ETC LNK584

LNK584
LinkZero-AX
™
零待机功耗的集成离线式开关IC
产品特色
零待机功耗实现最低系统成本
•
+
+ DC
PIN <0.00 W at
325 VDC in
Power Down Mode
系统配置简单,通过用户控制的唤醒功能即可实现零待机/
Output
断电功耗
•
非常严格的IC参数容差可提高系统制造良品率
•
适合低成本无箝位设计
•
频率调制技术可极大降低EMI滤波元件的成本
•
增大的封装爬电距离可提高系统的应用可靠性
Wide Range
High-Voltage
DC Input
D
LinkZero-AX
迟滞热关断保护-自动恢复功能降低了电源从故障现场的回收
•
通用输入范围可在全世界范围内使用
•
自动重启动功能在短路及开环电路故障状况下可将输出功率
降低85%以上
•
简单的ON/OFF控制,无需环路补偿
•
高带宽提供了快速的无过冲启动
EcoSmart™ – 高效节能
•
在325VDC输入下待机/断电功耗低于3mW(注释1)
•
无需增加任何元件,轻松满足全球所有的节能标准
•
ON/OFF控制可在极轻负载时具备恒定的效率
应用
•
超低功耗隔离式或非隔离式待机及辅助电源
说明
LinkZero-AX可设计出业界使用元件数最少的待机电源,并实现极
Power
Down
Pulse
≥2.5 ms
S
CBP
先进的保护/安全特性
•
FB
BP/M
Reset/Wake
Up Pulse
CBP <1.5 V
PI-5909-100410
图1.典型应用电路图
输出功率表
产品3
230VAC±15%
2
85-265VAC
敞开式
敞开式2
LNK584GG
3W
3W
LNK584DG
3W
3W
表1.输出功率表
注释:
1. IEC62301第4.5条规定低于5mW的待机功率为零功耗。
2. 最大的实际持续输出功率是在敞开式设计及有足够的散热、环境温度为50ºC
的条件下测量得到的。
3. 封装:D:SO-8C,G:SMD-8C。
低的待机/断电功耗。该器件在230 VAC下的断电功耗(PD)低于3
mW,符合IEC 62301定义的零功耗标准,并且在大部分功率表
中都无法测量出来。LinkZero-AX使用外部信号进入断电模式,将
反馈引脚拉高2.5ms。此类信号可由系统微控制器或红外控制器
生成。在断电模式下,旁路引脚仍维持调整,通过复位脉冲将旁
路引脚拉低到复位阈值以下,即可将LinkZero-AX唤醒。因此,不
需要使用继电器断开输入电压就能实现超低系统功耗。
LinkZero-AX专门用于设计隔离式或非隔离式转换器。无论设计哪
种转换器,严格指定的反馈(FB)引脚电压参考都能实现通用输入
下在初级侧稳压的电源,以经济高效的方式替换非稳压线性变压
器和其他开关电源。启动及工作时的功率直接来自于漏极引脚。
通过内部振荡器频率的抖动大大降低了准峰值和平均值的EMI,
从而降低滤波器成本。
www.powerint.com
2010年10月
LNK584
BYPASS/
MULTI FUNCTION
(BP/M)
PU
GENERATOR
FEEDBACK REF
1.70 V
OPEN LOOP
PULL UP
OVERVOLTAGE
PROTECTION
+
+
3V
6.45 V
5.85 V
4.85 V
+
AUTO-RESTART
COUNTER
FEEDBACK
(FB)
RESET
+
DRAIN
(D)
REGULATOR
5.85 V
+
BYPASS PIN
UNDERVOLTAGE
-
FAULT
CURRENT LIMIT
+
JITTER
-
VI
0.9 V
LIMIT
CLOCK
CC CUT BACK
1.70 V - 0.9 V
ADJ
DCMAX
S
Q
R
Q
OSCILLATOR
SYSTEM
POWER
DOWN
POWER
DOWN
COUNTER
160 fOSC
CYCLES
RESET
LEADING
EDGE
BLANKING
PU
PI-5912-090810
SOURCE
(S)
图2.功能结构图
引脚功能描述
漏极(D)引脚:
功率MOSFET的漏极连接点。在启动、稳态和断电模式工作时
G Package (SMD-8C)
D Package (SO-8C)
提供内部操作电流。
旁路/多功能(BP/M)引脚:
一个0.1μF或更大的外部旁路电容连接到这个引脚,用于生成内
BP/M
1
FB
2
部的5.85V供电电源。为维持内部电路工作,电容的最小值应为
D
7
S
5
4
止MOSFET开关。
3a
反馈(FB)引脚:
BP/M
FB
1
8
2
7
6
S
S
D
4
5
S
S
S
S
3b
PI-5910-090810
在正常工作下,功率MOSFET的开关由此引脚控制。当一个高
于内部VFB参考电压的电压施加到该引脚时,MOSFET开关将被
S
6
0.1μF。在进入断电模式时则需要更高的电容值(参见应用指南
部分)。如果该引脚上的电压升高到6.45V以上,过压保护将禁
8
图3.引脚配置
禁止。VFB的参考电压内部设置在1.70 V。当反馈引脚电压降至
0.9V时,LinkZero-AX进入自动重启动模式。
源极(S)引脚:
这个引脚是功率MOSFET的源极连接点。它也是旁路和反馈引
脚的接地参考。
2
版本A10/10
www.powerint.com
LNK584
LinkZero-AX功能描述
输出功率限制
LinkZero-AX在一片晶圆上包括一个700 V的功率MOSFET开关及
当反馈引脚电压在满载条件下降低到1.70V以下时,振荡器频率
一个电源控制器。与通常的PWM(脉冲宽度调制)控制器不同,
开始线性下降,到自动重启动阈值电压0.9V时频率通常会降到
它使用了一个简单的ON/OFF控制来调节输出电压。这个控制
60%的水平上。这一功能可限定电源的输出电流及输出功率。
器包括一个振荡器、反馈(感测及逻辑)电路、5.85V稳压器、
5.85 V稳压器
旁路引脚欠压电路、过热保护、频率抖动、电流限流电路及前沿
只要MOSFET处在关断状态,5.85 V稳压器就会从漏极吸收电流,
消隐功能。此外,该控制器还采用了拥有专利的断电模式,可自
动将待机功耗降至大部分功率表都难以测量的超低水平。
将连接到旁路引脚的旁路电容充电到5.85V。旁路引脚是内部供
电电压节点。当MOSFET导通时,器件使用存储在旁路电容中
断电模式
的能量。内部电路极低的功率耗散使LinkZero-AX可使用从漏极
内部控制器在跳过160个开关周期后将进入断电模式。出现这一
吸收的电流持续工作。一个0.1µF的旁路电容就足够实现高频率
情况的原因是:反馈引脚在接收到外部断电脉冲信号后被拉
高,或者变压器上的总负载(输出负载加上反馈电路负载)被
的去耦及能量存储。
降至满载的约0.6%,即出现轻载条件。器件然后以超低功耗模
6.45 V箝位及分流稳压器
式工作,此时开关被完全禁止。当旁路引脚被拉低到1.5V以下,
另外,当有电流从外部提供给旁路引脚时,一个6.45V的分流稳
然后释放并通过与内部漏极相连的5.85V稳压器电路(见图2)
压箝位电路会将旁路引脚电压箝在6.45V。在非隔离设计中,这
重新充电时,控制器被唤醒(或复位)。当旁路电容对旁路引
有助于通过电阻从偏置绕组或电源输出端对器件进行外部供
脚充电到阈值VBP时,器件开始开关并正常工作。如果反馈引脚
电,从而降低器件功耗并提高电源效率。
拉高并再次跳过160个周期,器件将返回上述断电模式工作。
振荡器
