 12 12 12 1.2 0.4 2.0 1.6 3 5 4.5 Full Full VI VI 1, 2, 3 1, 2, 3 3.1 Full Full Full Full I IV I I 1, 2, 3 12 1, 2, 3 1, 2, 3 1800 ± 0.5 25 340 25°C Full 25°C Full 25°C Full 25°C Full V V I II I II I II 4 5, 6 4 5, 6 4 5, 6 67 66 66.5 65 66.4 64 65 64 –2– Bits +0.99 +3 LSB LSB +9 +12 % FS LSB 1.25:1 V p-p Ω Ratio MHz MHz 2.6 10 55 8.0 2.0 5.0 0.8 8 3.3 0 0.2 Two’s Complement 64 62 62.5 61.5 61 61 Unit 2200 ±5 40 410 V mA ppm/°C MSPS MSPS % ns ps rms ns ns ns ns V V V V kΩ pF V V mW mV/V mA mA dBFS dBFS dBFS dBFS dBFS dBFS dBFS dBFS REV. A AD10200 Parameter DYNAMIC PERFORMANCE (Continued) Signal-to-Noise Ratio (SINAD)8 (With Harmonics) fIN = 10 MHz fIN = 41 MHz fIN = 71 MHz fIN = 121 MHz Spurious Free Dynamic Range9 fIN = 10 MHz fIN = 41 MHz fIN = 71 MHz fIN = 121 MHz Two-Tone Intermodulation Distortion10 (IMD) fIN = 10 MHz; fIN = 12 MHz fIN = 71 MHz; fIN = 72 MHz fIN = 121 MHz; fIN = 122 MHz Channel-to-Channel Isolation11 fIN = 121 MHz Temp Test Level MIL Subgroup 25°C Full 25°C Full 25°C Full 25°C Full V V I II I II I II 25°C Full 25°C Full 25°C Full 25°C Full V V I II I II I II 25°C Full 25°C Full 25°C Full V V V V I II 4 5, 6 Full IV 12 4 5, 6 4 5, 6 4 5, 6 4 5, 6 4 5, 6 4 5, 6 Min Typ 63 60.5 61 57 56 53 66 63 65.5 63 63.5 60 58.5 55 dBFS dBFS dBFS dBFS dBFS dBFS dBFS dBFS 81 70 81 65 58 dBFS dBFS dBFS dBFS dBFS dBFS dBFS dBFS 55.5 53 86 81 70 65 62 57 dBc dBc dBc dBc dBc dBc 80 85 dB 73 67.5 67 60 61 55.5 74 Max Unit NOTES 1 All ac specifications tested by driving ENCODE and ENCODE differentially. 2 Gain Error measured at 2.5 MHz. 3 Input VSWR guaranteed 10 MHz to 200 MHz. 4 tV and tPD are measured from the transition points of the ENCODE input to the 50%/50% levels of the digital outputs swing. The digital output load during test is not to exceed an ac load of 10 pF or a dc current of ± 40 mA. 5 Supply voltages should remain stable within ± 5% for normal operation. 6 Power dissipation measured with encode at rated speed and 0 dBm analog input. 7 Analog Input signal power at –1 dBFS; signal-to-noise ratio (SNR) is the ratio of signal level to total noise (first 5 harmonic removed). Encode = 105 MSPS. SNR is reported in dBFS, related back to converter full scale. 8 Analog Input signal power at –1 dBFS; signal-to-noise and distortion (SINAD) is the ratio of signal level to total noise + harmonics. Encode = 105 MSPS. SINAD is reported in dBFS, related back to converter full scale. 9 Analog Input signal equal –1 dBFS; SFDR is ratio of converter full scale to worst spur. 10 Both input tones at –7 dBFS; two tone intermodulation distortion (IMD) rejection is the ratio of either tone to the worst third order intermod product. f1 = x MHz ± 100 kHz, f2 = x MHz ± 100 kHz. 11 Channel-to-Channel isolation tested with A Channel/50 Ω terminated (AINA2) grounded and a full-scale signal applied to B Channel (A INB2). Specifications subject to change without notice. REV. A –3– AD10200 ABSOLUTE MAXIMUM RATINGS 1, 2 Table I. Output Coding (VREF = 2.5 V) (Two’s Complement) VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 V VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 V Analog Inputs . . . . . . . . . . . . . . . . . . . . . . . . 5 V p-p(18 dBm) Digital Inputs . . . . . . . . . . . . . . . . . . . –0.5 V to VDD + 0.5 V Digital Output Current . . . . . . . . . . . . . . . . . . . . . . . . 20 mA Operating Temperature . . . . . . . . . . . . . . . . –55°C to +125°C Storage Temperature . . . . . . . . . . . . . . . . . . –65°C to +150°C Maximum Junction Temperature . . . . . . . . . . . . . . . . . 175°C Maximum Case Temperature . . . . . . . . . . . . . . . . . . . . 150°C NOTES 1 Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions outside of those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability. 