ETC TDA2030音频功率放大器

o0:
o】
"‘
图
6 T DAzO⒛
接 成 BTL放 大器
TDA⒛ sO 14WH卜 Fi音 频功率放 大 电路
tDA⒛ sO H卜 Fi音 频功率放大集成电路,是 意大利 sGs公 司的产品。由于引线脚
结构不同,分 为TDAzOsOH和 TDAzOsOV两 种类型,图 1为 管脚排列。该电路在电源电
压±1连 V,负 载阻抗4Ω 时输出功率1姓 W(失 真度 ≡o.5%)厂 在电源电压 ±1往 V,负 载
28W。 它的谐波和交叉失真小,输
阻沆8Ω ,用 两块 TDA2o30接 成 BTL电 路时输出功率ˉ
亍DA⒛ sO适 用于收录机灰嵩传真立
出电流大,屯卸呐具有过载保护和热切断保护电路。
体声扩音装鳖邯胙音频功率放大器。
电参数
2分 别为TDAzOsO的 极限参数和电参数。
昶、
1。
口
tI TD^2o3o扭 Ⅱ0毖
顸 斑仃
电 汀 电压 Vcc(V)(
轳入 电压 Vi(V)
差分扫 入 电压 V;(V)|
Ⅱ出刂值电漉 (内 邯限流)I。 (A)
功托 PD(W冫
0存 和结洱T:Ⅱ
,
・ 丛35 ・
∶参
2 TDA2030电 0Ⅱ
(Vcc〓 ±14V,Tε mb=zs℃
最 小值
耐试条件
效
)
电源 电压 Vcc(V)
典型值
+一
最大值
± 18
诒 态 电漉 IQ(mA)
拴 入侣 流 I。 (uA〉
o。
V亡 c=±
18V
柚 入失 讽 电压 V。 s(mV〉
拙入 失调电流 I。 s(nA)
辆出功 率 P。 (W)
2
+一
|~
衣
± zo
± 20
R△
厶Ω
R1
8Ω
±200
THD=o.5%
Gv=3odB
9
8
f:4o~ェ skHz
THD〓 IO%
Cˇ 〓80dB
R△ =8Ω
f〓 f⊥ kHz
P∶ =o。 ⊥~12W,RL=4Ω
Gˇ =3odB
f=40-15kIIz
P。 =0,1~8W, R1=8Ω
R1=4Ω
谐 波失真 THD(%)
Cˇ
o。
2
=30dB
f〓 40~ˇ 15k【 Iz
功率带宽
(-3dB)B(Hz)
10ˉ ˇ140000
Gv=80dB, P。 =⊥ 2W; RL=4Ω
擒入阻抗 (≯ 脚)R∴ (MΩ 〉
开 环 电压 增益 Cv。 (dB〉
闭环 电压 增 益 Gvc(dB)
钼 入 噪声电压 V~I(uV)
f=1kHz
2θ
30.5
。
5
B=22~22kHz
200
耪人 噪声电流 IN I(oA)
R-=4Ω , Cv=3od B, R:=22kΩ
V子
IC=0.5Vc"
‘
饣 pIc=1o0Hz
,
纹波 抑 制 RR(dB)
i oρ
r:ρ
◆ Vcc
‘仁
~ˉ亠~ˉˉˉˉˉˉˉ冫 输出
3∶
l
、
:Vcc
交
詈
瑁
霭
图
tab
1 TD^20sO管
脚排列
呈第3脚
2.内 部电路、测试及应用电路
∷ ˇ
∴
图2为 TDAzO3o内 部电路;图 3为 TDA⒛ 30测 试电路,图 4为 iDAzOsO典 型应
肫 路之~双 电源典型应用电路;图 5为 图 姓的印制电路板 图;图 6为 TDAz03o典 型
应用电路之二,单 电源典型应用电路 ;图 7为 图 6的 印制电路板图 ;图 8为 TDA2030应
・ 逛36 ・
用电路 之三 :双 电源 BTL放 大器 (P。 =28W,Vcc≡ ±14V);图 9为 图 8的 印制电路
板图。图 10为 TDA⒛ 3O应 用电路之四:双 路输出”W高 保真音箱 。
图2
TDA20sO典
部电路
〓
图 狙
TDA2030内
型 应 用 电路 之 一
lOOrJii∶
】丨
∶
∶
({!∶
I∶
!丨 :∶
:r
vˉ
ˉˉ
Γ
q丛
q
u“
『噪
|N‘ 00|
c7
图3
£
丫
"c7
T0冷 ⒛BO讯 试电路
∶
、
・ Ⅱ
・ ⒋37 ・
配 垡皱 型 罪 寻 岳
`回
∽囤
〓
β
叫
N世
砂 叹 凵副礅
88<0㈠
Φ囤
・
′
t铲
囤 邱 峦留 罪 岙
gΦ
囤
`囤
・488 ?
rI -ll⒈
吕
g♀ 土
】00l
"‘
:auF
c3="″
,nI lR"
扪
foot
9N‘ 001
GBO n
图8
TDA⒛
30应 用电路 之 三
CS。 0"6丨 2
图 θ 图 8的 印 制 电路 板 图
・439 ・
一
〓
哂
㈣
l彐
,oκ
n
oF
R‘
ssκ
n
‘,,F
9Xn
图 10
TDA⒛ 30应 用 电 路之 四
・
⒊ 使用注意事 项
∷
.
(1)印 制电路板:推 荐的印制电路板如图 5。 如果采用别的排列时,输 入 1与 2的
接地点必须很好地与输出接地点去耦,不 然有相当大的电流通过。
艹∷
(2)装 配说明:电 路采用单电源时,封 装与散热片之 间不需力
绝缘物。
日
(3)热 切断保护 电路 内设限热电路具有如下优点
人 若输出过载 (甚 至是长时间的)或 者超过规定的环境温度,均 能起保护作用。・
B、 与ˉ般电路相比,散 热片的安全系数较小,由 于某种原因当结温增至 15o℃ 时
热切断电路能使功耗和输出电流下降:所 以不会损坏器件。
(4)短 路保护:内 部设有输 出晶体管限流电路,以 便晶体管工作点处于安全状态
∵
对暂时过载和短路能起保护作用。
:∷
:
,
,
●
・4丛
0
・
:
4。
外接元件作用 (参 看图 4)
元 件号
推 荐值
RI
22kΩ
闭 环 坩 益谓 整
增益增大
嘈 益 下降
R2
680ρ
闭环 增 益 谓整
增 益下 降
增 益增 大
R3
22kQ
同相 抬 入fs置
抬入阻抗坩加
拙 入阻 抗 下降
R,
1Ω
功
:
大于推 荐值
能
小于推 荐值
‘
用电患性 负载时产生
频 率稳 定
高 频 自泔
Rs
~3R2
高泮 截止 频 率
Cl
luF
榴 入 直 流 去耦
低 哕 截止频 率 上 升
C2
22uF
反 相直 流 去相
低 瑞 截止 频率上 升
IuF
电 源旁 路
自激
lO0uF
电 源旁路
自潋
C氵
0.22uF
频 率 稳定
自漱
C:
~ I
CⅡ C.
