o0: o】 "‘ 图 6 T DAzO⒛ 接 成 BTL放 大器 TDA⒛ sO 14WH卜 Fi音 频功率放 大 电路 tDA⒛ sO H卜 Fi音 频功率放大集成电路,是 意大利 sGs公 司的产品。由于引线脚 结构不同,分 为TDAzOsOH和 TDAzOsOV两 种类型,图 1为 管脚排列。该电路在电源电 压±1连 V,负 载阻抗4Ω 时输出功率1姓 W(失 真度 ≡o.5%)厂 在电源电压 ±1往 V,负 载 28W。 它的谐波和交叉失真小,输 阻沆8Ω ,用 两块 TDA2o30接 成 BTL电 路时输出功率ˉ 亍DA⒛ sO适 用于收录机灰嵩传真立 出电流大,屯卸呐具有过载保护和热切断保护电路。 体声扩音装鳖邯胙音频功率放大器。 电参数 2分 别为TDAzOsO的 极限参数和电参数。 昶、 1。 口 tI TD^2o3o扭 Ⅱ0毖 顸 斑仃 电 汀 电压 Vcc(V)( 轳入 电压 Vi(V) 差分扫 入 电压 V;(V)| Ⅱ出刂值电漉 (内 邯限流)I。 (A) 功托 PD(W冫 0存 和结洱T:Ⅱ , ・ 丛35 ・ ∶参 2 TDA2030电 0Ⅱ (Vcc〓 ±14V,Tε mb=zs℃ 最 小值 耐试条件 效 ) 电源 电压 Vcc(V) 典型值 +一 最大值 ± 18 诒 态 电漉 IQ(mA) 拴 入侣 流 I。 (uA〉 o。 V亡 c=± 18V 柚 入失 讽 电压 V。 s(mV〉 拙入 失调电流 I。 s(nA) 辆出功 率 P。 (W) 2 +一 |~ 衣 ± zo ± 20 R△ 厶Ω R1 8Ω ±200 THD=o.5% Gv=3odB 9 8 f:4o~ェ skHz THD〓 IO% Cˇ 〓80dB R△ =8Ω f〓 f⊥ kHz P∶ =o。 ⊥~12W,RL=4Ω Gˇ =3odB f=40-15kIIz P。 =0,1~8W, R1=8Ω R1=4Ω 谐 波失真 THD(%) Cˇ o。 2 =30dB f〓 40~ˇ 15k【 Iz 功率带宽 (-3dB)B(Hz) 10ˉ ˇ140000 Gv=80dB, P。 =⊥ 2W; RL=4Ω 擒入阻抗 (≯ 脚)R∴ (MΩ 〉 开 环 电压 增益 Cv。 (dB〉 闭环 电压 增 益 Gvc(dB) 钼 入 噪声电压 V~I(uV) f=1kHz 2θ 30.5 。 5 B=22~22kHz 200 耪人 噪声电流 IN I(oA) R-=4Ω , Cv=3od B, R:=22kΩ V子 IC=0.5Vc" ‘ 饣 pIc=1o0Hz , 纹波 抑 制 RR(dB) i oρ r:ρ ◆ Vcc ‘仁 ~ˉ亠~ˉˉˉˉˉˉˉ冫 输出 3∶ l 、 :Vcc 交 詈 瑁 霭 图 tab 1 TD^20sO管 脚排列 呈第3脚 2.内 部电路、测试及应用电路 ∷ ˇ ∴ 图2为 TDAzO3o内 部电路;图 3为 TDA⒛ 30测 试电路,图 4为 iDAzOsO典 型应 肫 路之~双 电源典型应用电路;图 5为 图 姓的印制电路板 图;图 6为 TDAz03o典 型 应用电路之二,单 电源典型应用电路 ;图 7为 图 6的 印制电路板图 ;图 8为 TDA2030应 ・ 逛36 ・ 用电路 之三 :双 电源 BTL放 大器 (P。 =28W,Vcc≡ ±14V);图 9为 图 8的 印制电路 板图。图 10为 TDA⒛ 3O应 用电路之四:双 路输出”W高 保真音箱 。 图2 TDA20sO典 部电路 〓 图 狙 TDA2030内 型 应 用 电路 之 一 lOOrJii∶ 】丨 ∶ ∶ ({!∶ I∶ !丨 :∶ :r vˉ ˉˉ Γ q丛 q u“ 『噪 |N‘ 00| c7 图3 £ 丫 "c7 T0冷 ⒛BO讯 试电路 ∶ 、 ・ Ⅱ ・ ⒋37 ・ 配 垡皱 型 罪 寻 岳 `回 ∽囤 〓 β 叫 N世 砂 叹 凵副礅 88<0㈠ Φ囤 ・ ′ t铲 囤 邱 峦留 罪 岙 gΦ 囤 `囤 ・488 ? rI -ll⒈ 吕 g♀ 土 】00l "‘ :auF c3="″ ,nI lR" 扪 foot 9N‘ 001 GBO n 图8 TDA⒛ 30应 用电路 之 三 CS。 0"6丨 2 图 θ 图 8的 印 制 电路 板 图 ・439 ・ 一 〓 哂 ㈣ l彐 ,oκ n oF R‘ ssκ n ‘,,F 9Xn 图 10 TDA⒛ 30应 用 电 路之 四 ・ ⒊ 使用注意事 项 ∷ . (1)印 制电路板:推 荐的印制电路板如图 5。 如果采用别的排列时,输 入 1与 2的 接地点必须很好地与输出接地点去耦,不 然有相当大的电流通过。 艹∷ (2)装 配说明:电 路采用单电源时,封 装与散热片之 间不需力 绝缘物。 日 (3)热 切断保护 电路 内设限热电路具有如下优点 人 若输出过载 (甚 至是长时间的)或 者超过规定的环境温度,均 能起保护作用。・ B、 与ˉ般电路相比,散 热片的安全系数较小,由 于某种原因当结温增至 15o℃ 时 热切断电路能使功耗和输出电流下降:所 以不会损坏器件。 (4)短 路保护:内 部设有输 出晶体管限流电路,以 便晶体管工作点处于安全状态 ∵ 对暂时过载和短路能起保护作用。 :∷ : , , ● ・4丛 0 ・ : 4。 外接元件作用 (参 看图 4) 元 件号 推 荐值 RI 22kΩ 闭 环 坩 益谓 整 增益增大 嘈 益 下降 R2 680ρ 闭环 增 益 谓整 增 益下 降 增 益增 大 R3 22kQ 同相 抬 入fs置 抬入阻抗坩加 拙 入阻 抗 下降 R, 1Ω 功 : 大于推 荐值 能 小于推 荐值 ‘ 用电患性 负载时产生 频 率稳 定 高 频 自泔 Rs ~3R2 高泮 截止 频 率 Cl luF 榴 入 直 流 去耦 低 哕 截止频 率 上 升 C2 22uF 反 相直 流 去相 低 瑞 截止 频率上 升 IuF 电 源旁 路 自激 lO0uF 电 源旁路 自潋 C氵 0.22uF 频 率 稳定 自漱 C: ~ I CⅡ C. Cs、 0。 C6 T2π BRl :N400: Dl、 D・ 高瑞 饯止频 率 高 叛衰诚 变坏 通频带 变 窄 自漱 通 频带 加宽 防止 汩 出 脉冲 损 坏夂成 电路 TDA2o3oA 18W功 放 和 SOW驱 动器 电路 TDA2030A音 频功率放大集成电路,是 意大利 sGs公 司的产品,采 用 5脚 塑封结 构,管 脚排列如图 1。 该电路在 Vcc=± 16V,RL=姓 Ω,THD=0。 5%时 ,输 出功率为 四吒 如以TD凵 VOs0A为 激励级,互 补的功率对管为输出级,则 输 出功率可达 ooW以 上。TDA⒛ 30A输 出电流大,谐 波失真和交叉失真都很小,在 电路内部设有短路保护系 统,用 以限制功耗过载,保 持输出晶体管处于安全工作状态。该集成电路适用于在高传 真音响装置 中作功率放大器。 ⒈ 电参数 表1、 2分 别为 TDA⒛ 3OA的 极限参数和电参数。 表 1 TDA2030A扭 限o鼓 参 钣 定值 +一 电源 电压 V(V) 数 裣入 电压 Vi(V、 差 分辖 入 电压 Vi(V) 圩 值诒 出 电流 I。 功 (A) 耗 PD(W〉 T case=gO c 贮 存 和结 沮 T st:、 Tj(℃ ) ・ 441 ・ 狡 ・参 0Ⅱ (Vcc=± 16V^T amJ工 2 TDAzO30A电 25℃ ) Ⅱ试 条件 数 最 小值 电源 电 压 Vcc(V〉 ± 典型值 最 大值 ± 22 6 静态电流 I。 (mA^ 抬 入 f0流 I口 (uA) Vc(=± 22V 柚 入 失 拐电压 ˇ。。(mV) ± 20 妆 入 失 闸 电流 I。 s(nA) ±20 THD=0.5%, Gv=26dB f=40~15kHz 扫 出功 率 P。 (W) V<(=± 19V, 功 宰带宽 BW(K(kHz) 转换速 率 sR(V/Ⅱ P。 RL≡ 4Ω R1=8Ω RL=4Ω =r5w, R.=4Ω sec) 开 环 电压坩 益 Gˇ 。(dB) f=1kHz 闭 环 电压 坩益 oⅣ c(dB) =0.1~14W RL=4Ω 谐波 失真 THD(%〉 P。 iO。 26.5 25.5 P。 辂 入 噪声电压 VN・ ± 200 1~9W, RL亍 8Ω f= 4o^ˇ 15kI】 z o。 08 f=1kHz o。 08 0。 05 f=40~15kHz B=CurveA (Ⅱ V) B=22~22kHz 3 B=CurveA 妆 入噪声 电流 iNI(pA〉 B△ R△ 信 噪 比 s/N(dB) 22~22kHz 200 =4Ω R:=1okΩ B=Curˇ eA P。 =1W 开环 ,f=1kHz ) R.=姓 纹 波 抑制 RR(dD) 热 切浙结 沮 ij(℃ =15W ^⒖ 拙 入 阻抗 Ri(MΩ P。 Ω, Gˇ =26dB, R:=22kΩ , f=100Hz ) ・Vcc 输出 -Vcc /ab至 反相输 入 同相橇 入 , sˉ :020`9 第 3脚 图 ・ 姓42 ● l T DAzO30A矸 脚 排 列 ′ 测试电路及应用电路 工 图 2为 TDA⒛ 30A的 测试电路 ,图 3为 TDA203oA应 用电路之 :单 电源放大电路 图 4为 TDAzO30碰 用电路之二 :单 电源大功率放大器 σ DAzO3OA+BDgOz/BDOOB), 表 3为 图 4的 电特性 图5为 图 4的 印制板 电路,图 6为 TDAzQ30A应 用电路之三:双 电源放大:电 路;图 2。 ; : C51 C3 2叩 F=,呸 卩 F 图2 R2 TDA20aO A测 试 电路 RL ∞ On 22卩 F 〓厂 C2 ˉ Vcc 表 参 3 4的 电特性 田 闵试 条件 数 最 小值 典 型值 展大值 电源 电压 Vcc(V) 莳态电流 I。 (mA〉 Vcc=36V THD=o.5% 轳 出功 率 p。 (w) 电压坩益 Gv(dB) Vcc=3θ V =4Ω R△ f=4o冖 ˇ15kIIz Vcc=36V THD〓 10% R‘ =4Ω f=lkH乞 Vcc=39V Vcc=86V 1kHz f〓 ′ 20.5 转换速 率 sR(V/Ⅱ sec) 谐 波 失真 TIID60 抬 入灵故庋 Vi(mV) P。 f=姓 0Ⅱ ˇ15kIⅡ z Cv=2od B, f〓 1kHz, P。 R。 8θ o 〓2oW,R.=4Ω RL=4Ω 信 噪 比 s/N(dB) f=1kHz =2oW =.10kΩ B=CurveA 、 P。 〓25W P。 =4W ∶ ∷Γ 〓 0撺睁臣 r’卜 〓 。4遮 3 ・ :° ° o″ F 些 ∶ ∶ ∶ :2~uF n nL〓 ‘ 卫 l∵ 图 8 TDAzO30砸 Rη 5∶ 用电路之 一 ” ∶α″ ‘n工景w n Ⅱ ICJ :卩 F' F昆 n =寺 :l♀ p尸 F B090B i∶ 2:】 N‘ 00η R3 ” s6κ 且 cF ` ⊥ T卜亠 ‘9rJ n‘ 9。 3“ n n 】°卩F 图 4 TDA⒛ gO AzOBO A应 用 电路 之 二 100rJi∶ ∶ 丨 ∶∶ ,({∶ l!∶ :∶ ● 图 6 TDA2o30啦 用 电路 之≡ R2 680n C2 2zpF ・ 444 ・ ~ 「 ˉ ˉ Γ 哒 F噪 iF F (Vcc=± 7为 图 6的 印制板电路;图 8为 TDA⒛ 30A应 用电路之四:陋 WBTL熬 大器 16V),,图 9为 图 8的 印制板 电路;图 1o为 TDA2o3oA应 用电路之五:三 分频6oW音 箱 放太器,在 Vcc=36V时 ,低 音扬声器可得输出功率20W(THD=0∶ OG%),若 取 THP =o15%,则 输出功率为30W△ 高音和中音扬声器获得的输出功率,在 设计时已考虑工作 ” 在最佳状态。图11为 T0A⒛ sOA应 用电路之六:120W“ 超桥式 功率放大器,图 12为 图11的 输出功率与电源电压的关系曲线占 ・ ・ + ∷ ‘ + 9十 图 ` ` f 、 一 '〓 |/ 5 图 4的 印 制 板电 路 ・ 445 ・ g‘ ~~ 目 N鼓 R<0卜 ∞囤 ~υ L亠 ° ° 一 。。 `'一 Jα ⊙⊙ Ⅲ∈ I |勒 叮 ∞ 型 殴司 帛 n °一 △ ・ 姓46 ・ Φα ∽υ Lt° .鞋 链田晒霏峦宅 Φ屈 十 8厂 卜α E圭 Γ喜 ≈ 0 lD z T DⅡ 2030刀 l : to'2030冖 公 帘 ^ ∩ ^ 图 8的 印钢板电路 ㈩ 〓 ⒍ ㈧ ⑾・ Ⅱ⒑ / / / " " . 〓 〓 ●◆ '/ / 7 / / / ⒈rf,.% ''吃 / 图 1z 图 n的 P。 ~V cc关 系 线 屮 |qO VccCv, ・ 447 ・ :⒛ 0″ F :n :oo 卜ΙⅢ「 lNt° :∶ 1。 带通滤波器 t06V ,00"::° ’△ ": ℃f ou =axn a:κ n 9■ ′、 「 △″ 2’ "IOR^吒 高通滤波器 ,`": 9.9nF :.|nF ,00″ F △ :2″ F P'F ・4逐 8 ? 图 10 Γ DAzO3oA应 用 电路之 五 n 音 C 刂 :n !"‘ o0l 梦丬徉 ・Vcc 町 图 11 P TDA2o40 TDAzOsOA应=1snF 用 电路之 六 =∵ zOWHi⊥ Fi功 率放 大 电路 VA⒛ 硐 Hi|i音 频功率放大集成电路,是 意大利 sGs公 司的产吊,采 用 5脚 封 装结构,管 脚排列如图 1。 该集成 电路在电源电压 ±16V,负 载阻抗4Ω ,失 真度为o.5% 啪 出功率zzW。 若电源电压和失真度保持不变,负 载阻抗为8Ω,用 两块 TDA⒛ dO± 成 BTL电略,输 出功率为sOW。 TDA⒛ 硐输出电流大、谐波失真和交叉矢真都很小。电路 此外 内设有短路保护 用以限制功率过载,使 输出晶体管的工作点处于安全工作状态。 璐 内还设有热切断保护,该 集成电路适用于收录枕1高 传真立体声扩音机装置中作音 ∷ 频功率放大器。 1.电 参数 .ˇ 立分别为 TDAzO硐 的极限参数和电参数。 昶、 , ,・ 表 参 I TDA2040扭 限 0Ⅱ 效 柚入电压 Vi(∽ 差分泊 入 电压 Vi(V〉 仂 出嘻 值 电 流 I。 (A) }″ ・449 ? 7— TDA2030 ® 14W Hi-Fi AUDIO AMPLIFIER DESCRIPTION The TDA2030 is a monolithic integrated circuit in Pentawatt® package, intended for use as a low frequency class AB amplifier. Typically it provides 14W output power (d = 0.5%) at 14V/4Ω; at ± 14V or 28V, the guaranteed output power is 12W on a 4Ω load and 8W on a 8Ω (DIN45500). The TDA2030 provides high output current and has very low harmonic and cross-over distortion. Further the device incorporates an original (and patented) short circuit protection system comprising an arrangement for automatically limiting the dissipated power so as to keep the working point of the output transistors within their safe operating area. A conventional thermal shut-down system is also included. Pentawatt ORDERING NUMBERS : TDA2030H TDA2030V ABSOLUTE MAXIMUM RATINGS Symbol Parameter Vs Supply voltage Value Unit ± 18 (36) V Vi Input voltage Vi Differential input voltage ± 15 Io Output peak current (internally limited) 3.5 A Power dissipation at Tcase = 90°C 20 W -40 to 150 °C Ptot Tstg, Tj Stoprage and junction temperature Vs V TYPICAL APPLICATION June 1998 1/12 TDA2030 PIN CONNECTION (top view) +VS OUTPUT -VS INVERTING INPUT NON INVERTING INPUT TEST CIRCUIT 2/12 TDA2030 THERMAL DATA Symbol Rth j-case Parameter Thermal resistance junction-case Value Unit 3 °C/W max ELECTRICAL CHARACTERISTICS (Refer to the test circuit, Vs = ± 14V , Tamb = 25°C unless otherwise specified) for single Supply refer to fig. 15 Vs = 28V Symbol Parameter Vs Supply voltage Id Quiescent drain current Ib Input bias current Vos Input offset voltage Ios Input offset current Po Output power Test conditions B Distortion Power Bandwidth (-3 dB) Ri Input resistance (pin 1) Gv Voltage gain (open loop) Gv Voltage gain (closed loop) eN Input noise voltage iN Input noise current SVR Id Typ. Max. Unit ± 18 36 V 40 60 mA 0.2 2 µA ±2 ± 20 mV ± 20 ± 200 nA ±6 12 Vs = ± 18V (Vs = 36V) d = 0.5% Gv = 30 dB f = 40 to 15,000 Hz RL = 4Ω RL = 8Ω d = 10% f = 1 KHz RL = 4Ω RL = 8Ω d Min. 12 8 14 9 W W 18 11 W W Gv = 30 dB Po = 0.1 to 12W Gv = 30 dB RL = 4Ω f = 40 to 15,000 Hz 0.2 0.5 % Po = 0.1 to 8W Gv = 30 dB RL = 8Ω f = 40 to 15,000 Hz 0.1 0.5 % Gv = 30 dB Po = 12W RL = 4Ω 0.5 f = 1 kHz 29.5 B = 22 Hz to 22 KHz Supply voltage rejection RL = 4Ω Gv = 30 dB Rg = 22 kΩ Vripple = 0.5 Veff fripple = 100 Hz Drain current Po = 14W Po = W RL = 4Ω RL = 8Ω 40 10 to 