Data Sheet POWER FACTOR CORRECTION CONTROLLER General Description Features The AP1661 is an active power factor control IC which is designed mainly for use as pre-converter in electronic ballast, AC-DC adapters and off-line SMPS applications. · · · · The AP1661 includes an internal start-up timer for stand-alone applications, a one-quadrant multiplier to realize near unity power factor and a zero current detector to ensure DCM boundary conduction operation. The totem pole output stage is capable of driving power MOSFET with 600mA source current and 800mA sink current. · · · · Designed with advanced BiCMOS process, the AP1661 features low start-up current, low operation current and low power dissipation. The AP1661 also has rich protection features including over-voltage protection, input under-voltage lockout with hysteresis and multiplier output clamp to limit maximum peak current. · AP1661 Zero Current Detection Control for DCM Boundary Conduction Mode Adjustable Output Voltage with Precise OverVoltage Protection Low Start-up Current with 50μA Typical Value Low Operating Supply Current with 4mA Typical Value 1% Precision Internal Reference Voltage Internal Start-up Timer Disable Function for Reduced Current Consumption Totem Pole Output with 600mA Source Current and 800mA Sink Current Capability Under-Voltage Lockout with 2.5V of Hysteresis Applications · · · This IC is available in SOIC-8 and DIP-8 packages. SOIC-8 AC-DC Adapter Off-line SMPS Electronic Ballast DIP-8 Figure 1. Package Types of AP1661 Aug. 2008 Rev. 1. 1 BCD Semiconductor Manufacturing Limited 1 Data Sheet POWER FACTOR CORRECTION CONTROLLER AP1661 Pin Configuration M Package/P Package (SOIC-8/DIP-8) INV 1 8 VCC COMP 2 7 GD MULT 3 6 GND CS 4 5 ZCD Figure 2. Pin Configuration of AP1661 (Top View) Pin Description Pin Number Pin Name 1 INV Function 2 COMP Output of the error amplifier 3 MULT Input of the multiplier 4 CS Inverting input of the error amplifier Input of the current control loop comparator 5 ZCD Zero current detection input. If it is connected to GND, the device is disabled 6 GND Ground. Current return for gate driver and control circuits of the IC 7 GD 8 VCC Gate driver output Supply voltage of gate driver and control circuits of the IC Aug. 2008 Rev. 1. 1 BCD Semiconductor Manufacturing Limited 2 Data Sheet POWER FACTOR CORRECTION CONTROLLER AP1661 Functional Block Diagram COMP MULT 2 INV CS 3 4 1 Multiplier Voltage Regulation VCC Overvoltage Detection 13V 8 R Q S Internal R1 Supply 7.5V 22V VCC 7 GD Driver Vref R2 Zero Current Detector 2.1V 1.6V Starter Enable Disable 6 5 ZCD GND Figure 3. Functional Block Diagram of AP1661 Ordering Information AP1661 - Circuit Type E1: Lead Free G1: Green Package M: SOIC-8 P: DIP-8 TR: Tape and Reel Blank: Tube Package Temperature Range SOIC-8 -40 to 85oC DIP-8 -40 to 85oC Part Number Lead Free Marking ID Green Lead Free Green Packing Type AP1661M-E1 AP1661M-G1 1661M-E1 1661M-G1 Tube AP1661MTR-E1 AP1661MTR-G1 1661M-E1 1661M-G1 Tape & Reel AP1661P-E1 AP1661P-G1 AP1661P-E1 AP1661P-G1 Tube BCD Semiconductor's Pb-free products, as designated with "E1" suffix in the part number, are RoHS compliant. Products with "G1" suffix are available in green packages. Aug. 2008 Rev. 1. 1 BCD Semiconductor Manufacturing Limited 3 Data Sheet POWER FACTOR CORRECTION CONTROLLER AP1661 Absolute Maximum Ratings (Note 1) Parameter Symbol Value Unit Power Supply Voltage VCC 20 V Operating Supply Current ICC 30 mA Driver Output Current IOUT ±800 mA -0.3 to 7 V -0.3 to 7 V Input/Output of Error Amplifier, Input of Multiplier Current Sense Input VINV, VCOMP, VMULT VCS Zero Current Detector Input IZCD Thermal Resistance Junction-Ambient RθJA Power Dissipation and Thermal Characteristics @ TA=50oC PTOT Operating Junction Temperature Storage Temperature Range Lead Temperature (Soldering, 10 Seconds) Source -50 Sink 10 DIP-8 100 SOIC-8 150 DIP-8 1 SOIC-8 0.65 mA oC/W W TJ -40 to150 oC TSTG -65 to 150 oC TLEAD 260 o C ESD (Human Body Model) 3000 V ESD (Machine Model) 300 V Note 1: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability. Aug. 2008 Rev. 1. 1 BCD Semiconductor Manufacturing Limited 4 Data Sheet POWER FACTOR CORRECTION CONTROLLER AP1661 Electrical Characteristics VCC=14.5V, TA=-25oC to 125oC, unless otherwise specified. Parameter Symbol Test Conditions Min Typ Max Unit 11 12 13 V 8.7 9.5 10.3 V 2.2 2.5 2.8 V 20 V 50 90 μA CL=1nF @frequency=70KHz 4 5.5 In OVP condition Vpin1=2.7V 1.4 2.1 2.6 4 mA Under Voltage Lockout Section Turn-on Threshold VCC-ON VCC rising Turn-off Threshold VCC-OFF VCC falling Hysterisis VCC-HYS VCC Operating Range VCC After turn-on 10.3 Total Supply Section Start-up Current Operating Supply Current ISTART-UP ICC Quiescent Current IQ Quiescent Current IQ VCC Zener Voltage VZ VCC=11V before turn-on 20 Vpin5≤150mV, VCC>VCC-OFF mA 1.4 2.1 mA Vpin5≤150mV, VCC<VCC-OFF 20 50 90 μA ICC=20mA 20 22 24 V 2.465 2.5 2.535 Error Amplifier Section Voltage Feedback Input Threshold VINV Line Regulation TA=25 oC 10.3V<VCC<20V VCC=10.3V to 20V Input Bias Current IINV VINV=0V Voltage Gain GV Open Loop Gain Bandwidth GB Output Voltage Output Current 2.44 60 V 2.56 2 5 mV -0.1 -1 μA 80 dB 1 MHz Upper Clamp Voltage VCOMP-H ISOURCE=0.5mA 5.8 Lower Clamp Voltage VCOMP-L ISINK=0.5mA 2.25 Source Current ICOMP-H VCOMP=4V, VINV=2.4V -2 -4 Sink Current ICOMP-L VCOMP=4V, VINV=2.6V 2.5 4.5 V Enable Threshold -8 720 VINV-TH mA mV Multiplier Section Linear Input Voltage Range Output Maximum Slope Gain VMULT ΔVCS/ ΔVMULT k 0 to 3 VMULT: 0 to 0.5V, VCOMP=Upper Clamp Voltage VMULT=1V, VCOMP=4V Aug. 2008 Rev. 1. 1 0 to 3.5 V 1.7 0.45 0.6 0.75 1/V BCD Semiconductor Manufacturing Limited 5 Data Sheet POWER FACTOR CORRECTION CONTROLLER AP1661 Electrical Characteristics (Continued) VCC=14.5V, TA=-25oC to 125oC, unless otherwise specified. Parameter Symbol Test Conditions Min Typ Max Unit -0.05 -1.0 μA Current Sense Section Input Bias Current ICS Current Sense Offset Voltage VCS-OFFSET Current Sense Reference Clamp VCS-CLAMP Delay to Output VCS =0V VMULT=0V 30 VMULT=2.5V 5 VCOMP=Upper Clamp Voltage, VMULT=2.5V 1.6 td(H-L) mV 1.7 1.8 V 200 450 ns Zero Current Detection Section Input Threshold Voltage, VZCD Rising Edge Hysteresis Voltage Upper Clamp Voltage VZCD-R (Note 2) VZCD-RTH (Note 2) 0.3 0.5 0.7 IZCD=20μA 4.5 5.1 5.9 IZCD=3mA 4.7 5.2 6.1 IZCD=-3mA 0.3 0.65 VZCD-H 2.1 V V V Lower Clamp Voltage VZCD-L 1 V Source Current Capability IZCD-SR -3 -10 mA Sink Current Capability IZCD-SN 3 10 mA 250 mV Sink Bias Current IZCD-B Disable Threshold VZCD-DIS Disable Hysterisis VZCD-HYS Restart Current After Disable IZCD-RES 1V≤VZCD≤4.5 V μA 2 150 200 100 VZCD<VDIS; VCC>VCC-OFF -100 -200 mV -300 μA Drive Output Section Dropout Voltage VOH VOL IGD-SOURCE=200 mA, VCC=12V 2.5 3 IGD-SOURCE=20 mA, VCC=12V 2 2.6 IGD-SINK=200 mA, VCC=12V 0.9 1.9 V V Output Voltage Rise Time tR CL=1nF 40 100 ns Output Voltage Fall Time tF CL=1nF 40 100 ns 13 15 V 1.1 V Output Clamp Voltage UVLO Saturation VO-CLAMP VOS IGD-SOURCE=5 mA, VCC=20V 10 VCC=0 to VCC-ON, ISINK=10mA Output Over Voltage Section OVP Triggering Current Static OVP Threshold IOVP 35 40 45 μA VOVP_TH 2.1 2.25 2.4 V tSTART 70 150 400 μs Restart Timer Restart Timer Note 2: Limits over the full temperature are guaranteed by design, but not tested in production. Aug. 2008 Rev. 1. 1 BCD Semiconductor Manufacturing Limited 6 Data Sheet POWER FACTOR CORRECTION CONTROLLER AP1661 Typical Performance Characteristics 6 33.5 33.0 5 Supply Current (mA) 32.5 32.0 IOVP (μA) 31.5 31.0 30.5 30.0 29.5 4 3 2 1 29.0 28.5 -40 0 -20 0 20 40 60 80 100 120 140 0 5 10 15 20 25 Supply Voltage (V) O Temperature ( C) Figure 5. Supply Current vs. Supply Voltage Figure 4. OVP Current Threshold vs. Temperature 12.5 2.550 VCC-ON 2.525 12.0 2.500 Voltage (V) Voltage (v) 11.5 11.0 2.475 2.450 2.425 10.5 2.400 VCC-OFF 10.0 2.375 9.5 -60 -40 -20 0 20 40 60 80 100 120 2.350 -40 140 -20 0 20 40 60 80 100 120 140 O O Temperature ( C) Temperature ( C) Figure 6. Under Voltage Lockout Threshold vs. Temperature Aug. 2008 Rev. 1. 