ETC RT9266

RT9266
Tiny Package, High Efficiency, Step-up DC/DC Converter
General Description
Features
The RT9266 is a compact, high efficiency, and low voltage
l
1.0V Low Start-up Input Voltage
step-up DC/DC converter with an Adaptive Current Mode
l
High Supply Capability to Deliver 3.3V 100mA with
1 Alkaline Cell
PWM control loop, includes an error amplifier, ramp
generator, comparator, switch pass element and driver
l
17µA Quiescent (Switch-off) Supply Current
in which providing a stable and high efficient operation
l
Zero Shutdown Mode Supply Current
over a wide range of load currents. It operates in stable
l
90% Efficiency
waveforms without external compensation.
The low start-up input voltage below 1V makes RT9266
l
450kHz Fixed Switching Frequency
l
Providing Flexibility for Using Internal and External
Power Switches
suitable for 1 to 4 battery cells applications of providing
up to 300mA output current. The 450kHz high switching
rate minimized the size of external components. Besides,
the 17µA low quiescent current together with high
efficiency maintains long battery lifetime.
The output voltage is set with two external resistors. Both
internal 2A switch and driver for driving external power
devices (NMOS or NPN) are provided.
Ordering Information
l
Small SOT-26 & SOT89-5 Package
Applications
l
PDA
l
DSC
l
LCD Panel
l
RF-Tags
l
MP3
l
Portable Instrument
l
Wireless Equipment
RT9266
Pin Configurations
Package Type
E : SOT-26
X5 : SOT-89-5
Operating Temperature Range
C : Commercial Standard
P : Pb Free with Commercial Standard
Marking Information
(TOP VIEW)
CE
1
6
FB
EXT
2
5
VDD
GND
3
4
LX
For marking information, contact our sales representative
SOT-26
directly or through a RichTek distributor located in your
area, otherwise visit our website for detail.
GND
LX
5
4
1
2
3
CE
VDD
FB
SOT-89-5
DS9266-06 June 2004
www.richtek.com
1
RT9266
Typical Application Circuit
L1
+
VIN
D1
3.3 to 10 uH
C3
100uF
1N5819
VOUT
3.3V/5V
C2
1uF
R1
1.6M/3M
VDD
RT9266
LX
EXT
GND
FB
+
CE
C1
100uF
R2
980k/1M
Figure 1. RT9266 Typical Application for Portable Instruments
3.1V to 5V for 12V
2.8V to 5V for 9V
VIN
L1
D1
+
4.7uH
C4
100uF
1N5819
RVDD
100
CVDD
1uF
CE
EXT
RT9266
LX
GND
FB
Q1
N MOS
12V/9V
300mA
R1
C3
0.1uF 860k/620k
RM
0.22
R2
100k
C2
1uF
+
VDD
C1
100uF
Figure 2. RT9266 High Voltage Applications
www.richtek.com
2
DS9266-06 June 2004
RT9266
L1
+
VIN
D1
3.3 to 10 uH
C3
100uF
VOUT
3.3V/5V
1N5819
C2
1uF
VDD
CE
LX
RT9266 EXT
+
GND
Q1
N MOS
R1
1.6M/3M
FB
C1
100uF
R2
980k/1M
Figure 3. RT9266 for Higher Current Applications
L1
VIN
3.3V/5V
R3
100
C2
1uF
4.7uH
C8
1uF
C3
10uF
C1
1uF
Q1
CE
VDD
LX
RT9266
FB
GND
N MOS
C4
10uF
C6
C7
1uF 0.1uF
VOUT2
+18V
10mA
VOUT1
+9V
10mA
R1
620k
EXT
R2
100k
C5
10uF
VOUT3
-9V
10mA
Figure 4. RT9266 for Multi-Output Applications
DS9266-06 June 2004
www.richtek.com
3
RT9266
Functional Pin Description
Pin No.
Pin Name
Pin Function
RT9266CX5
RT9266CE
1
1
CE
--
2
EXT
Output pin for driving external NMOS
5
3
GND
Ground
4
4
LX
Pin for switching
2
5
VDD
Input positive power pin of RT9266
3
6
FB
Chip enable
RT9266 gets into shutdown mode when CE pin set to low.
Feedback input pin
Internal reference voltage for the error amplifier is 1.25V.
Function Block Diagram
EXT
RT9266
VDD
LX
Q1
N MOS
-
FB
+
1.25V
Loop Control Circuit
R1
VDD
R2
Shut Down
Q2
N MOS
CE
Over Temp.