Cs、
0。
C6
T2π BRl
:N400:
Dl、 D・
高瑞 饯止频 率
高 叛衰诚 变坏
通频带 变 窄
自漱
通 频带 加宽
防止 汩 出 脉冲 损 坏夂成 电路
TDA2o3oA
18W功 放 和 SOW驱 动器 电路
TDA2030A音 频功率放大集成电路,是 意大利 sGs公 司的产品,采 用 5脚 塑封结
构,管 脚排列如图 1。 该电路在 Vcc=± 16V,RL=姓 Ω,THD=0。 5%时 ,输 出功率为
四吒 如以TD凵 VOs0A为 激励级,互 补的功率对管为输出级,则 输 出功率可达 ooW以
上。TDA⒛ 30A输 出电流大,谐 波失真和交叉失真都很小,在 电路内部设有短路保护系
统,用 以限制功耗过载,保 持输出晶体管处于安全工作状态。该集成电路适用于在高传
真音响装置 中作功率放大器。
⒈ 电参数
表1、 2分 别为 TDA⒛ 3OA的 极限参数和电参数。
表 1 TDA2030A扭 限o鼓
参
钣 定值
+一
电源 电压 V(V)
数
裣入 电压 Vi(V、
差 分辖 入 电压 Vi(V)
圩 值诒 出 电流 I。
功
(A)
耗 PD(W〉 T case=gO c
贮 存 和结 沮 T
st:、
Tj(℃
)
・ 441 ・
狡
・参
0Ⅱ (Vcc=± 16V^T amJ工
2 TDAzO30A电
25℃
)
Ⅱ试 条件
数
最 小值
电源 电 压 Vcc(V〉
±
典型值
最 大值
± 22
6
静态电流 I。 (mA^
抬 入 f0流
I口
(uA)
Vc(=± 22V
柚 入 失 拐电压 ˇ。。(mV)
± 20
妆 入 失 闸 电流 I。 s(nA)
±20
THD=0.5%,
Gv=26dB
f=40~15kHz
扫 出功 率 P。 (W)
V<(=± 19V,
功 宰带宽 BW(K(kHz)
转换速 率 sR(V/Ⅱ
P。
RL≡ 4Ω
R1=8Ω
RL=4Ω
=r5w, R.=4Ω
sec)
开 环 电压坩 益 Gˇ 。(dB)
f=1kHz
闭 环 电压 坩益 oⅣ c(dB)
=0.1~14W
RL=4Ω
谐波 失真 THD(%〉
P。 iO。
26.5
25.5
P。
辂 入 噪声电压 VN・
± 200
1~9W, RL亍
8Ω
f= 4o^ˇ 15kI】 z
o。
08
f=1kHz
o。
08
0。
05
f=40~15kHz
B=CurveA
(Ⅱ V)
B=22~22kHz
3
B=CurveA
妆 入噪声 电流 iNI(pA〉
B△
R△
信 噪 比 s/N(dB)
22~22kHz
200
=4Ω
R:=1okΩ
B=Curˇ eA
P。
=1W
开环 ,f=1kHz
)
R.=姓
纹 波 抑制 RR(dD)
热 切浙结 沮 ij(℃
=15W
^⒖
拙 入 阻抗 Ri(MΩ
P。
Ω,
Gˇ
=26dB,
R:=22kΩ , f=100Hz
)
・Vcc
输出
-Vcc
/ab至
反相输 入
同相橇 入
,
sˉ :020`9
第 3脚
图
・ 姓42 ●
l T DAzO30A矸 脚 排 列
′
测试电路及应用电路
工
图 2为 TDA⒛ 30A的 测试电路 ,图 3为 TDA203oA应 用电路之 :单 电源放大电路
图 4为 TDAzO30碰 用电路之二 :单 电源大功率放大器 σ DAzO3OA+BDgOz/BDOOB),
表 3为 图 4的 电特性
图5为 图 4的 印制板 电路,图 6为 TDAzQ30A应 用电路之三:双 电源放大:电 路;图
2。
;
:
C51 C3
2叩
F=,呸
卩
F
图2
R2
TDA20aO A测
试 电路
RL
∞ On
22卩 F
〓厂
C2
ˉ
Vcc
表
参
3
4的 电特性
田
闵试 条件
数
最 小值
典 型值
展大值
电源 电压 Vcc(V)
莳态电流 I。 (mA〉
Vcc=36V
THD=o.5%
轳 出功 率 p。 (w)
电压坩益 Gv(dB)
Vcc=3θ V
=4Ω
R△
f=4o冖 ˇ15kIIz
Vcc=36V
THD〓 10%
R‘ =4Ω
f=lkH乞
Vcc=39V
Vcc=86V
1kHz
f〓
′ 20.5
转换速 率 sR(V/Ⅱ sec)
谐 波 失真
TIID60
抬 入灵故庋 Vi(mV)
P。
f=姓 0Ⅱ ˇ15kIⅡ
z
Cv=2od B, f〓 1kHz,
P。
R。
8θ o
〓2oW,R.=4Ω
RL=4Ω
信 噪 比 s/N(dB)
f=1kHz
=2oW
=.10kΩ
B=CurveA
、
P。
〓25W
P。
=4W
∶ ∷Γ
〓 0撺睁臣 r’卜
〓
。4遮 3 ・
:°
°
o″ F
些
∶
∶
∶
:2~uF
n
nL〓 ‘
卫
l∵
图
8 TDAzO30砸
Rη
5∶
用电路之 一
” ∶α″ ‘n工景w
n
Ⅱ
ICJ
:卩
F'
F昆 n
=寺
:l♀
p尸 F
B090B
i∶
2:】 N‘ 00η
R3
”
s6κ 且
cF
`
⊥ T卜亠
‘9rJ
n‘
9。
3“
n
n
】°卩F
图
4 TDA⒛
gO AzOBO A应 用 电路 之 二
100rJi∶
∶
丨
∶∶
,({∶
l!∶
:∶
●
图
6 TDA2o30啦
用 电路 之≡
R2
680n
C2
2zpF
・ 444 ・
~
「
ˉ
ˉ
Γ
哒
F噪
iF
F
(Vcc=±
7为 图 6的 印制板电路;图 8为 TDA⒛ 30A应 用电路之四:陋 WBTL熬 大器
16V),,图 9为 图 8的 印制板 电路;图 1o为 TDA2o3oA应 用电路之五:三 分频6oW音 箱
放太器,在 Vcc=36V时 ,低 音扬声器可得输出功率20W(THD=0∶ OG%),若 取 THP
=o15%,则 输出功率为30W△ 高音和中音扬声器获得的输出功率,在 设计时已考虑工作
”
在最佳状态。图11为 T0A⒛ sOA应 用电路之六:120W“ 超桥式 功率放大器,图 12为
图11的 输出功率与电源电压的关系曲线占
・
・
+
∷
‘
+
9十
图
` ` f 、
一
'〓
|/
5
图 4的 印 制 板电 路
・ 445 ・
g‘
~~
目
N鼓
R<0卜
∞囤
~υ
L亠 ° ° 一
。。 `'一
Jα
⊙⊙
Ⅲ∈
I
|勒 叮 ∞
型 殴司 帛
n
°一
△
・ 姓46 ・
Φα
∽υ
Lt°
.鞋
链田晒霏峦宅 Φ屈
十
8厂
卜α
E圭 Γ喜
≈
0 lD
z
T DⅡ 2030刀
l
:
to'2030冖
公
帘
^
∩
^
图 8的 印钢板电路
㈩
〓
⒍
㈧ ⑾・
Ⅱ⒑
/
/
/
"
"
.