1 Figure 7. Voltage Feedback Input Threshold vs. Temperature BCD Semiconductor Manufacturing Limited 7 Data Sheet POWER FACTOR CORRECTION CONTROLLER AP1661 Typical Performance Characteristics (Continued) 0.0 4.5 4.0 -0.5 3.5 -1.0 Voltage (V) Voltage (V) 3.0 2.5 2.0 1.5 -1.5 -2.0 1.0 -2.5 0.5 0.0 -3.0 0 100 200 300 400 500 0 100 200 Current (mA) 300 400 500 Current (mA) Figure 9. Output Saturation Voltage vs. Source Current Figure 8. Output Saturation Voltage vs. Sink Current 1.8 1.6 1.4 VCOMP=2.6 VCOMP=2.8 VCOMP=3 VCOMP=3.2 VCOMP=3.5 VCOMP=4 VCOMP=4.5 VCOMP=5 VCOMP=MAX VCS (V) 1.2 1.0 0.8 0.6 0.4 0.2 0.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 VMULT (V) Figure 10. Multiplier Characteristics Family Aug. 2008 Rev. 1. 1 BCD Semiconductor Manufacturing Limited 8 Data Sheet POWER FACTOR CORRECTION CONTROLLER Functional Block Description AP1661 is a high performance power factor correction controller which operates in DCM boundary conduction mode. The PFC converter's switch will be turned on when the inductor current reduces to zero and turned off when the sensed inductor current reaches the required reference which is decided by the output of multiplier. The error amplifier regulates the PFC output voltage. The internal reference on the non-inverting input of the error amplifier is 2.5V. The error amplifier's inverting input (INV) is connected to an external resistor divider which senses the output voltage. The output of error amplifier is one of the two inputs of multiplier. A compensation loop is connected outside between INV and the error amplifier output. Normally, the compensation loop bandwidth is set very low to realize high power factor for PFC converter. To make the over voltage protection fast, the internal OVP function is added. If the output over voltage happens, excess current will flow into the output pin of the error amplifier through the feedback compensation capacitor. (see Figure 11) The AP1661 monitors the current flowing into the error amplifier output pin. When the detected current is higher than 40μA, the INV 1 R2 Error Amplifier COMP MULT 2 3 R1 = ΔVOVP 40 μA Multiplier The multiplier has two inputs. One (Pin 3) is the divided AC sinusoidal voltage which makes the current sense comparator threshold voltage vary from zero to peak value. The other input is the output of error amplifier (Pin 2). In this way, the input average current wave will be sinusoidal as well as reflects the load status. Accordingly a high power factor and good THD are achieved. The multiplier transfer character is designed to be linear over a wide dynamic range, namely, 0 V to 3V for Pin 3 and 2.0 V to 5.8 V for Pin 2. The relationship between the multiplier output and inputs is described as below equation. VCS = k × (VCOMP − 2.5) × VMULT where VCS (Multiplier output) is the reference for the current sense, k is the multiplier gain, VCOMP is the voltage on pin 2 (error amplifier output) and VMULT is the voltage on pin 3. I R1 dynamic OVP is trigged. The IC will be disabled and the drive signal is stopped. If the output over voltage lasts so long that the output of error amplifier goes below 2.25V, static OVP will take place. Also the IC will be disabled until the output of error amplifier goes back to its linear region. R1 and R2 (see Fig. 11) will be selected as below: R1 Vo = −1 R 2 2.5V Error Amplifier and Over-Voltage Protection VO AP1661 Driver IOVP Multiplier Current Sense/Current Sense Comparator PWM The PFC switch's turn-on current is sensed through an external resistor in series with the switch. When the sensed voltage exceeds the threshold voltage (the multiplier output), the current sense comparator will become low and the external MOSFET will be turned off. This insures a cycle-by-cycle current mode control operation. The maximum current sense reference is 1.8V. The max value usually happens at startup process or abnormal conditions such as short load. 2.5V 2.25V IOVP 40µA + AP1661 Figure 11. Error Amplifier and OVP Block Aug. 2008 Rev. 1. 1 BCD Semiconductor Manufacturing Limited 9 Data Sheet POWER FACTOR CORRECTION CONTROLLER Functional Block Description (Continued) AP1661 voltage decreases below 1.6V, the gate drive signal becomes high to turn on the external MOSFET. 500mV of hysteresis is provided to avoid false triggering. The ZCD pin can be used for disabling the IC. Making its voltage below 0.15V or short to the ground will disable the device thus reduce the IC supply current consumption. Zero Current Detection AP1661 is a DCM boundary conduction current mode PFC controller. Usually, the zero current detection (ZCD) voltage signal comes from the auxiliary winding of the boost inductor. When the ZCD pin Typical Application L2 160μH L3 D2 MUR460 R1 820K R6 180K L1 500μH C1 220nF/275V R3 1M D1 R7 180K D3 1N4148 F1 2.5A/250V NTC C2 220nF 500V C3 330nF 500V L N Z1 15V R9 68K R4 680K C10 22μF 25V R5 10K JC2 R2 470K C7 680nF R14 12K C8 330nF ZCD COMP JC1 85 to 265V AC GND C6 R8 12nF 100 INV VCC GD MULT CS R13 10 Q1 11N65C3 C9 47μF 450V R10 8.2K GND C4 100nF U1 AP1661 R16 0.33/1W L3: Core type RM10, material 3C90 primary: 660uH, 66 turns of litze wire 0.1mm*30 secondary: 7 turns wire of 0.2mm Figure 12. 85 to 265V Wide Range Input 90W PFC Demo Board Electrical Schematic Circuit Aug. 2008 Rev. 1. 1 BCD Semiconductor Manufacturing Limited 10 Data Sheet POWER FACTOR CORRECTION CONTROLLER AP1661 Mechanical Dimensions DIP-8 Unit: mm(inch) 0.700(0.028) 7.620(0.300)TYP 1.524(0.060) TYP 6° 5° 6° 3.200(0.126) 3.600(0.142) 3.710(0.146) 4.310(0.170) 4° 4° 0.510(0.020)MIN 3.000(0.118) 3.600(0.142) 0.204(0.008) 0.360(0.014) 8.200(0.323) 9.400(0.370) 0.254(0.010)TYP 2.540(0.100) TYP 0.360(0.014) 0.560(0.022) 0.130(0.005)MIN 6.200(0.244) 6.600(0.260) R0.750(0.030) Φ3.000(0.118) Depth 0.100(0.004) 0.200(0.008) 9.000(0.354) 9.400(0.370) Aug. 2008 Rev. 1. 1 BCD Semiconductor Manufacturing Limited 11 Data Sheet POWER FACTOR CORRECTION CONTROLLER AP1661 Mechanical Dimensions (Continued) SOIC-8 4.700(0.185) 5.100(0.201) 7° Unit: mm(inch) 0.320(0.013) 1.350(0.053) 1.750(0.069) 8° 8° 7° 0.675(0.027) 0.725(0.029) D 5.800(0.228) 1.270(0.050) 6.200(0.244) TYP D 20:1 φ 0.800(0.031) 0.300(0.012) R0.150(0.006) 0.100(0.004) 0.200(0.008) 0° 8° 1.000(0.039) 3.800(0.150) 4.000(0.157) 0.330(0.013) 0.190(0.007) 0.250(0.010) 1° 5° 0.510(0.020) 0.900(0.035) R0.150(0.006) 0.450(0.017) 0.800(0.031) Aug. 2008 Rev. 1. 1 BCD Semiconductor Manufacturing Limited 12 BCD Semiconductor Manufacturing Limited http://www.bcdsemi.com IMPORTANT NOTICE IMPORTANT NOTICE BCD Semiconductor BCD Semiconductor Manufacturing Manufacturing Limited Limited reserves reserves the the right right to to make make changes changes without without further further notice notice to to any any products products or or specifispecifications herein. cations herein. BCD BCD Semiconductor Semiconductor Manufacturing Manufacturing Limited Limited does does not not assume assume any any responsibility responsibility for for use use of of any any its its products products for for any any particular purpose, particular purpose, nor nor does does BCD BCD Semiconductor Semiconductor Manufacturing Manufacturing Limited Limited assume assume any any liability liability arising arising out out of of the the application application or or use use of any of any its its products products or or circuits. circuits. BCD BCD Semiconductor Semiconductor Manufacturing Manufacturing Limited Limited does does not not convey convey any any license license under under its its patent patent rights rights or or other rights other rights