2 Typical thermal impedances for “Z” package: θJC = 2.22°C/W; θJA = 24.3°C/W. Code AIN (V) Digital Output +2047 • • 0 –1 • • –2048 +1.024 • • 0 –0.00049 • • –1.024 0111 1111 1111 • • 0000 0000 0000 1111 1111 1111 • • 1000 0000 0000 EXPLANATION OF TEST LEVELS Test Level I. II. 100% production tested. 100% production tested at 25°C and sample tested at specific temperatures. III. Sample tested only. IV. Parameter is guaranteed by design and characterization testing. V. Parameter is a typical value only. VI. 100% production tested at 25°C; guaranteed by design and characterization testing for industrial temperature range. ORDERING GUIDE Model Temperature Range Package Description Package Option AD10200BZ 5962-9961002HXA 5962-9961001HXA AD10200/PCB –40°C to +85°C (Case) –40°C to +85°C (Case) –55°C to +125°C (Case) 68-Lead Ceramic Leaded Chip Carrier 68-Lead Ceramic Leaded Chip Carrier 68-Lead Ceramic Leaded Chip Carrier Evaluation Board with AD10200BZ Z-68B Z-68B Z-68B CAUTION ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD10200 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality. –4– WARNING! ESD SENSITIVE DEVICE REV. A AD10200 6 AGNDA 10 AGNDA 11 DNC 12 AGNDB NC DNC 1 68 67 66 65 64 63 62 61 AINB2 2 3 DNC 4 AVCC AGNDB 5 AGNDB SHIELD 7 AGNDA 8 AGNDA DNC AINA2 NC 9 DNC VREF_A_OUT AGNDA PIN CONFIGURATION PIN 1 IDENTIFIER 60 AGNDB AGNDB 58 DNC 59 AGNDA 13 AVCC 14 DNC 15 57 DNC REF_B_OUT 55 AGNDB 56 AGNDA 16 ENCODEA 17 ENCODEA 18 54 ENCODEB ENCODEB 52 AGNDB 51 DV CC AD10200 53 TOP VIEW (Not to Scale) AGNDA 19 DVCC 20 (MSB) D11A 21 50 D0B (LSB) 49 D1B 48 D2B 47 D3B D10A 22 D9A 23 D8A 24 D7A 25 DGNDA 26 46 D4B D5B 44 DGNDB 45 NC = NO CONNECT DGNDB D7B D6B D8B D9B AGNDA AGNDB (MSB) D11B D10B D1A (LSB) D0A D2A DGNDA D6A D5A D4A D3A 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 PIN FUNCTION DESCRIPTIONS Pin No. Mnemonic Function 1 2, 5, 9–11, 13, 16, 19, 35 SHIELD AGNDA 3 6, 62 7 4, 8, 12, 15, 57, 58, 64, 67 14, 66 17 18 20 21–25, 28–34 VREF_A_OUT NC AINA2 DNC AVCC ENCODEA ENCODEA DVCC D11A–D7A, D6A–D0A DGNDA AGNDB Internal Ground Shield between Channels A Channel Analog Ground. A and B grounds should be connected as close to the device as possible. A Channel Internal Voltage Reference No Connection Analog Input for A Side ADC Do Not Connect Analog Positive Supply Voltage (Nominally 5.0 V) Complement of Encode Data conversion initiated on the rising edge of ENCODE input. Digital Positive Supply Voltage (Nominally 3.3 V) Digital Outputs for ADC A. D0 (LSB) 26, 27 36, 52, 55, 59–61, 65, 68 37–42, 45–50 43, 44 51 53 54 56 63 REV. A D11B–D6B, D5B–D0B DGNDB DVCC ENCODEB ENCODEB VREF_B_OUT AINB2 A Channel Digital Ground B Channel Analog Ground. A and B grounds should be connected as close to the device as possible. Digital Outputs for ADC B. D0 (LSB) B Channel Digital Ground Digital Positive Supply Voltage (Nominally 3.3 V) Data conversion initiated on rising edge of ENCODE input. Complement of Encode B Channel Internal Voltage Reference Analog Input for B Side ADC –5– AD10200 DEFINITION OF SPECIFICATIONS Analog Bandwidth Overvoltage Recovery Time The amount of time required for the converter to recover to 0.02% accuracy after an analog input signal of the specified percentage of full scale is reduced to midscale. The analog input frequency at which the spectral power of the fundamental frequency (as determined by the FFT analysis) is reduced by 3 dB. Power Supply Rejection Ratio Aperture Delay The ratio of a change in output offset voltage to a change in power supply voltage. The delay between the 50% point on the rising edge of the ENCODE command and the instant at which the analog input is sampled. Signal-to-Noise-and-Distortion (SINAD) The deviation of any code from an ideal 1 LSB step. The ratio of the rms signal amplitude (set a 1 dB below full scale) to the rms value of the sum of all other spectral components, excluding the first five harmonics and dc. [May be reported in dBc (i.e., degrades as signal levels is lowered) or in dBFS (always related back to converter full scale)]. Encode Pulsewidth/Duty Cycle Signal-to-Noise Ratio (without Harmonics) Aperture Uncertainty (Jitter) The sample-to-sample variation in aperture delay. Differential Nonlinearity Pulsewidth high is the minimum amount of time that the ENCODE pulse should be left in Logic “1” state to achieve rated performance; pulsewidth low is the minimum time ENCODE pulse should be left in low state. At a given clock rate, these specs define an acceptable Encode duty cycle. The ratio of the rms signal amplitude (set a I dB below full scale) to the rms value of the sum of all other spectral components, excluding the first five harmonics and dc. [May be reported in dBc (i.e., degrades as signal levels is lowered) or in dBFS (always related back to converter full scale).] Harmonic Distortion Spurious-Free Dynamic Range The ratio of the rms signal amplitude to the rms value of the peak spurious spectral component. The peak spurious component may or may not be a harmonic. [May be reported in dBc (i.e., degrades as signal levels is lowered) or in dBFS (always related back to converter full scale).] The ratio of the rms signal amplitude to the rms value of the worst harmonic component. Integral Nonlinearity The deviation of the transfer function from a reference line measured in fractions of 1 LSB using a “best straight line” determined by a least square curve fit. Transient Response The time required for the converter to achieve 0.02% accuracy when a one-half full-scale step function is applied to the analog input. Minimum Conversion Rate The encode rate at which the SNR of the lowest analog signal frequency drops by no more that 3 dB below the guaranteed limit. Two-Tone Intermodulation Distortion Rejection Maximum Conversion Rate The encode rate at which parametric testing is performed. The ratio of the rms value of either input tone to the rms value of the worst third order intermodulation product; reported in dBc. Output Propagation Delay Voltage Standing-Wave Ratio (VSWR) The delay between the 50% point of the rising edge of ENCODE command and the time when all output data bits are within valid logic levels. The ratio of the amplitude of the elective field at a voltage maximum to that at an adjacent voltage minimum. –6– REV. A Typical Performance Characteristics–AD10200 0 0 ENCODE = 105 MSPS AIN = 10MHz (–1dBFS) SNR = 66.84dBFS SFDR = 82.28dBc ⴚ10 ⴚ20 ⴚ20 ⴚ30 ⴚ40 ⴚ40 ⴚ50 ⴚ50 ⴚ60 dB dB ⴚ30 ⴚ70 ⴚ80 ⴚ60 ⴚ70 ⴚ80 ⴚ90 ⴚ90 ⴚ100 ⴚ100 ⴚ110 ⴚ110 ⴚ120 ⴚ120 ⴚ130 ENCODE = 105 MSPS AIN = 41MHz (–1dBFS) SNR = 66.06dBFS SFDR = 80.59dBc ⴚ10 0 5 10 15 20 25 30 35 FREQUENCY – MHz 40 45 ⴚ130 50 0 TPC 1. Single Tone @ 10 MHz ⴚ20 ⴚ30 ⴚ40 ⴚ40 ⴚ50 ⴚ50 ⴚ60 ⴚ70 ⴚ80 40 45 50 ⴚ60 ⴚ70 ⴚ80 ⴚ90 ⴚ90 ⴚ100 ⴚ100 ⴚ110 ⴚ110 ⴚ120 ⴚ120 0 5 10 15 20 25 30 35 FREQUENCY – MHz 40 45 ⴚ130 50 0 TPC 2. Single Tone @ 71 MHz 5 10 15 20 25 30 35 FREQUENCY – MHz 40 45 50 TPC 5. Single Tone @ 121 MHz 0 0 ENCODE = 105 MSPS AIN = 121MHz (–6dBFS) SNR = 66.9dBFS SFDR = 65.57dBc ⴚ10 ⴚ20 ⴚ30 ENCODE = 105 MSPS AIN = 201MHz (–10dBFS) SNR = 66.84dBFS SFDR = 64.57dBc ⴚ10 ⴚ20 ⴚ30 ⴚ40 ⴚ40 ⴚ50 ⴚ50 ⴚ60 dB dB 20 25 30 35 FREQUENCY – MHz ENCODE = 105 MSPS AIN = 121MHz (–1dBFS) SNR = 64.92dBFS SFDR = 64.73dBc ⴚ10 dB dB ⴚ30 ⴚ70 ⴚ60 ⴚ70 ⴚ80 ⴚ80 ⴚ90 ⴚ90 ⴚ100 ⴚ100 ⴚ110 ⴚ110 ⴚ120 ⴚ120 0 5 10 15 20 25 30 35 FREQUENCY – MHz 40 45 ⴚ130 50 0 5 10 15 20 25 30 35 FREQUENCY – MHz 40 TPC 6. Single Tone @ 201 MHz TPC 3. Single Tone @ 121 MHz REV. A 15 0 ENCODE = 105 MSPS AIN = 71MHz (–1dBFS) SNR = 66.04dBFS SFDR = 79.71dBc ⴚ20 ⴚ130 10 TPC 4. Single Tone @ 41 MHz 0 ⴚ10 ⴚ130 5 –7– 45 50 AD10200 0 0 ENCODE = 105 MSPS AIN = 37MHz & 38MHz (–10dBFS) SFDR = 79.84dBc ⴚ10 ⴚ20 ⴚ20 ⴚ30 ⴚ40 ⴚ40 ⴚ50 ⴚ50 ⴚ60 dBc dBc ⴚ30 ⴚ70 ⴚ80 ⴚ60 ⴚ70 ⴚ80 ⴚ90 ⴚ90 ⴚ100 ⴚ100 ⴚ110 ⴚ110 ⴚ120 ⴚ120 ⴚ130 ENCODE = 105 MSPS AIN = 71MHz & 72MHz (–7dBFS) SFDR = 74.8dBc ⴚ10 0 5 10 15 20 25 30 35 FREQUENCY – MHz 40 45 ⴚ130 50 0 5 10 15 20 25 30 35 FREQUENCY – MHz 40 45 50 TPC 10. Two-Tone @ 71 MHz/72 MHz TPC 7. Two-Tone @ 37 MHz/38 MHz 3.0 0 ENCODE = 105 MSPS AIN = 120MHz & 121MHz (–7dBFS) SFDR = 63.8dBc ⴚ10 ⴚ20 ENCODE = 105 MSPS DNL MAX = 0.486 Codes DNL MIN = 0.431 Codes 2.5 ⴚ30 2.0 ⴚ40 1.5 ⴚ60 LSB dBc ⴚ50 ⴚ70 1.0 ⴚ80 0.5 ⴚ90 0.0 ⴚ100 ⴚ110 ⴚ0.5 ⴚ120 ⴚ130 0 5 10 15 20 25 30 35 FREQUENCY – MHz 40 45 ⴚ1.0 50 0 1024 1536 2048 2560 3072 3584 4096 TPC 11. Differential Nonlinearity TPC 8. Two-Tone @ 120 MHz/121 MHz 3 512 0 ENCODE = 105 MSPS INL MAX = 0.874 Codes INL MIN = 0.895 Codes ⴚ1 2 ENCODE = 105 MSPS 3dB = 261MHz ⴚ2 ⴚ3 1 dBFS LSB ⴚ4 0 ⴚ5 ⴚ6 ⴚ1 ⴚ7 ⴚ8 ⴚ2 ⴚ9 ⴚ3 0 512 1024 1536 2048 2560 3072 3584 ⴚ10 3.0 4096 32.7 62.4 92.1 121.8 151.5 181.2 210.9 240.6 270.3 300.0 MHz TPC 12. Gain Flatness TPC 9. Integral Nonlinearity –8– REV. A AD10200 11 10MHz = 1.0149 10 50MHz = 1.085 100MHz = 1.130 150MHz = 1.092 9 8 7 6 5 4 3 10MHz = 50.22 + j.173 50MHz = 48.79 – j4.2 100MHz = 46.95 – j5.9 150MHz = 48.55 – j4.66 2 1 3.0 32.7 TPC 13. Input Impedance S11 SAMPLE N–1 62.4 92.1 121.8 151.5 181.2 210.9 240.6 270.3 300.0 MHz TPC 14. Voltage Standing Wave Ratio (VSWR) SAMPLE N SAMPLE N+10 SAMPLE N+11 AIN SAMPLE N+1 SAMPLE N+9 1/f S ENCODE ENCODE t PD DATA N⬇11 D11⬇D0 DATA N⬇10 N⬇9 N⬇2 DATA N⬇1 tV DATA N DATA N + 1 Figure 1. Timing Diagram VCC VCC VCC 17k⍀ 17k⍀ Q1 NPN ENCODE ENCODE 100⍀ 100⍀ 8k⍀ 8k⍀ VREF OUTPUT Figure 2. Equivalent Encode Input Circuit Figure 4. Equivalent Voltage Reference Output Circuit VCC VCC 5k⍀ 5k⍀ AIN 100⍀ 50⍀ DIGITAL OUTPUT 7k⍀ 7k⍀ Figure 3. Equivalent Digital Output Circuit REV. A Figure 5. Equivalent Analog Input Circuit –9– AD10200 APPLICATION NOTES Theory of Operation The AD10200 is a high-dynamic range dual 12-bit, 105 MHz subrange pipeline converter that uses switched capacitor architecture. The analog input section uses AINA2/AINB2 at 2.048 V p-p with an input impedance of 50 Ω. The analog input includes an ac-coupled wide-band 1:1 transformer, which provides high-dynamic range and SNR while maintaining VSWR and gain flatness. The ADC includes a high-bandwidth linear track/ hold that gives excellent spurious performance up to and beyond the Nyquist rate. The high-bandwidth track/hold has a low jitter of 0.25 ps rms, leading to excellent SNR and SFDR performance. AC-coupled differential PECL/ECL encode inputs are recommended for optimum performance. USING THE AD10200 ENCODE Input Any high speed A/D converter is extremely sensitive to the quality of the sampling clock provided by the user. A track/hold circuit is essentially a mixer, and any noise, distortion, or timing jitter on the clock will be combined with the desired signal at the A/D output. For that reason, considerable care has been taken in the design of the ENCODE input of the AD10200, and the user is advised to give commensurate thought to the clock source. The ENCODE input are fully TTL/CMOS compatible. For optimum performance, the AD10200 must be clocked differentially. Note that the ENCODE inputs cannot be driven directly from PECL level signals (VIHD is 3.5 V max). PECL level signals can easily be accommodated by ac coupling as shown in Figure 6. Good performance is obtained using an MC10EL16 in the circuit to drive the encode inputs. 