ETC RT9266B

RT9266B
Preliminary
Tiny Package, High Efficiency, Step-up DC/DC Converter
General Description
The RT9266B is a compact, high efficiency, and low
voltage step-up DC/DC converter with an Adaptive
Current Mode PWM control loop, includes an error
amplifier, ramp generator, comparator, switch pass
element and driver in which providing a stable and
high efficient operation over a wide range of load
currents. It operates in stable waveforms without
external compensation.
The low start-up input voltage below 1V makes
RT9266B suitable for 1 to 4 battery cells
applications with a 500mA internal switch. The
550kHz high switching rate minimized the size of
external components. Besides, the 25µA low
quiescent current together with high efficiency
maintains long battery lifetime.
Ordering Information
RT9266B
Package Type
E : SOT-26
Operating Temperature Range
C: Commercial Standard
Marking Information
Features
1.0V Low Start-up Input Voltage at 1mA Load
25µA Quiescent (Switch-off) Supply Current
Zero Shutdown Mode Supply Current
90% Efficiency
550kHz Switching Frequency at 3.3V VDD
Providing Flexibility for Using Internal and
External Power Switches
Small SOT-26 Package
Applications
PDA
DSC
LCD Panel
RF-Tags
MP3
Portable Instrument
Wireless Equipment
Pin Configurations
Part Number
RT9266BCE
(Plastic SOT-26)
Pin Configurations
TOP VIEW
6
5
4
1
2
3
1.
2.
3.
4.
5.
6.
CE
EXT
GND
LX
VDD
FB
For marking information, contact our sales
representative directly or through a RichTek
distributor located in your area, otherwise visit our
website for detail.
DS9266B-00
May 2003
www.richtek.com
1
RT9266B
Preliminary
Typical Application Circuit
L1
VIN
D1
3.3 to 10 uH
C3
10uF
SS0520
VOUT
3.3V/5V
C2
1uF
R1
1.6M/3M
VDD
CE
RT9266B
EXT
LX
FB
GND
R2
980K/1M
C1
10uF
Fig. 1 RT9266B Typical Application for Portable Instruments
L1
VIN
D1
3.3 to 10 uH
C3
10uF
VOUT
3.3V/5V
SS0520
C2
1uF
VDD
CE
LX
RT9266B EXT
GND
Q1
N MOS
R1
1.6M/3M
C1
10uF
FB
R2
980K/1M
Fig. 2 RT9266B for Higher Current Applications
Pin Description
Pin Name
Pin Function
CE
Chip enable
RT9266B gets into shutdown mode when CE pin set to low.
EXT
Output pin for driving external NMOS
GND
Ground
LX
Pin for switching
VDD
Input positive power pin of RT9266B
FB
Feedback input pin
Internal reference voltage for the error amplifier is 1.25V.
www.richtek.com
2
DS9266B-00 May 2003
RT9266B
Preliminary
Function Block Diagram
EXT
RT9266B
VCC
LX1
+
FB
1.25V
Q1
N MOS
Loop Control Circuit
VDD
R1
R2
Shut Down
Q3
N MOS
CE
Over Temp.
Detector
GND
Test Circuit
I (VIN)
A
L1
D1
10uH
+
VIN
C3
10uF
A
I (VDD)
VDD
CE
RT9266B
LX
EXT
GND
FB
SS0520
VOUT
3.3V/5V
C2
1uF
R1
1.6M/3M
C4
100p
C5
10uF
R2
980K/1M
DS9266B-00
May 2003
www.richtek.com
3
RT9266B
Preliminary
Absolute Maximum Ratings
− 0.3V to 7V
− 0.3V to (VDD + 0.8V)
− 0.3V to (VDD + 0.3V)
2.5A
200mA
Supply Voltage
LX Pin Switch Voltage
Other I/O Pin Voltages
LX Pin Switch Current
EXT Pin Driver Current
• Package Thermal Resistance
SOT-26, θJC
Operating Junction Temperature
Storage Temperature Range
145°C/W
125°C
− 65°C ~ +150°C
Electrical Characteristics
(VIN = 1.5V, VDD set to 3.3V, Load Current = 0, TA = 25°C, unless otherwise specified)
Parameter