nor nor the the rights rights of of others. others. MAIN SITE SITE MAIN - Headquarters BCD Semiconductor Manufacturing Limited BCD Semiconductor Manufacturing Limited - Wafer Fab No. 1600, Zi Xing Road, Shanghai ZiZhu Science-basedLimited Industrial Park, 200241, China Shanghai SIM-BCD Semiconductor Manufacturing Tel: Fax: +86-21-24162277 800,+86-21-24162266, Yi Shan Road, Shanghai 200233, China Tel: +86-21-6485 1491, Fax: +86-21-5450 0008 REGIONAL SALES OFFICE Shenzhen OfficeSALES OFFICE REGIONAL - Wafer FabSemiconductor Manufacturing Limited BCD Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd. - IC Design Group 800 Yi Shan Road, Shanghai 200233, China Corporation Advanced Analog Circuits (Shanghai) Tel: +86-21-6485 1491,YiFax: 0008200233, China 8F, Zone B, 900, Shan+86-21-5450 Road, Shanghai Tel: +86-21-6495 9539, Fax: +86-21-6485 9673 Taiwan Office Shanghai Semiconductor Manufacturing Co., Ltd., Shenzhen Office BCD Taiwan Semiconductor Shenzhen SIM-BCD Office Office (Taiwan) Company Limited Unit A Room 1203, Skyworth Bldg., Gaoxin Ave.1.S., Nanshan Shenzhen, 4F, 298-1, Guang Road,(Taiwan) Nei-Hu District, Taipei, Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd.District, Shenzhen Office BCDRui Semiconductor Company Limited China Taiwan Advanced Analog Circuits (Shanghai) Corporation Shenzhen Office 4F, 298-1, Rui Guang Road, Nei-Hu District, Taipei, Tel: +86-755-8826 Tel: +886-2-2656 2808 Room E, 5F, Noble 7951 Center, No.1006, 3rd Fuzhong Road, Futian District, Shenzhen 518026, China Taiwan Fax: +86-755-88267951 7865 Fax: +886-2-2656 28062808 Tel: +86-755-8826 Tel: +886-2-2656 Fax: +86-755-8826 7865 Fax: +886-2-2656 2806 USA Office BCD Office Semiconductor Corp. USA 30920Semiconductor Huntwood Ave.Corporation Hayward, BCD CA 94544, USA Ave. Hayward, 30920 Huntwood Tel :94544, +1-510-324-2988 CA U.S.A Fax:: +1-510-324-2988 +1-510-324-2788 Tel Fax: +1-510-324-2788 BCD Semi Ltd Co. AP1661 Demo Board Manual AP1661 Demo Board Manual Content: 1. Description 2. Specifications 3. Design procedure 4. Schematics of the Demo Board 5. PCB Layout 6. Photo View of the Demo Board 7. BOM 8. Test Result for Typical Performance and Characteristics PROPRIETARY & CONFIDENTIAL ADVANCED ANALOG CIRCUITS CORPORATION PAGE 1 OF 13 BCD Semi Ltd Co. AP1661 Demo Board Manual 1. Description: The AP1661 is an active power factor control IC which is designed mainly for use as pre-converter in electronic ballast and off-line power supply applications. This Demo manual provides the design procedure for a power factor correction demo board circuit and evaluates its performance. 2. Specifications The target specification is as below: AC mains RMS voltage: Vinrms = 85 to 265V DC output regulated voltage: Vo = 395V Rated output power: Po = 90W Minimum switching frequency: fsw(min) = 35kHz Expected efficiency: η> 90% Full load output voltage ripple: ∆VO≤±20V Maximum output overvoltage: ∆VOVP = 50V 3. Design procedure 3.1 power stage design Boost inductor The Boost inductance (L) is usually determined so that the minimum switching frequency is greater than the maximum frequency of the internal starter (15kHz) to ensure a correct DCM boundary Conduction Mode operation. After some algebra, the following instantaneous switching frequency along a line cycle equation can be found: f sw (θ) = (Vo − 2 ⋅ Vin rms ⋅ sin( θ)) ⋅ Vin 2 rms ⋅ η 1 = Ton + Toff 2 ⋅ L ⋅ PO ⋅ Vo (1) The switching frequency will be minimum at the top of the sinusoid, maximum at the zero crossings of the line voltage. The absolute minimum frequency fsw(min) can occur at either the maximum or the minimum mains voltage, thus the inductor value is defined by: L = ( Vo − 2 ⋅ Vin rms ) ⋅ Vin 2 rms ⋅ η 2 ⋅ f sw min ⋅ PO ⋅ Vo (2) where Vinrms can be either Vinrms(min) or Vinrms(max). If we set the minimum switching frequency: fsw(min) = 15kHz, then after calculation according to (2), the Boost inductor value is should be lower than 1.2mH. We choose 660uH in the design. After calculation of the inductance, we should design the inductor. The maxim inductor current is: PROPRIETARY & CONFIDENTIAL ADVANCED ANALOG CIRCUITS CORPORATION PAGE 2 OF 13 BCD Semi Ltd Co. I L max_ peak = AP1661 Demo Board Manual 2 2 ⋅ Vo ⋅ Io η ⋅ Vinrms(min) (3) By AP method, we can select a type of core. Then the inductor primary turns can be calculated according to (4) N= L ⋅ I L max_ peak (4) Bs ⋅ A e The boost inductor winding turns ratio, m, should be selected as following: m≤ Vo − 2 ⋅ Vinrms(max) 2. 1 (5) In this design, we choose RM10/I core with 3C90 ferrite material, which effective area Ae=96.6mm2, Bs=0.3T. The inductor primary is 70 turns of lize wire 30*0.1mm, secondary is 8 tunrs wire of 0.2mm diameter. Output capacitor The output bulk capacitor (Co) selection depends on the DC output voltage, the allowed overvoltage, the output voltage ripple and ripple current on the capacitor. To achieve high power factor, the output voltage feedback control loop is slow. As a result, there is twice the mains frequency fline (100 to 120Hz) voltage ripple across the output capacitor. Besides, high frequency ripple because of Boost converter switching appears on the ESR of the output capacitor. ∆Vo = Io ⋅ 1 + ESR 2 (4π ⋅ f line ⋅ Co ) 2 With a low ESR capacitor, Po Co ≥ 4π ⋅ f line ⋅ Vo ⋅ ∆Vo (6) (7) If the load is resistive, the ripple current of output capacitor is: Ico (rms) = 32 2 ⋅ Po 2 Vo − ( )2 2 9π ⋅ η ⋅ Vinrms ⋅ Vo Ro (8) We choose 47uF/450V electric capacitor as the output capacitor. MOSFET selection MOSFET RMS current is obtained by (9) and the conduction loss of the MOSFET is calculated by (10). The circuit works in DCM boundary conduction Mode, so the MOSFET turn on loss is negligible. MOSFET turn off loss and discharge loss are obtained by (11) and (12) respectively. The switching frequency varies according to the line condition and load condition. Therefore the switching frequency is the average value during a line period. The total MOSFET loss can be calculated by (13). PROPRIETARY & CONFIDENTIAL ADVANCED ANALOG CIRCUITS CORPORATION PAGE 3 OF 13 BCD Semi Ltd Co. I Qrms = I L max_peak ⋅ AP1661 Demo Board Manual 1 4 2Vinrms(min) 2 2 ⋅ Vo ⋅ Io 1 4 2Vinrms(min) − = ⋅ − 6 9πVo η ⋅ Vinrms(min) 6 9πVo 2 Pon = IQrms ⋅ R DS Pturn −off = (9) (10) 2 Vo 2 ⋅ Io 1 Vo ⋅ I L max_ peak ⋅t f ⋅f sw = ⋅t f ⋅f sw ⋅ 3 η ⋅ Vinrms(min) 6 (11) 4 Pdisch arg e = Coss ⋅ Vo 2 ⋅ f sw 3 (12) PMOSFET=Pon+Pturn-off+Pdischarge (13) The temperature rise of MOSFET will be ∆T = Rth j− a ⋅ PMOSFET (14) Boost Diode selection Diode average current can be calculated by (15). The total diode loss can be calculated by (16). IDavg=IOmax (15) PD=Vf IDavg (16) 3.1 Control circuit design 1) Output voltage sensing resistor and feedback loop design The error amplifier regulates the PFC output voltage. The internal reference on the non-inverting input of the error amplifier is 2.5V. The error amplifier’s inverting input (INV) is connected to an external resistor divider which senses the output voltage. The output of error amplifier is one of the two inputs of multiplier. A compensation loop is connected outside between INV and the error amplifier output. Normally, the compensation loop bandwidth is set very low to realize good power factor for PFC converter. To make the over voltage protection fast, the internal OVP function is added. The OVP alarm level current is 40µA. When the OVP is trigged, it will disable the IC and stop the drive signal. R1+ R2 and R10 (see fig.1) will be then selected as follow: R1 + R 2 Vo = −1 R10 2.5V R1 + R 2 = ∆VOVP 40µA (17) In this design, ∆VOVP = 50V, so the calculated value for R1+R2 is 1.25Mohm. We choose R1 820Kohm, R2 470Kohm and R10 value is 8.2Kohm. Generally, the control loop bandwidth of PFC converter is set below 20Hz to eliminate the 100Hz ripple voltage. In the