〓 〓 ●◆
'/
/
7 /
/
/
⒈rf,.%
''吃
/
图
1z
图 n的
P。
~V cc关 系 线
屮
|qO VccCv,
・ 447 ・
:⒛ 0″ F
:n
:oo
卜ΙⅢ「
lNt°
:∶ 1。
带通滤波器
t06V
,00"::° ’△
":
℃f
ou
=axn
a:κ n
9■
′、
「
△″
2’
"IOR^吒
高通滤波器
,`":
9.9nF
:.|nF
,00″ F
△
:2″ F
P'F
・4逐 8 ?
图 10 Γ DAzO3oA应 用 电路之 五
n
音
C
刂
:n
!"‘ o0l
梦丬徉
・Vcc
町
图 11
P
TDA2o40
TDAzOsOA应=1snF
用 电路之 六
=∵
zOWHi⊥ Fi功 率放 大 电路
VA⒛ 硐 Hi|i音 频功率放大集成电路,是 意大利 sGs公 司的产吊,采 用 5脚 封
装结构,管 脚排列如图 1。 该集成 电路在电源电压 ±16V,负 载阻抗4Ω ,失 真度为o.5%
啪 出功率zzW。 若电源电压和失真度保持不变,负 载阻抗为8Ω,用 两块 TDA⒛ dO± 成
BTL电略,输 出功率为sOW。 TDA⒛ 硐输出电流大、谐波失真和交叉矢真都很小。电路
此外
内设有短路保护 用以限制功率过载,使 输出晶体管的工作点处于安全工作状态。
璐 内还设有热切断保护,该 集成电路适用于收录枕1高 传真立体声扩音机装置中作音
∷
频功率放大器。
1.电 参数
.ˇ
立分别为 TDAzO硐 的极限参数和电参数。
昶、
,
,・
表
参
I TDA2040扭 限 0Ⅱ
效
柚入电压 Vi(∽
差分泊 入 电压 Vi(V〉
仂 出嘻 值 电 流 I。 (A)
}″
・449 ?
7—
TDA2030
®
14W Hi-Fi AUDIO AMPLIFIER
DESCRIPTION
The TDA2030 is a monolithic integrated circuit in
Pentawatt® package, intended for use as a low
frequency class AB amplifier. Typically it provides
14W output power (d = 0.5%) at 14V/4Ω; at ± 14V
or 28V, the guaranteed output power is 12W on a
4Ω load and 8W on a 8Ω (DIN45500).
The TDA2030 provides high output current and has
very low harmonic and cross-over distortion.
Further the device incorporates an original (and
patented) short circuit protection system comprising an arrangement for automatically limiting the
dissipated power so as to keep the working point
of the output transistors within their safe operating
area. A conventional thermal shut-down system is
also included.
Pentawatt
ORDERING NUMBERS : TDA2030H
TDA2030V
ABSOLUTE MAXIMUM RATINGS
Symbol
Parameter
Vs
Supply voltage
Value
Unit
± 18 (36)
V
Vi
Input voltage
Vi
Differential input voltage
± 15
Io
Output peak current (internally limited)
3.5
A
Power dissipation at Tcase = 90°C
20
W
-40 to 150
°C
Ptot
Tstg, Tj
Stoprage and junction temperature
Vs
V
TYPICAL APPLICATION
June 1998
1/12
TDA2030
PIN CONNECTION (top view)
+VS
OUTPUT
-VS
INVERTING INPUT
NON INVERTING INPUT
TEST CIRCUIT
2/12
TDA2030
THERMAL DATA
Symbol
Rth j-case
Parameter
Thermal resistance junction-case
Value
Unit
3
°C/W
max
ELECTRICAL CHARACTERISTICS (Refer to the test circuit, Vs = ± 14V , Tamb = 25°C unless otherwise
specified) for single Supply refer to fig. 15 Vs = 28V
Symbol
Parameter
Vs
Supply voltage
Id
Quiescent drain current
Ib
Input bias current
Vos
Input offset voltage
Ios
Input offset current
Po
Output power
Test conditions
B
Distortion
Power Bandwidth
(-3 dB)
Ri
Input resistance (pin 1)
Gv
Voltage gain (open loop)
Gv
Voltage gain (closed loop)
eN
Input noise voltage
iN
Input noise current
SVR
Id
Typ.
Max.
Unit
± 18
36
V
40
60
mA
0.2
2
µA
±2
± 20
mV
± 20
± 200
nA
±6
12
Vs = ± 18V (Vs = 36V)
d = 0.5%
Gv = 30 dB
f = 40 to 15,000 Hz
RL = 4Ω
RL = 8Ω
d = 10%
f = 1 KHz
RL = 4Ω
RL = 8Ω
d
Min.