Symbol
Test Conditions
Min
Typ
Max
Units
Start-UP Voltage
VST
IL = 1mA
--
0.98
1.05
V
Operating VDD Range
VDD
VDD pin voltage
2
--
6.5
V
No Load Current I (VIN)
INO LOAD
VIN = 1.5V, VOUT = 3.3V
--
150
--
µA
Switch-off Current I (VDD)
ISWITCH OFF VIN = 6V
--
25
--
µA
Shutdown Current I (VIN)
IOFF
CE Pin = 0V, VIN = 4.5V
--
0.01
1
µA
Feedback Reference Voltage
VREF
Close Loop, VDD = 3.3V
1.225
1.25
1.275
V
Switching Frequency
FS
VDD = 3.3V
--
550
--
kHz
Maximum Duty
DMAX
VDD = 3.3V
--
95
--
%
VDD = 3.3V
--
0.35
--
Ω
VDD = 3.3V
--
0.5
--
A
Current Limit Delay Time
VDD = 3.3V
--
300
--
nS
EXT ON Resistance to VDD
VDD = 3.3V
--
5
--
Ω
EXT ON Resistance to GND
VDD = 3.3V
--
5
--
Ω
LX ON Resistance
Current Limit Setting
ILIMIT
Line Regulation (refer to VFB)
∆VLINE
VIN = 1.5 ~ 2.5V, IL = 50mA
--
12
--
mV/V
Load Regulation (refer to VFB)
∆VLOAD
VIN = 2.5V, IL = 1 ~ 100mA
--
0.25
--
mV/mA
0.4
0.8
1.2
V
CE Pin Trip Level
VDD = 3.3V
Temperature Stability for Vout
Ts
--
50
--
ppm/°C
Thermal Shutdown
TSD
--
165
--
°C
Thermal Shutdown Hysterises
∆TSD
--
10
--
°C
www.richtek.com
4
DS9266B-00 May 2003
RT9266B
Preliminary
Typical Operating Characteristics
Efficiency vs. Output Current
Efficiency vs. Output Current
100
95
VIN = 3V
VIN = 2.5V
VIN = 2V
90
90
VIN = 1.5V
80
Efficiency (%)
Efficiency (%)
85
VIN = 4.5V
VIN = 4V
VIN = 3.5V
VIN = 3V
VIN = 2.5V
VIN = 2V
VIN = 1.5V
VIN = 1V
75
70
80
70
65
60
VOUT = 3.3V, TA = 25˚C
1
10
VOUT = 5V, TA = 25˚C
60
100
1
1000
10
5.1
3.32
Output Voltage (V)
Output Voltage (V)
1000
Output Voltage vs. Output Current
Output Voltage vs. Output Current
3.36
VIN = 3V
VIN = 2.5V
3.28
VIN = 2V
3.24
VIN = 1.5V
VIN = 1V
1
10
VIN = 4.5V
5.05
VIN = 4V
5
VIN = 3.5V
4.95
VIN = 3V
4.9
VOUT = 3.3V, TA = 25˚C
3.2
VOUT = 5V, TA = 25˚C
4.85
100
1
1000
10
300
700
Input Current (uA) 1
800
250
200
150
100
50
600
500
400
300
200
100
VOUT = 3.3V @ no load
VOUT = 5V @ no load
0
0
2
Input Voltage (V)
DS9266B-00
May 2003
2.5
1000
Input Current vs. Input Voltage
Input Current vs. Input Voltage
1.5
100
Output Current (mA)
350
1
VIN = 2.5V
VIN = 2V
VIN = 1.5V
Output Current (mA)
Input Current (uA) 1
100
Output Current ( mA)
Output Current (mA)
3
1
2
3
4
5
Input Voltage (V)
www.richtek.com
5
RT9266B
Preliminary
LX Wave Form
(V)
LX Pin Wave Form & Output Ripple
4
2
0
10
0
-10
VIN = 1V, VOUT = 3.3V @ 10mA
Output Ripple
(mV)
Output Ripple
(mV)
LX Wave Form
(V)
LX Pin Wave Form & Output Ripple
4
2
0
10
0
-10
VIN = 1V, VOUT = 3.3V @ 50mA
Time (1us/Div)
Time (1us/Div)
LX Wave Form
(V)
LX Pin Wave Form & Output Ripple
4
2
0
10
0
-10
VIN = 1.5V, VOUT = 3.3V @ 10mA
Output Ripple
(mV)
Output Ripple
(mV)
LX Wave Form
(V)
LX Pin Wave Form & Output Ripple
4
2
0
10
0
-10
Time (1us/Div)
Time (1us/Div)
LX Wave Form
(V)
2
0
10
0
-10
VIN = 2V, VOUT = 3.3V @ 10mA
Time (1us/Div)
www.richtek.com
6
LX Pin Wave Form & Output Ripple
Output Ripple
(mV)
Output Ripple
(mV)
LX Wave Form
(V)
LX Pin Wave Form & Output Ripple
4
VIN = 1.5V, VOUT = 3.3V @ 100mA
4
2
0
10
0
-10
VIN = 2V, VOUT = 3.3V @ 100mA
Time (1us/Div)
DS9266B-00 May 2003
RT9266B
Preliminary
LX Wave Form
(V)
LX Pin Wave Form & Output Ripple
4
2
0
10
0
-10
VIN = 2.5V, VOUT = 3.3V @ 10mA