simplest case, this compensation is just a capacitor, which provides a low frequency pole as well as a high DC gain. A simple method to define the capacitance value is to provide ~40dB attenuation at 100Hz: CCOMP = 10 2π ⋅ (R1 + R 2) (18) PROPRIETARY & CONFIDENTIAL ADVANCED ANALOG CIRCUITS CORPORATION PAGE 4 OF 13 BCD Semi Ltd Co. AP1661 Demo Board Manual 2) Line voltage sense resistor design The linear operation of the multiplier is guaranteed inside the range 0 to 3V of VMULT and the range 0 to 1.6V of VCS. The maximum peak value VMULTpk for VMULT, will occur at maximum mains voltage, should be 3V or below. The divider (see fig.13) will be as (19): R3 VMULTpkx = (19) R1 + R 2 2 ⋅ Vinrms(max) 3)current sense resistor design The sense resistor value is calculated as (20): RS ≤ VCSpk (20) I Rspk where VCSpk is the maximum voltage of VCS, can be set 1.6V for linear operation in the whole working range. and: I Rspk = I L max_ peak (21) The power dissipated in Rs, is given by: PRs = Rs ⋅ I Qrms 2 . (22) In this design, we choose Rs=0.33ohm/1W. 4) Zero current detection resistor design The maximum sink current of ZCD pin is 10mA, therefore zero current detection resistor is determined by(23) R8 > Vo m ⋅ 10mA (23) 5) Start-up circuit design The start-up resistor is calculated by (24) R st ≤ Vin ( peak _ min) − VCC _ ON ISTART _ U (24) The start-up capacitor should maintain Vcc voltage higher than the UVLO voltage before the auxiliary winding supplies IC operating current. So the start-up capacitor is calculated by (25). Cst ≥ 4mA 2π ⋅ f line ⋅ 2.5V (25) In this design, VCC_ON is 12V, ISTAR_U is 90uA (max), so the calculated Rst<1.2Mohm. We choose R6 and R7 as 2 180Kohm resistors in series. The start-up capacitor is 47uF. PROPRIETARY & CONFIDENTIAL ADVANCED ANALOG CIRCUITS CORPORATION PAGE 5 OF 13 BCD Semi Ltd Co. .4. AP1661 Demo Board Manual Schematics of the Demo Board The designed demo board electrical schematic is shown in Fig.1 Fig.1 Demo board schematic 5. PCB Layout Figure 2. demo board PCB and Component layout( Top view, real size1 25mm×56mm ) PROPRIETARY & CONFIDENTIAL ADVANCED ANALOG CIRCUITS CORPORATION PAGE 6 OF 13 BCD Semi Ltd Co. AP1661 Demo Board Manual Figure 3. demo board PCB and Component layout( Bottom view, real size 125mm×56mm) 6. Photo View of the Demo Board Figure 4. Photo view of the demo board PROPRIETARY & CONFIDENTIAL ADVANCED ANALOG CIRCUITS CORPORATION PAGE 7 OF 13 AP1661 Demo Board Manual BCD Semi Ltd Co. 7. BOM Part Type Designator Part Type Designator XC 220nF/275V C1 660uH L3 220 nF /500V C2 11N60 Q1 330 nF /500V C3 820K R1 10 nF /25V C4 470K R2 220pF /25V C5 1M R3 12 nF /25V C6 680K R4 680pF /25V C7 10K R5 330nF /25V C8 180K R6, R7 47uF /450V C9 100 R8 47uF /25V C10 68K R9 RS205M D1 8.2K R10 MUR460 D2 1K R12 1N4148 D3 10 R13 Fuse 2.5A/250V F1 12K R14 AC Socket J1 0.33Ohm/1W R16 DC Socket J2 AP1661 U1 500uH L1 18V Z1 160uH L2 5D-9 NTC 8. Test Result for Typical Performance and Characteristics DEMO BOARD EVALUATION RESULTS To evaluate the performance of the PFC demonstration board, the following parameters have been measured: PF (Power Factor), THD (Current Total Harmonic Distortion), ∆ (Peak-to-Peak Output Voltage Ripple), Vo (Output Voltage), η (Efficiency). The demo board evaluation results are as below: 8.1 Performance test results at full load Vinrms Pin Po η Vo ∆Vo PF THD Harmonic (V) (W) (W) (%) (V) (V) (%) passed? 85 98.4 90.93 0.92 388.6 24 0.999 3.5 passed 110 96.4 91.07 0.94 389.2 24 0.999 4.3 passed 150 95.2 91.10 0.96 389.3 24 0.998 4.7 passed 230 94.2 91.03 0.97 389.0 24 0.991 6.3 passed PROPRIETARY & CONFIDENTIAL ADVANCED ANALOG CIRCUITS CORPORATION PAGE 8 OF 13 AP1661 Demo Board Manual BCD Semi Ltd Co. 250 94.1 91.10 0.97 389.3 24 0.987 7.7 passed 265 94.0 91.10 0.97 389.3 24 0.981 9.8 passed PF THD Harmonic (%) passed? 8.2 Performance test results at half load Vinrms Pin Po η Vo ∆Vo (V) (W) (W) (%) (V) (V) 85 49.39 45.96 0.93 389.5 22 0.999 4.52 passed 110 48.98 45.96 0.94 389.5 22 0.998 5.56 passed 150 48.80 45.97 0.94 389.6 22 0.995 7.21 passed 230 48.40 45.91 0.95 389.1 22 0.974 10.36 passed 250 48.60 45.98 0.95 389.7 22 0.963 12.87 passed 265 48.50 46.00 0.95 389.8 22 0.949 13.19 passed PF THD Harmonic (%) passed? 8.3 Performance test results at quarter load Vinrms Pin Po η Vo ∆Vo (V) (W) (W) (%) (V) (V) 85 25.04 22.99 0.92 389.5 21 0.997 5.7 passed 110 25.05 22.99 0.92 389.5 21 0.995 6.85 passed 150 25.23 22.99 0.91 389.6 21 0.984 10.23 passed 230 25.44 23.00 0.90 389.1 21 0.906 13.45 passed 250 25.38 22.99 0.91 389.7 21 0.885 22.2 passed 265 25.45 23.00 0.90 389.8 21 0.875 23.73 passed 8.4 Current waveform and THD analysis input voltage(Ch2) and input current(Ch1) waveform and current harmonics analysis at 230V, 75W input PROPRIETARY & CONFIDENTIAL ADVANCED ANALOG CIRCUITS CORPORATION PAGE 9 OF 13 BCD Semi Ltd Co. AP1661 Demo Board Manual input voltage(Ch2) and input current(Ch1) waveform and current harmonics analysis at 230V, full load 8.5 PFC inductor current waveform PFC inductor current waveform 8.6 Output Voltage Ripple Output Voltage Ripple waveform @ 230V/50Hz, Pout=90W PROPRIETARY & CONFIDENTIAL ADVANCED ANALOG CIRCUITS CORPORATION PAGE 10 OF 13 AP1661 Demo Board Manual BCD Semi Ltd Co. 8.7 Vds and Vgs waveform of MOSFET Vds(Ch1) and Vgs(Ch2) of MOSFET at 85V ac input, full load Vds(Ch1) and Vgs(Ch2) of MOSFET at 265V ac input, full load 8.8 Start up waveform Ch1: Vo at start up Ch2: input current PROPRIETARY & CONFIDENTIAL ADVANCED ANALOG CIRCUITS CORPORATION PAGE 11 OF 13 AP1661 Demo Board Manual BCD Semi Ltd Co. 8.9 Vcs (pin 4 of AP1661) waveform Vcs at 85V ac input, full load 8.10 Efficiency 97 96 efficiency % 95 94 fullload halfload 93 92 91 90 80 100 120 140 160 180 200 220 240 260 280 input voltage Efficiency @ Full Load and Half Load 8.11 Transient Load Response Output from no load to full load Output from full load to no load PROPRIETARY & CONFIDENTIAL ADVANCED ANALOG CIRCUITS CORPORATION PAGE 12 OF 13 BCD Semi Ltd Co. AP1661 Demo Board Manual Nomenclature Ae: the core effective area Bs: maximum saturation flux density IL(peak_max) : maximum inductor current peak value ID : boost diode current IQrms : MOSFET rms current IDavg : diode average current IO : output current Ico(rms) : ripple current of output capacitor RMS value ISTAR_U: IC Start-up Current IRSpk: the maximum current of current sense resistor Vin (rms) : input voltage RMS value Vin (rms_max) : maximum input voltage RMS value Vin (rms_min) : minimum input voltage RMS value Vin (peak_min) : minimum input voltage peak value VCSpk: maximum voltage of VCS Vcc_on: Vcc Turn-on Threshold of IC VO : output voltage ∆VO : output voltage ripple ∆VOVP : maximum output over voltage VCSpk: the maximum voltage of VCS PO : output power Pin : input power η: converter efficiency RST : start up resistance Rs: current sense resistor CST : start up capacitance CCOMP: compensation capacitor of error amplifier ton : switch on time toff : switch off time fline : AC line frequency θ: AC line angular frequency PROPRIETARY & CONFIDENTIAL ADVANCED ANALOG CIRCUITS CORPORATION PAGE 13 OF 13 BCD Semi Ltd Co. 90W AP3101+AP1661 Demo Board Manual Content: 1. Description 2. Specifications 3. Schematics of the PCB 4. PCB Layout 5. Photo View of the Demo Board 6. PCB Dimensions 7. BOM 8. Test Result PROPRIETARY & CONFIDENTIAL ADVANCED ANALOG CIRCUITS CORPORATION PAGE 1 OF 11 BCD Semi Ltd Co. 90W AP3101+AP1661 Demo Board Manual I. Description: This note describes a 90-W off-line flyback AC/DC adapter providing a 19.3-V regulated output at 4.65 A of load current, operating from a universal ac input.. Its electrical specification is tailored on a typical hi-end laptop computer power adapter. The peculiarity of this target design is its extremely low no-load input consumption (<0.6 