RT9266B - Farnell

RT9266B
Tiny Package, High Efficiency, Step-Up DC/DC Converter
General Description
Features
The RT9266B is a compact, high efficiency, and low
voltage step-up DC/DC converter with an Adaptive
Current Mode PWM control loop, includes an error
amplifier, ramp generator, comparator, switch pass
element and driver in which providing a stable and high
efficient operation over a wide range of load currents. It
operates in stable waveforms without external
compensation.
z
The low start-up input voltage below 1V makes RT9266B
suitable for 1 to 4 battery cells applications with a 500mA
internal switch. The 550kHz high switching rate minimized
the size of external components. Besides, the 25μA low
quiescent current together with high efficiency maintains
long battery lifetime.
z
z
z
z
z
z
z
z
z
z
Ordering Information
z
RT9266B
z
z
Lead Plating System
P : Pb Free
G : Green (Halogen Free and Pb Free)
Zero Shutdown Mode Supply Current
90% Efficiency
550kHz Switching Frequency at 3.3V VDD
Providing Flexibility for Using Internal and External
Power Switches
Small SOT-23-6 Package
RoHS Compliant and 100% Lead (Pb)-Free
Applications
z
Package Type
E : SOT-23-6
1V Low Start-up Input Voltage at 1mA Load
25μ
μA Quiescent (Switch-off) Supply Current
PDA
DSC
LCD Panel
RF-Tags
MP3
Portable Instrument
Wireless Equipment
Pin Configurations
(TOP VIEW)
Note :
Richtek products are :
`
RoHS compliant and compatible with the current require-
`
Suitable for use in SnPb or Pb-free soldering processes.
ments of IPC/JEDEC J-STD-020.
FB VDD LX
6
5
4
2
3
EN EXT GND
SOT-23-6
Marking Information
For marking information, contact our sales representative
directly or through a Richtek distributor located in your
area.
DS9266B-11 April 2011
www.richtek.com
1
RT9266B
Typical Application Circuit
L1
VIN
D1
3.3 to 10 uH
C3
10uF
SS0520
VOUT
3.3V/5V
C2
1uF
R1
1.6M/3M
VDD
EN
RT9266B
EXT
GND
LX
FB
R2
980k/1M
C1
10uF
Figure 1. RT9266B Typical Application for Portable Instruments
L1
VIN
C3
10uF
D1
3.3 to 10 uH
VOUT
3.3V/5V
SS0520
C2
1uF
VDD
EN
LX
Q1
N MOS
RT9266B EXT
GND
R1
1.6M/3M
C1
10uF
FB
R2
980k/1M
Figure 2. RT9266B for Higher Current Applications
Test Circuit
I (VIN)
A
L1
D1
10uH
+
VIN
C3
10uF
A I (VDD)
SS0520
VOUT
3.3V/5V
C2
1uF
R1
1.6M/3M
VDD
EN
RT9266B
LX
EXT
GND
FB
C4
100p
C5
10uF
R2
980k/1M
www.richtek.com
2
DS9266B-11 April 2011
RT9266B
Functional Pin Description
Pin Name Pin Function
EN
Chip Enable (Active High)
EXT
Output Pin for Driving External NMOS
GND
Ground
LX
Pin for Switching
VDD
Input Positive Power Pin of RT9266B
FB
Feedback Input Pin
Internal Reference Voltage for the Error Amplifier is 1.25V.
Function Block Diagram
EXT
RT9266B
VDD
LX1
-
FB
+
1.25V
Loop Control Circuit
VDD
Q1
N MOS
R1
R2
Shut Down
EN
DS9266B-11 April 2011
Q3
N MOS
Over Temp.