12
8
14
9
W
W
18
11
W
W
Gv = 30 dB
Po = 0.1 to 12W
Gv = 30 dB
RL = 4Ω
f = 40 to 15,000 Hz
0.2
0.5
%
Po = 0.1 to 8W
Gv = 30 dB
RL = 8Ω
f = 40 to 15,000 Hz
0.1
0.5
%
Gv = 30 dB
Po = 12W
RL = 4Ω
0.5
f = 1 kHz
29.5
B = 22 Hz to 22 KHz
Supply voltage rejection
RL = 4Ω
Gv = 30 dB
Rg = 22 kΩ
Vripple = 0.5 Veff
fripple = 100 Hz
Drain current
Po = 14W
Po = W
RL = 4Ω
RL = 8Ω
40
10 to 140,000
Hz
5
MΩ
90
dB
30
30.5
dB
3
10
µV
80
200
pA
50
dB
900
500
mA
mA
3/12
TDA2030
Figure 1. Output power vs.
supply voltage
Figure 2. Output power vs.
supply voltage
Fig ure 3. Distortion vs.
output power
F ig ure 4. Di stortion vs.
output power
Fi gure 5. Distor tion vs.
output power
Fig ure 6. Distortion vs.
frequency
Fi gure 7. Distor tion vs.
frequency
4/12
Figure 8. Frequency response with different values
of the rolloff capacitor C8
(see fig. 13)
Figure 9. Quiescent current
vs. supply voltage
TDA2030
Figure 10. Supply voltage
rejection vs. voltage gain
Figure 11. Power dissipation and efficiency vs. output
power
Figure 12. Maximum power
dissipation vs. supply voltage (sine wave operation)
APPLICATION INFORMATION
Figure 13. Typical amplifier
with split power supply
Figure 14. P.C. board and component layout for
the circuit of fig. 13 (1 : 1 scale)
5/12
TDA2030
APPLICATION INFORMATION (continued)
Figure 15. Typical amplifier
with single power supply
Figure 16. P.C. board and component layout for
the circuit of fig. 15 (1 : 1 scale)
Figure 17. Bridge amplifier configuration with split power supply (Po = 28W, Vs = ±14V)
6/12
TDA2030
PRACTICAL CONSIDERATIONS
Printed circuit board
The layout shown in Fig. 16 should be adopted by
the designers. If different layouts are used, the
ground points of input 1 and input 2 must be well
decoupled from the ground return of the output in
which a high current flows.
Assembly suggestion
No electrical isolation is needed between the
package and the heatsink with single supply voltage
configuration.
Application suggestions
The recommended values of the components are
those shown on application circuit of fig. 13.
Different values can be used. The following table
can help the designer.
Component
Recomm.
value
R1
22 kΩ
Closed loop gain
setting
Increase of gain
Decrease of gain (*)
R2
680 Ω
Closed loop gain
setting
Decrease of gain (*)
Increase of gain
R3
22 kΩ
Non inverting input
biasing
Increase of input
impedance
Decrease of input
impedance
R4
1Ω
Frequency stability
Danger of osccilat. at
high frequencies
with induct. loads
R5
≅ 3 R2
Upper frequency
cutoff
Poor high frequencies
attenuation
C1
1 µF
Input DC
decoupling
Increase of low
frequencies cutoff
C2
22 µF
Inverting DC
decoupling
Increase of low
frequencies cutoff
C3, C4
0.1 µF
Supply voltage
bypass
Danger of
oscillation
C5, C6
100 µF
Supply voltage
bypass
Danger of
oscillation
C7
0.22 µF
Frequency stability
Danger of oscillation
C8
D1, D2
≅
1
2π B R1
1N4001
Purpose
Upper frequency
cutoff
Larger than
recommended value
Smaller bandwidth
Smaller than
recommended value
Danger of
oscillation
Larger bandwidth
To protect the device against output voltage spikes
(*) Closed loop gain must be higher than 24dB
7/12
TDA2030
SINGLE SUPPLY APPLICATION
Larger than
recommended value
Smaller than
recommended value
Component
Recomm.
value
R1
150 kΩ
Closed loop gain
setting
Increase of gain
Decrease of gain (*)
R2
4.7 kΩ
Closed loop gain
setting
Decrease of gain (*)
Increase of gain
R3
100 kΩ
Non inverting input
biasing
Increase of input
impedance
Decrease of input
impedance
R4
1Ω
Frequency stability
Danger of osccilat. at
high frequencies
with induct. loads
RA/RB
100 kΩ
C1
Purpose
Non inverting input Biasing
Power Consumption
1 µF
Input DC
decoupling
Increase of low
frequencies cutoff
C2
22 µF
Inverting DC
decoupling
Increase of low
frequencies cutoff
C3
0.1 µF
Supply voltage
bypass
Danger of
oscillation
C5
100 µF
Supply voltage
bypass
Danger of
oscillation
C7
0.22 µF
Frequency stability
Danger of oscillation
C8
D1, D2
≅
1
2π B R1
1N4001
Upper frequency
cutoff
To protect the device against output voltage spikes
(*) Closed loop gain must be higher than 24dB
8/12
Smaller bandwidth
Larger bandwidth
TDA2030
SHORT CIRCUIT PROTECTION
The TDA2030 has an original circuit which limits the
current of the output transistors. Fig. 18 shows that
the maximum output current is a function of the
collector emitter voltage; hence the output transistors work within their safe operating area (Fig. 2).
This function can therefore be considered as being
Fi g ure 1 8. Maximum
ou tpu t c urr en t vs.
voltage [VCEsat] across
each output transistor
peak power limiting rather than simple current limiting.
It reduces the possibility that the device gets damaged during an accidental short circuit from AC
output to ground.
Figure 19. Safe operating area and
collector characteristics of the
protected power transistor
THERMAL SHUT-DOWN
The presence of a thermal limiting circuit offers the
following advantages:
1. An overload on the output (even if it is permanent), or an above limit ambient temperature can
be easily supported since the Tj cannot be
higher than 150°C.
2. The heatsink can have a smaller factor of safety
compared with that of a conventional circuit.
There is no possibility of device damage due to
high junction temperature. If for any reason, the
junction temperature increases up to 150°C, the
thermal shut-down simply reduces the power
dissipation at the current consumption.
The maximum allowable power dissipation depends upon the size of the external heatsink (i.e. its
thermal resistance); fig. 22 shows this dissipable
power as a function of ambient temperature for
different thermal resistance.
9/12
TDA2030
Figure 20. Output power and
dr ai n cu rre nt vs. case
temperature (RL = 4Ω)
Figure 23. Example of heat-sink
Figure 21. Output power and
d rai n c urr en t vs. ca se
temperature (RL = 8Ω)
Fi g ure
22.
Maximum
allowable power dissipation
vs. ambient temperature
Dimension : suggestion.
The following table shows the length that
the heatsink in fig. 23 must have for several
values of Ptot and Rth.
Ptot (W)
Length of heatsink
(mm)
Rth of heatsink
(° C/W)
10/12
12
8
6
60
40
30
4.2
6.2
8.3
TDA2030
PENTAWATT PACKAGE MECHANICAL DATA
mm
DIM.