Detector
GND
Test Circuit
I (VIN)
A
L1
D1
10uH
+
VIN
C3
100uF
I (VDD)
VOUT
3.3V/5V
C2
1uF
+
A
1N5819
R1
1.6M/3M
VDD
CE
RT9266
LX
EXT
GND
FB
C4
102
C1
100uF
C5
106
R2
980k/1M
www.richtek.com
4
DS9266-06 June 2004
RT9266
Absolute Maximum Ratings
l
−0.3V to 7V
−0.3V to 7V
Other I/O Pin Voltages ----------------------------------------------------------------------------------------- −0.3V to (VDD + 0.3V)
l
LX Pin Switch Current ------------------------------------------------------------------------------------------ 2.5A
l
EXT Pin Driver Current ----------------------------------------------------------------------------------------- 200mA
l
Package Thermal Resistance
l
Supply Voltage ---------------------------------------------------------------------------------------------------
l
LX Pin Switch Voltage ------------------------------------------------------------------------------------------
SOT-26, θJC ------------------------------------------------------------------------------------------------------- 145 ° C/W
SOT-89-5, θJC ---------------------------------------------------------------------------------------------------- 45 °C/W
l
Operating Junction Temperature ---------------------------------------------------------------------------- 125 °C
l
Storage Temperature Range ----------------------------------------------------------------------------------
−65° C to +150° C
NOTE:
Absolute Maximum ratings are threshold limit values that must not be exceeded even for an instant under any conditions.
Moreover, such values for any two items must not be reached simultaneously. Operation above these absolute maximum
ratings may cause degradation or permanent damage to the device. These are stress ratings only and do not necessarily
imply functional operation below these limits
Electrical Characteristics
(VIN = 1.5V, VDD set to 3.3V, Load Current = 0, T A = 25° C, unless otherwise specified)
Parameter
Symbol
Test Conditions
Min
Typ
Max
Units
Start-UP Voltage
VST
IL = 1mA
--
0.98
1.05
V
Operating VDD Range
VDD
VDD pin voltage
2
--
6
V
Shutdown Current I (VIN)
IOFF
CE Pin = 0V, VIN = 4.5V
--
0.01
1
µA
Switch-off Current I (VDD)
ISWITCH OFF VIN = 6V
--
17
25
µA
Continuous Switching Current
ISWITCH
0.4
0.55
0.7
mA
--
µA
VIN = CE= 3.3V, VFB = GND
*
No Load Current I (VIN)
INO LOAD
VIN = 1.5V, VOUT = 3.3V
--
75
Feedback Reference Voltage
VREF
Close Loop, VDD = 3.3V
1.225
1.25
1.275
V
Switching Frequency
FS
VDD = 3.3V
425
500
575
kHz
Maximum Duty
DMAX
VDD = 3.3V
85
95
--
%
VDD = 3.3V
--
0.3
1.1
LX ON Resistance
Current Limit Setting
**
Ω
VDD = 3.3V
1.6
2
2.6
A
EXT ON Resistance to VDD
VDD = 3.3V
--
5
8.5
Ω
EXT ON Resistance to GND
VDD = 3.3V
--
5
8.5
Ω
VIN = 3.5 ~ 6V, IL = 1mA
--
1.5
10
mV/V
--
mV/mA
Line Regulation
Load Regulation
ILIMIT
∆VLINE
∆VLOAD
CE Pin Trip Level
VIN = 2.5V, IL = 1 ~ 100mA
VDD = 3.3V
--
0.25
***
0.4
0.8
1.2
V
Temperature Stability for Vout
TS
--
50
--
ppm/°C
Thermal Shutdown Hysterises
∆TSD
--
10
--
°C
DS9266-06 June 2004
www.richtek.com
5
RT9266
Note :
* No Load Current is highly dependent on practical system design and component selection that cannot be covered by production
testing. Typical No Load Current is verified by typical application circuit with recommended components. No Load Current
performance is guaranteed by Switch Off Current and Continuous Switching Current.