140,000 Hz 5 MΩ 90 dB 30 30.5 dB 3 10 µV 80 200 pA 50 dB 900 500 mA mA 3/12 TDA2030 Figure 1. Output power vs. supply voltage Figure 2. Output power vs. supply voltage Fig ure 3. Distortion vs. output power F ig ure 4. Di stortion vs. output power Fi gure 5. Distor tion vs. output power Fig ure 6. Distortion vs. frequency Fi gure 7. Distor tion vs. frequency 4/12 Figure 8. Frequency response with different values of the rolloff capacitor C8 (see fig. 13) Figure 9. Quiescent current vs. supply voltage TDA2030 Figure 10. Supply voltage rejection vs. voltage gain Figure 11. Power dissipation and efficiency vs. output power Figure 12. Maximum power dissipation vs. supply voltage (sine wave operation) APPLICATION INFORMATION Figure 13. Typical amplifier with split power supply Figure 14. P.C. board and component layout for the circuit of fig. 13 (1 : 1 scale) 5/12 TDA2030 APPLICATION INFORMATION (continued) Figure 15. Typical amplifier with single power supply Figure 16. P.C. board and component layout for the circuit of fig. 15 (1 : 1 scale) Figure 17. Bridge amplifier configuration with split power supply (Po = 28W, Vs = ±14V) 6/12 TDA2030 PRACTICAL CONSIDERATIONS Printed circuit board The layout shown in Fig. 16 should be adopted by the designers. If different layouts are used, the ground points of input 1 and input 2 must be well decoupled from the ground return of the output in which a high current flows. Assembly suggestion No electrical isolation is needed between the package and the heatsink with single supply voltage configuration. Application suggestions The recommended values of the components are those shown on application circuit of fig. 13. Different values can be used. The following table can help the designer. Component Recomm. value R1 22 kΩ Closed loop gain setting Increase of gain Decrease of gain (*) R2 680 Ω Closed loop gain setting Decrease of gain (*) Increase of gain R3 22 kΩ Non inverting input biasing Increase of input impedance Decrease of input impedance R4 1Ω Frequency stability Danger of osccilat. at high frequencies with induct. loads R5 ≅ 3 R2 Upper frequency cutoff Poor high frequencies attenuation C1 1 µF Input DC decoupling Increase of low frequencies cutoff C2 22 µF Inverting DC decoupling Increase of low frequencies cutoff C3, C4 0.1 µF Supply voltage bypass Danger of oscillation C5, C6 100 µF Supply voltage bypass Danger of oscillation C7 0.22 µF Frequency stability Danger of oscillation C8 D1, D2 ≅ 1 2π B R1 1N4001 Purpose Upper frequency cutoff Larger than recommended value Smaller bandwidth Smaller than recommended value Danger of oscillation Larger bandwidth To protect the device against output voltage spikes (*) Closed loop gain must be higher than 24dB 7/12 TDA2030 SINGLE SUPPLY APPLICATION Larger than recommended value Smaller than recommended value Component Recomm. value R1 150 kΩ Closed loop gain setting Increase of gain Decrease of gain (*) R2 4.7 kΩ Closed loop gain setting Decrease of gain (*) Increase of gain R3 100 kΩ Non inverting input biasing Increase of input impedance Decrease of input impedance R4 1Ω Frequency stability Danger of osccilat. at high frequencies with induct. loads RA/RB 100 kΩ C1 Purpose Non inverting input Biasing Power Consumption 1 µF Input DC decoupling Increase of low frequencies cutoff C2 22 µF Inverting DC decoupling Increase of low frequencies cutoff C3 0.1 µF Supply voltage bypass Danger of oscillation C5 100 µF Supply voltage bypass Danger of oscillation C7 0.22 µF Frequency stability Danger of oscillation C8 D1, D2 ≅ 1 2π B R1 1N4001 Upper frequency cutoff To protect the device against output voltage spikes (*) Closed loop gain must be higher than 24dB 8/12 Smaller bandwidth Larger bandwidth TDA2030 SHORT CIRCUIT PROTECTION The TDA2030 has an original circuit which limits the current of the output transistors. Fig. 18 shows that the maximum output current is a function of the collector emitter voltage; hence the output transistors work within their safe operating area (Fig. 2). This function can therefore be considered as being Fi g ure 1 8. Maximum ou tpu t c urr en t vs. voltage [VCEsat] across each output transistor peak power limiting rather than simple current limiting. It