Detector
GND
www.richtek.com
3
RT9266B
Absolute Maximum Ratings
z
z
z
z
z
z
z
z
Supply Voltage --------------------------------------------------------------------------------------------------- −0.3V to 7V
LX Pin Switch Voltage ------------------------------------------------------------------------------------------ −0.3V to 6.5V
Other I/O Pin Voltages ------------------------------------------------------------------------------------------ −0.3V to (VDD + 0.3V)
LX Pin Switch Current ------------------------------------------------------------------------------------------ 2.5A
EXT Pin Driver Current ------------------------------------------------------------------------------------------ 200mA
Package Thermal Resistance
SOT-23-6, θJC ----------------------------------------------------------------------------------------------------- 145°C/W
Operating Junction Temperature ------------------------------------------------------------------------------ 125°C
Storage Temperature Range ----------------------------------------------------------------------------------- −65°C to +150°C
Electrical Characteristics
(VIN = 1.5V, VDD set to 3.3V, Load Current = 0, TA = 25°C, unless otherwise specified)
Parameter
Symbol
Test Conditions
Min
Typ
Max
Unit
Start-UP Voltage
VST
IL = 1mA
--
0.98
1.05
V
Operating VDD Range
VDD
VDD pin voltage
2
--
6.5
V
No Load Current I (V IN)
INO LOAD
VIN = 1.5V, VOUT = 3.3V
--
150
--
μA
Switch-off Current I (V DD)
ISWITCH OFF
VIN = 6V
--
25
--
μA
Shutdown Current I (V IN)
IOFF
EN Pin = 0V, VIN = 4.5V
--
0.01
1
μA
Feedback Reference Voltage
VREF
Close Loop, V DD = 3.3V
1.225
1.25
1.275
V
Switching Frequency
FS
VDD = 3.3V
--
550
--
kHz
Maximum Duty
DMAX
VDD = 3.3V
--
95
--
%
VDD = 3.3V
--
0.35
--
Ω
VDD = 3.3V
--
0.5
--
A
Current Limit Delay Time
VDD = 3.3V
--
300
--
ns
EXT ON Resistance to VDD
VDD = 3.3V
--
5
--
Ω
EXT ON Resistance to GND
VDD = 3.3V
--
5
--
Ω
LX ON Resistance
Current Limit Setting
ILIMIT
Line Regulation (refer to VFB )
ΔV LINE
VIN = 1.5 ~ 2.5V, IL = 50mA
--
12
--
mV/V
Load Regulation (refer to V FB)
ΔV LOAD
VIN = 2.5V, IL = 1 ~ 100mA
--
0.25
--
mV/mA
0.4
0.8
1.2
V
EN Pin Trip Level
VDD = 3.3V
Temperature Stability for Vout
TS
--
50
--
ppm/°C
Thermal Shutdown
TSD
--
165
--
°C
Thermal Shutdown Hysteresis
ΔT SD
--
10
--
°C
www.richtek.com
4
DS9266B-11 April 2011
RT9266B
Typical Operating Characteristics
Efficiency vs. Output Current
Efficiency vs. Output Current
95
100
VIN = 3V
VIN = 2.5V
VIN = 2V
VIN = 1.5V
Efficiency (%)
85
VIN = 1V
80
VIN = 4.5V
VIN = 4V
VIN = 3.5V
VIN = 3V
VIN = 2.5V
VIN = 2V
VIN = 1.5V
90
Efficiency (%)
90
75
70
80
70
65
VOUT = 3.3V, TA = 25°C
VOUT = 5V, TA = 25°C
60
60
1
10
100
1000
1
10
Output Current (mA)
5.1
VIN = 4.5V
Output Voltage (V)
5.05
3.32
VIN = 3V
VIN = 2.5V
3.28
VIN = 2V
3.24
VIN = 1.5V
VIN = 4V
5
VIN = 3.5V
4.95
VIN = 3V
VIN = 1.5V
VIN = 2.5V
4.9
VIN = 1V
VIN = 2V
VOUT = 3.3V, TA = 25°C
VOUT = 5V, TA = 25°C
3.2
4.85
1
10
100
1000
1
10
Output Current (mA)
100
1000
Output Current (mA)
Input Current vs. Input Voltage
Input Current vs. Input Voltage
350
800
300
700
Input Current (uA)
Input Current (uA)
1000
Output Voltage vs. Output Current
Output Voltage vs. Output Current
3.36
Output Voltage (V)
100
Output Current ( mA)
250
200
150
100
50
600
500
400
300
200
100
VOUT = 3.3V @ no load
VOUT = 5V @ no load
0
0
1
1.5
2
Input Voltage (V)
DS9266B-11 April 2011
2.5
3
1
2
3
4
5
Input Voltage (V)
www.richtek.com
5
RT9266B
LX
(V)
LX & Output Ripple
LX & Output Ripple