W). The architecture is based on a two-stage approach: a front-end PFC pre-regulator based on the AP1661 DCMB PFC controller which aims at meeting EN61000-3-2 harmonic emissions requirements and a back-end DC-DC converter in flyback topology which uses AP3101 PWM controller. Moreover, the system is also designed to turn off the PFC stage to make it possible meeting the severe no-load consumption requirement. The AP1661 is a popular IC intended to control PFC pre-regulator by using the boundary mode technique. The most significant features of the AP1661 includes: low power dissipation, OVP, UVLO with hysteresie, internal starter and Zero Current Detection circuit for boundary operation, multiplier for wide range mains applications with excellent THD; The AP3101 flyback Green-Mode Controller, which integrates built-in state of the art energy saving features with high-level protection features to provide cost effective solutions for energy efficient power, supplies. AP3101 provides better protection features, such as leading edge blanking, synchronized slope compensation, over-current, over-temperature and short circuit protection. II. Specifications AC Input Voltage 90VAC~264VAC Rated Output Voltage Typ 19.3V Rated Output Current Typ 4.64A(Max5.2A) Output Ripple Max 300mV Line Regulation Max 0.5%(100mV) Load Regulation Max 5% Standby Power @230Vac Max 0.6W Active Mode Efficiency 0.25,0.5,0.75,1.0(Po) >85% Turn on delay time <1s Short Circuit Protection Yes Over Voltage Protection Yes Over Current Protection Yes Harmonic Pin=75W@230V EN61000-3-2 PROPRIETARY & CONFIDENTIAL ADVANCED ANALOG CIRCUITS CORPORATION PAGE 2 OF 11 BCD Semi Ltd Co. 90W AP3101+AP1661 Demo Board Manual III. Schematic of the Demo Board IV. PCB Layout of the Demo Board PROPRIETARY & CONFIDENTIAL ADVANCED ANALOG CIRCUITS CORPORATION PAGE 3 OF 11 BCD Semi Ltd Co. 90W AP3101+AP1661 Demo Board Manual V. Photo View of the Demo Board 63mm 138mm VI. Photo Bottom View of the Demo Board U1 U6 U4 U5 U1 AP1661, U4 AP3101, U5 AS358, U6 AP4310 PROPRIETARY & CONFIDENTIAL ADVANCED ANALOG CIRCUITS CORPORATION PAGE 4 OF 11 BCD Semi Ltd Co. 90W AP3101+AP1661 Demo Board Manual VII. BOM Part number Discrption Part number Discrption BR1 BRIDGE1,GBL406 R14 10k C1 0.47uF/275V R15 1k C10 10n/25V R16 0.22/1W C11 100n/25V R18 R50 R57 10K C12 C14 22u/35V R19 R26 R28 33K R2 R7 750K C13 2.2n/250V C16,C19 option R21 1K R27 27K R3 1M 10 C2 0.47uF/500V C21 100PF/25V R30 R34 C22 470nF/25V R31 8.2K C23 1nF R32 8K C24 1uF R33 R39 R41 2K C25 0.47UF R35-36 1K C26 330PF R37 R71 R78 100K C27-28 100nF/25V R38 240 C29 C31 1nF/100V R4 680k C3 0.47u R40 2k C30 36nF/25V R42 1.1k C32 22n/25V R43 R51 20K C38 VAR R45 R48 510K C4 220pF/25 R49 R68 47K C40 100n/100V R52 1.5K C5 100u/450V R53 R58-59 120 C6 C20 C36 100n R55 27K C7 0.33u R56 24k R5-6 R46-47 2M C8 C33 1n C9 0.1U/25V R60 40 D12 LED R61 20 D1-2 STPS20H100CTT R62 4.7K D13 DIODE,FR107 R63 50 DIODE,1N4148 R64 6m 0 R67 75K DIODE,STPS1150A,ST R69 120K R72 3000K R73 200k D3,5,7,8,9, D11 D14 D17 D20 DJ3 RJ7 D6 PROPRIETARY & CONFIDENTIAL ADVANCED ANALOG CIRCUITS CORPORATION PAGE 5 OF 11 BCD Semi Ltd Co. 90W AP3101+AP1661 Demo Board Manual Part number Discrption Part number J3 SOCKET L1 CM CHOKE R8 R17 L2 CM CHOKE R9 18K L3 INDUCTOR/260uH RJ2 300 Q1 MOSFET_N, 20N65C3, Infinion RJ3 39K Q10 AZ432,BCD RTH(NTC)1 Q2,3,4 PNP,3906 T1 TRAN-2,TRAN-2 11N65C3,Infinion T2 TRAN-3C,TRAN-3C NPN,3904 U1 AP1661,BCD Q7 NPN,13001,500V U2 PC817-C,SHARP Q8 MOSFET_N,2N7002 U4 AP3101,BCD R1 1M U5 AS358,BCD R1_2 1.5M U6 AP4310.BCD R10 68k ZD1,ZD4-6 ZENER/18V R11 10K ZD3 ZENER,36V R12 R66 30 D16 ZD2 ZENER/16V R13 20k D4 ZENER/18V U3 Triac,BCR1AM06 ZD7 ZENER/3.6V Q5 Q6 Q9 R74 Discrption 56k 100K/1206 5 T1: XFMR Structure Sandwich structure, L1-3: 0.6mH(L1-3 L11-8 L4-6=29:5:6) L11-8: 0.65mH(L11-8 L2-5=:68:8 PROPRIETARY & CONFIDENTIAL ADVANCED ANALOG CIRCUITS CORPORATION PAGE 6 OF 11 90W AP3101+AP1661 Demo Board Manual BCD Semi Ltd Co. VIII. Test Results VIII.1 Line/Load Regulation Input No load Full Load 95V/50Hz 19.363V 19.146V 265V/50Hz 19.369V 19.176V Line Regulation @ No load: Line Regulation @ Full load: Load Regulation @ Vin=85V/50Hz: Load Regulation @ Vin=265V/50Hz: 7mV 30mV 0.8% 1% VIII.2 Output Voltage Ripple Output Voltage Ripple @ 90V/50Hz, Full load Demo Spec Output Ripple(Spec Max<300mV) Test Result @90V, Full load 100mV PROPRIETARY & CONFIDENTIAL ADVANCED ANALOG CIRCUITS CORPORATION PAGE 7 OF 11 90W AP3101+AP1661 Demo Board Manual BCD Semi Ltd Co. Efficiency(%) VIII.3 Efficiency @ Full Load &Peak Load (Test by WT210) 90.5 90.0 89.5 89.0 88.5 88.0 87.5 87.0 86.5 86.0 85.5 Po=90W 70 100 130 160 Po=100W 190 220 250 280 Line Voltage(V) Pin=75W 90Vac 110 Vac 220 Vac 230 Vac 264 Vac THD(%) 4.92 5.06 8.54 9.12 15.42 0.9999 0.9999 0.9524 0.9441 0.8882 PF VIII.4 Efficiency @ Iout=1/4Po~Po 91.0 Efficiency(%) 90.0 89.0 88.0 87.0 86.0 85.0 90V 110V 230V 84.0 83.0 10 30 50 70 90 Output Power(W) PROPRIETARY & CONFIDENTIAL ADVANCED ANALOG CIRCUITS CORPORATION PAGE 8 OF 11 90W AP3101+AP1661 Demo Board Manual BCD Semi Ltd Co. VIII.5 Input Power @ 0W & 0.5W Load Input Power(W) 1.5 1.2 0.9 Po=0W Po=0.5W 0.6 0.3 0 70 100 130 160 190 220 250 280 Line Voltage(V) VIII.6 Turn on delay time 2- BUS Voltage , 1-Output Voltage Demo Spec Turn delay(Spec Max<1S) Test Result @90V, Full load <1s PROPRIETARY & CONFIDENTIAL ADVANCED ANALOG CIRCUITS CORPORATION PAGE 9 OF 11 BCD Semi Ltd Co. 90W AP3101+AP1661 Demo Board Manual VIII.7 Transient Load Response 1kHz,0.1A/uS Full load- no load Vout Single, 0.1A/uS Full load- no load Bus voltage Demo Variant Max(Spec Max<5% VIII.8 Test Result @90V, Iout:Full-no load <5% Protection Over Current Protection 5.6A Over Voltage Protection Pass/23V Short Circuit Protection Pass PROPRIETARY & CONFIDENTIAL ADVANCED ANALOG CIRCUITS CORPORATION PAGE 10 OF 11 BCD Semi Ltd Co. 90W AP3101+AP1661 Demo Board Manual VIII.9 Characterization Results Summary Test Item 1.Input characteristic Specification Test result Standby power@230V ≤0.6W 0.52W Active Mode Efficiency ≥85% >86% Harmonic Class D Pass Line regulation 0.5%(100mV) 30mV Load regulation 5% 1% 300mV 100mV <1s 0.9s 2.Output characterisitc Output Ripple 3.Time sequence Turn on delay time 4.Protection Over current protection 5.6A Over voltage protection Pass Short Circuit protection Pass PROPRIETARY & CONFIDENTIAL ADVANCED ANALOG CIRCUITS CORPORATION PAGE 11 OF 11 BCD Semi Ltd Co. AP1661 2*36W ballast Demo Board Manual Content: 1. Description 2. Specifications 3. Schematics of the Demo Board 4. PCB Layout 5. Photo View of the Demo Board 6. PCB Dimensions 7. BOM 8. Test Result PROPRIETARY & CONFIDENTIAL ADVANCED ANALOG CIRCUITS CORPORATION PAGE 1 OF 9 BCD Semi Ltd Co. AP1661 2*36W ballast Demo Board Manual 1 Description: The AP1661 is an active power factor control IC which is designed mainly for use as pre-converter in electronic ballast and off-line power supply applications. This Demo manual provides a design example of 2*36W lamps ballast using AP1661 for power factor correction circuit and evaluates the demo board performance. 