6.45V分流稳压器只在正常工作模式下带有负载。在断电模式下,
典型的振荡器频率内部设置在100kHz的平均水平。一个内部电
电压较高时(典型值为8.5V)第二箝位将对旁路引脚进行箝位。
路会检测MOSFET开关导通时间的占空比并调整振荡器的频
率,以使振荡器频率在较长的导通间隔(低输入电压)内达到
约100kHz,在较短的导通间隔(高输入电压)内达到约78kHz。
进行这种内部频率调整是为了让峰值功率点始终高于输入电
旁路引脚欠压保护
旁路引脚欠压电路在旁路引脚电压下降到4.85V以下时关断功率
MOSFET。一旦旁路引脚电压下降到4.85V以下,它就必须上升
压。此振荡器产生两个信号:最大占空比信号(DCMAX)及显示每
回5.85V才能重新导通功率MOSFET。
个开关周期开始的时钟信号。
旁路引脚过压保护
振荡器具有的电路可导入少量的频率抖动,通常为6%的开关频
率以将EMI降低到最小。频率抖动的调制速率设置在1 kHz的水
平,目的是降低平均及准峰值的EMI,并给予优化。频率抖动与
如果旁路引脚的电压被拉升到6.45V以上且分流稳压器中的电流
超过6.5mA,将设定锁存,功率MOSFET将停止开关。要对此锁
存进行复位,必须将旁路引脚的电压拉低到1.5V以下。
振荡器频率成正比,测量时应把示波器触发设定在漏极电压波
过热保护
形的下降沿来测量。当反馈引脚电压降到1.70V以下时,振荡器
热关断电路检测结的温度。阈值设置在142°C并具备70°C的迟
频率将逐渐降低。
滞范围。当结温度超过这个阈值(142°C),功率MOSFET开关被
反馈输入电路恒压模式
禁止,直到结温度下降70°C,MOSFET才会重新使能。
反馈输入电路的参考电压设置在1.70V。当反馈引脚电压达到VFB
电流限流点
参考电压(1.70 V)时,反馈电路的输出端会产生一个低逻辑电平
(禁止)。在每个周期开始时,对输出进行采样。如果高,功
率MOSFET会在那个周期导通(使能),否则功率MOSFET将仍
电流限流电路检测功率MOSFET的电流。当电流超过内部阈值
(I LIMIT )时,在该周期剩余阶段会关断功率MOSFET。在功率
处于关断状态(禁止)。由于采样仅在每个周期开始时进行,
MOSFET导通后,前沿消隐电路会将电流限流比较器抑制片刻
此周期中随后产生的反馈引脚电压的变化对MOSFET状态都不
(tLEB)。通过设置前沿消隐时间,可以防止由电容及整流管反向恢
构成影响。
复时间产生的电流尖峰引起导通的MOSFET提前误关断。
3
www.powerint.com
版本A10/10
LNK584
自动重启动
型滤波器得以实现。LinkZero-AX具有专利的频率抖动功能,无
一旦出现故障,比如输出短路,LinkZero-AX进入自动重启动
需使用任何Y电容或共模电感。绕线式电阻RF1属于可熔阻燃型
操作。每当反馈引脚电压超过反馈引脚的自动重启动阈值电压
电阻,也可以用作保险丝来限定浪涌电流。对于输入电压高于
(VFB(AR))的典型值0.9 V时,一个由振荡器计时的内部计数器会进
132VAC的设计,建议使用绕线式电阻,以便在首次施加交流电
行复位。如果反馈引脚电压下降到VFB(AR)并超过了145 ms到170 ms
时能够承受瞬时功耗。
(具体取决于输入电压大小),功率MOSFET开关被禁止。
自动重启动电路以一个12%典型占空比对功率MOSFET进行交
输出电压直接通过反馈电阻R3和R9进行检测,并由LinkZero-AX
替使能和禁止,直到故障排除为止。
(U1)通过反馈引脚进行调整。电容C7对反馈引脚提供高频滤波,
以进行噪声滤波并避免开关周期脉冲束流。U1中的控制器通过
反馈引脚开环情况
反馈电阻R9和R3接收来自输出端的反馈,并根据该反馈使能或
当检测到反馈引脚的开环情况时,内部电流源会将反馈引脚电
压拉升到VFB(1.70 V)以上,器件停止开关,并在160个时钟周期
后进入锁存断电模式。
禁止其集成MOSFET的开关,以维持输出电压的稳定。一旦超出
反馈引脚阈值电压(1.70V),将跳过开关周期。当反馈引脚电压
低于禁止阈值(1.70V)时,开关周期将重新使能。通过调整使能
应用范例
与禁止开关周期的比例,可以调整输出电压。当加重的负载超出
输出峰值功率值时(跳过所有开关周期),反馈引脚电压开始随
图4所示为一个使用LinkZero-AX设计的典型非隔离式5 V、300 mA
电源输出电压的下降而降低。在这种情况下,开关频率也将下
输出辅助电源的电路图。隔离式设计也可以与LinkZero-AX完全
降,以限制最大输出过载功率。当反馈引脚电压下降到低于自动
兼容,因为反馈引脚接收来自初级反馈/偏置绕组的信号或通过
重启动阈值(反馈引脚通常为0.9V)时,电源进入自动重启动
光耦器接收信号。图4电路是白色家电产品应用中常用的辅助电
模式。在此模式下,电源将关断约1.2s,然后重新导通约170ms。
源,通常不要求隔离。AC输入差模滤波可由C1、C2和L3形成的π
自动重启动功能可在输出短路情况下减小平均输出电流。
C4
R8 220 pF
5.1 Ω 100 V
L3
1 mH
D6
SS15
R2
4.7 kΩ
D1
1N4007
L4
1.8 µH
T1
3 EE16 8
D2
1N4007
1
10
C6
220 µF
25 V
C9
330 nF
50 V
C1
3.3 µF
400 V
R9
1 kΩ
1%
LinkZero-AX
U1
LNK584DG
C2
3.3 µF
400 V
D
Q1
MMBT3904
FB
BP/M
R16
750 Ω
S
D3
1N4007
5 V, 300 mA
RTN
RF1
10 Ω
2W
85 - 265
VAC
C8
R13 56 µF
510 Ω 16 V
R12
20 kΩ
D4
1N4007
C5
150 nF
25 V
C10
47 µF
25 V
C7
1 nF
50 V
R3
511 Ω
1%
PD Set
Q2
MMBT3904
SW1
R10
20 kΩ
R4
10 kΩ
R14 PD Reset
2 kΩ
RTN
PI-6121-092010
图4.非隔离式1.5W,5V,300mA,0.00W待机功耗电源的电路图
4
版本A10/10
www.powerint.com
LNK584
LinkZero-AX器件通过漏极引脚进行自偏置。在非隔离式设计
使用低值反馈引脚电容来充当假负载。反馈电阻的建议值大小应
中,可选外部偏置可来自第三层绕组,也可来自输出电压母线。
能够吸收约1%的满载电流。最后,可以将一个电容与电压端反
通过提供超过IS2(LNK584为310μA)的外部供电电流,可使内
馈电阻并联,用来提高环路的速度(图4中的C9)。
部5.85V稳压器电路关断,这样能迅速降低器件温度和提升效率,
在高压下特别有效。
这些建议适用于满载,可使瞬时负载降至零。对于负载范围更
为有限的应用来说,可能不用将假负载及电容与高压端反馈电
由于器件采用了流限调节技术,使得限流点容差非常精确,
同时采用了专利的变压器结构技术,得以在初级电路中实现无
箝位电路的设计。因此,峰值漏极电压在265VAC输入时可以控
制在550V以下,对700V耐压(BVDSS)的MOSFET来说具有非常大
的裕量。
阻并联。
布局注意事项
LinkZero-AX PCB板布局的注意事项
布局
输出的整流滤波由输出整流管D6和滤波电容C6来实现。由于自
参见图5LinkZero-AX(U1)的推荐电路板布局。
动重启动特性,平均短路输出电流大大低于1A,因而可以使用低
单点接地