** Current Limit is guaranteed by design at T A = 25°C.
***Load Regulation is not tested at production due to practical instrument limitation. Load Regulation performance is dominantly
dependent on DC loop gain and LX ON Resistance that are guaranteed by “ Line Regulation ” and “ LX ON Resistance” tests in
production.
www.richtek.com
6
DS9266-06 June 2004
RT9266
Typical Operating Characteristics
(Refer to Test Circuit)
Efficiency vs. Output Current
Efficiency vs. Output Current
95
95
VOUT = 5V, TA = 25°C
VOUT = 3.3V, TA = 25°C
90
Efficiency (%)
Efficiency (%)
90
VIN = 4.0V
VIN = 3.5V
VIN = 3.0V
VIN = 2.5V
VIN = 2.0V
85
80
75
VIN = 3.0V
85
VIN = 2.5V
80
VIN = 2.0V
75
VIN = 1.5V
VIN = 1.5V
VIN = 1.0V
70
70
000
001
010
100
0.1
1000
1
Input Current I(VDD) vs. Output Current
1000
21
VIN = 3V, VOUT = 5V
VOUT = 5V @ no load
20
Input Current ( µ A)
200
Input Current ( µ A)
100
Input Current I(VDD) vs. Input Voltage
250
150
100
50
19
18
17
16
0
15
0.01
0.1
1
10
100
1000
2.5
3.0
3.5
Output Current (mA)
4.0
4.5
5.0
Input Voltage (V)
Supply Current I(VIN) vs. Input Voltage
Supply Current I(VIN) vs. Input Voltage
180
90
VOUT = 5V @ no load
VOUT = 3.3V @ no load
80
150
Supply Current ( µA)
Supply Current ( µ A) 1
10
Output Current (mA)
Output Current (mA)
120
90
60
70
60
50
40
30
30
0
1.5
2.0
2.5
3.0
3.5
Input Voltage (V)
DS9266-06 June 2004
4.0
4.5
1.5
2
2.5
3
3.5
Input Voltage (V)
www.richtek.com
7
RT9266
Switching
Swichting Frequency vs. VDD Pin Voltage
Start Up Voltage vs. Output Current
1.6
VOUT = 3.3V
VIN = 2.4V to 2.8V
1.4
VIN = 3V to 5.6V
500
Start Up Voltage (V)
Switching
Rate
Frequency
(KHz).
Switching
Frequency
(kHz)
600
400
300
VIN = 1.2V to 2.2V
1.2
1.0
0.8
0.6
0.4
200
0.2
(In C.R. mode)
0.0
100
0
1
2
3
4
5
0
6
30
60
90
120
150
180
VDD Pin Voltage (V)
Output Current (mA)
LX Pin Wave Form & Output Ripple
LX Pin Wave Form & Output Ripple
VIN = 1V, VOUT = 3.3V @ 10mA
Output Ripple
Output Ripple
LX Wave Form
LX Wave Form
VIN = 1V, VOUT = 3.3V @ 100mA
210
Time (1µs/Div)
Time (1µs/Div)
LX Pin Wave Form & Output Ripple
LX Pin Wave Form & Output Ripple
LX Wave Form
Time (1µs/Div)
www.richtek.com
8
VIN = 2V, VOUT = 3.3V @ 10mA
Output Ripple
Output Ripple
LX Wave Form
VIN = 2V, VOUT = 3.3V @ 200mA
Time (1µs/Div)
DS9266-06 June 2004
RT9266
LX Pin Wave Form & Output Ripple
LX Wave Form
VIN = 3V, VOUT = 3.3V @ 10mA
Output Ripple
Output Ripple
LX Wave Form
VIN = 3V, VOUT = 3.3V @ 200mA
LX Pin Wave Form & Output Ripple
Time (1µs/Div)
Time (1µs/Div)
LX Pin Wave Form & Output Ripple
LX Pin Wave Form & Output Ripple
LX Wave Form
VIN = 2V, VOUT = 5V @ 20mA
Output Ripple
Output Ripple
LX Wave Form
VIN = 2V, VOUT = 5V @ 200mA
Time (1µs/Div)
Time (1µs/Div)
LX Pin Wave Form & Output Ripple
LX Pin Wave Form & Output Ripple
LX Wave Form
Time (1µs/Div)
DS9266-06 June 2004
VIN = 3V, VOUT = 5V @ 20mA
Output Ripple
Output Ripple
LX Wave Form
VIN = 3V, VOUT = 5V @ 200mA
Time (1µs/Div)
www.richtek.com
9
RT9266
LX Pin Wave Form & Output Ripple
LX Pin Wave Form & Output Ripple
LX Wave Form
Time (1µs/Div)
Time (1µs/Div)
Transient Response
Transient Response
VIN = 3V, VOUT = 3.3V
IOUT = 10mA
IOUT = 10mA
200mA
Output Transient Voltage
VIN = 2V, VOUT = 3.3V
Output Transient Voltage
200mA
Time (50µs/Div)
Time (50µs/Div)
Transient Response
Transient Response
VIN = 3V, VOUT = 5V
VIN = 4.5V, VOUT = 5V
IOUT = 10mA
IOUT = 10mA
200mA
Time (50µs/Div)
www.richtek.com
10
Output Transient Voltage
Output Transient Voltage
VIN = 4.5V, VOUT = 5V @ 20mA
Output Ripple
Output Ripple
LX Wave Form
VIN = 4.5V, VOUT = 5V @ 200mA
200mA
Time (50µs/Div)
DS9266-06 June 2004
RT9266
Output Voltage vs. Temperature
Output Voltage vs. Temperature
5
3.34
VIN = 3V, VOUT = 5V, IOUT = 100mA
VIN = 1.8V, VOUT = 3.3V, IOUT = 100mA
4.98
Output Voltage(V)
Output Voltage(V)
3.32
3.3
3.28
3.26
3.24
3.22
4.96
4.94
4.92
4.9
4.88
4.86
4.84
3.2
-40
-10
20
50
80
Temperature (°C)
DS9266-06 June 2004
110
140
-40
-10
20
50
80
110
140
Temperature (°C)
www.richtek.com
11
RT9266
Application Information
Output Voltage Setting
Layout Guide
Referring to Typical Application Circuits, the output
l
A full GND plane without gap break.