0.1F 510⍀ Figure 6. AC Coupling to ENCODE Inputs The voltage level definitions for driving ENCODE and ENCODE in differential mode are shown in Figure 7. ENCODE Voltage Reference A stable and accurate 2.5 V voltage reference is designed into the AD10200 (VREFOUT). An external voltage reference is not required. Timing The AD10200 provides latched data outputs, with 10 pipeline delays. Data outputs are available one propagation delay (tPD) after the rising edge of the encode command (see Figure 1). The length of the output data lines and loads placed on them should be minimized to reduce transients within the AD10200; these transients can detract from the converter's dynamic performance. 2. The minimization of the impedance associated with ground and power paths. ENCODE Inputs 500 mV min, 750 mV nom 5.0 V max 0 V min 1.25 V min, 1.6 V nom VIHD VICM Special care was taken in the design of the analog input section of the AD10200 to prevent damage and corruption of data when the input is overdriven. 1. The minimization of the loop area encompassed by a signal and its return path. ENCODE Voltage Level Definition ENCODE The analog input is a single ended ac-coupled high performance 1:1 transformer with an input impedance of 50 Ω to 105 MHz. The nominal full scale input is 2.048 V p-p. Proper grounding is essential in any high speed, high resolution system. Multilayer printed circuit boards (PCBs) are recommended to provide optimal grounding and power schemes. The use of ground and power planes offers distinct advantages: GND High Differential Input Voltage (VIHD) Low Differential Input Voltage (VILD) Common-Mode Input (VICN) Analog Input GROUNDING AND DECOUPLING Analog and Digital Grounding 0.1F Differential Signal Amplitude (VID) The digital outputs are TTL/CMOS-compatible and a separate output power supply pin supports interfacing with 3.3 V logic. AD10200 ENCODE 510⍀ Digital Outputs The minimum guaranteed conversion rate of the AD10200 is 10 MSPS. At internal clock rates below 10 MSPS, dynamic performance may degrade. Therefore, input clock rates below 10 MHz should be avoided. ENCODE PECL GATE Often, the cleanest clock source is a crystal oscillator producing a pure sine wave. In this configuration, or with any roughly symmetrical clock input, the input can be ac-coupled and biased to a reference voltage that also provides the ENCODE. This ensures that the reference voltage is centered on the encode signal. VID VILD VIHS ENCODE 3. The inherent distributed capacitor formed by the power plane, PCB insulation and ground plane. These characteristics result in both a reduction of electromagnetic interference (EMI) and an overall improvement in performance. It is important to design a layout that prevents noise from coupling to the input signal. Digital signals should not be run in parallel with input signal traces and should be routed away from the input circuitry. The PCB should have a ground plane covering all unused portions of the component side of the board to provide a low impedance path and manage the power and ground currents. The ground plane should be removed from the area near the input pins to reduce stray capacitance. 