MIN.
A
C
D
D1
E
E1
F
F1
G
G1
H2
H3
L
L1
L2
L3
L4
L5
L6
L7
L9
M
M1
V4
Dia
inch
TYP.
2.4
1.2
0.35
0.76
0.8
1
3.2
6.6
MAX.
4.8
1.37
2.8
1.35
0.55
1.19
1.05
1.4
3.6
7
10.4
10.4
18.15
15.95
21.6
22.7
1.29
3
15.8
6.6
3.4
6.8
10.05
17.55
15.55
21.2
22.3
17.85
15.75
21.4
22.5
2.6
15.1
6
0.2
4.5
4
4.23
3.75
MIN.
TYP.
0.094
0.047
0.014
0.030
0.031
0.039
0.126
0.260
0.134
0.268
0.396
0.691
0.612
0.831
0.878
0.703
0.620
0.843
0.886
MAX.
0.189
0.054
0.110
0.053
0.022
0.047
0.041
0.055
0.142
0.276
0.409
0.409
0.715
0.628
0.850
0.894
0.051
0.118
0.622
0.260
0.102
0.594
0.236
4.75
4.25
0.008
0.177
0.157
0.167
0.148
0.187
0.167
40° (typ.)
3.65
3.85
0.144
0.152
L
L1
V3
V
V
E
L8
V
V1
V
M1
R
R
A
B
D
C
D1
L5
L2
R
M
V4
H2
L3
F
E
E1
V4
H3 H1
G G1
Dia.
F
F1
L7
H2
V4
L6
L9
RESIN BETWEEN
LEADS
11/12
TDA2030
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of
use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to
change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics
© 1998 STMicroelectronics – Printed in Italy – All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco - The Netherlands Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.
12/12
UTC TDA2030
LINEAR INTEGRATED CIRCUIT
14W HI-FI AUDIO AMPLIFIER
DESCRIPTION
The UTC TDA2030 is a monolithic audio power amplifier
integrated circuit.
1
TO-220B
FEATURES
*Very low external component required.
*High current output and high operating voltage.
*Low harmonic and crossover distortion.
*Built-in Over temperature protection.
*Short circuit protection between all pins.
*Safety Operating Area for output transistors.
1
TO-220-5
PIN CONFIGURATIONS
1
2
3
4
5
Non inverting input
Inverting input
-VS
Output
+VS
ABSOLUTE MAXIMUM RATINGS(Ta=25°C)
PARAMETER
SYMBOL
VALUE
UNIT
Supply Voltage
Input Voltage
Differential Input Voltage
Peak Output Current(internally limited)
Total Power Dissipation at Tcase=90°C
Storage Temperature
Junction Temperature
Vs
Vi
Vdi
Io
Ptot
Tstg
Tj
+-18
Vs
+-15
3.5
20
-40~+150
-40~+150
V
V
V
A
W
°C
°C
ELECTRICAL CHARACTERISTICS(Refer to the test circuit, Vs =+-16V,Ta=25°C)
PARAMETER
SYMBOL
Supply Voltage
Quiescent Drain
Current
Input Bias Current
Input Offset Voltage
Input Offset Current
Vs
Id
UTC
Ib
Vos
Ios
TEST CONDITIONS
MIN
TYP
MAX
UNIT
40
+-18
60
V
mA
0.2
+-2
+-20
2
+-20
+-200
µA
MV
NA
+-6
Vs=+-18v
UNISONIC TECHNOLOGIES CO., LTD.
1
QW-R107-004,B
UTC TDA2030
LINEAR INTEGRATED CIRCUIT
(Continued)
d=0.5%,Gv=30dB
f=40 to 15,000Hz
Output Power
Po
RL=4Ω
RL=8Ω
12
8
14
9
W
W
18
W
d=10%,Gv=30dB
f=1KHz
Power Bandwidth
Open Loop Voltage
Gain
B
Gvo
Closed Loop
Voltage Gain
Distortion
Gvc
Input Noise Voltage
Input Noise Current
Input
Resistance(pin 1)
Supply Voltage
Rejection
Thermal
Shut-Down
Junction
Temperature
UTC
d
eN
iN
Ri
SVR
Tj
RL=4Ω
RL=8Ω
Po=12W,RL=4Ω, Gv=30dB
f=1kHz
11
10~140,000
90
29.5
30
30 .5
dB
0.2
0.5
%
0.1
0.5
%
10
200
0.5
3
80
5
µV
pA
MΩ
40
50
dB
145
°C
Po=0.1 to 12W,RL=4Ω
f=40 to 15,000Hz, Gv=30dB
Po=0.1 to 8W,RL=8Ω
f=40 to 15,000Hz, Gv=30dB
B= 22Hz to 22kHz
B= 22Hz to 22kHz
RL=4Ω,Gv=30dB
Rg=22kΩ,fripple=100Hz,
Vripple=0.5Veff
W
Hz
dB
UNISONIC TECHNOLOGIES CO., LTD.
2
QW-R107-004,B
UTC TDA2030
LINEAR INTEGRATED CIRCUIT
TEST CIRCUIT
+Vs
Vi
C5
100 µF
C1
1 µF
C3
100nF
D1
1N4001
1
R3
22kΩ
5
UTC
TDA2030
2
4
3
C8
R5
R4
1Ω
RL
D1
R1
22kΩ 1N4001
R3
680Ω
C2
22 µF
C6
100 µF
C4
C7
100nF 220nF
-Vs
APPLICATION CIRCUIT
+Vs
Vi
C1
1 µF
C5
220 µF
C3
100nF
D1
1N4001
1
R3
22kΩ
5
UTC
TDA2030
2
4
3
R3
680Ω
C2
22 µF
R1
13kΩ
R4
1Ω
D1
1N4001
C6
100 µF
RL
C4
C7
100nF 220nF
-Vs
UTC
UNISONIC TECHNOLOGIES CO., LTD.