reduces the possibility that the device gets damaged during an accidental short circuit from AC output to ground. Figure 19. Safe operating area and collector characteristics of the protected power transistor THERMAL SHUT-DOWN The presence of a thermal limiting circuit offers the following advantages: 1. An overload on the output (even if it is permanent), or an above limit ambient temperature can be easily supported since the Tj cannot be higher than 150°C. 2. The heatsink can have a smaller factor of safety compared with that of a conventional circuit. There is no possibility of device damage due to high junction temperature. If for any reason, the junction temperature increases up to 150°C, the thermal shut-down simply reduces the power dissipation at the current consumption. The maximum allowable power dissipation depends upon the size of the external heatsink (i.e. its thermal resistance); fig. 22 shows this dissipable power as a function of ambient temperature for different thermal resistance. 9/12 TDA2030 Figure 20. Output power and dr ai n cu rre nt vs. case temperature (RL = 4Ω) Figure 23. Example of heat-sink Figure 21. Output power and d rai n c urr en t vs. ca se temperature (RL = 8Ω) Fi g ure 22. Maximum allowable power dissipation vs. ambient temperature Dimension : suggestion. The following table shows the length that the heatsink in fig. 23 must have for several values of Ptot and Rth. Ptot (W) Length of heatsink (mm) Rth of heatsink (° C/W) 10/12 12 8 6 60 40 30 4.2 6.2 8.3 TDA2030 PENTAWATT PACKAGE MECHANICAL DATA mm DIM. MIN. A C D D1 E E1 F F1 G G1 H2 H3 L L1 L2 L3 L4 L5 L6 L7 L9 M M1 V4 Dia inch TYP. 2.4 1.2 0.35 0.76 0.8 1 3.2 6.6 MAX. 4.8 1.37 2.8 1.35 0.55 1.19 1.05 1.4 3.6 7 10.4 10.4 18.15 15.95 21.6 22.7 1.29 3 15.8 6.6 3.4 6.8 10.05 17.55 15.55 21.2 22.3 17.85 15.75 21.4 22.5 2.6 15.1 6 0.2 4.5 4 4.23 3.75 MIN. TYP. 0.094 0.047 0.014 0.030 0.031 0.039 0.126 0.260 0.134 0.268 0.396 0.691 0.612 0.831 0.878 0.703 0.620 0.843 0.886 MAX. 0.189 0.054 0.110 0.053 0.022 0.047 0.041 0.055 0.142 0.276 0.409 0.409 0.715 0.628 0.850 0.894 0.051 0.118 0.622 0.260 0.102 0.594 0.236 4.75 4.25 0.008 0.177 0.157 0.167 0.148 0.187 0.167 40° (typ.) 3.65 3.85 0.144 0.152 L L1 V3 V V E L8 V V1 V M1 R R A B D C D1 L5 L2 R M V4 H2 L3 F E E1 V4 H3 H1 G G1 Dia. F F1 L7 H2 V4 L6 L9 RESIN BETWEEN LEADS 11/12 TDA2030 Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics © 1998 STMicroelectronics – Printed in Italy – All Rights Reserved STMicroelectronics GROUP OF COMPANIES Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco - The Netherlands Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A. 12/12 UTC TDA2030 LINEAR INTEGRATED CIRCUIT 14W HI-FI AUDIO AMPLIFIER DESCRIPTION The UTC TDA2030 is a monolithic audio power amplifier integrated circuit. 1 TO-220B FEATURES *Very low external component required. *High current output and high operating voltage. *Low harmonic and crossover distortion. *Built-in Over temperature protection. *Short circuit protection between all pins. *Safety Operating Area for output transistors. 1 TO-220-5 PIN CONFIGURATIONS 1 2 3 4 5 Non inverting input Inverting input -VS Output +VS ABSOLUTE MAXIMUM RATINGS(Ta=25°C) PARAMETER SYMBOL VALUE UNIT Supply Voltage Input Voltage Differential Input Voltage Peak Output Current(internally limited) Total Power Dissipation at Tcase=90°C Storage Temperature Junction Temperature Vs Vi Vdi Io Ptot Tstg Tj +-18 Vs +-15 3.5 20 -40~+150 -40~+150 V V V A W °C °C ELECTRICAL CHARACTERISTICS(Refer to the test circuit, Vs =+-16V,Ta=25°C) PARAMETER SYMBOL Supply Voltage Quiescent Drain Current Input Bias Current Input Offset Voltage Input Offset Current Vs Id UTC Ib Vos Ios TEST CONDITIONS MIN TYP MAX UNIT 40 +-18 60 V mA 0.2 +-2 +-20 2 +-20 +-200 µA MV NA +-6 Vs=+-18v UNISONIC TECHNOLOGIES CO., LTD. 1 QW-R107-004,B UTC TDA2030 LINEAR INTEGRATED CIRCUIT (Continued) d=0.5%,Gv=30dB f=40 to 15,000Hz Output Power Po RL=4Ω RL=8Ω 12 8 14 9 W W 18 W d=10%,Gv=30dB f=1KHz Power Bandwidth Open Loop Voltage Gain B Gvo Closed Loop Voltage Gain Distortion Gvc Input Noise Voltage Input Noise Current Input Resistance(pin 1) Supply Voltage Rejection Thermal Shut-Down Junction Temperature UTC d eN iN Ri SVR Tj