2 Specifications AC Input Voltage 184VAC~265VAC Rated input power Typ Pin = 80W Rated Lamp current Typ Ila=320mA Typ Vo = 395V Power factor Min PF>0.96 Total harmonic distortion Max THD<10% Lamp current crest factor Max CF<1.7 Full Load η> 85% PFC output regulated voltage Efficiency Lamp short circuit protection Lamp open Protection Yes Yes PROPRIETARY & CONFIDENTIAL ADVANCED ANALOG CIRCUITS CORPORATION PAGE 2 OF 9 BCD Semi Ltd Co. AP1661 2*36W ballast Demo Board Manual 3 Schematic of the Demo Board Figure 1. Demo board schematic 4 PCB Layout of the Demo Board Figure 2. demo board PCB and components ( Top view, real size1 275mm×26mm ) Figure 3. demo board PCB layout( Bottom view, real size 275mm×26mm) PROPRIETARY & CONFIDENTIAL ADVANCED ANALOG CIRCUITS CORPORATION PAGE 3 OF 9 BCD Semi Ltd Co. AP1661 2*36W ballast Demo Board Manual 5 Photo View of the Demo Board Figure 4. photo view of the demo board 6 PCB Dimensions 7 BOM Part Type Designator Part Type MOSFET 6N60C Designator X-CAP 220nF/275V C11 C12 Q21 Y-CAP 3.3nF/250V C13 TRANSISTOR 13005 Q31 Q32 220nF/630V C21 TRANSISTOR 9014 Q33 Q34 22uF/450V C22 BT169 Q51 220pF/50V C23 1M R10 1uF/16V C24 680K R11 22uF/50V C25 C51 C52 10K R12 R54 220nF/400V C31 C32 180K R14 R15 100n/250V C33 68K R20 2.7nF/1600V C41 C42 1ohm R21 470pF/1KV C61 20 ohm R23 10nF/50V C62 1Kohm R22 100nF/25V C63 120ohm R24 PROPRIETARY & CONFIDENTIAL ADVANCED ANALOG CIRCUITS CORPORATION PAGE 4 OF 9 AP1661 2*36W ballast Demo Board Manual BCD Semi Ltd Co. 1N4007 D1 D2 D3 D4 D54 820K R26 FR107 D21 D31 D32 D35 470K R27 1N4148 D22 D33 D34 D51 D52 D53 D54 D61 8.2K R28 DB3 DB3 0.33ohm R31 R32 Fuse 3A/250V F1 220K R311 R53 CONNECTOR-3P J1 150K R33 R34 CONNECTOR-7P J2 6.8ohm R35 R37 1mH L11 51ohm R36 R38 18mH L12 10ohm R39 R310 1.5mH L21 39K 10uH L31 1.8mH PTC L32 R51 R52 R55 RING CORE 2:2:2 T1 L41 L42 ZENER 15V Z1 P1 P2 ZENER 27V Z2 8 Test Results To evaluate the performance of the ballast demo board, the following parameters have been measured: Pin (Input Power), Pla (Lamp Power), η (Efficiency), VBus (PFC output DC bus voltage), ∆VBus (PFC output DC bus voltage ripple), PF (Power Factor), THD (Current Total Harmonic Distortion), Ila (Lamp current), CF (Lamp Current Crest Factor). The demo board evaluation results are as below: 8.1 Performance test results at full load Vinrms Pin Pla η VBus ∆VBus (V) (W) (W) (%) (V) (V) 184 79.7 70.5 88.5 394 24 196 79.2 71.0 89.6 394 220 78.6 71.2 90.6 240 78.4 71.3 264 78.3 71.2 PF THD Ila CF (%) (mA) 0.9981 5.8 323 1.52 24 0.9976 5.49 324 1.53 394 24 0.9960 5.65 324 1.54 90.9 394 24 0.9938 6.17 324 1.54 90.9 394 24 0.9907 8.75 324 1.53 PROPRIETARY & CONFIDENTIAL ADVANCED ANALOG CIRCUITS CORPORATION PAGE 5 OF 9 BCD Semi Ltd Co. AP1661 2*36W ballast Demo Board Manual 8.2 Input Current waveform Figure 5. input voltage(Ch1) and input current(Ch2) waveform at 220V AC input 8.3 PFC inductor current waveform Figure 6. PFC inductor current waveform and zoom The PFC inductor works in DCM boundary conduction mode. The inductor current envelop is sine wave. This insures good power factor correction. PROPRIETARY & CONFIDENTIAL ADVANCED ANALOG CIRCUITS CORPORATION PAGE 6 OF 9 BCD Semi Ltd Co. AP1661 2*36W ballast Demo Board Manual 8.4 PFC Output DC BUS Voltage Ripple Figure 7. PFC output DC bus voltage ripple waveform 8.5 Vds and Vgs waveform of PFC MOSFET Figure 8. Vds(Ch1) and Vgs(Ch2) of MOSFET at 220V ac input PROPRIETARY & CONFIDENTIAL ADVANCED ANALOG CIRCUITS CORPORATION PAGE 7 OF 9 BCD Semi Ltd Co. AP1661 2*36W ballast Demo Board Manual 8.6 Start up waveform Figure 9. Ch1: PFC output DC bus voltage at start up Ch2: input current at start up 8.7 Lamp current waveform Figure 10. lamp current waveform PROPRIETARY & CONFIDENTIAL ADVANCED ANALOG CIRCUITS CORPORATION PAGE 8 OF 9 AP1661 2*36W ballast Demo Board Manual BCD Semi Ltd Co. 8.8 Half bridge voltage and current waveform Figure 11. Half bridge midpoint voltage and current waveform The half bridge works in inductive mode. There is enough phase margin to ensure Zero Voltage Switching of the half bridge switches. 8.9 Characterization Results Summary Test Item Specification Test result input power 80W 78-79W Power factor PF>0.96 PF>0.99 Total harmonic distortion THD<10% THD<10% Lamp current Ila=320mA 324mA PFC output regulated voltage Vo = 395V 394V Lamp current crest factor: CF<1.7 CF<1.6 Expected efficiency η> 85% η> 88% Lamp short circuit protection Pass Lamp open Protection Pass PROPRIETARY & CONFIDENTIAL ADVANCED ANALOG CIRCUITS CORPORATION PAGE 9 OF 9 Analog ICS and Power Management Solution Provider AP1661 用于 28V/2.15A LED 照明灯管解决方案 目录 1. 预览………………………………………………………………………………..2 2. 电气规格要求……………………………………………………………………..3 3. 电路原理图………………………………………………………………………..4 4. 物料清单…………………………………………………………………………..5 5. 变压器规格………………………………………………………………………..6 5.1. 原理示意图……………………………………………………………………..6 5.2. 绕制结构图……………………………………………………………………..7 5.3. 材料清单………………………………………………………………………..7 6. PCB Layout………………………………………………………………………..8 7. 测试报告…………………………………………………………………………..8 7.1. 测试项目………………………………………………………………………..9 7.2. 基本电气性能测试……………………………………………………………..9 7.2.1. 基本输出参数测试………………………………………………………9 7.2.2. 输出电压电流波形……………………………………………………....9 7.2.3. 输出纹波……………………………………………………………….....9 7.2.4. 开关机过冲………………………………………………………………10 7.2.5. 开机延迟时间…………………………………………………………....11 7.2.6. 输出上升时间……………………………………………………………11 7.2.7. 输出短路测试……………………………………………………………11 7.2.8. 动态负载测试……………………………………………………………12 7.2.9. 温升测试…………………………………………………………………12 7.3 EMC 测试…………….………………………………………………………...13 7.3.1 传导…………..……………………………………………………..…....13 7.4 THD 测试……………………………………………………………………14-16 1 / 16 Analog ICS and Power Management Solution Provider 一、 预览 特点: 适用范围广:宽输入电压范围 85-265Vac 高效率: 230Vac 输入满载≥90% 高恒流精度:≤±3% 高性价比方案:单级 PFC 拓扑结构 高可靠性:具有过压保护,短路保护,开路保护等 2 / 16 Analog ICS and Power Management Solution Provider 二、 电气规格要求 描述 最小 典型 最大 单位 条件 输入 电压 85 264 V 频率 43 63 Hz PF 0.9 3 W 30.24 V ±10 % 2.25 A 空载最大输入功率 输出 输出电压 28 输出纹波电压 输出电流 2.05 输出功率 (Pno) 2.15 60 20M 带宽 W 效率 常规输入电压,满载 保护 输出短跑保护 输出过压保护 输出开路保护 EMI 85 % 有,自恢复 有,自恢复 有,自恢复 过 EN55015 标准并留有 6dB 裕量 3 / 16 Analog ICS and Power Management Solution Provider 三、 电路原理图 4 / 16 Analog ICS and Power Management Solution Provider 四、 物料清单 No. Component description Part number Qty Supplier 1 IC PWM,AP1661AMTR-E1, SOIC-8 U1 1 BCD 2 3 IC AP4313KTR-E1, SOT23-6 Bridge Rectifier GBU406 4A 600V U3 BR1 1 1 BCD 4 Diode Rectifier 1000V,1A FR107,DO-41 D1 D2 2 5 6 Diode Rectifier 75V 200mA 1N4148 DO-35 FUSE 2A 250V D3 D5 F1 2 1 7 N-Channel Infineon Cool-Mosfet 11N65C3 TO-220 Q1 1 8 NC T1 1 9 Common Choke 30mH T2 1 10 MOV 10D471K MOV1 1 11 PC817 DIP-4 U2 1 12 Schottky Diode MBR20200CT-E1 TO-220-3 D4 1 13 Transformer PQ3220 T4 1 14 Zener 10V Z2 1 15 NC Q2 Z1 T3 3 16 X-Capacitor 100nF/250V C1 1 17 Capacitor CBB 0.68UF/400V C2 1 18 Capacitor Ceramic 10nF/1KV C3 1 19 Y-Capacitor 3300PF/250V CY1 1 20 Capacitor Ceramic 0.1UF/50V 0805 C8 C12 C14 3 21 Capacitor Ceramic 1000PF/100V 0805 C7 C9 C13 3 22 Capacitor Ceramic 0.47UF/50V 0805 C4 C11 2 23 Capacitor Ceramic 0.047UF/50V 0805 C10 1 24 Capacitor Ceramic 0.01UF/50V 0805 C6 1 25 Capacitor Ceramic 10pF/50V 0805 C5 1 26 Capacitor Electrolytic 1000UF/35V EC2 EC3 EC4 EC5 4 27 Capacitor Electrolytic 47UF/50V EC1 1 28 Capacitor Electrolytic 100UF/50V EC6 1 29 Resistor 0.1ohm 3W R22 1 30 Resistor 1Kohm 5% 0805 R20 1 31 Resistor 0.68ohm 5% 1206 R16 R17 R18 3 32 Resistor 1ohm 5% 1206 R23 1 33 Resistor 0ohm 1206 R4 1 34 Resistor 10ohm 5% 0805 R11 1 35 Resistor 10ohm 5% 1206 R21 R27 2 36 Resistor 10ohm 5% 1206 R10 1 37 Resistor 1.5Kohm 1% 0805 R28 1 38 Resistor 2.2Kohm 5% 0805 R34 1 39 Resistor 3Kohm 1% 0805 R12 1 BCD 5 / 16 Analog ICS and Power Management Solution Provider 40 Resistor 4.7Kohm 1% 0805 R14 R25 R32 R36 4 41 Resistor 10Kohm 1% 1206 R38 R39 2 42 Resistor 10Kohm 5% 0805 R26 R30 2 43 Resistor 15Kohm 5% 0805 R24 1 44 Resistor 20Kohm 5% 0805 R13 1 45 Resistor 36Kohm 5% 0805 R29 1 46 Resistor 47Kohm 5% 0805 R41 1 47 Resistor 68Kohm 5% 0805 R15 1 48 Resistor 75Kohm 5% 0805 R31 1 49 Resistor 100Kohm 5% 1W R3 1 50 Resistor 100Kohm 5% 1206 R7 R8 R9 3 51 Resistor 1Mohm 5% 1206 R1 R2 2 52 Resistor 1.5Mohm 5% 1206 R5 R6 2 53 Resistor 1Mohm 5% 0805 R29A 1 54 NC R19 R33 R35 R37 4 Total 72 五、 变压器规格 5.1 电气原理图 No 名称 测量端 测量值 测试条件 测试仪器 HP4277A/ Zehteeh3302/Zeh teeh3252 1 电感量 L1:6-5 470uH f=1KHz,Vos=0.25V 2 漏电感 L1:6-5 20µH Max f=1KHz,Vos=0.25V 短路其它绕组 Zehteeh 3302/ Zehteeh3252 6 / 16 Analog ICS and Power Management Solution Provider 3 4 匝 比 绝缘电阻 N1:N2:N3 48:14:8 / 初级与次级 100MΩ\MIN DC500V、1 分钟 初级与磁芯 100MΩ\MIN DC500V、1 分钟 次级与磁芯 100MΩ\MIN DC500V、1 分钟 抗电强度 PASS 无击穿、飞弧 初级与磁芯 EXTECH 7410 2500VAC 漏电流 5mA 1 分钟 1500VAC 次级与磁芯 5.2 CS2676C/ 3750VAC 漏电流 5mA 1 分钟 初级与次级 5 / 漏电流 5mA 1 分钟 CJ2671/ CS2672C/ EXTECH 7410 绕制结构图 注:上图中由下至上对应骨架为由里至外 1 绕制顺 序 N1 2 N2 8 7 3 4 5 N1 E1 N3 2 3 3 5 序号 起始脚 终止脚 导线规格 6 2 Φ0.5mm *1 Φ0.5mm*2 双重绝缘线 Φ0.5mm*1 屏蔽铜箔 Φ0.2mm*1 4 匝 数 方 式 3Ts 24 14 24 1.2 8 胶带 并绕 3Ts 1.2Ts 1.2Ts 1.2Ts 5.3 材料清单 7 / 16 Analog ICS and Power Management Solution Provider 材料规格 阻燃等级 No. 