3
QW-R107-004,B
UTC TDA2030
LINEAR INTEGRATED CIRCUIT
TYPICAL PERFORMANCE CHARACTERISTICS
Fig.3 Output power vs. Supply
voltage
140
Gv
(dB)
180
Phase
100
90
60
0
Phase
Fig.2 Open loop frequency
response
Po
(W)
24
Gv=26dB
d=0.5%
f=40 to 15kHz
20
RL=4Ω
16
RL=8Ω
Gain
20
12
-20
8
-60
1
10
2
10
3
10
4
10
5
10
6
10
4
7
10
24
Frequency (Hz)
Fig.4 Total harmonic distortion
vs. output power
d
(%)
d
(%)
40
44
Vs (V)
Po (W)
2
10
Vs=32V
Po=4W
RL=4Ω
Gv=26dB
0
10
Vs=38V
RL=8Ω
f=15kHz
-1
10
36
1
10
Gv=26dB
0
10
32
Fig.5 Two tone CCIF
intermodulation distortion
2
10
1
10
28
Order (2f1-f2)
-1
10
Vs=32V
RL=4Ω
Order (2f2-f1)
f=1kHz
-2
10
-2
10
-1
10
0
10
1
10
Po (W)
2
10
-2
10
1
10
30
Vs=+-15V
RL=8Ω
25
3
10
4
10
5
10
Frequency (Hz)
Fig.7 Maximum allowable power
dissipation vs. ambient
temperture
Fig.6 Large signal frequency
response
Vo
(Vp-p)
2
10
30
Ptot
(W)
25
Vs=+-15V
RL=4Ω
20
20
15
10
10
5
1
10
UTC
2
10
3
10
Frequency (kHz)
4
10
he
a
Rt tsin
h= k
4° ha
C/ vin
he
W g
at
Rt sink
h=
h
8°C avin
/W g
ink
a ts
he
te
ini
g
inf
vin
ha
/W
ink
ats 5°C
he ty=2
R
15
5
-50
0
50
100
150
200
Tamb (°C)
UNISONIC TECHNOLOGIES CO., LTD.
4
QW-R107-004,B
UTC TDA2030
LINEAR INTEGRATED CIRCUIT
UTC
TDA2030
R4
3.3kΩ
C4
10 µF
C8
2200 µF
4
3
R5
30kΩ
BD907
R8
1Ω
RL=4Ω
C2
22 µF
5
2
R2
56kΩ
BD908
1N4001
1
R3
56kΩ
C5
220 µF
/40V
R6
1.5Ω
1N4001
R1
56kΩ
C6
0.22 µF
Vi
C1
2.2 µF
C3
0.22 µF
+Vs
R7
1.5Ω
C7
0.22 µF
Fig. 8 Single supply high power amplifier(UTC TDA2030+BD908/BD907)
TYPICAL PERFORMANCE OF THE CIRCUIT OF FIG. 8
PARAMETER
Supply Voltage
Quiescent Drain
Current
Output Power
SYMBOL
Vs
Id
Po
Voltage Gain
Slew Rate
Total Harmonic
Distortion
Input Sensitivity
Gv
SR
d
Signal to Noise
Ratio
S/N
UTC
Vi
TEST CONDITIONS
MIN
Vs=36V
d=0.5%,RL=4Ω
f=40Hz to 15kHz,Vs=39V
d=0.5%,RL=4Ω
f=40Hz to 15kHz,Vs=36V
d=0.5%,f=1kHz,
RL=4Ω,Vs=39V
d=0.5%,RL=4Ω
f=1kHz,Vs=36V
f=1kHz
Po=20W,f=1kHz
Po=20W,f=40Hz to 15kHz
Gv=20dB,Po=20W,
f=1kHz,RL=4Ω
RL=4Ω,Rg=10kΩ
B=curve A,Po=25W
RL=4Ω,Rg=10kΩ
B=curve A,Po=25W
TYP
MAX
UNIT
36
50
44
V
mA
35
28
W
44
35
19.5
20
8
0.02
0.05
890
20.5
dB
V/µsec
%
%
mV
108
100
dB
UNISONIC TECHNOLOGIES CO., LTD.
5
QW-R107-004,B
UTC TDA2030
LINEAR INTEGRATED CIRCUIT
TYPICAL PERFORMANCE CHARACTERISTICS
Fig. 10 Output power vs. supply
voltage
Fig. 11 Total harmonic distortion
vs. output power
Po
(W)
d
(%)
Vs=36V
RL=4Ω
Gv=20dB
45
0
10
35
25
-1
10
f=15kHz
15
f=1kHz
5
24
28
32
34
36
Vs
(V)
40
-2
10
-1
10
Fig. 12 Output power vs.
Input level
0
10
1
10
Po
(W)
Fig. 13 Power dissipation vs.
output power
Ptot
(W)
Po
(W)
20
20
Complete
Amplifier
Gv=26dB
15
15
Gv=20dB
10
10
5
5
0
100
250
UTC
400
550
700
Vi
(mV)
BD908/
BD907
UTC
TDA2030
0
0
8
16
24
32
UNISONIC TECHNOLOGIES CO., LTD.
Po
(W)
6
QW-R107-004,B
UTC TDA2030
LINEAR INTEGRATED CIRCUIT
+Vs
Vi
C5
100 µF
C1
1 µF
C3
100nF
D1
1N4001
1
R3
22kΩ
5
UTC
TDA2030
2
4
3
C8
R5
R4
1Ω
D2
R1
22kΩ 1N4001
R3
680Ω
C2
22 µF
C6
100 µF
RL
C4
C7
100nF 220nF
-Vs
Fig. 14 Typical amplifier with split power supply
Vs+
C6
100 µ F
1
5
UTC TDA2030 4
R1
22kΩ
2
3
C8
IN
R3
22kΩ
R8
1Ω
µF
0.22
C1
220 µ F
C7
100nF
C4
22 µ F
RL
8Ω
R4
680Ω
R7
22kΩ
UTC TDA2030 4
2
Vs-
3
R5
22kΩ
C9
5
µF
0.22
1
R2
22kΩ
R9
1Ω
C5
22 µ F
C2
100 µ F
C3
100nF
R6
680Ω
Fig. 16 Bridge amplifier with split power supply(Po=34W,Vs+=16V,Vs-=16V)
UTC
UNISONIC TECHNOLOGIES CO., LTD.
7
QW-R107-004,B
UTC TDA2030
LINEAR INTEGRATED CIRCUIT
MULTIWAY SPEAKER SYSTEMS AND ACTIVE BOXES
Multiway loudspeaker systems provide the best possible acoustic performance since each loudspeaker is
specially designed and optimized to handle a limited range of frequencies. Commonly, these loudspeaker systems
divide the audio spectrum two or three bands.
To maintain a flat frequency response over the Hi-Fi audio range the bands cobered by each loudspeaker must
overlap slightly. Imbalance between the loudspeakers produces unacceptable results therefore it is important to
ensure that each unit generates the correct amount of acoustic energy for its segments of the audio spectrum. In this
respect it is also important to know the energy distribution of the music spectrum to determine the cutoff frequencies
of the crossover filters(see Fig. 18).As an example,1 100W three-way system with crossover frequencies of 400Hz
and 3khz would require 50W for the woofer,35W for the midrange unit and 15W for the tweeter.