RL=4Ω RL=8Ω Po=12W,RL=4Ω, Gv=30dB f=1kHz 11 10~140,000 90 29.5 30 30 .5 dB 0.2 0.5 % 0.1 0.5 % 10 200 0.5 3 80 5 µV pA MΩ 40 50 dB 145 °C Po=0.1 to 12W,RL=4Ω f=40 to 15,000Hz, Gv=30dB Po=0.1 to 8W,RL=8Ω f=40 to 15,000Hz, Gv=30dB B= 22Hz to 22kHz B= 22Hz to 22kHz RL=4Ω,Gv=30dB Rg=22kΩ,fripple=100Hz, Vripple=0.5Veff W Hz dB UNISONIC TECHNOLOGIES CO., LTD. 2 QW-R107-004,B UTC TDA2030 LINEAR INTEGRATED CIRCUIT TEST CIRCUIT +Vs Vi C5 100 µF C1 1 µF C3 100nF D1 1N4001 1 R3 22kΩ 5 UTC TDA2030 2 4 3 C8 R5 R4 1Ω RL D1 R1 22kΩ 1N4001 R3 680Ω C2 22 µF C6 100 µF C4 C7 100nF 220nF -Vs APPLICATION CIRCUIT +Vs Vi C1 1 µF C5 220 µF C3 100nF D1 1N4001 1 R3 22kΩ 5 UTC TDA2030 2 4 3 R3 680Ω C2 22 µF R1 13kΩ R4 1Ω D1 1N4001 C6 100 µF RL C4 C7 100nF 220nF -Vs UTC UNISONIC TECHNOLOGIES CO., LTD. 3 QW-R107-004,B UTC TDA2030 LINEAR INTEGRATED CIRCUIT TYPICAL PERFORMANCE CHARACTERISTICS Fig.3 Output power vs. Supply voltage 140 Gv (dB) 180 Phase 100 90 60 0 Phase Fig.2 Open loop frequency response Po (W) 24 Gv=26dB d=0.5% f=40 to 15kHz 20 RL=4Ω 16 RL=8Ω Gain 20 12 -20 8 -60 1 10 2 10 3 10 4 10 5 10 6 10 4 7 10 24 Frequency (Hz) Fig.4 Total harmonic distortion vs. output power d (%) d (%) 40 44 Vs (V) Po (W) 2 10 Vs=32V Po=4W RL=4Ω Gv=26dB 0 10 Vs=38V RL=8Ω f=15kHz -1 10 36 1 10 Gv=26dB 0 10 32 Fig.5 Two tone CCIF intermodulation distortion 2 10 1 10 28 Order (2f1-f2) -1 10 Vs=32V RL=4Ω Order (2f2-f1) f=1kHz -2 10 -2 10 -1 10 0 10 1 10 Po (W) 2 10 -2 10 1 10 30 Vs=+-15V RL=8Ω 25 3 10 4 10 5 10 Frequency (Hz) Fig.7 Maximum allowable power dissipation vs. ambient temperture Fig.6 Large signal frequency response Vo (Vp-p) 2 10 30 Ptot (W) 25 Vs=+-15V RL=4Ω 20 20 15 10 10 5 1 10 UTC 2 10 3 10 Frequency (kHz) 4 10 he a Rt tsin h= k 4° ha C/ vin he W g at Rt sink h= h 8°C avin /W g ink a ts he te ini g inf vin ha /W ink ats 5°C he ty=2 R 15 5 -50 0 50 100 150 200 Tamb (°C) UNISONIC TECHNOLOGIES CO., LTD. 4 QW-R107-004,B UTC TDA2030 LINEAR INTEGRATED CIRCUIT UTC TDA2030 R4 3.3kΩ C4 10 µF C8 2200 µF 4 3 R5 30kΩ BD907 R8 1Ω RL=4Ω C2 22 µF 5 2 R2 56kΩ BD908 1N4001 1 R3 56kΩ C5 220 µF /40V R6 1.5Ω 1N4001 R1 56kΩ C6 0.22 µF Vi C1 2.2 µF C3 0.22 µF +Vs R7 1.5Ω C7 0.22 µF Fig. 8 Single supply high power amplifier(UTC TDA2030+BD908/BD907) TYPICAL PERFORMANCE OF THE CIRCUIT OF FIG. 8 PARAMETER Supply Voltage Quiescent Drain Current Output Power SYMBOL Vs Id Po Voltage Gain Slew Rate Total Harmonic Distortion Input Sensitivity Gv SR d Signal to Noise Ratio S/N UTC Vi TEST CONDITIONS MIN Vs=36V d=0.5%,RL=4Ω f=40Hz to 15kHz,Vs=39V d=0.5%,RL=4Ω f=40Hz to 15kHz,Vs=36V d=0.5%,f=1kHz, RL=4Ω,Vs=39V d=0.5%,RL=4Ω f=1kHz,Vs=36V f=1kHz Po=20W,f=1kHz Po=20W,f=40Hz to 15kHz Gv=20dB,Po=20W, f=1kHz,RL=4Ω RL=4Ω,Rg=10kΩ B=curve A,Po=25W RL=4Ω,Rg=10kΩ B=curve A,Po=25W TYP MAX UNIT 36 50 44 V mA 35 28 W 44 35 19.5 20 8 0.02 0.05 890 20.5 dB V/µsec % % mV 108 100 dB UNISONIC TECHNOLOGIES CO., LTD. 5 QW-R107-004,B UTC TDA2030 LINEAR INTEGRATED CIRCUIT TYPICAL PERFORMANCE CHARACTERISTICS Fig. 10 Output power vs. supply voltage Fig. 11 Total harmonic distortion vs. output power Po (W) d (%) Vs=36V RL=4Ω Gv=20dB 45 0 10 35 25 -1 10 f=15kHz 15 f=1kHz 5 24 28 32 34 36 Vs (V) 40 -2 10 -1 10 Fig. 12 Output power vs. Input level 0 10 1 10 Po (W) Fig. 13 Power dissipation vs. output power Ptot (W) Po (W) 20 20 Complete Amplifier Gv=26dB 15 15 Gv=20dB 10 10 5 5 0 100 250 UTC 400 550 700 Vi (mV) BD908/ BD907 UTC TDA2030 0 0 8 16 24 32 UNISONIC TECHNOLOGIES CO., LTD. Po (W) 6 QW-R107-004,B UTC TDA2030 LINEAR INTEGRATED CIRCUIT +Vs Vi C5 100 µF C1 1 µF C3 100nF D1 1N4001 1 R3 22kΩ 5 UTC TDA2030 2 4 3 C8 R5 R4 1Ω D2 R1 22kΩ 1N4001 R3 680Ω C2 22 µF C6 100 µF RL C4 C7 100nF 220nF -Vs Fig. 14 Typical amplifier with split power supply Vs+ C6 100 µ F 1 5 UTC TDA2030 4 R1 22kΩ 2 3 C8 IN R3 22kΩ R8 1Ω µF 0.22 C1 220 µ F C7 100nF C4 22 µ F RL 8Ω R4 680Ω R7 22kΩ UTC TDA2030 4 2 Vs- 3 R5 22kΩ C9 5 µF 0.22 1 R2 22kΩ R9 1Ω C5 22 µ F C2 100 µ F C3 100nF R6 680Ω Fig. 16 Bridge amplifier with split power supply(Po=34W,Vs+=16V,Vs-=16V) UTC UNISONIC TECHNOLOGIES CO., LTD. 7 QW-R107-004,B UTC TDA2030 LINEAR INTEGRATED CIRCUIT MULTIWAY SPEAKER SYSTEMS AND ACTIVE BOXES Multiway loudspeaker systems provide the best possible acoustic performance since