0.1F VILS Figure 7. Differential Input Levels –10– REV. A AD10200 LAYOUT INFORMATION EVALUATION BOARD The schematic of the evaluation board (Figure 8) represents a typical implementation of the AD10200. The pinout of the AD10200 is very straightforward and facilitates ease of use and the implementation of high frequency/high resolution design practices. It is recommended that high quality ceramic chip capacitors be used to decouple each supply pin to ground directly at the device. All capacitors can be standard high quality ceramic chip capacitors. The AD10200 evaluation board (Figure 9) is designed to provide optimal performance for evaluation of the AD10200 analog-to-digital converter. The board encompasses everything needed to ensure the highest level of performance for evaluating the AD10200. The board requires an analog input signal, encode clock and power supply inputs. The clock is buffered on-board to provide clocks for the latches. The digital outputs and out clocks are available at the standard 40-pin connectors J1 and J2. Care should be taken when placing the digital output runs. Because the digital outputs have such a high-slew rate, the capacitive loading on the digital outputs should be minimized. Circuit traces for the digital outputs should be kept short and connect directly to the receiving gate. Internal circuitry buffers the outputs of the ADC through a resistor network to eliminate the need to externally isolate the device from the receiving gate. Power to the analog supply pins is connected via banana jacks. The analog supply powers the associated components and the analog section of the AD10200. The digital outputs of the AD10200 are powered via banana jacks with 3.3 V. Contact the factory if additional layout or applications assistance is required. Figure 8. Evaluation Board Mechanical Layout REV. A –11– C29 ⴙ 10F E26 C30 ⴙ 10F ⴙ3.3VDB E25 ⴙ3.3VDA DGNDA C10 0.1F U1 DUT_3.3VDA AGNDA C34 0.1F ⴙ5VAA_ 25 26 23 24 22 19 20 21 16 17 18 15 13 14 11 12 10 DGNDB U8 C16 0.1F 47⍀ ⴞ20% @100MHz L2 47⍀ ⴞ20% @100MHz DGNDA U1 C12 0.1F L1 DUT_3.3VDB DUT_3.3VDA D7A DGNDA D10A D9A D8A ⴙ3.3VDA D11A (MSBA) AGNDA AGNDA ENCAB ENCA ⴙ5VAA SCLK_A AGNDA SDOUT_A AGNDA AGNDA NC = NO CONNECT D7A DGNDA D10A D9A D8A D11A AGNDA NC AGNDA ENCAB ENCA NC AGNDA AGNDA AGNDA AGNDA AGNDA DGNDA D6A D5A AGNDA C37 DNS 0.1F C33 AGNDA U1 AD10200 E5 ⴙ ⴙ L3 47⍀ ⴞ20% @100MHz L4 47⍀ ⴞ20% @100MHz AGNDB C4 10F AGNDA C3 10F ⴙ5AB E6 ⴙ5AA D2A D1A J4 SMA AINA1 7 6 AINA2 AGNDA (NC) AGNDA SDIN_A 9 5 AGNDA VFU_A AGNDA LID AGNDA AGNDA AGNDB D11B D10B J3 SMA DNS D4B D5B DGNDB D1B D2B D3B ENCB AGNDB ⴙ3.3VDB D0B (LSB) SDOUT_B REF_B AGNDB ENCBB AGNDB AGNDB VFU_B 45 44 47 46 49 48 51 50 52 54 53 56 55 58 57 59 60 AGNDB J6 SMA DNS AGNDA J7 SMA ⴙ5AB_ U1 C21 0.1F AGNDB AGNDB ⴙ5AA_ U1 C20 0.1F AGNDA D9B 5 4 3 2 D4A D3A E49 D8B REF_A AGNDA 27 DGNDA 28 D6A 29 D5A 30 D4A 31 D3A 32 D2A 33 D1A 34 D0A (LSBA) D0A ⴙ5VAB_ 67 66 AGNDB (NC) 1 68 SHIELD AGNDB AGNDA (NC) 65 64 63 SCLK_B ⴙ5VAB 62 AGNDB SDIN_B AINB2 61 AGNDB DGNDB 43 AINB1 35 AGNDA 36 AGNDB 37 D11B (MSBB) 38 D10B 39 D9B 40 D8B 41 D7B 42 D6B D7B D6B –12– DGNDB D4B D5B DGNDB D1B D2B D3B D0B ENCB AGNDB AGNDB ENCBB NC DGNDB C18 0.1F U17 DUT_3.3VDB AGNDB AGNDB AGNDB AGNDB 0.1F C35 E50 C36 DNS LATCHB DGNDB 0⍀ R50 0⍀ R54 LATCHA DGNDA 0⍀ R48 0⍀ R51 R8 50⍀ 0⍀ R49 0⍀ R53 R7 50⍀ 0⍀ R47 0⍀ R52 DGNDB DUT_3.3VDB (LSB) D0A D1A DGNDB D2A D3A D4A D5A DGNDB D6A D7A DUT_3.3VDB D8A D9A DGNDB D10A D11A DGNDA DUT_3.3VDA (LSB) D0A D1A DGNDA D2A D3A D4A D5A DGNDA D6A D7A DUT_3.3VDA D8A D9A DGNDA D10A D11A 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 OE1 O0 O1 GND O2 O3 VCC O4 O5 GND O6 O7 O8 O9 GND O10 O11 VCC O12 O13 GND OE1 O0 O1 GND O2 O3 VCC O4 O5 GND O6 O7 O8 O9 GND O10 O11 VCC O12 O13 74LCX16374 LE1 I0 I1 GND I2 I3 VCC I4 I5 GND I6 I7 I8 I9 GND I10 I11 VCC I12 I13 GND O14 O15 OE2 U17 GND I14 I15 LE2 74LCX16374 LE1 I0 I1 GND I2 I3 VCC I4 I5 GND I6 I7 I8 I9 GND I10 I11 VCC I12 I13 O14 O15 OE2 U16 GND I14 I15 LE2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 100⍀ R18 B11B (MSB) R16 B9B 100⍀ R40 B8B 100⍀ DUT_3.3VDB R44 B7B 100⍀ R45 B6B 100⍀ DGNDB R46 B5B 100⍀ R15 B4B 100⍀ R14 B3B 100⍀ R13 B2B 100⍀ DGNDB R24 B1B (LSB) 100⍀ R23 B0B 100⍀ DUT_3.3VDB R22 F3B DNS R21 F2B DNS DGNDB R20 F1B DNS R19 F0B DNS DGNDB R17 B10B 