Both active and passive filters can be used for crossovers but active filters cost significantly less than a good
passive filter using aircored inductors and non-electrolytic capacitors. In addition active filters do not suffer from the
typical defects of passive filters:
--Power less;
--Increased impedance seen by the loudspeaker(lower damping)
--Difficulty of precise design due to variable loudspeaker impedance.
Obviously, active crossovers can only be used if a power amplifier is provide for each drive unit. This makes it
particularly interesting and economically sound to use monolithic power amplifiers.
In some applications complex filters are not relay necessary and simple RC low-pass and high-pass
networks(6dB/octave) can be recommended.
The result obtained are excellent because this is the best type of audio filter and the only one free from phase and
transient distortion.
The rather poor out of band attenuation of single RC filters means that the loudspeaker must operate linearly well
beyond the crossover frequency to avoid distortion.
A more effective solution, named "Active power Filter" by SGS is shown in Fig. 19.
The proposed circuit can realize combined power amplifiers and 12dB/octave or 18dB octave high-pass or
low-pass filters.
In proactive, at the input pins amplifier two equal and in-phase voltages are available, as required for the active
filter operations.
The impedance at the Pin(-) is of the order of 100Ω,while that of the Pin (+) is very high, which is also what was
wanted.
Fig. 18 Power distribution vs.
frequency
Fig. 19 Active power filter
100
C1 C2 C3
IEC/DIN NOISE
SPECTRUM
FOR SPEAKER
TESTING
80
Vs+
Morden
Music
Spectrum
RL
60
R1 R2
R3
3.3kΩ
Vs-
40
100Ω
20
0
1
10
2
10
UTC
3
10
4
10
5
10
UNISONIC TECHNOLOGIES CO., LTD.
8
QW-R107-004,B
UTC TDA2030
LINEAR INTEGRATED CIRCUIT
The components values calculated for fc=900Hz using a Bessel 3rd Sallen and Key structure are:
C1=C2=C3=22nF,R1=8.2KΩ,R2=5.6KΩ,R3=33KΩ.
Using this type of crossover filter, a complete 3-way 60W active loudspeaker system is shown in Fig. 20.
It employs 2nd order Buttherworth filter with the crossover frequencies equal to 300Hz and 3kHz.
The midrange section consistors of two filters a high pass circuit followed by a low pass network. With Vs=36V the
output power delivered to the woofer is 25W at d=0.06%( 30W at d=0.5%).The power delivered to the midrange and
the tweeter can be optimized in the design phase taking in account the loudspeaker efficiency and
impedance(RL=4Ω to 8Ω).
It is quite common that midrange and tweeter speakers have an efficiency 3dB higher than woofers.
22kΩ
22kΩ
22kΩ
1N4001
1.5Ω
2
33nF
680Ω
18nF
1
5
BD908
4
UTC
TDA2030
3
2200 µF
1Ω
100 µF
0.22 µF
1N4001
1.5Ω
3.3kΩ
100Ω
BD907
4Ω
1 µF
0.22 µF
IN
0.22 µF
2200 µF
Vs+
Low-pass
300Hz
Woofer
Vs+
Band-pass
300Hz to 3kHz
0.22 µF
1N4001
6.8kΩ
3.3nF
2
5
3
1N4001
100 µF
100Ω
Vs+
0.22 µF
1N4001
100 µF
4
3
1N4001
8Ω
1Ω
2
5
UTC
TDA2030
0.22 µF
1
22kΩ
12kΩ
0.1 µF
22kΩ
100 µF
22kΩ
0.1 µF
Midrange
2.2kΩ
High-pass
3kHz
Vs+
220 µF
4
UTC
TDA2030
8Ω
1
1Ω
22kΩ
18nF
22kΩ
0.22 µF
0.1 µF
3.3kΩ
0.1 µF
47 µF
100Ω
2.2kΩ
UTC
High-pass
3kHz
Tweeter
UNISONIC TECHNOLOGIES CO., LTD.
9
QW-R107-004,B
UTC TDA2030
LINEAR INTEGRATED CIRCUIT
MUSICAL INSTRUMENTS AMPLIFIERS
Another important field of application for active system is music.
In this area the use of several medium power amplifiers is more convenient than a single high power amplifier, and it
is also more reliable. A typical example(see Fig. 21) consist of four amplifiers each driving a low-cost, 12 inch
loudspeaker. This application can supply 80 to 160W rms.
TRANSIENT INTER-MODULATION DISTORTION(TIM)
Transient inter-modulation distortion is an unfortunate phenomena associated with negative-feedback amplifiers.
When a feedback amplifier receives an input signal which rises very steeply, i.e. contains high-frequency
components, the feedback can arrive too late so that the amplifiers overloads and a burst of inter-modulation
distortion will be produced as in Fig.22.Since transients occur frequently in music this obviously a problem for the
designed of audio amplifiers. Unfortunately, heavy negative feedback is frequency used to reduce the total harmonic
distortion of an amplifier, which tends to aggravate the transient inter-modulation(TIM situation.)The best known
Fig.21 High power active box for musical
instrument
Fig.22 Overshoot phenomenon in
feedback amplifiers
FEEDBACK
PATH
20 to 40W
Amplifier
汕V4
INPUT
V1
PRE
AMPLIFIER
V2
V3
POWER
AMPLIFIER
OUTPUT
V4
20 to 40W
Amplifier
V1
20 to 40W
Amplifier
V2
20 to 40W
Amplifier
V3
V4
method for the measurement of TIM consists of feeding sine waves superimposed onto square wavers, into the
amplifier under test. The output spectrum is then examined using a spectrum analyzer and compared to the input.
This method suffers from serious disadvantages: the accuracy is limited, the measurement is a tatter delicate
operation and an expensive spectrum analyzer is essential. A new approach (see Technical Note 143(Applied by
SGS to monolithic amplifiers measurement is fast cheap, it requires nothing more sophisticated than an
oscilloscope-and sensitive-and it can be used down to the values as low as 0.002% in high power amplifiers.
The "inverting-sawtooth" method of measurement is based on the response of an amplifier to a 20KHz saw-tooth
wave-form. The amplifier has no difficulty following the slow ramp but it cannot follow the fast edge. The output will
follow the upper line in Fig.23 cutting of the shade area and thus increasing the mean level. If this output signal is
filtered to remove the saw-tooth, direct voltage remains which indicates the amount of TIM distortion, although it is
difficult to measure because it is indistinguishable from the DC offset of the amplifier. This problem is neatly avoided
in the IS-TIM method by periodically inverting the saw-tooth wave-form at a low audio frequency as shown in
Fig.24.Inthe case of the saw-tooth in Fig. 25 the means level was increased by the TIM distortion, for a saw-tooth in
the other direction the opposite is true.