VIN = 1.5V, VOUT = 3.3V @ 100mA
Time (1us/Div)
LX & Output Ripple
LX & Output Ripple
LX
(V)
Time (1us/Div)
VIN = 2V, VOUT = 3.3V @ 10mA
Output Ripple
(mV)
Output Ripple
(mV)
VIN = 1.5V, VOUT = 3.3V @ 10mA
Output Ripple
(mV)
LX
(V)
Time (1us/Div)
LX
(V)
Output Ripple
(mV)
VIN = 1V, VOUT = 3.3V @ 50mA
Time (1us/Div)
Time (1us/Div)
www.richtek.com
6
LX & Output Ripple
Output Ripple
(mV)
VIN = 1V, VOUT = 3.3V @ 10mA
LX
(V)
Output Ripple
(mV)
LX
(V)
LX & Output Ripple
VIN = 2V, VOUT = 3.3V @ 100mA
Time (1us/Div)
DS9266B-11 April 2011
RT9266B
LX
(V)
LX & Output Ripple
VIN = 2.5V, VOUT = 3.3V @ 10mA
Output Ripple
(mV)
Output Ripple
(mV)
LX
(V)
LX & Output Ripple
VIN = 2.5V, VOUT = 3.3V @ 100mA
Time (1us/Div)
LX & Output Ripple
LX & Output Ripple
VIN = 3V, VOUT = 3.3V @ 10mA
Output Ripple
(mV)
Output Ripple
(mV)
LX
(V)
LX
(V)
Time (1us/Div)
VIN = 3V, VOUT = 3.3V @ 100mA
Time (1us/Div)
LX & Output Ripple
LX & Output Ripple
VIN = 1.5V, VOUT = 5V @ 10mA
Time (1us/Div)
DS9266B-11 April 2011
Output Ripple
(mV)
Output Ripple
(mV)
LX
(V)
LX
(V)
Time (1us/Div)
VIN = 1.5V, VOUT = 5V @ 80mA
Time (1us/Div)
www.richtek.com
7
RT9266B
LX
(V)
Time (1us/Div)
LX & Output Ripple
LX & Output Ripple
LX
(V)
Output Ripple
(mV)
VIN = 2.5V, VOUT = 5V @ 100mA
Time (1us/Div)
Time (1us/Div)
LX & Output Ripple
LX & Output Ripple
LX
(V)
VIN = 3V, VOUT = 5V @ 10mA
Output Ripple
(mV)
Output Ripple
(mV)
VIN = 2.5V, VOUT = 5V @ 10mA
LX
(V)
Output Ripple
(mV)
VIN = 2V, VOUT = 5V @ 100mA
Time (1us/Div)
Time (1us/Div)
www.richtek.com
8
LX & Output Ripple
Output Ripple
(mV)
VIN = 2V, VOUT = 5V @ 10mA
LX
(V)
Output Ripple
(mV)
LX
(V)
LX & Output Ripple
VIN = 3V, VOUT = 5V @ 100mA
Time (1us/Div)
DS9266B-11 April 2011
RT9266B
LX & Output Ripple
VIN = 3.5V, VOUT = 5V @ 10mA
Output Ripple
(mV)
Output Ripple
(mV)
LX
(V)
LX
(V)
LX & Output Ripple
VIN = 3.5V, VOUT = 5V @ 100mA
Time (1us/Div)
LX & Output Ripple
LX & Output Ripple
VIN = 4V, VOUT = 5V @ 10mA
Output Ripple
(mV)
Output Ripple
(mV)
LX
(V)
LX
(V)
Time (1us/Div)
VIN = 4V, VOUT = 5V @ 100mA
Time (1us/Div)
LX & Output Ripple
LX & Output Ripple
VIN = 4.5V, VOUT = 5V @ 10mA
Time (5us/Div)
DS9266B-11 April 2011
Output Ripple
(mV)
Output Ripple
(mV)
LX
(V)
LX
(V)
Time (2.5us/Div)
VIN = 4.5V, VOUT = 5V @ 100mA
Time (1us/Div)
www.richtek.com
9
RT9266B
Load Transient Respones
Load Transient Respones
Load Transient Respones
VIN = 3V, VOUT = 5V, IOUT = 10mA to 100mA
Time (2.5ms/Div)
Load Transient Respones
Load Transient Respones
Output Voltage
(mV)
Time (2.5ms/Div)
VIN = 3.5V, VOUT = 5V, IOUT = 10mA to 100mA
Output Current
(mA)
Output Current
(mA)
VIN = 3V, VOUT = 3.3V, IOUT = 10mA to 100mA
Output Current
(mA)
Output Voltage
(mV)
Time (2.5ms/Div)
Output Voltage
(mV)
Output Current
(mA)
VIN = 1.5V, VOUT = 3.3V, IOUT = 10mA to 100mA
Time (2.5ms/Div)
Time (2.5ms/Div)
www.richtek.com
10
Output Current
(mA)
VIN = 1V, VOUT = 3.3V, IOUT = 10mA to 50mA
Output Voltage
(mV)
Output Current
(mA)
Output Voltage
(mV)
Output Voltage
(mV)
Load Transient Respones
VIN = 4.2V, VOUT = 5V, IOUT = 10mA to 100mA
Time (2.5ms/Div)
DS9266B-11 April 2011
RT9266B
Switching Frequency vs. VDD Pin Voltage
Switching Frequency (kHz) 1
700
600
500
400
300
VDD = EN
FB = GND
TA = 25°C
200
100
0
1
2
3
4
5
6
VDD Pin Voltage (V)
DS9266B-11 April 2011
www.richtek.com
11
RT9266B
Application Information
Output Voltage Setting
Layout Guide
Referring to application circuits, the output voltage of the
switching regulator (VOUT) can be set with Equation (1).