电流额定值和低成本的整流管D6。输出电路只要能处理电源输出
在输入滤波电容与连接源极引脚的铜铂区域使用一个单一接地
短路时的持续短路电流就可以了。本设计在电源输出端使用了一
点(Kelvin)。
个假负载电阻R13,以防止在负载断开时自动触发断电模式。
旁路电容(CBP)、反馈引脚噪声滤波电容(CFB)及反馈电阻
LinkZero-AX断电(PD)模式设计指南
为减小环路面积,这两个电容的物理位置应分别尽量接近旁路
LinkZero-AX会在跳过160个连续开关周期后进入断电模式。这种
扰,反馈电阻RFB1和RFB2应靠近反馈引脚放置。
和源极引脚,以及反馈和源极引脚。另请注意,为降低噪声干
情况发生在输出负载过低或反馈引脚被拉高(例如,通过图4中
的Q1和R16)的条件下。旁路引脚电容的值必须足够高,才能在
超过160个开关周期的时长内维持足够的电流流经R16,从而成
初级环路面积
连接输入滤波电容、变压器初级及LinkZero-AX的初级环路面积
应尽可能小。
功触发断电模式。在低输入电压(90VAC)下,当内部振荡器频率
为100kHz时,160个开关周期的时长约为1.6ms。然而,随着输
入电压的升高,内部振荡器频率将逐渐降低,以使最大输出功率
保持相对稳定。因此在高压(265VAC)下,内部振荡器频率可低
至78 kHz(参见参数表注释C)。因此,为了提供足够的裕量以
确保触发断电模式,建议断电脉冲(见图1)应为2.5ms(80kHz
初级箝位电路
可以使用一个外部箝位来控制MOSFET在关断状态时漏极引脚
的峰值电压。在初级绕组上使用一个RCD箝位或一个齐纳稳压
管(~200V)及二极管箝位即能够实现。在任何情况下,为改善
EMI,从箝位元件到变压器再到LinkZero-AX(U1)的电路路径应
保证最小。
时跳过个200开关周期)。LinkZero-AX在触发断电模式时可立即
停止开关。只有在旁路引脚通过复位/唤醒脉冲被拉低到1.5V以
下(见图1),然后能够通过与内部漏极相连的5.85V稳压器电
路重新充电至5.85 V时,IC才会恢复开关。可使用晶体管Q2或机
械开关SW1以电子或机械方式来复位断电模式。
散热考量
LinkZero-AX(U1)之下的铜铂区域不仅仅是一个接地点,而且还
起到一个散热片的作用。因它连接到安静的源极节点,应将这
个区域扩大以使U1实现良好的散热。这同样适用于输出二极管
的阴极。
设计出的电源必须能够确保瞬态负载和其他外部事件不会意外
Y电容
触发断电模式,也即不会造成跳过160个连续开关周期。建议添
应将Y电容(如使用)直接放置在初级输入滤波电容正极和变压
加一个假负载电阻,用来吸收约2%的满载电流(在3W电源中,
器次级的共地/返回极接脚之间。这样放置会使高幅值的共模浪
5V下为12mA)。虽然这样会稍微降低满载效率,但不会影响到
涌电流远离U1。注意:如果在输入端使用了π型EMI滤波器,
断电期间的功耗情况,因为电源输出在此时将完全放电。也可以
那么滤波器内的电感应放置在输入滤波电容的负极之间。
5
www.powerint.com
版本A10/10
LNK584
CB
DB
RS
CS
DBP
RBP
DO
RFB2
CFB
CO
CBP
RFB1
R6
Transformer
U1
J3
Ð
HV DC
IN
T1
Ð
+
+
LV DC
OUT
PI-6098-092410
图5.一个2.1W,6V,350mA充电器的PCB布局
输出二极管(DO)
要达到最佳的性能,连接次级绕组、输出二极管(DO)及输出滤波
2. 最大漏极电流 – 在最高环境温度、最大输入电压及峰值输出
(过载)功率情况下,检查漏极电流以确定变压器是否出现
电容(CO)的环路区域面积应最小。此外,与二极管的阴极和阳极
饱和,另外也要检测电源开启时是否出现过高的前沿导通电
连接的铜铂区域应足够大,以便用来散热。最好在电气安静的
流尖峰。在稳态工作下重复以上操作,校验前沿电流尖峰在
阴极留有更大的铜铂区域。阳极铺铜区域过大会增加高频传导
t LEB(MIN)结束时低于ILIMIT(MIN)。在任何条件下,最大漏极电流应
及辐射EMI。电阻RS与CS形成次级侧RC缓冲电路。
低于规定的绝对最大额定值。
快速设计校验
3. 热检测–在规定的最大输出功率、最小输入电压及最高环境温
度情况下,检查LinkZero-AX、变压器、输出二极管及输出电
对于任何使用LinkZero-AX的电源设计,都应经过全面测试以确
容的温度没有超标。应有足够的温度裕量以保证LinkZero-AX
保在最差条件下元件的规格没有超过规定范围。建议至少进行
不会因元件与元件间R DS(ON) 的差异而引起过热问题,请参
如下测试:
1. 最大漏极电压 – 校验在最高输入电压和峰值(过载)输出功
率时VDS没有超过660V。给700V的BVDSS规格增加50V的裕
见数据手册中关于RDS(ON)的说明。建议在低压输入及最大输
出功率的情况下,LinkZero-AX源极引脚的最高温度不高于
100°C,这样就可以适应上述参数的变化。
量,使得在设计变更时留有一定的设计裕量,尤其是在无箝
位电路设计中。
6
版本A10/10
www.powerint.com
LNK584
绝对最大额定值(1,6)
漏极电压....................................................................-0.3V至700V
峰值漏极电流(LNK584)........................................200(375)mA(2)
峰值负向脉冲漏极电流................................................. -100mA(3)
反馈电压........................................................................-0.3V至9V
反馈电流............................................................................. 100mA
旁路引脚电压................................................................-0.3V至9V
断电模式下的旁路引脚电压................................... -0.3V至11V(7)
贮存温度............................................................... -65°C至150°C
工作结温............................................................. -40°C至150°C(4)
引线温度(4)........................................................................... 260°C(5)
注释:
1. 所有电压都是以TA=25°C时的源极为参考点。
2. 在漏源极电压不超过400V时允许使用更高的峰值漏极电流。
3. 持续时间不超过2μs。
4. 通常由内部电路控制。
5. 在距壳体1/16英寸处测量,持续时间5秒。
6. 在短时间内施加器件允许的最大额定值不会引起产品永久性的
损坏。但长时间用在器件允许的最大额定值时,会对产品的可靠
性造成影响。