UTC
UNISONIC TECHNOLOGIES CO., LTD.
10
QW-R107-004,B
UTC TDA2030
LINEAR INTEGRATED CIRCUIT
Input
Signal
SR(V/µs)
m2
m1
Filtered
Output
Siganal
Fig.23 20kHz sawtooth waveform
Fig.24 Inverting sawtooth waveform
The result is an AC signal at the output whole peak-to-peak value is the TIM voltage, which can be measured
easily with an oscilloscope. If the peak-topeak value of the signal and the peak-to-peak of the inverting sawtooth are
measured, the TIM can be found very simply from:
VOUT
TIM =
* 100
Vsawtooth
Fig. 25 TIM distortion Vs.
Output Power
Fig. 26 TIM design
diagram(fc=30kHz)
2
10
1
10
TIM(%)
UTC2030A
BD908/907
Gv=26dB
Vs=36V
RL=4Ω
RC Filter fc=30kHz
1
10
1%
=1
%
=0
.
TI
M
TI
0
10
M
RC Filter fc=30kHz
TI
-1
10
M
=0
.0
1%
0
10
SR(V/米s)
-2
10
-1
10
0
10
1
10
Po(W)
2
10
-1
10
-1
10
0
10
1
10
Vo(Vp-p)
2
10
In Fig.25 The experimental results are shown for the 30W amplifier using the UTC2030A as a driver and a
low-cost complementary pair. A simple RC filter on the input of the amplifier to limit the maximum signal slope(SS) is
an effective way to reduce TIM.
The Diagram of Fig.26 originated by SGS can be used to find the Slew-Rate(SR) required for a given output power
or voltage and a TIM design target.
For example if an anti-TIM filter with a cutoff at 30kHz is used and the max. Peak to peak output voltage is 20V then,
referring to the diagram, a Slew-Rate of 6V/µs is necessary for 0.1% TIM.
As shown Slew-Rates of above 10V/µs do not contribute to a further reduction in TIM.
Slew-Rates of 100V/µs are not only useless but also a disadvantage in hi-fi audio amplifiers because they tend to
turn the amplifier into a radio receiver.
POWER SUPPLY
Using monolithic audio amplifier with non regulated supply correctly. In any working case it must provide a supply
voltage less than the maximum value fixed by the IC breakdown voltage.
UTC
UNISONIC TECHNOLOGIES CO., LTD.
11
QW-R107-004,B
UTC TDA2030
LINEAR INTEGRATED CIRCUIT
It is essential to take into account all the working conditions, in particular mains fluctuations and supply voltage
variations with and without load. The UTC2030(Vsmax=44V) is particularly suitable for substitution of the standard
IC power amplifiers(with Vsmax=36V) for more reliable applications.
An example, using a simple full-wave rectifier followed by a capacitor filter, is shown in the table and in the diagram
of Fig.27.
A regulated supply is not usually used for the power output stages because of its dimensioning must be done
taking into account the power to supply in signal peaks. They are not only a small percentage of the total music
signal, with consequently large overdimensioning of the circuit.
Even if with a regulated supply higher output power can be obtained(Vs is constant in all working conditions),the
additional cost and power dissipation do not usually justify its use. using non-regulated supplies, there are fewer
designee restriction. In fact, when signal peaks are present, the capacitor filter acts as a flywheel supplying the
required energy.
In average conditions, the continuous power supplied is lower. The music power/continuous power ratio is greater
in case than for the case of regulated supplied, with space saving and cost reduction.
Fig.27 DC characteristics of
50W non-regulated supply
Ripple
(Vp-p)
Vo(V)
36
34
Ripple
4
32
220V
Vo
2
3300 µF
30
Vout
0
28
0
Mains(220V)
+20%
+15%
+10%
—
-10%
-15%
-20%
UTC
0.4
0.8
1.2
1.6
2.0
Io(A)
Secondary Voltage
28.8V
27.6V
26.4V
24V
21.6V
20.4V
19.2V
DC Output Voltage(Vo)
Io=0
43.2V
41.4V
39.6V
36.2V
32.4V
30.6V
28.8V
Io=0.1A
42V
40.3V
38.5V
35V
31.5V
29.8V
28V
Io=1A
37.5V
35.8V
34.2V
31V
27.8V
26V
24.3
UNISONIC TECHNOLOGIES CO., LTD.
12
QW-R107-004,B
UTC TDA2030
LINEAR INTEGRATED CIRCUIT
SHORT CIRCUIT PROTECTION
The UTC TDA2030 has an original circuit which limits the current of the output transistors. This function can be
considered as being peak power limiting rather than simple current limiting. It reduces the possibility that the device
gets damaged during an accidental short circuit from AC output to Ground.
THERMAL SHUT-DOWN
The presence of a thermal limiting circuit offers the following advantages:
1).An overload on the output (even if it is permanent),or an above limit ambient temperature can be easily supported
since the Tj can not be higher than 150°C
2).The heatsink can have a smaller factor of safety compared with that of a congenital circuit, There is no possibility
of device damage due to high junction temperature increase up to 150, the thermal shut-down simply reduces the
power dissipation and the current consumption.
APPLICATION SUGGESTION
The recommended values of the components are those shown on application circuit of Fig.14. Different values can
be used. The following table can help the designer.
COMPONENT
RECOMMENDED
VALUE
PURPOSE
LARGE THAN
RECOMMENDED
VALUE
LARGE THAN
RECOMMENDED
VALUE
R1
22KΩ
Increase of Gain
Decrease of Gain
R2
680Ω
Decrease of Gain
Increase of Gain
R3
22KΩ
1Ω
R5
≈3R2
Increase of input
impedance
Danger of oscillation
at high frequencies
with inductive loads.
Poor high frequencies
attenuation
Decrease of input
impedance
R4
Closed loop gaon
setting.
Closed loop gaon
setting.
Non inverting input
biasing
Frequency stacility
C1
1µF
C2
22µF
C3,C4
0.1µF
C5,C6
100µF
C7
C8
0.22µF
≈1/(2π*B*R1)
D1,D2
1N4001
UTC
Upper frequency
cutoff
Input DC decoupling
Inverting DC
decoupling
Supply voltage
bypass
Supply voltage
bypass
Frequency stability
Upper frequency
cutoff
To protect the device
against output voltage
spikes.
Dange of oscillation
Increase of low
frequencies cutoff
Increase of low
frequencies cutoff
Dange of oscillation
Dange of oscillation
smaller bandwidth
Larger bandwidth
Larger bandwidth
UNISONIC TECHNOLOGIES CO., LTD.
13
QW-R107-004,B