名称 型号 1 磁芯 PQ3220 2 漆包铜线 UEW 3 骨架 PQ3220 4 绝缘胶带 NO.PF 5 双重绝缘线 6 铜箔 / 7 锡 / SN99.90 / / 8 清漆 8562D 8562D 155℃ E200154 Ф0.5mm Ф0.2mm 酚醛树脂 T375J Ф0.5mm 温度 制造商 安规认证号备注 / / 130℃ E85640(S) 130℃ E59481(S) 180℃ E165111(N) 130℃ E180908 150℃ 六、 PCB 布线 8 / 16 Analog ICS and Power Management Solution Provider 七、 测试报告 7.1 测试项目 NO. 测试项目 1.基本电性能测试 1.1 基本输出参数测试 1.2 输入电压电流波形 1.3 输出纹波 1.4 开关机过冲 1.5 开机延时 1.6 输出上升时间 1.7 输出短路保护 1.8 输出动态负载测试 1.9 温度测试 2. EMC 测试 2.1 传导测试 3. THD 测试 3.1 THD 测试 条件, 规格 判定 满足规格书的要求 满足 满足 满足 满足 满足 满足 满足 满足 满足 输入电压 90V 和 264V,满载 要求≦±10% 输入电压 90V 和 264V,负载空载、满载,要求≦±10% 输入电压 90V 和 264V,满载 要求≦2S 输入电压 90V 和 264V,满载 满足规格书的要求 满足规格书的要求 EN55015 满足 IEC61000-3-2 满足 备注 7.2 基本电气性能指标的测试 7.2.1 基本参数测试 输入电 压(Vac) 满载输入电 流(<1A) 满载输入 功率 (W) 满载 PF 值 (>0.9) 恒压 28V 输出电 流 (2.05~2.25A) 满载效率 (>85%) 空载输出电压 (28.80~30.24V) 满载输出纹 波(2.8Vpp) 90 0.78 69.4 0.936 2.15 86.72% 29.3 1.78 115 0.60 68.1 0.969 2.15 88.71% 29.3 1.72 230 0.30 66.3 0.942 2.15 90.91% 29.3 1.6 264 0.27 66.2 0.913 2.15 90.92% 29.3 1.58 标准:是否满足规格书的要求 判定:满足 7.2.2 输入电压与电流波形 90V输入,满载输出 264V输入,满载输出 9 / 16 Analog ICS and Power Management Solution Provider 7.2.3 输出纹波 90V输入,满载输出 标准:<2.8VDC 264V输入,满载输出 判定:满足 7.2.4 开关机过冲 90V输入,空载输出 264V输入,空载输出 10 / 16 Analog ICS and Power Management Solution Provider 90V输入,满载输出 标准:<30.24VDC 264V输入,满载输出 判定:满足 7.2.5 开机延时 90V输入,满载输出 标准:<2.0S 264V输入,满载输出 判定:满足 7.2.6 输出上升时间 90V输入,满载输出 标准:是否满足规格书的要求 264V输入,满载输出 判定:满足 7.2.7 输出短路保护 测试要求:长期短路后,移除短路保护条件,应能正常工作。 标准:是否满足规格书的要求 判定:满足 11 / 16 Analog ICS and Power Management Solution Provider 7.2.8 输出负载跃变测试 在0%~100%~0%负载时进行负载跃变测试,观察输出电压的变化。电流变化的速率为0.1A/us。电压过冲 最大值小于30.24V。 115V输入,输出满空载跃变 标准:是否满足规格书的要求 264V输入,输出满空载跃变 判定:满足 7.2.9 温度测试 测试条件:恒温 60℃ 恒湿 90% Item U1 (AP1661) BR1 (GBU4K) T4 (PQ3220) Q1 (F10NK60ZFP) D4 (UF1604FCT) 整机工作2H稳定后,记录数据如下表 90Vac 115Vac 230Vac 264Vac 82.1℃ 81.4℃ 85.8℃ 86.7℃ 93.4℃ 88.6℃ 84.7℃ 83.4℃ 113.0℃ 111.2℃ 107.3℃ 104.7℃ 106.2℃ 102.5℃ 95.1℃ 94.7℃ 108.4℃ 104.8℃ 100.4℃ 100.8℃ 12 / 16 Analog ICS and Power Management Solution Provider 7.3 .EMC 传导测试 标准:是否满足EN55015要求,并留有6dB裕量 判定: OK 13 / 16 Analog ICS and Power Management Solution Provider 7.4 THD测试 14 / 16 Analog ICS and Power Management Solution Provider 15 / 16 Analog ICS and Power Management Solution Provider 16 / 16 BCD Semi Ltd Co. AP1661 Demo Board Manual AP1661 Demo Board Manual Content: 1. Description 2. Specifications 3. Design procedure 4. Schematics of the Demo Board 5. PCB Layout 6. Photo View of the Demo Board 7. BOM 8. Test Result for Typical Performance and Characteristics PROPRIETARY & CONFIDENTIAL ADVANCED ANALOG CIRCUITS CORPORATION PAGE 1 OF 13 BCD Semi Ltd Co. AP1661 Demo Board Manual 1. Description: The AP1661 is an active power factor control IC which is designed mainly for use as pre-converter in electronic ballast and off-line power supply applications. This Demo manual provides the design procedure for a power factor correction demo board circuit and evaluates its performance. 2. Specifications The target specification is as below: AC mains RMS voltage: Vinrms = 85 to 265V DC output regulated voltage: Vo = 395V Rated output power: Po = 90W Minimum switching frequency: fsw(min) = 35kHz Expected efficiency: η> 90% Full load output voltage ripple: ∆VO≤±20V Maximum output overvoltage: ∆VOVP = 50V 3. Design procedure 3.1 power stage design Boost inductor The Boost inductance (L) is usually determined so that the minimum switching frequency is greater than the maximum frequency of the internal starter (15kHz) to ensure a correct DCM boundary Conduction Mode operation. After some algebra, the following instantaneous switching frequency along a line cycle equation can be found: f sw (θ) = (Vo − 2 ⋅ Vin rms ⋅ sin( θ)) ⋅ Vin 2 rms ⋅ η 1 = Ton + Toff 2 ⋅ L ⋅ PO ⋅ Vo (1) The switching frequency will be minimum at the top of the sinusoid, maximum at the zero crossings of the line voltage. The absolute minimum frequency fsw(min) can occur at either the maximum or the minimum mains voltage, thus the inductor value is defined by: L = ( Vo − 2 ⋅ Vin rms ) ⋅ Vin 2 rms ⋅ η 2 ⋅ f sw min ⋅ PO ⋅ Vo (2) where Vinrms can be either Vinrms(min) or Vinrms(max). If we set the minimum switching frequency: fsw(min) = 15kHz, then after calculation according to (2), the Boost inductor value is should be lower than 1.2mH. We choose 660uH in the design. After calculation of the inductance, we should design the inductor. The maxim inductor current is: PROPRIETARY & CONFIDENTIAL ADVANCED ANALOG CIRCUITS CORPORATION PAGE 2 OF 13 BCD Semi Ltd Co. I L max_ peak = AP1661 Demo Board Manual 2 2 ⋅ Vo ⋅ Io η ⋅ Vinrms(min) (3) By AP method, we can select a type of core. Then the inductor primary turns can be calculated according to (4) N= L ⋅ I L max_ peak (4) Bs ⋅ A e The boost inductor winding turns ratio, m, should be selected as following: m≤ Vo − 2 ⋅ Vinrms(max) 2. 1 (5) In this design, we choose RM10/I core with 3C90 ferrite material, which effective area Ae=96.6mm2, Bs=0.3T. The inductor primary is 70 turns of lize wire 30*0.1mm, secondary is 8 tunrs wire of 0.2mm diameter. Output capacitor The output bulk capacitor (Co) selection depends on the DC output voltage, the allowed overvoltage, the output voltage ripple and ripple current on the capacitor. To achieve high power factor, the output voltage feedback control loop is slow. As a result, there is twice the mains frequency fline (100 to 120Hz) voltage ripple across the output capacitor. Besides, high frequency ripple because of Boost converter switching appears on the ESR of the output capacitor. ∆Vo = Io ⋅ 1 + ESR 2 (4π ⋅ f line ⋅ Co ) 2 With a low ESR capacitor, Po Co ≥ 4π ⋅ f line ⋅ Vo ⋅ ∆Vo (6) (7) If the load is resistive, the ripple current of output capacitor is: Ico (rms) = 32 2 ⋅ Po 2 Vo − ( )2 2 9π ⋅ η ⋅ Vinrms ⋅ Vo Ro (8) We choose 47uF/450V electric capacitor as the output capacitor. MOSFET selection MOSFET RMS current is obtained by (9) and the conduction loss of the MOSFET is calculated by (10). The circuit works in DCM boundary conduction Mode, so the MOSFET turn on loss is negligible. MOSFET turn off loss and discharge loss are obtained by (11) and (12) respectively. The switching frequency varies according to the line condition and load condition. Therefore the switching frequency is the average value during a line period. The total MOSFET loss can be calculated by (13). PROPRIETARY & CONFIDENTIAL ADVANCED ANALOG CIRCUITS CORPORATION PAGE 3 OF 13 BCD Semi Ltd Co. I Qrms = I L max_peak ⋅ AP1661 Demo Board Manual 1 4 2Vinrms(min) 2 2 ⋅ Vo ⋅ Io 1 4 2Vinrms(min) − = ⋅ − 6 9πVo η ⋅ Vinrms(min) 6 9πVo 2 Pon = IQrms ⋅ R DS Pturn −off = (9) (10) 2 Vo 2 ⋅ Io 1 Vo ⋅ I L max_ peak ⋅t f ⋅f sw = ⋅t f ⋅f sw ⋅ 3 η ⋅ Vinrms(min) 6 (11) 4 Pdisch arg e = Coss ⋅ Vo 2 ⋅ f sw 3 (12) PMOSFET=Pon+Pturn-off+Pdischarge (13) The temperature rise of MOSFET will be ∆T = Rth j− a ⋅ PMOSFET (14) Boost Diode selection Diode average current can be calculated by (15). The total diode loss can be calculated by (16). IDavg=IOmax (15) PD=Vf IDavg (16) 3.1 Control circuit design 1) Output voltage sensing resistor and feedback loop design The error amplifier regulates the PFC output voltage. The internal reference on the non-inverting input of the error amplifier is 2.5V. The error amplifier’s inverting input (INV) is connected to an external resistor divider which senses the output voltage. The output of error amplifier is one of the two inputs of multiplier. A compensation loop is connected outside between