7. 流入引脚的最大电流为300μA。
热阻
热阻:D封装:
(qJA)..................................100°C/W(2);80°C/W(3)
(qJC)(1)........................................................30°C/W
G封装:
(qJA)....................................70°C/W(2);60°C/W(3)
(qJC)(1)........................................................ 11°C/W
参数
注释:
1. 在靠近塑料表面的源极引脚测得。
2. 焊在0.36平方英寸(232mm2)、2盎司铜铂区域。
3. 焊在1平方英寸(645mm2)、2盎司铜铂区域。
符号
条件
源极=0V;T =-40°C至125°C
J
(除非另有说明)
最小值
典型值
最大值
单位
fOSC
TJ=25°C
VFB=1.70V,参见注释C
93
100
107
kHz
控制功能
输出频率
频率抖动
相对于平均频率抖动的峰峰值,
TJ=25°C
±3
%
TJ=25°C
VFB=VFB(AR)
参见注释B
60
%
%
自动重启动操作频率
与fOSC的比率
fOSC(AR)
最大占空比
DCMAX
60
63
不存在跳过周期时的
反馈引脚电压
VFB
1.63
1.70
1.77
V
自动重启动时的反馈
引脚电压
VFB(AR)
0.8
0.9
1.05
V
开关最短导通时间
tON(MIN)
700
ns
7
www.powerint.com
版本A10/10
LNK584
符号
条件
源极=0V;TJ=-40°C至125°C
(除非另有说明)
最小值
典型值
最大值
IS1
反馈电压>VFB
(MOSFET未开启)
150
195
260
IS2
0.9V≤VFB≤1.70V
(MOSFET开启)
210
260
310
ICH1
VBP=0V,TJ=25°C
-5.5
-3.8
-1.8
ICH2
VBP=4V,TJ=25°C
-3.8
-2.5
-1.0
VBP
5.60
5.85
6.10
V
旁路引脚电压迟滞
VBP(H)
0.8
1.0
1.2
V
旁路引脚分流电压
BPSHUNT
6.0
6.45
6.9
V
旁路引脚供电电流
IBPSC
参见注释E
84
ILIMIT
di/dt=40mA/ms
TJ=25°C
126
136
146
mA
功率因数
I2f
di/dt=40mA/ms
TJ=25°C
1665
1850
2091
A2Hz
前沿消隐时间
tLEB
TJ=25°C
220
265
旁路引脚关断阈值电流
ISD
6.2V<VBP<6.8V
5.0
6.5
8.0
mA
热关断温度
TSD
参见注释B
135
142
150
°C
热关断迟滞
TSD(H)
参见注释B
70
断电模式下的关断状态
漏极漏电流
IDSS(PD)
TJ=25°C,
VDRAIN=325V
参见图21
6.5
9
mA
旁路引脚通电复位阈值
(断电模式或在电源启
动时)
VBP(PU)
1.5
3
4
V
断电模式下的旁路引脚
过压保护
VBP(PDP)
IBP=300mA
TJ≤100°C
7.25
8.5
10.9
V
断电模式下的旁路引脚
电压
VBP(PD)
TJ=25°C
VDRAIN=325V
参数
单位
控制功能(继上)
漏极供电电流
旁路引脚充电电流
旁路引脚电压
mA
mA
mA
电路保护
流限点
ns
°C
断电(PD)模式
4
V
8
版本A10/10
www.powerint.com
LNK584
参数
符号
条件
源极=0V;T =-40°C至125°C
J
(除非另有说明)
最小值
典型值
最大值
TJ=25°C
48
55
TJ=100°C
76
88
单位
输出
导通电阻
关断状态漏极漏电流
击穿电压
RDS(ON)
ID=13mA
IDSS
VBP=6.2V,VDS=560V,VFB>1.70V
TJ=125°C,参见注释A
BVDSS
VBP=6.2V,TJ=25°C
漏极供电电压
自动重启动导通时间
tAR
自动重启动关断时间
DCAR
输出使能延时
tEN
50
W
mA
700
V
50
V
VIN=85VAC,TJ=25°C,
参见注释D
145
ms
1.0
s
参见图8
14
ms
注释:
A. 当占空比超过DCMAX时,LNK584在导通时间延长模式下工作。
B. 此参数是通过表征法得到的。
C. 输出频率规格适用于最终应用中的低输入电压。设计出的控制器可在高压输入下降低约20%的输出频率,使低压和高压下的最
大输出功率保持平衡。
D. 从低压输入到高压输入(85VAC至265VAC),自动重启动导通/关断时间延长20%。
E. 该电流仅是用来驱动旁路引脚与反馈引脚之间连接的光藕,不能用来给任何其它外部电路进行供电。
9
www.powerint.com
版本A10/10
LNK584
BP/M
S
FB
S
S
0-2 V
0.1 µF
S1
D
470 Ω
5W
S
50 V
PI-6067-072110
图6.一般测试电路
DCMAX
(internal signal)
tP
FB
tEN
VDRAIN
tP =
1
fOSC
PI-3707-112503
图8.输出使能定时
PI-4021-101305
DRAIN Current (mA)
图7.占空比测量
100
2 μs
0
-100
Time (μs)
图9.峰值负脉冲漏极电流波形
10
版本A10/10
www.powerint.com
LNK584
典型性能特性
1.0
0.9
-50 -25
0
25
50
PI-6065-071910
1.2
Output Frequency
(Normalized to 25 °C)
PI-2213-012301
Breakdown Voltage
(Normalized to 25 °C)
1.1
1.0
0.8
0.6
0.4
0.2
0
75 100 125 150
-50
-25
Junction Temperature (°C)
图10.击穿电压相对于温度的变化
25
50
75
100 125
图11.频率相对于温度的变化
1.0
0.8
PI-4057-071905
Current Limit
(Normalized to 25 °C)
1.2
1.1
FEEDBACK Pin Voltage
(Normalized to 25 °C)
PI-6066-071910
1.4
1.0
0.6
0.4
0.2
0.9
0
0
50
100
-50 -25
150
0
25
50
75 100 125 150
Temperature (°C)
Temperature (°C)
图12.限流点相对于温度的变化
图13.反馈引脚电压相对于温度的变化
6
5
4
3
2
1
200
175
DRAIN Current (mA)
PI-2240-012301
7
PI-3927-083104
-50
BYPASS Pin Voltage (V)
0
Junction Temperature (°C)
25 °C
150
100 °C
125
100
75
50
25
0
0
0
0.2
0.4
0.6
0.8
1.0
0
4
6
8 10 12 14 16 18 20
DRAIN Voltage (V)
Time (ms)
图14.旁路引脚启动波形(CBP=0.22mF).