l
VDD to GND noise bypass − Short and wide connection
voltage of the switching regulator (VOUT) can be set with
Eq.1.
for the 1µF MLCC capacitor between Pin5 and Pin3.
VOUT = ( 1+
R1
R2
) × 1.25V
Eq.1
l
VIN to GND noise bypass − Add a capacitor close to L1
inductor, when VIN is not an idea voltage source.
l
Feedback Loop Design
Referring to Typical Application Circuits. The selection
of R1 and R2 based on the trade-off between quiescent
current consumption and interference immunity is stated
below:
Minimized FB node copper area and keep far away
from noise sources.
l
Minimized parasitic capacitance connecting to LX and
EXT nodes, which may cause additional switching loss.
Board Layout Example (2-Layer Board)
l
Follow Eq.1
l
Higher R reduces the quiescent current (Path current
(Refer to Typical Application Circuits Figure 2 for the
board)
= 1.25V/R2), however resistors beyond 5MΩ are not
recommended.
l
Lower R gives better noise immunity, and is less
sensitive to interference, layout parasitics, FB node
leakage, and improper probing toVFB
pins.
OUT
Prober Parasitics
R1
FB Pin
_
Q
+
l
R2
A proper value of feed forward capacitor parallel with
- Top Layer -
R1 can improve the noise immunity of the feedback
loops, especially in an improper layout. An empirical
suggestion is around 0~33pF for feedback resistors of
MΩ, and 10nF~0.1µF for feedback resistors of tens to
hundreds KΩ.
For applications without standby or suspend modes,
lower values of R1 and R2 are preferred. For applications
concerning the current consumption in standby or
suspend modes, the higher values of R1 and R2 are
needed. Such “ high impedance feedback loops” are
sensitive to any interference, which require careful layout
and avoid any interference, e.g. probing to FB pin.
- Bottom Layer www.richtek.com
12
DS9266-06 June 2004
RT9266
Outline Dimension
H
D
L
C
B
b
A
A1
e
Symbol
Dimensions In Millimeters
Dimensions In Inches
Min
Max
Min
Max
A
0.889
1.295
0.035
0.051
A1
0.000
0.152
0.000
0.006
B
1.397
1.803
0.055
0.071
b
0.250
0.559
0.010
0.022
C
2.591
2.997
0.102
0.118
D
2.692
3.099
0.106
0.122
e
0.838
1.041
0.033
0.041
H
0.080
0.254
0.003
0.010
L
0.300
0.610
0.012
0.024
SOT- 26 Surface Mount Package
DS9266-06 June 2004
www.richtek.com
13
RT9266
D
D1
b1
A
C
B
C1
e
e
H
A
b
Symbol
b1
b
Dimensions In Millimeters
Dimensions In Inches
Min
Max
Min
Max
A
1.400
1.600
0.055
0.063
b
0.360
0.520
0.014
0.020
B
2.400
2.600
0.094
0.102
b1
0.406
0.533
0.016
0.021
C
--
4.250
--
0.167
C1
0.800
--
0.031
--
D
4.400
4.600
0.173
0.181
D1
--
1.700
--
0.067
e
1.400
1.600
0.055
0.063
H
0.380
0.430
0.014
0.017
5-Lead SOT-89 Surface Mount Package
www.richtek.com
14
DS9266-06 June 2004