Output Ripple
(mV)
Output Ripple
(mV)
LX Wave Form
(V)
LX Pin Wave Form & Output Ripple
4
2
0
10
0
-10
VIN = 2.5V, VOUT = 3.3V @ 100mA
Time (1us/Div)
Time (1us/Div)
LX Wave Form
(V)
LX Pin Wave Form & Output Ripple
4
2
0
10
0
-10
VIN = 3V, VOUT = 3.3V @ 10mA
Output Ripple
(mV)
Output Ripple
(mV)
LX Wave Form
(V)
LX Pin Wave Form & Output Ripple
4
2
0
10
0
-10
VIN = 3V, VOUT = 3.3V @ 100mA
Time (1us/Div)
Time (1us/Div)
LX Wave Form
(V)
6
4
2
Output Ripple
(mV)
0
10
0
-10
VIN = 1.5V, VOUT = 5V @ 10mA
Time (1us/Div)
DS9266B-00
LX Pin Wave Form & Output Ripple
May 2003
Output Ripple
(mV)
LX Wave Form
(V)
LX Pin Wave Form & Output Ripple
6
4
2
0
10
0
-10
VIN = 1.5V, VOUT = 5V @ 80mA
Time (1us/Div)
www.richtek.com
7
RT9266B
Preliminary
LX Wave Form
(V)
LX Pin Wave Form & Output Ripple
6
4
2
0
6
4
2
0
10
0
-10
VIN = 2V, VOUT = 5V @ 10mA
Output Ripple
(mV)
Output Ripple
(mV)
LX Wave Form
(V)
LX Pin Wave Form & Output Ripple
10
0
-10
VIN = 2V, VOUT = 5V @ 100mA
Time (1us/Div)
Time (1us/Div)
LX Pin Wave Form & Output Ripple
LX Wave Form
(V)
LX Wave Form
(V)
LX Pin Wave Form & Output Ripple
6
4
2
4
2
0
10
0
-10
VIN = 2.5V, VOUT = 5V @ 10mA
Output Ripple
(mV)
0
Output Ripple
(mV)
6
10
0
-10
VIN = 2.5V, VOUT = 5V @ 100mA
Time (1us/Div)
Time (1us/Div)
LX Wave Form
(V)
6
4
2
Output Ripple
(mV)
0
10
0
-10
VIN = 3V, VOUT = 5V @ 10mA
Time (1us/Div)
www.richtek.com
8
LX Pin Wave Form & Output Ripple
Output Ripple
(mV)
LX Wave Form
(V)
LX Pin Wave Form & Output Ripple
6
4
2
0
10
0
-10
VIN = 3V, VOUT = 5V @ 100mA
Time (1us/Div)
DS9266B-00 May 2003
RT9266B
Preliminary
LX Pin Wave Form & Output Ripple
LX Wave Form
(V)
LX Wave Form
(V)
LX Pin Wave Form & Output Ripple
6
4
2
10
0
-10
VIN = 3.5V, VOUT = 5V @ 10mA
Output Ripple
(mV)
Output Ripple
(mV)
0
6
4
2
0
10
0
-10
VIN = 3.5V, VOUT = 5V @ 100mA
Time (1us/Div)
Time (1us/Div)
LX Pin Wave Form & Output Ripple
LX Wave Form
(V)
LX Wave Form
(V)
LX Pin Wave Form & Output Ripple
6
4
2
10
0
-10
VIN = 4V, VOUT = 5V @ 10mA
Output Ripple
(mV)
Output Ripple
(mV)
0
6
4
2
0
10
0
-10
VIN = 4V, VOUT = 5V @ 100mA
Time (2.5us/Div)
Time (1us/Div)
LX Wave Form
(V)
LX Pin Wave Form & Output Ripple
6
4
2
0
10
0
-10
VIN = 4.5V, VOUT = 5V @ 10mA
Time (5us/Div)
DS9266B-00
6
4
2
0
May 2003
Output Ripple
(mV)
Output Ripple
(mV)
LX Wave Form
(V)
LX Pin Wave Form & Output Ripple
10
0
-10
VIN = 4.5V, VOUT = 5V @ 100mA
Time (1us/Div)
www.richtek.com
9
RT9266B
Preliminary
Load Transient Respones
0
-20
Output Current
(mA)
0
-50
≈
≈
50
0
Time (2.5ms/Div)
Load Transient Respones
Load Transient Respones
VIN = 3V, VOUT = 3.3V IOUT = 10mA to 100mA
0
-20
≈
Output Current
(mA)
≈
50
0
VIN = 3V, VOUT = 5V IOUT = 10mA to 100mA
100
0
-100
≈
≈
100
50
0
Time (2.5ms/Div)
Time (2.5ms/Div)
Load Transient Respones
Load Transient Respones
VIN = 3.5V, VOUT = 5V IOUT = 10mA to 100mA
100
0
-100
≈
≈
Output Current
(mA)
Output Voltage
(mV)
Output Current
(mA)
0
Time (2.5ms/Div)
100
100
50
0
Time (2.5ms/Div)
www.richtek.com
10
VIN = 1.5V, VOUT = 3.3V IOUT = 10mA to 100mA
50
100
20
Output Voltage
(mV)
Output Current
(mA)
40
20
Output Current
(mA)
Output Voltage
(mV)
≈
≈
Output Voltage
(mV)
Output Voltage
(mV)
VIN = 1V, VOUT = 3.3V IOUT = 10mA to 50mA