2
图15.输出特性
11
www.powerint.com
版本A10/10
LNK584
典型性能特性(继上)
100
Frequency (kHz)
100
10
PI-6068-071910
110
PI-3928-083104
Drain Capacitance (pF)
1000
90
80
70
1
60
0
100
200
300
400
500
0
600
10
Drain Voltage (V)
50
60
70
30
20
10
0
-10
-20
PI-6071-072110
40
0
FEEDBACK Pin Current (µA)
PI-6070-072110
FEEDBACK Pin Current (µA)
40
图17.频率降低相对于占空比(线电压)的变化
50
-2
-4
-6
-8
-10
-12
-14
-16
-18
-20
-30
0.0
1.0
2.0
3.0
4.0
5.0
6.0
0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
7.0
FEEDBACK Pin Voltage (V)
FEEDBACK Pin Voltage (V)
图18.反馈引脚的输入特性曲线
图19.输出功率限制期间反馈引脚的输入特性曲线(1.70V至0.9V)
9
Drain Current (µA)
Auto-Restart
PI-6111-081810
10
PI-6139-091010
FEEDBACK Pin Current (µA)
30
Duty Cycle (%)
图16.CDSS相对漏极电压的变化
0
-1
-2
-3
-4
-5
-6
-7
-8
-9
-10
-11
-12
-13
-14
-15
20
8
7
6
5
4
3
2
1
0
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Frequency Normalized to 1
图20.输出功率限制期间频率下降
-50
-25
0
25
50
75
100 125
Temperature (°C)
图21.断电模式下典型漏极电流随温度的变化
12
版本A10/10
www.powerint.com
LNK584
SO-8CDŽG ॖᓤDž
4
B
0.10 (0.004) C A-B 2X
2
DETAIL A
4.90 (0.193) BSC
A
8
4
D
5
2 3.90 (0.154) BSC
GAUGE
PLANE
SEATING
PLANE
6.00 (0.236) BSC
0-8
C
1.04 (0.041) REF
0.10 (0.004) C D
2X
Pin 1 ID
1
0.40 (0.016)
1.27 (0.050)
0.20 (0.008) C
2X
7X 0.31 - 0.51 (0.012 - 0.020)
0.25 (0.010) M C A-B D
1.27 (0.050) BSC
1.35 (0.053)
1.75 (0.069)
4
0.25 (0.010)
BSC
1.25 - 1.65
(0.049 - 0.065)
0.10 (0.004)
0.25 (0.010)
DETAIL A
0.10 (0.004) C
H
7X
SEATING PLANE
C
Reference
Solder Pad
Dimensions
2.00 (0.079)
D07C
1.27 (0.050)
4.90 (0.193)
0.17 (0.007)
0.25 (0.010)
Notes:
1. JEDEC reference: MS-012.
2. Package outline exclusive of mold flash and metal burr.
3. Package outline inclusive of plating thickness.
4. Datums A and B to be determined at datum plane H.
5. Controlling dimensions are in millimeters. Inch dimensions
are shown in parenthesis. Angles in degrees.
0.60 (0.024)
PI-4526-040110
13
www.powerint.com
版本A10/10
LNK584
SMD-8CDŽG ॖᓤDž
⊕ D S .004 (.10)
.046 .060
.060 .046
-E-
.080
.086
Pin 1
.137 (3.48)
MINIMUM
Solder Pad Dimensions
.420
.367 (9.32)
.387 (9.83)
.057 (1.45)
.068 (1.73)
(NOTE 5)
.125 (3.18)
.145 (3.68)
.032 (.81)
.037 (.94)
.286
Pin 1
.100 (2.54) (BSC)
-D-
.186
.372 (9.45)
.388 (9.86)
⊕ E S .010 (.25)
.240 (6.10)
.260 (6.60)
Notes:
1. Controlling dimensions are
inches. Millimeter sizes are
shown in parentheses.
2. Dimensions shown do not
include mold flash or other
protrusions. Mold flash or
protrusions shall not exceed
.006 (.15) on any side.
3. Pin locations start with Pin 1,
and continue counter-clockwise to Pin 8 when viewed
from the top. Pin 3 is omitted.
4. Minimum metal to metal
spacing at the package body
for the omitted lead location
is .137 inch (3.48 mm).
5. Lead width measured at
package body.
6. D and E are referenced
datums on the package
body.
.048 (1.22)
.053 (1.35)
.004 (.10)
.009 (.23)
.004 (.10)
.012 (.30)
.036 (0.91)
.044 (1.12)
0°- 8°
G08C
PI-4015-101507
14
版本A10/10
www.powerint.com
LNK584
元件订购信息
• LinkSwitch产品系列
• AX序列号
• 封装信息
D
塑封SO-8C
G
塑封SMD-8C
• 封装材料
G
绿色:无卤素和符合RoHS
• 带装和卷轴装及其他包装形式
空白
LNK 584
D G - TL
TL
标准配置
带装和卷轴装,D封装至少2500片,G封装至少1000片
15
www.powerint.com
版本A10/10
版本
A
注释
日期
初始版本
10/10
有关最新产品信息,请访问:www.powerint.com
PowerIntegrationsreservestherighttomakechangestoitsproductsatanytimetoimprovereliabilityormanufacturability.Power
Integrationsdoesnotassumeanyliabilityarisingfromtheuseofanydeviceorcircuitdescribedherein.POWERINTEGRATIONSMAKES
NOWARRANTYHEREINANDSPECIFICALLYDISCLAIMSALLWARRANTIESINCLUDING,WITHOUTLIMITATION,THEIMPLIED
WARRANTIESOFMERCHANTABILITY,FITNESSFORAPARTICULARPURPOSE,ANDNON-INFRINGEMENTOFTHIRDPARTYRIGHTS.
Patent Information
Theproductsandapplicationsillustratedherein(includingtransformerconstructionandcircuitsexternaltotheproducts)maybecovered
byoneormoreU.S.andforeignpatents,orpotentiallybypendingU.S.andforeignpatentapplicationsassignedtoPowerIntegrations.
AcompletelistofPowerIntegrationspatentsmaybefoundatwww.powerint.com.PowerIntegrationsgrantsitscustomersalicense
undercertainpatentrightsassetforthathttp://www.powerint.com/ip.htm.
Life Support Policy
POWERINTEGRATIONSPRODUCTSARENOTAUTHORIZEDFORUSEASCRITICALCOMPONENTSINLIFESUPPORTDEVICESOR
SYSTEMSWITHOUTTHEEXPRESSWRITTENAPPROVALOFTHEPRESIDENTOFPOWERINTEGRATIONS.Asusedherein:
1. ALifesupportdeviceorsystemisonewhich,(i)isintendedforsurgicalimplantintothebody,or(ii)supportsorsustainslife,and(iii)
whosefailuretoperform,whenproperlyusedinaccordancewithinstructionsforuse,canbereasonablyexpectedtoresultinsignificant
injuryordeathtotheuser.