100⍀ DGNDB DGNDB R18 B11A (MSB) 100⍀ R17 B10A 100⍀ DGNDA R16 B9A 100⍀ R40 B8A 100⍀ DUT_3.3VDA R44 B7A 100⍀ R45 B6A 100⍀ DGNDA R46 B5A 100⍀ R15 B4A 100⍀ R14 B3A 100⍀ R13 B2A 100⍀ DGNDA R24 B1A (LSB) 100⍀ R23 B0A 100⍀ DUT_3.3VDA R22 F3A DNS R21 F2A DNS DGNDA R20 F1A DNS R19 F0A DNS DGNDA DGNDA BUFLATB DGNDB C14 ⴙ 10F ⴙ3.3VDB BUFLATA DGNDA C15 ⴙ 10F ⴙ3.3VDA R71 B3A B2A B1A B4A R72 B3B B2B B1B B4B DGNDB F0B F3B F2B F1B (LSB) B0B 50⍀ B6B B5B B8B B7B B9B (MSB) B11B B10B DGNDA F0A F3A F2A F1A (LSB) B0A 50⍀ B6A B5A B8A B7A B9A (MSB) B11A B10A 36 35 20 19 16 17 18 14 15 10 11 12 13 DGNDB 21 22 25 24 23 27 26 31 30 29 28 34 33 32 36 35 7 8 9 38 37 39 40 5 6 H40DM J2 DGNDA 21 22 3 4 2 1 20 19 25 24 23 27 26 14 15 16 17 18 31 30 29 28 10 11 12 13 34 33 32 37 5 6 7 8 9 39 38 40 4 H40DM J1 2 3 1 AD10200 Figure 9a. Evaluation Board REV. A AD10200 U14 5 NR 1 3 ERR OUT ADP3330 2 IN SD SD 6 4 C1 0.1F J5 ENCODE SMA AGNDA J12 SMA R1 50⍀ AGNDA U2 NC VCC D Q DB QB VBB VEE MC10EL16 1 2 3 4 C2 0.1F AGNDA 8 7 6 5 DGNDA ENCAB ENCAB R43 100⍀ R58 33k⍀ AGNDA R56 33k⍀ C6 0.1F 1 2 3 4 AGNDA 8 7 6 5 +3.3VA DGNDA 2 AGNDB 5 NR 1 ERR OUT ADP3330 IN SD SD 6 4 C22 0.1F J10 ENCODE SMA R60 50⍀ J11 SMA AGNDB 8 7 6 5 R39 33k⍀ E19 BUFLATA R64 100⍀ DGNDA 8 7 6 5 R3 100⍀ +3.3VDB DGNDB 1 2 3 4 R66 100⍀ MC10EL16 C28 0.1F AGNDB 2 U9 VCC NC Q D QB DB VEE VBB C24 0.1F ENCBB ENCB R38 33k⍀ C25 0.1F 1 2 3 4 U10 D0 VCC D0B Q0 D1B Q1 D1 VEE C26 0.1F 8 7 6 5 +3.3VB MC100EPT23 DGNDB DGNDB DGNDB NC = NO CONNECT BANANA JACKS FOR GNDS AND PWRS E3 E4 AGNDB AGNDA E33 DGNDB DGNDB E34 DGNDA E42 E44 E48 E41 E43 E47 E67 E70 E72 E73 E76 E81 E68 E69 E71 E74 E75 E82 E66 DGNDB DGNDA E65 DGNDA DGNDA AGNDA E29 E36 E38 E40 E30 E35 E37 E39 E79 E84 E80 E83 E45 E46 DGNDB AGNDB STAND OFFS ON THE BOARD SO1 SO4 SO2 SO5 SO3 SO6 Figure 9b. Evaluation Board REV. A LATCHA E23 R63 100⍀ +3.3VB AGNDB R61 50⍀ AGNDB +3.3VA DGNDA AGNDB C27 0.47F U11 VCC NC Q D QB DB VEE VBB MC10EL16 C23 0.1F DGNDB D0 VCC D0B Q0 D1B Q1 D1 VEE MC100EPT23 C5 0.1F 8 7 6 5 NC = NO CONNECT 1 2 3 4 AGNDB U4 DGNDA U15 +5VAB_ DGNDA 1 2 3 4 R4 100⍀ MC10EL16 3 C8 0.1F R3 100⍀ DGNDA U3 NC VCC D Q DB QB VBB VEE C7 0.1F +3.3VA AGNDA R41 50⍀ R42 100⍀ AGNDA C13 0.47F 1 +5VAA_ –13– LATCHB E24 E22 BUFLATB AD10200 BILL OF MATERIALS LIST FOR AD10200 EVAL BOARD Qty. Component Name Ref Des 2 1 2 4 4 74LCX16373MTD AD10200BZ ADP3330 BRES0805 BRES0805 8 BRES0805 23 CAP2 4 CAP2 U16, U17 U1 U14, U15 R38, R39, R56, R58 R1, R41, R60, R61 R3, R4, R42, R43, R63, R64, R65, R66 C1, C2, C5, C6, C7, C8, C9, C10, C12, C16, C17, C18, C20, C21, C22, C23, C24, C25, C26, C28, C33, C34, C35 C13, C27, C38, C39 2 4 4 10 2 6 N49DM IND2 MC10EL16 BJACK MC100ELT23 POLCAP2 8 RES2 4 24 RES4 RES2 1 1 2 2 4 4 SMA SMA SMA SMA Stand-Off Screws 1 PCB J1, J2 L1, L2, L3, L4 U2, U3 U9, U11 BJ1 – BJ10 U4, U10 C3, C4, C14, C15, C29, C30 R47, R48, R49, R50, R51, R52, R53, R54 R7, R8, R71, R72 R9, R10, R11, R12, R13, R14, R15, R16, R17, R18, R23, R24, R25, R26, R27, R28, R29, R30, R35, R36, R40, R44, R45, R46 J4 J7 J11, J12 J5, J10 S01–S04 Value Description M/S P/Ns 33 kΩ 50 Ω SM 3.3 V Regulator SM 0805 Resistor SM 0805 Resistor 74LCX16374MTD (Fairchild) AD10200BZ ADP3330ART-3.3-RL7 (Analog) ERJ6GEYJ333V (Panasonic) ERJ6GEYJ510V (Panasonic) 100 Ω SM 0805 Resistor ERJ6GEYJ101V (Panasonic) 0.1 µF SM 0805 Capacitor GRM40X7R104K025BL (MENA) 0.47 µF SM 1206 Capacitor 47 Ω 2×20×100 Male Connector Inductor 10 µF SM 1812 Polar Capacitor 0Ω SM 0805 Resistor VJ1206U474MFXMB (VITRAMON) TSW-120-08G-D (Samtec) 2743019447 (Fair Ride) MC1016EP16D (Motorola) 108-0740-001 (Johnson Comp.) SY100ELT23L (Micrel-Synergy) T491C106M016A57280 (KEMET) ERJ-6GEY0R00V (Panasonic) 50 Ω SM 0805 Resistor ERJ-6GEYJ510V (Panasonic) AINA2 AINB2 ENCODE ENCODE Stand-Off