each loudspeaker is specially designed and optimized to handle a limited range of frequencies. Commonly, these loudspeaker systems divide the audio spectrum two or three bands. To maintain a flat frequency response over the Hi-Fi audio range the bands cobered by each loudspeaker must overlap slightly. Imbalance between the loudspeakers produces unacceptable results therefore it is important to ensure that each unit generates the correct amount of acoustic energy for its segments of the audio spectrum. In this respect it is also important to know the energy distribution of the music spectrum to determine the cutoff frequencies of the crossover filters(see Fig. 18).As an example,1 100W three-way system with crossover frequencies of 400Hz and 3khz would require 50W for the woofer,35W for the midrange unit and 15W for the tweeter. Both active and passive filters can be used for crossovers but active filters cost significantly less than a good passive filter using aircored inductors and non-electrolytic capacitors. In addition active filters do not suffer from the typical defects of passive filters: --Power less; --Increased impedance seen by the loudspeaker(lower damping) --Difficulty of precise design due to variable loudspeaker impedance. Obviously, active crossovers can only be used if a power amplifier is provide for each drive unit. This makes it particularly interesting and economically sound to use monolithic power amplifiers. In some applications complex filters are not relay necessary and simple RC low-pass and high-pass networks(6dB/octave) can be recommended. The result obtained are excellent because this is the best type of audio filter and the only one free from phase and transient distortion. The rather poor out of band attenuation of single RC filters means that the loudspeaker must operate linearly well beyond the crossover frequency to avoid distortion. A more effective solution, named "Active power Filter" by SGS is shown in Fig. 19. The proposed circuit can realize combined power amplifiers and 12dB/octave or 18dB octave high-pass or low-pass filters. In proactive, at the input pins amplifier two equal and in-phase voltages are available, as required for the active filter operations. The impedance at the Pin(-) is of the order of 100Ω,while that of the Pin (+) is very high, which is also what was wanted. Fig. 18 Power distribution vs. frequency Fig. 19 Active power filter 100 C1 C2 C3 IEC/DIN NOISE SPECTRUM FOR SPEAKER TESTING 80 Vs+ Morden Music Spectrum RL 60 R1 R2 R3 3.3kΩ Vs- 40 100Ω 20 0 1 10 2 10 UTC 3 10 4 10 5 10 UNISONIC TECHNOLOGIES CO., LTD. 8 QW-R107-004,B UTC TDA2030 LINEAR INTEGRATED CIRCUIT The components values calculated for fc=900Hz using a Bessel 3rd Sallen and Key structure are: C1=C2=C3=22nF,R1=8.2KΩ,R2=5.6KΩ,R3=33KΩ. Using this type of crossover filter, a complete 3-way 60W active loudspeaker system is shown in Fig. 20. It employs 2nd order Buttherworth filter with the crossover frequencies equal to 300Hz and 3kHz. The midrange section consistors of two filters a high pass circuit followed by a low pass network. With Vs=36V the output power delivered to the woofer is 25W at d=0.06%( 30W at d=0.5%).The power delivered to the midrange and the tweeter can be optimized in the design phase taking in account the loudspeaker efficiency and impedance(RL=4Ω to 8Ω). It is quite common that midrange and tweeter speakers have an efficiency 3dB higher than woofers. 22kΩ 22kΩ 22kΩ 1N4001 1.5Ω 2 33nF 680Ω 18nF 1 5 BD908 4 UTC TDA2030 3 2200 µF 1Ω 100 µF 0.22 µF 1N4001 1.5Ω 3.3kΩ 100Ω BD907 4Ω 1 µF 0.22 µF IN 0.22 µF 2200 µF Vs+ Low-pass 300Hz Woofer Vs+ Band-pass 300Hz to 3kHz 0.22 µF 1N4001 6.8kΩ 3.3nF 2 5 3 1N4001 100 µF 100Ω Vs+ 0.22 µF 1N4001 100 µF 4 3 1N4001 8Ω 1Ω 2 5 UTC TDA2030 0.22 µF 1 22kΩ 12kΩ 0.1 µF 22kΩ 100 µF 22kΩ 0.1 µF Midrange 2.2kΩ High-pass 3kHz Vs+ 220 µF 4 UTC TDA2030 8Ω 1 1Ω 22kΩ 18nF 22kΩ 0.22 µF 0.1 µF 3.3kΩ 0.1 µF 47 µF 100Ω 2.2kΩ UTC High-pass 3kHz Tweeter UNISONIC TECHNOLOGIES CO., LTD. 9 QW-R107-004,B UTC TDA2030 LINEAR INTEGRATED CIRCUIT MUSICAL INSTRUMENTS AMPLIFIERS Another important field of application for active system is music. In this area the use of several medium power amplifiers is more