2. Acriticalcomponentisanycomponentofalifesupportdeviceorsystemwhosefailuretoperformcanbereasonablyexpectedtocause
thefailureofthelifesupportdeviceorsystem,ortoaffectitssafetyoreffectiveness.
ThePIlogo,TOPSwitch,TinySwitch,LinkSwitch,DPA-Switch,PeakSwitch,EcoSmart,Clampless,E-Shield,Filterfuse,StakFET,PIExpert
andPIFACTSaretrademarksofPowerIntegrations,Inc.Othertrademarksarepropertyoftheirrespectivecompanies.
©2010,PowerIntegrations,Inc.
Power Integrations全球销售支持网络
全球总部
5245HellyerAvenue
SanJose,CA95138,USA.
Main:+1-408-414-9200
CustomerService:
Phone:+1-408-414-9665
Fax:+1-408-414-9765
e-mail:[email protected]
中国(上海)
Room1601/1610,Tower1
KerryEverbrightCity
No.218TianmuRoadWest
Shanghai,P.R.C.200070
Phone:+86-21-6354-6323
Fax:+86-21-6354-6325
e-mail:[email protected]
中国(深圳)
RmA,B&C4thFloor,BlockC,
ElectronicsScienceand
TechnologyBldg.,2070
ShennanZhongRd,
Shenzhen,Guangdong,
China,518031
Phone:+86-755-8379-3243
Fax:+86-755-8379-5828
e-mail:[email protected]
德国
Rüeckertstrasse3
D-80336,Munich
Germany
Phone:+49-89-5527-3910
Fax:+49-89-5527-3920
e-mail:[email protected]
印度
#1,14thMainRoad
Vasanthanagar
Bangalore-560052India
Phone:+91-80-4113-8020
Fax:+91-80-4113-8023
e-mail:[email protected]
意大利
ViaDeAmicis2
20091BressoMI
Italy
Phone:+39-028-928-6000
Fax:+39-028-928-6009
e-mail:[email protected]
日本
KoseiDai-3Bldg.
2-12-11,Shin-Yokohama,
Kohoku-ku
Yokohama-shiKanagwan
222-0033Japan
Phone:+81-45-471-1021
Fax:+81-45-471-3717
e-mail:[email protected]
韩国
RM602,6FL
KoreaCityAirTerminalB/D,159-6
Samsung-Dong,Kangnam-Gu,
Seoul,135-728,Korea
Phone:+82-2-2016-6610
Fax:+82-2-2016-6630
e-mail:[email protected]
台湾
5F,No.318,NeiHuRd.,Sec.1
NeiHuDist.
Taipei,Taiwan114,R.O.C.
Phone:+886-2-2659-4570
Fax:+886-2-2659-4550
e-mail:[email protected]
欧洲总部
1stFloor,St.James’sHouse
EastStreet,Farnham
SurreyGU97TJ
UnitedKingdom
Phone:+44(0)1252-730-141
Fax:+44(0)1252-727-689
e-mail:[email protected]
技术支持热线
WorldWide+1-408-414-9660
新加坡
51NewtonRoad
技术支持传真
#15-08/10GoldhillPlaza
WorldWide+1-408-414-9760
Singapore,308900
Phone:+65-6358-2160
Fax:+65-6358-2015
e-mail:[email protected]
LNK584
LinkZero-AX
™
Zero Standby Consumption Integrated Off-Line Switcher
Product Highlights
Lowest System Cost with Zero Standby Consumption
• Simple system configuration provides zero consumption
standby/power down with user controlled wake up
• Very tight IC parameter tolerances improves system manufacturing yield
• Suitable for low-cost clampless designs
• Frequency jittering greatly reduces EMI filter cost
• Extended package creepage improves system field reliability
Advanced Protection/Safety Features
• Hysteretic thermal shutdown protection – automatic recovery
reduces field returns
• Universal input range allows worldwide operation
• Auto-restart reduces delivered power by >85% during shortcircuit and open loop fault conditions
• Simple ON/OFF control, no loop compensation needed
• High bandwidth provides fast turn on with no overshoot
EcoSmart™ – Energy Efficient
• Standby/power down consumption less than 3 mW at
325 VDC input (Note 1)
• Easily meets all global energy efficiency regulations with no
added components
• ON/OFF control provides constant efficiency to very light loads
Applications
• Ultra low consumption isolated or non-isolated standby and
auxiliary supplies
Description
LinkZero-AX combines extremely low standby/power down energy
use with the industry’s lowest component count standby supply
solution. Below 3 mW at 230 VAC in power down (PD) mode meets
IEC 62301 definition of zero power consumption and is immeasurable on most power meters. LinkZero-AX is set into PD mode
using an external signal to pull the FEEDBACK pin high for 2.5 ms.
Such an external signal can be generated by a system micro
controller or infrared controller. In PD mode the BYPASS pin
remains regulated allowing the LinkZero-AX to be woken up with a
reset pulse to pull the BYPASS pin below a reset threshold. Ultra
low system consumption is therefore achieved without needing to
disconnect the input voltage with a relay.
+
+ DC
PIN <0.00 W at
325 VDC in
Power Down Mode
Wide Range
High-Voltage
DC Input
Output
D
LinkZero-AX
FB
BP/M
S
CBP
Power
Down
Pulse
≥2.5 ms
Reset/Wake
Up Pulse
CBP <1.5 V
PI-5909-100410
Figure 1.
Typical Application Schematic.
Output Power Table
230 VAC ±15%
85-265 VAC
Open Frame2
Open Frame2
LNK584GG
3W
3W
LNK584DG
3W
3W
Product3
Table 1. Output Power Table.
Notes:
1. IEC 62301 Clause 4.5 rounds standby power use below 5 mW to zero.
2. Maximum practical continuous power in an open frame design with adequate
heatsinking, measured at 50 °C ambient.
3. Packages: D: SO-8C, G: SMD-8C.
LinkZero-AX is designed to be used in isolated or non-isolated
converters. In either, the tightly specified FEEDBACK (FB) pin
voltage reference enables universal input primary side regulated
power supplies that cost effectively replace unregulated linear
transformer and other switched mode supplies. The start-up and
operating power are derived directly from the DRAIN pin. The
internal oscillator frequency is jittered to significantly reduce both
quasi-peak and average EMI, minimizing filter cost.
www.powerint.com October 2010
LNK584
BYPASS/
MULTI FUNCTION
(BP/M)
PU
OPEN LOOP
PULL UP
OVERVOLTAGE
PROTECTION
+
+
GENERATOR
FEEDBACK REF
1.70 V
3V
6.45 V
5.85 V
4.85 V
+
AUTO-RESTART
COUNTER
FEEDBACK
(FB)
RESET
+
DRAIN
(D)
REGULATOR
5.85 V
+
BYPASS PIN
UNDERVOLTAGE
-
FAULT
CURRENT LIMIT
+
JITTER
-
VI
0.9 V
LIMIT
CLOCK
CC CUT BACK
1.70 V - 0.9 V
ADJ
DCMAX
S
Q
R
Q
OSCILLATOR
SYSTEM
POWER
DOWN
POWER
DOWN
COUNTER
160 fOSC
CYCLES
RESET
LEADING
EDGE
BLANKING
PU
PI-5912-090810
Figure 2.