Screws (Stand-Off) 142-0701-201 (Johnson Comp.) 142-0701-201 (Johnson Comp.) 142-0701-201 (Johnson Comp.) 142-0701-201 (Johnson Comp.) 313-2477-016 (Johnson Comp.) MPMS 0040005PH (Building Fasteners) GS03363 Rev. A POWER JACK AD10200 Eval Board –14– REV. A –15– C3 GND TIES C29 REV. A Figure 10b. Bottom Assembly R71 R41 R58 C2 C6 U4 C9 R7 R1 C1 R3 U2 R4 C13 U3 R56 U14 R43 R42 C8 C7 C34 C37 C15 E48 U16 R48 R47 R51 R52 C20 C10 GND TIE GND TIE C33 GND TIE GND TIE GND TIE GND TIE E40 C24 C36 C35 U15 R64 R65 R53 C21 C18 C28 C25 U17 R54 C17 R8 R49 R50 R63 U9 R38 C27 U11 C22 R60 R66 R39 C23 U10 R61 GND TIES R72 C30 C4 C14 Figure 10a. Bottom View AD10200 AD10200 Figure 10c. Ground 1 AGNDB DGNDB AGNDA DGNDA Figure 10d. Ground 2 –16– REV. A –17– C3 GND TIES C29 REV. A Figure 10f. Top View Figure 10e. Bottom Silk R71 R41 R58 C2 C6 U4 C9 R7 R1 C1 R3 U2 R4 C13 U3 R56 U14 R43 R42 C8 C7 C34 C37 C15 E48 U16 R47 R48 R51 R52 C20 C10 GND TIE GND TIE C33 GND TIE GND TIE GND TIE GND TIE E40 C24 C36 C35 U15 R64 R65 R53 C21 C18 C28 C25 U17 R54 C17 R8 R49 R50 R63 U9 R38 C27 U11 C22 R60 R66 R39 C23 U10 R61 GND TIES R72 C30 C4 C14 AD10200 AD10200 E5 E3 E33 E37 E29 L4 E35 E63 ENCBBAR ENCB L2 E1 GND TIES E2 BJ1 EXTRA E36 U6 E80 E79 E46 E45 C39 E58 E62 E59 J10 J11 E60 E61 C26 E83 E84 E55 E22 BUFLATB E24 LATCHB E50 AINB1 REF_B U1 AINB2 J6 ANALOG DEVICES COPYRIGHT E12 2/10 00 GND TIE AD10200 EVALUATION BOARD GS03363 (A) E7 BEL J7 E11 GND TIE E39 E77 GND TIE E49 E47 GND TIE PIN 1 E78 REF_A J3 E8 J2 3.3VDB DGNDB E30 E27 E26 C16 E38 AGNDB R1 R1 1 R3 0 R2 0 R2 9 R2 8 R2 7 R1 6 R9 2 R2 R3 5 R3 6 R3 5 4 R3 R3 3 R3 2 1 +5VAB J4 AINA1 8 R1 7 R1 6 R1 0 R4 4 R4 5 R4 6 R4 5 R1 4 R1 3 R1 4 R2 AINA2 J12 E81 E65 E66 E9 E10 E41 L3 BJ2 EXTRA E28 +5VAA E57 E56 E54 E42 E51 C38 U5 GND TIES E64 LATCHA E52 E53 9 R1 J5 E23 C5 E82 1 R2 0 R2 ENCABAR 3 R2 2 R2 BUFLATA E19 ENCA J1 AGNDA E6 E43 E44 E68 E67 E74 E73 E71 E72 E69 E70 E75 E76 L1 3.3VDA DGNDA C12 E34 E4 E25 Figure 10g. Top Assembly E3 E5 E29 U6 C39 E79 E58 E62 E59 J10 J11 E46 E60 E61 E45 C26 E83 E84 E55 E22 BUFLATB E24 LATCHB R1 R1 1 0 E80 E36 R3 R2 0 R2 9 R2 8 R2 7 R1 6 R9 2 R2 R3 5 R3 6 R3 5 R3 4 3 R3 R3 2 1 ENCBBAR ENCB L2 E1 E35 GND TIES E2 L4 E63 3.3VDB DGNDB BJ1 EXTRA E50 AINB1 REF_B U1 AINB2 J6 ANALOG DEVICES COPYRIGHT E12 2/10 00 GND TIE AD10200 EVALUATION BOARD GS03363 (A) E7 BEL J7 E11 GND TIE E39 E77 GND TIE E49 E47 GND TIE PIN 1 E78 REF_A J3 E8 J2 C16 E38 AGNDB E30 E27 E26 E33 E37 +5VAB J4 AINA1 8 R1 7 R1 6 R1 0 R4 4 R4 5 R4 6 R4 5 R1 4 R1 3 R1 4 R2 AINA2 L3 BJ2 EXTRA E28 +5VAA AGNDA E6 E82 E81 E65 E66 E9 E10 E41 E42 E23 BUFLATA LATCHA E57 E52 E53 E56 E54 E51 C38 U5 GND TIES E64 C5 J12 1 R2 0 R2 9 R1 ENCABAR J5 3 R2 2 R2 E19 ENCA J1 E43 E44 E68 E67 E74 E73 E71 E72 E69 E70 E75 E76 L1 3.3VDA DGNDA C12 E34 E4 E25 Figure 10h. Top Silk –18– REV. A AD10200 OUTLINE DIMENSIONS Dimensions shown in inches and (mm). 68-Lead Ceramic Leaded Chip Carrier (Z-68B) 0.010 (0.25) 0.008 (0.20) 0.007 (0.18) 0.290 (7.37) MAX 0.960 (24.38) 0.950 (24.13) SQ 0.940 (23.88) 61 9 10 60 PIN 1 DETAIL A 1.070 (27.18) MIN 0.800 (20.32) BSC 1.190 (30.23) 1.180 (29.97) SQ 1.170 (29.72) TOP VIEW (PINS DOWN) TOE DOWN ANGLE 0–8 DEGREES 26 44 27 0.060 (1.52) 0.050 (1.27) 0.040 (1.02) 43 DETAIL A 0.230 (5.84) MAX 0.055 (1.40) 0.050 (1.27) 0.045 (1.14) 0.021 (0.533) 0.017 (0.432) 0.014 (0.357) Revision History Location Page Data Sheet changed from REV. 0 to REV. A. Edit to ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Edit to Figure 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Edit to ENCODE Inputs section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Edit to Figure 9a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 REV. A –19– –20– PRINTED IN U.S.A. C01634–0-8/01(A)