VOUT1 = ( 1+
R1
R2
) × 1.25V
z
z
(1)
z
Feedback Loop Design
Referring to application circuits, The selection of R1 and
R2 based on the trade-off between quiescent current
consumption and interference immunity is stated below:
z
Follow Equation (1).
z
Higher R reduces the quiescent current (Path current
= 1.25V/R2), however resistors beyond 5MΩ are not
recommended.
z
A full GND plane without gap break.
VDD to GND noise bypass − Short and wide connection
for the 1mF MLCC capacitor between Pin5 and Pin3.
VIN to GND noise bypass − Add a capacitor close to L1
inductor, when VIN is not an idea voltage source.
z
Minimized FB node copper area and keep far away
from noise sources.
z
Minimized parasitic capacitance connecting to LX and
EXT nodes, which may cause additional switching loss.
Board Layout Example (2-Layer Board)
(Refer to Application Circuit Figure 2 for the board)
Lower R gives better noise immunity, and is less
sensitive to interference, layout parasitics, FB node
leakage, and improper probing to FB pins.
VOUT1
Prober Parasitics
R1
FB Pin
_
Q
+
z
R2
A proper value of feed forward capacitor parallel with
R1 can improve the noise immunity of the feedback
loops, especially in an improper layout. An empirical
suggestion is around 0~33pF for feedback resistors of
MΩ, and 10nF~0.1μF for feedback resistors of tens to
hundreds kΩ.
- Top Layer -
For applications without standby or suspend modes,
lower values of R1 and R2 are preferred. For applications
concerning the current consumption in standby or
suspend modes, the higher values of R1 and R2 are
needed. Such “ high impedance feedback loops” are
sensitive to any interference, which require careful layout
and avoid any interference, e.g. probing to FB pin.
- Bottom Layer -
www.richtek.com
12
DS9266B-11 April 2011
RT9266B
Outline Dimension
H
D
L
C
B
b
A
A1
e
Dimensions In Millimeters
Dimensions In Inches
Symbol
Min
Max
Min
Max
A
0.889
1.295
0.031
0.051
A1
0.000
0.152
0.000
0.006
B
1.397
1.803
0.055
0.071
b
0.250
0.560
0.010
0.022
C
2.591
2.997
0.102
0.118
D
2.692
3.099
0.106
0.122
e
0.838
1.041
0.033
0.041
H
0.080
0.254
0.003
0.010
L
0.300
0.610
0.012
0.024
SOT-23-6 Surface Mount Package
Richtek Technology Corporation
Richtek Technology Corporation
Headquarter
Taipei Office (Marketing)
5F, No. 20, Taiyuen Street, Chupei City
5F, No. 95, Minchiuan Road, Hsintien City
Hsinchu, Taiwan, R.O.C.
Taipei County, Taiwan, R.O.C.
Tel: (8863)5526789 Fax: (8863)5526611
Tel: (8862)86672399 Fax: (8862)86672377
Email: [email protected]
Information that is provided by Richtek Technology Corporation is believed to be accurate and reliable. Richtek reserves the right to make any change in circuit
design, specification or other related things if necessary without notice at any time. No third party intellectual property infringement of the applications should be
guaranteed by users when integrating Richtek products into any application. No legal responsibility for any said applications is assumed by Richtek.
DS9266B-11 April 2011
www.richtek.com
13