SOURCE
(S)
Functional Block Diagram.
Pin Functional Description
DRAIN (D) Pin:
The power MOSFET drain connection provides internal
operating current for both startup, steady-state and PD mode
operation.
BYPASS/MULTI-FUNCTIONAL (BP/M) Pin:
An external bypass capacitor, 0.1 mF or greater for the internally
generated 5.85 V supply is connected to this pin. The minimum
value of capacitor is 0.1 mF for internal circuit operation. Higher
values may be required to enter power down mode (see
Application Considerations). An overvoltage protection disables
MOSFET switching if the voltage on this pin rises above 6.45 V.
FEEDBACK (FB) Pin:
During normal operation, switching of the power MOSFET is
controlled by this pin. MOSFET switching is disabled when a
voltage greater than an internal VFB reference voltage is applied
to this pin. The VFB reference voltage is internally set to 1.70 V.
LinkZero-AX goes into auto-restart mode when the FEEDBACK
pin voltage has come down to 0.9 V.
G Package (SMD-8C)
BP/M
1
FB
2
8
S
7
S
6
D
5
4
3a
D Package (SO-8C)
BP/M
FB
1
8
2
7
6
S
S
D
4
5
S
S
S
S
3b
PI-5910-090810
Figure 3. Pin Configuration.
SOURCE (S) Pin:
This pin is the power MOSFET source connection. It is also the
ground reference for the BYPASS and FEEDBACK pins.
2
Rev. A 10/10
www.powerint.com
LNK584
LinkZero-AX Functional Description
LinkZero-AX comprises a 700 V power MOSFET switch with a
power supply controller on the same die. Unlike conventional
PWM (pulse width modulation) controllers, it uses a simple
ON/OFF control to regulate the output voltage. The controller
consists of an oscillator, feedback (sense and logic) circuit, 5.85 V
regulator, BYPASS pin undervoltage circuit, over-temperature
protection, frequency jittering, current limit circuit, and leading
edge blanking. The controller includes a proprietary power
down mode that automatically reduces standby consumption to
levels that are immeasurable on most power meters.
Power Down Mode
The internal controller will go into Power Down mode when 160
switching cycles are skipped. This can occur due to the
FEEDBACK pin being pulled high using an external power down
pulse signal or due to a light load condition where the total
loading on the transformer (output plus feedback circuit loads)
has reduced to ~0.6% of full load. The device then operates in
an ultra low consumption power down mode where switching is
disabled completely. The controller wakes up (or is reset) when
the BYPASS pin is pulled below 1.5 V and then released to be
recharged through the internal drain connected 5.85 V regulator
block (see Figure 2). When the BYPASS capacitor recharges to
the VBP BYPASS pin threshold, the device starts switching and
operates normally. If the FEEDBACK pin is pulled high such
that 160 cycles are again skipped, the device returns to power
down mode operation as described above.
Oscillator
The typical oscillator frequency is internally set to an average of
100 kHz. An internal circuit senses the duty cycle of the MOSFET
switch conduction time and adjusts the oscillator frequency so
that during long conduction intervals (low line voltage) the
frequency is about 100 kHz and at short conduction intervals
(high line voltage) the oscillator frequency is about 78 kHz. This
internal frequency adjustment is used to make the peak power
point constant over line voltage. Two signals are generated from
the oscillator: the maximum duty cycle signal (DCMAX) and the
clock signal that indicates the beginning of a switching cycle.
The oscillator incorporates circuitry that introduces a small
amount of frequency jitter, typically 6% of the switching
frequency, to minimize EMI. The modulation rate of the
frequency jitter is set to 1 kHz to optimize EMI reduction for
both average and quasi-peak measurements. The frequency
jitter, which is proportional to the oscillator frequency, should be
measured with the oscilloscope triggered at the falling edge of
the DRAIN voltage waveform. The oscillator frequency is
gradually reduced when the FEEDBACK pin voltage is lowered
below 1.70 V.
Feedback Input Circuit CV Mode
The feedback input circuit reference is set at 1.70 V. When the
FEEDBACK pin voltage reaches a VFB reference voltage (1.70 V),
a low logic level (disable) is generated at the output of the
feedback circuit. This output is sampled at the beginning of
each cycle. If high, the power MOSFET is turned on for that
cycle (enabled), otherwise the power MOSFET remains off
(disabled). Since the sampling is done only at the beginning of
each cycle, subsequent changes in the FEEDBACK pin voltage
during the remainder of the cycle are ignored.
Output Power Limiting
When the FEEDBACK pin voltage at full load falls below 1.70 V,
the oscillator frequency linearly reduces to typically 60% at the
auto-restart threshold voltage of 0.9 V. This function limits the
power supply output current and power.
5.85 V Regulator
The 5.85 V regulator charges the bypass capacitor connected
to the BYPASS pin to 5.85 V by drawing a current from the
DRAIN, whenever the MOSFET is off. The BYPASS pin is the
internal supply voltage node. When the MOSFET is on, the
device runs off of the energy stored in the bypass capacitor.
Extremely low power consumption of the internal circuitry allows
LinkZero-AX to operate continuously from the current drawn
from the DRAIN pin. A bypass capacitor value of 0.1 µF is
sufficient for both high frequency decoupling and energy storage.
6.45 V Clamp and Shunt Regulator
In addition, there is a 6.45 V shunt regulator clamping the
BYPASS pin at 6.45 V when current is provided to the BYPASS
pin externally. This facilitates powering the device externally
through a resistor from the bias winding or power supply output
in non-isolated designs, to decrease device dissipation and
increase power supply efficiency.
The 6.45 V shunt regulator is only active in normal operation,
and when in power down mode a second clamp at a higher
voltage (typical 8.5 V) will clamp the BYPASS pin.
BYPASS Pin Undervoltage Protection
The BYPASS pin undervoltage circuitry disables the power
MOSFET when the BYPASS pin voltage drops below 4.85 V.
Once the BYPASS pin voltage drops below 4.85 V, it must rise
back to 5.85 V to enable (turn on) the power MOSFET.
BYPASS Pin Overvoltage Protection
If the BYPASS pin gets pulled above 6.45 V and the current into
the shunt exceeds 6.5 mA a latch will be set and the power
MOSFET will stop switching. To reset the latch the BYPASS pin
has to be pulled down to below 1.5 V.
Over-Temperature Protection
The thermal shutdown circuit senses the die temperature. The
threshold is set at 142 °C typical with a 70 °C hysteresis. When
the die temperature rises above this threshold (142 °C) the
power MOSFET is disabled and remains disabled until the die
temperature falls by 70 °C, at which point the MOSFET is
re-enabled.