convenient than a single high power amplifier, and it is also more reliable. A typical example(see Fig. 21) consist of four amplifiers each driving a low-cost, 12 inch loudspeaker. This application can supply 80 to 160W rms. TRANSIENT INTER-MODULATION DISTORTION(TIM) Transient inter-modulation distortion is an unfortunate phenomena associated with negative-feedback amplifiers. When a feedback amplifier receives an input signal which rises very steeply, i.e. contains high-frequency components, the feedback can arrive too late so that the amplifiers overloads and a burst of inter-modulation distortion will be produced as in Fig.22.Since transients occur frequently in music this obviously a problem for the designed of audio amplifiers. Unfortunately, heavy negative feedback is frequency used to reduce the total harmonic distortion of an amplifier, which tends to aggravate the transient inter-modulation(TIM situation.)The best known Fig.21 High power active box for musical instrument Fig.22 Overshoot phenomenon in feedback amplifiers FEEDBACK PATH 20 to 40W Amplifier 汕V4 INPUT V1 PRE AMPLIFIER V2 V3 POWER AMPLIFIER OUTPUT V4 20 to 40W Amplifier V1 20 to 40W Amplifier V2 20 to 40W Amplifier V3 V4 method for the measurement of TIM consists of feeding sine waves superimposed onto square wavers, into the amplifier under test. The output spectrum is then examined using a spectrum analyzer and compared to the input. This method suffers from serious disadvantages: the accuracy is limited, the measurement is a tatter delicate operation and an expensive spectrum analyzer is essential. A new approach (see Technical Note 143(Applied by SGS to monolithic amplifiers measurement is fast cheap, it requires nothing more sophisticated than an oscilloscope-and sensitive-and it can be used down to the values as low as 0.002% in high power amplifiers. The "inverting-sawtooth" method of measurement is based on the response of an amplifier to a 20KHz saw-tooth wave-form. The amplifier has no difficulty following the slow ramp but it cannot follow the fast edge. The output will follow the upper line in Fig.23 cutting of the shade area and thus increasing the mean level. If this output signal is filtered to remove the saw-tooth, direct voltage remains which indicates the amount of TIM distortion, although it is difficult to measure because it is indistinguishable from the DC offset of the amplifier. This problem is neatly avoided in the IS-TIM method by periodically inverting the saw-tooth wave-form at a low audio frequency as shown in Fig.24.Inthe case of the saw-tooth in Fig. 25 the means level was increased by the TIM distortion, for a saw-tooth in the other direction the opposite is true. UTC UNISONIC TECHNOLOGIES CO., LTD. 10 QW-R107-004,B UTC TDA2030 LINEAR INTEGRATED CIRCUIT Input Signal SR(V/µs) m2 m1 Filtered Output Siganal Fig.23 20kHz sawtooth waveform Fig.24 Inverting sawtooth waveform The result is an AC signal at the output whole peak-to-peak value is the TIM voltage, which can be measured easily with an oscilloscope. If the peak-topeak value of the signal and the peak-to-peak of the inverting sawtooth are measured, the TIM can be found very simply from: VOUT TIM = * 100 Vsawtooth Fig. 25 TIM distortion Vs. Output Power Fig. 26 TIM design diagram(fc=30kHz) 2 10 1 10 TIM(%) UTC2030A BD908/907 Gv=26dB Vs=36V RL=4Ω RC Filter fc=30kHz 1 10 1% =1 % =0 . TI M TI 0 10 M RC Filter fc=30kHz TI -1 10 M =0 .0 1% 0 10 SR(V/米s) -2 10 -1 10 0 10 1 10 Po(W) 2 10 -1 10 -1 10 0 10 1 10 Vo(Vp-p) 2 10 In Fig.25 The experimental results are shown for the 30W amplifier using the UTC2030A as a driver and a low-cost complementary pair. A simple RC filter on the input of the amplifier to limit the maximum signal slope(SS) is an effective way to reduce TIM. The Diagram of Fig.26 originated by SGS can be used to find the Slew-Rate(SR) required for a given output power or voltage and a TIM design target. For example if an anti-TIM filter with a cutoff at 30kHz is used and the max. Peak to peak output voltage is 20V then, referring to the diagram, a Slew-Rate of 6V/µs is necessary for 0.1% TIM. As shown Slew-Rates of above 10V/µs do not contribute to a further reduction in TIM. Slew-Rates of 100V/µs