20
Output Voltage
(mV)
Load Transient Respones
VIN = 4.2V, VOUT = 5V IOUT = 10mA to 100mA
100
0
-100
≈
≈
100
50
0
Time (2.5ms/Div)
DS9266B-00 May 2003
Preliminary
RT9266B
Switching Frequency vs. VDD Pin Voltage
Switching Frequency (kHz)1
700
600
500
400
300
VDD = CE
FB = GND
TA = 25˚C
200
100
0
1
2
3
4
5
6
VDD Pin Voltage (V)
DS9266B-00
May 2003
www.richtek.com
11
RT9266B
Preliminary
Application Note
Output Voltage Setting
Referring to application circuits, the output voltage of
the switching regulator (VOUT) can be set with Eq.1.
VOUT1 = (1 +
R1
) × 1.25 V
R2
Eq.1
Feedback Loop Design
Referring to application circuits, The selection of R1
and R2 based on the trade-off between quiescent
current consumption and interference immunity is
stated below:
• Follow Eq.1
• Higher R reduces the quiescent current (Path
current = 1.25V/R2), however resistors beyond
5MΩ are not recommended.
• Lower R gives better noise immunity, and is less
sensitive to interference, layout parasitics, FB
node leakage, and improper probing to FB pins.
Layout Guide
• A full GND plane without gap break.
• VDD to GND noise bypass – Short and wide
connection for the 1µF MLCC capacitor between
Pin5 and Pin3.
• VIN to GND noise bypass – Add a capacitor close
to L1 inductor, when VIN is not an idea voltage
source.
• Minimized FB node copper area and keep far
away from noise sources.
• Minimized parasitic capacitance connecting to LX
and EXT nodes, which may cause additional
switching loss.
Board Layout Example (2-Layer Board)
(Refer to Application Circuit Fig. 2 for the board)
VOUT1
Prober Parasitics
R1
_
Q
+
R2
FB Pin
• A proper value of feed forward capacitor parallel
with R1 can improve the noise immunity of the
feedback loops, especially in an improper layout.
An empirical suggestion is around 0~33pF for
feedback resistors of MΩ, and 10nF~0.1µF for
feedback resistors of tens to hundreds kΩ.
-
Top Layer –
For applications without standby or suspend modes,
lower values of R1 and R2 are preferred. For
applications concerning the current consumption in
standby or suspend modes, the higher values of R1
and R2 are needed. Such “high impedance feedback
loops” are sensitive to any interference, which require
careful layout and avoid any interference, e.g.
probing to FB pin.
- Bottom Layer
www.richtek.com
12
DS9266B-00 May 2003
RT9266B
Preliminary
Package Information
H
D
L
C
B
b
A
A1
e
Symbol
Dimensions In Millimeters
Dimensions In Inches
Min
Max
Min
Max
A
0.889
1.295
0.035
0.051
A1
--
0.152
--
0.006
B
1.397
1.803
0.055
0.071
b
0.356
0.559
0.014
0.022
C
2.591
2.997
0.102
0.118
D
2.692
3.099
0.106
0.122
e
0.838
1.041
0.033
0.041
H
0.102
0.254
0.004
0.010
L
0.356
0.610
0.014
0.024
SOT- 26 Surface Mount Package
DS9266B-00
May 2003
www.richtek.com
13
RT9266B
Preliminary
RICHTEK TECHNOLOGY CORP.
RICHTEK TECHNOLOGY CORP.
Headquarter
Taipei Office (Marketing)
5F, No. 20, Taiyuen Street, Chupei City
8F-1, No. 137, Lane 235, Paochiao Road, Hsintien City
Hsinchu, Taiwan, R.O.C.
Taipei County, Taiwan, R.O.C.
Tel: (8863)5526789 Fax: (8863)5526611
Tel: (8862)89191466 Fax: (8862)89191465
Email: [email protected]
www.richtek.com
14
DS9266B-00 May 2003