INV and the error amplifier output. Normally, the compensation loop bandwidth is set very low to realize good power factor for PFC converter. To make the over voltage protection fast, the internal OVP function is added. The OVP alarm level current is 40µA. When the OVP is trigged, it will disable the IC and stop the drive signal. R1+ R2 and R10 (see fig.1) will be then selected as follow: R1 + R 2 Vo = −1 R10 2.5V R1 + R 2 = ∆VOVP 40µA (17) In this design, ∆VOVP = 50V, so the calculated value for R1+R2 is 1.25Mohm. We choose R1 820Kohm, R2 470Kohm and R10 value is 8.2Kohm. Generally, the control loop bandwidth of PFC converter is set below 20Hz to eliminate the 100Hz ripple voltage. In the simplest case, this compensation is just a capacitor, which provides a low frequency pole as well as a high DC gain. A simple method to define the capacitance value is to provide ~40dB attenuation at 100Hz: CCOMP = 10 2π ⋅ (R1 + R 2) (18) PROPRIETARY & CONFIDENTIAL ADVANCED ANALOG CIRCUITS CORPORATION PAGE 4 OF 13 BCD Semi Ltd Co. AP1661 Demo Board Manual 2) Line voltage sense resistor design The linear operation of the multiplier is guaranteed inside the range 0 to 3V of VMULT and the range 0 to 1.6V of VCS. The maximum peak value VMULTpk for VMULT, will occur at maximum mains voltage, should be 3V or below. The divider (see fig.13) will be as (19): R3 VMULTpkx = (19) R1 + R 2 2 ⋅ Vinrms(max) 3)current sense resistor design The sense resistor value is calculated as (20): RS ≤ VCSpk (20) I Rspk where VCSpk is the maximum voltage of VCS, can be set 1.6V for linear operation in the whole working range. and: I Rspk = I L max_ peak (21) The power dissipated in Rs, is given by: PRs = Rs ⋅ I Qrms 2 . (22) In this design, we choose Rs=0.33ohm/1W. 4) Zero current detection resistor design The maximum sink current of ZCD pin is 10mA, therefore zero current detection resistor is determined by(23) R8 > Vo m ⋅ 10mA (23) 5) Start-up circuit design The start-up resistor is calculated by (24) R st ≤ Vin ( peak _ min) − VCC _ ON ISTART _ U (24) The start-up capacitor should maintain Vcc voltage higher than the UVLO voltage before the auxiliary winding supplies IC operating current. So the start-up capacitor is calculated by (25). Cst ≥ 4mA 2π ⋅ f line ⋅ 2.5V (25) In this design, VCC_ON is 12V, ISTAR_U is 90uA (max), so the calculated Rst<1.2Mohm. We choose R6 and R7 as 2 180Kohm resistors in series. The start-up capacitor is 47uF. PROPRIETARY & CONFIDENTIAL ADVANCED ANALOG CIRCUITS CORPORATION PAGE 5 OF 13 BCD Semi Ltd Co. .4. AP1661 Demo Board Manual Schematics of the Demo Board The designed demo board electrical schematic is shown in Fig.1 Fig.1 Demo board schematic 5. PCB Layout Figure 2. demo board PCB and Component layout( Top view, real size1 25mm×56mm ) PROPRIETARY & CONFIDENTIAL ADVANCED ANALOG CIRCUITS CORPORATION PAGE 6 OF 13 BCD Semi Ltd Co. AP1661 Demo Board Manual Figure 3. demo board PCB and Component layout( Bottom view, real size 125mm×56mm) 6. Photo View of the Demo Board Figure 4. Photo view of the demo board PROPRIETARY & CONFIDENTIAL ADVANCED ANALOG CIRCUITS CORPORATION PAGE 7 OF 13 AP1661 Demo Board Manual BCD Semi Ltd Co. 7. BOM Part Type Designator Part Type Designator XC 220nF/275V C1 660uH L3 220 nF /500V C2 11N60 Q1 330 nF /500V C3 820K R1 10 nF /25V C4 470K R2 220pF /25V C5 1M R3 12 nF /25V C6 680K R4 680pF /25V C7 10K R5 330nF /25V C8 180K R6, R7 47uF /450V C9 100 R8 47uF /25V C10 68K R9 RS205M D1 8.2K R10 MUR460 D2 1K R12 1N4148 D3 10 R13 Fuse 2.5A/250V F1 12K R14 AC Socket J1 0.33Ohm/1W R16 DC Socket J2 AP1661 U1 500uH L1 18V Z1 160uH L2 5D-9 NTC 8. Test Result for Typical Performance and Characteristics DEMO BOARD EVALUATION RESULTS To evaluate the performance of the PFC demonstration board, the following parameters have been measured: PF (Power Factor), THD (Current Total Harmonic Distortion), ∆ (Peak-to-Peak Output Voltage Ripple), Vo (Output Voltage), η (Efficiency). The demo board evaluation results are as below: 8.1 Performance test results at full load Vinrms Pin Po η Vo ∆Vo PF THD Harmonic (V) (W) (W) (%) (V) (V) (%) passed? 85 98.4 90.93 0.92 388.6 24 0.999 3.5 passed 110 96.4 91.07 0.94 389.2 24 0.999 4.3 passed 150 95.2 91.10 0.96 389.3 24 0.998 4.7 passed 230 94.2 91.03 0.97 389.0 24 0.991 6.3 passed PROPRIETARY & CONFIDENTIAL ADVANCED ANALOG CIRCUITS CORPORATION PAGE 8 OF 13 AP1661 Demo Board Manual BCD Semi Ltd Co. 250 94.1 91.10 0.97 389.3 24 0.987 7.7 passed 265 94.0 91.10 0.97 389.3 24 0.981 9.8 passed PF THD Harmonic (%) passed? 8.2 Performance test results at half load Vinrms Pin Po η Vo ∆Vo (V) (W) (W) (%) (V) (V) 85 49.39 45.96 0.93 389.5 22 0.999 4.52 passed 110 48.98 45.96 0.94 389.5 22 0.998 5.56 passed 150 48.80 45.97 0.94 389.6 22 0.995 7.21 passed 230 48.40 45.91 0.95 389.1 22 0.974 10.36 passed 250 48.60 45.98 0.95 389.7 22 0.963 12.87 passed 265 48.50 46.00 0.95 389.8 22 0.949 13.19 passed PF THD Harmonic (%) passed? 8.3 Performance test results at quarter load Vinrms Pin Po η Vo ∆Vo (V) (W) (W) (%) (V) (V) 85 25.04 22.99 0.92 389.5 21 0.997 5.7 passed 110 25.05 22.99 0.92 389.5 21 0.995 6.85 passed 150 25.23 22.99 0.91 389.6 21 0.984 10.23 passed 230 25.44 23.00 0.90 389.1 21 0.906 13.45 passed 250 25.38 22.99 0.91 389.7 21 0.885 22.2 passed 265 25.45 23.00 0.90 389.8 21 0.875 23.73 passed 8.4 Current waveform and THD analysis input voltage(Ch2) and input current(Ch1) waveform and current harmonics analysis at 230V, 75W input PROPRIETARY & CONFIDENTIAL ADVANCED ANALOG CIRCUITS CORPORATION PAGE 9 OF 13 BCD Semi Ltd Co. AP1661 Demo Board Manual input voltage(Ch2) and input current(Ch1) waveform and current harmonics analysis at 230V, full load 8.5 PFC inductor current waveform PFC inductor current waveform 8.6 Output Voltage Ripple Output Voltage Ripple waveform @ 230V/50Hz, Pout=90W PROPRIETARY & CONFIDENTIAL ADVANCED ANALOG CIRCUITS CORPORATION PAGE 10 OF 13 AP1661 Demo Board Manual BCD Semi Ltd Co. 8.7 Vds and Vgs waveform of MOSFET Vds(Ch1) and Vgs(Ch2) of MOSFET at 85V ac input, full load Vds(Ch1) and Vgs(Ch2) of MOSFET at 265V ac input, full load 8.8 Start up waveform Ch1: Vo at start up Ch2: input current PROPRIETARY & CONFIDENTIAL ADVANCED ANALOG CIRCUITS CORPORATION PAGE 11 OF 13 AP1661 Demo Board Manual BCD Semi Ltd Co. 8.9 Vcs (pin 4 of AP1661) waveform Vcs at 85V ac input, full load 8.10 Efficiency 97 96 efficiency % 95 94 fullload halfload 93 92 91 90 80 100 120 140 160 180 200 220 240 260 280 input voltage Efficiency @ Full Load and Half Load 8.11 Transient Load Response Output from no load to full load Output from full load to no load PROPRIETARY & CONFIDENTIAL ADVANCED ANALOG CIRCUITS CORPORATION PAGE 12 OF 13 BCD Semi Ltd Co. AP1661 Demo Board Manual Nomenclature Ae: the core effective area Bs: maximum saturation flux density IL(peak_max) : maximum inductor current peak value ID : boost diode current IQrms : MOSFET rms current IDavg : diode average current IO : output current Ico(rms) : ripple current of output capacitor RMS value ISTAR_U: IC Start-up Current IRSpk: the maximum current of current sense resistor Vin (rms) : input voltage RMS value Vin (rms_max) : maximum input voltage RMS value Vin (rms_min) : minimum input voltage RMS value Vin (peak_min) : minimum input voltage peak value VCSpk: maximum voltage of VCS Vcc_on: Vcc Turn-on Threshold of IC VO : output voltage ∆VO : output voltage ripple ∆VOVP : maximum output over voltage VCSpk: the maximum voltage of VCS PO : output power Pin : input power η: converter efficiency RST : start up resistance Rs: current sense resistor CST : start up capacitance CCOMP: compensation capacitor of error amplifier ton : switch on time toff : switch off time fline : AC line frequency θ: AC line angular frequency PROPRIETARY & CONFIDENTIAL ADVANCED ANALOG CIRCUITS CORPORATION PAGE 13 OF 13