are not only useless but also a disadvantage in hi-fi audio amplifiers because they tend to turn the amplifier into a radio receiver. POWER SUPPLY Using monolithic audio amplifier with non regulated supply correctly. In any working case it must provide a supply voltage less than the maximum value fixed by the IC breakdown voltage. UTC UNISONIC TECHNOLOGIES CO., LTD. 11 QW-R107-004,B UTC TDA2030 LINEAR INTEGRATED CIRCUIT It is essential to take into account all the working conditions, in particular mains fluctuations and supply voltage variations with and without load. The UTC2030(Vsmax=44V) is particularly suitable for substitution of the standard IC power amplifiers(with Vsmax=36V) for more reliable applications. An example, using a simple full-wave rectifier followed by a capacitor filter, is shown in the table and in the diagram of Fig.27. A regulated supply is not usually used for the power output stages because of its dimensioning must be done taking into account the power to supply in signal peaks. They are not only a small percentage of the total music signal, with consequently large overdimensioning of the circuit. Even if with a regulated supply higher output power can be obtained(Vs is constant in all working conditions),the additional cost and power dissipation do not usually justify its use. using non-regulated supplies, there are fewer designee restriction. In fact, when signal peaks are present, the capacitor filter acts as a flywheel supplying the required energy. In average conditions, the continuous power supplied is lower. The music power/continuous power ratio is greater in case than for the case of regulated supplied, with space saving and cost reduction. Fig.27 DC characteristics of 50W non-regulated supply Ripple (Vp-p) Vo(V) 36 34 Ripple 4 32 220V Vo 2 3300 µF 30 Vout 0 28 0 Mains(220V) +20% +15% +10% — -10% -15% -20% UTC 0.4 0.8 1.2 1.6 2.0 Io(A) Secondary Voltage 28.8V 27.6V 26.4V 24V 21.6V 20.4V 19.2V DC Output Voltage(Vo) Io=0 43.2V 41.4V 39.6V 36.2V 32.4V 30.6V 28.8V Io=0.1A 42V 40.3V 38.5V 35V 31.5V 29.8V 28V Io=1A 37.5V 35.8V 34.2V 31V 27.8V 26V 24.3 UNISONIC TECHNOLOGIES CO., LTD. 12 QW-R107-004,B UTC TDA2030 LINEAR INTEGRATED CIRCUIT SHORT CIRCUIT PROTECTION The UTC TDA2030 has an original circuit which limits the current of the output transistors. This function can be considered as being peak power limiting rather than simple current limiting. It reduces the possibility that the device gets damaged during an accidental short circuit from AC output to Ground. THERMAL SHUT-DOWN The presence of a thermal limiting circuit offers the following advantages: 1).An overload on the output (even if it is permanent),or an above limit ambient temperature can be easily supported since the Tj can not be higher than 150°C 2).The heatsink can have a smaller factor of safety compared with that of a congenital circuit, There is no possibility of device damage due to high junction temperature increase up to 150, the thermal shut-down simply reduces the power dissipation and the current consumption. APPLICATION SUGGESTION The recommended values of the components are those shown on application circuit of Fig.14. Different values can be used. The following table can help the designer. COMPONENT RECOMMENDED VALUE PURPOSE LARGE THAN RECOMMENDED VALUE LARGE THAN RECOMMENDED VALUE R1 22KΩ Increase of Gain Decrease of Gain R2 680Ω Decrease of Gain Increase of Gain R3 22KΩ 1Ω R5 ≈3R2 Increase of input impedance Danger of oscillation at high frequencies with inductive loads. Poor high frequencies attenuation Decrease of input impedance R4 Closed loop gaon setting. Closed loop gaon setting. Non inverting input biasing Frequency stacility C1 1µF C2 22µF C3,C4 0.1µF C5,C6 100µF C7 C8 0.22µF ≈1/(2π*B*R1) D1,D2 1N4001 UTC Upper frequency cutoff Input DC decoupling Inverting DC decoupling Supply voltage bypass Supply voltage bypass Frequency stability Upper frequency cutoff To protect the device against output voltage spikes. Dange of oscillation Increase of low frequencies cutoff Increase of low frequencies cutoff Dange of oscillation Dange of oscillation smaller bandwidth Larger bandwidth Larger bandwidth UNISONIC TECHNOLOGIES CO., LTD. 13 QW-R107-004,B