Current Limit
The current limit circuit senses the current in the power
MOSFET. When this current exceeds the internal threshold
(ILIMIT ), the power MOSFET is turned off for the remainder of that
cycle. The leading edge blanking circuit inhibits the current limit
comparator for a short time (tLEB) after the power MOSFET is
turned on. This leading edge blanking time has been set so
3
www.powerint.com
Rev. A 10/10
LNK584
that current spikes caused by capacitance and rectifier reverse
recovery time will not cause premature termination of the
MOSFET conduction.
Auto Restart
In the event of a fault condition such as output short-circuit,
LinkZero-AX enters into auto-restart operation. An internal
counter clocked by the oscillator gets reset every time the
FEEDBACK pin voltage exceeds the FEEDBACK pin auto-restart
threshold voltage (VFB(AR) typical 0.9 V). If the FEEDBACK pin
voltage drops below VFB(AR) for more than 145 ms to 170 ms
depending on the line voltage, the power MOSFET switching is
disabled. The auto-restart alternately enables and disables the
switching of the power MOSFET at a duty cycle of typically 12%
until the fault condition is removed.
Open Loop Condition on the FEEDBACK Pin
When an open loop condition on the FEEDBACK pin is detected,
an internal current source pulls up the FEEDBACK pin to above
the VFB (1.70 V), the part stops switching and after 160 clock
cycles goes into latched power down mode.
Applications Example
The circuit shown in Figure 4 is a typical non-isolated 5 V, 300 mA
output auxiliary power supply using LinkZero-AX. Isolated
configurations are also fully compatible with the LinkZero-AX
where the FEEDBACK pin receives a signal from a primary
feedback/bias winding or through an optocoupler. The circuit
of Figure 4 is typical of auxiliary supplies in white goods where
isolation is often not required. AC input differential filtering is
accomplished by the π filter formed by C1, C2 and L3. The
proprietary frequency jitter feature of the LinkZero-AX eliminates
the need for any Y capacitor or common-mode inductor. Wirewound resistor RF1 is a fusible, flame proof resistor which is
used as a fuse as well as to limit inrush current. Wire wound
types are recommended for designs that operate >132 VAC to
withstand the instantaneous power dissipated when AC is first
applied.
The output voltage is directly sensed through feedback resistors
R3 and R9, and regulated by LinkZero-AX (U1) via the FEEDBACK
pin. Capacitor C7 provides high frequency filtering on the
FEEDBACK pin to filter noise and to avoid switching cycle pulse
bunching. The controller in U1 receives feedback from the
output through feedback resistors R9 and R3. Based on that
feedback, it enables or disables the switching of its integrated
MOSFET to maintain output regulation. Switching cycles are
skipped once the FEEDBACK pin threshold voltage (1.70 V) is
exceeded. When the voltage on the FEEDBACK pin falls below
the disable threshold (1.70 V), switching cycles are re-enabled.
By adjusting the ratio of enabled to disabled switching cycles
the output voltage is regulated. At increased loads, beyond the
output peak power point, where all switching cycles are
enabled, the FEEDBACK pin voltage begins to reduce as the
power supply output voltage falls. Under this condition the
switching frequency is also reduced to limit the maximum output
overload power. When the FEEDBACK pin voltage drops below
the auto-restart threshold (typically 0.9 V on the FEEDBACK
pin), the power supply enters the auto-restart mode. In this
mode, the power supply will turn off for approximately 1.2 s and
then turn back on for approximately 170 ms. The auto-restart
function reduces the average output current during an output
short-circuit condition.
C4
R8 220 pF
5.1 Ω 100 V
L3
1 mH
D6
SS15
R2
4.7 kΩ
D1
1N4007
L4
1.8 µH
T1
3 EE16 8
D2
1N4007
1
10
C6
220 µF
25 V
C9
330 nF
50 V
C1
3.3 µF
400 V
R9
1 kΩ
1%
LinkZero-AX
U1
LNK584DG
C2
3.3 µF
400 V
D
Q1
MMBT3904
FB
BP/M
R16
750 Ω
S
D3
1N4007
5 V, 300 mA
RTN
RF1
10 Ω
2W
85 - 265
VAC
C8
R13 56 µF
510 Ω 16 V
R12
20 kΩ
D4
1N4007
C5
150 nF
25 V
C10
47 µF
25 V
C7
1 nF
50 V
R3
511 Ω
1%
PD Set
Q2
MMBT3904
SW1
R10
20 kΩ
R4
10 kΩ
R14 PD Reset
2 kΩ
RTN
PI-6121-092010
Figure 4. Schematic of Non-Isolated 1.5 W, 5 V, 300 mA, 0.00 W Standby Consumption Power Supply.
4
Rev. A 10/10
www.powerint.com
LNK584
The LinkZero-AX device is self biased through the DRAIN pin.
An optional external bias, can be derived either from a third
winding or from an output voltage rail in non-isolated designs.
By providing an external supply current in excess of IS2 (310 mA
for the LNK584) the internal 5.85 V regulator circuit is disabled
providing a simple way to reduce device temperature and
improve efficiency, especially at high line.
A clampless primary circuit is achieved due to the very tight
tolerance current limit device, plus the transformer construction
techniques used. The peak drain voltage is therefore limited to
typically less than 550 V at 265 VAC, providing significant margin
to the 700 V minimum drain voltage specification (BVDSS).
Output rectification and filtering is achieved with output rectifier
D6 and filter capacitor C6. Due to the auto-restart feature, the
average short circuit output current is significantly less than 1 A,
allowing low current rating and low cost rectifier D6 to be used.
Output circuitry is designed to handle a continuous short circuit
on the power supply output. In this design a preload resistor
R13 is used at the output of the supply to prevent automatic
triggering of the power down mode when the load is removed.
LinkZero-AX Power Down (PD) Mode
Design Considerations
LinkZero-AX goes into power down mode when 160 consecutive
switching cycles have been skipped. This condition occurs
when the output load is low or the FEEDBACK pin is pulled high
(for example through Q1 and R16 in Figure 4). The value of the
BYPASS pin capacitor must be high enough to sustain enough
current through R16 for more than the period of 160 switching
cycles to successfully trigger the power down mode. At low line
input voltage (90 VAC) the 160 switching cycle period is ~1.6 ms
as the internal oscillator frequency is 100 kHz. However as the
input line voltage increases, the internal oscillator frequency is
gradually reduced to keep the maximum output power relatively
constant. At high line (265 VAC) therefore, the internal oscillator
frequency can be as low as 78 kHz (see parameter table Note
C). Therefore to provide sufficient margin to ensure power down
mode is triggered it is recommended that the power down pulse
(see Figure 1) is 2.5 ms (200 switching cycles at 80 kHz).
LinkZero-AX stops switching once the power down mode is
triggered. The IC does not resume switching until the BYPASS
pin is pulled below 1.5 V using the reset/wake up pulse (see
Figure 1) and then allowed to recharge back up to 5.85 V
through the drain connected 5.85 V regulator block. Transistor
Q2 or mechanical switch SW1 can be used for resetting the
power down mode either electronically or mechanically.
It is important to design the power supply to ensure that load
transients and other external events do not unintentionally
trigger power down mode by causing 160 consecutive switching
cycles to be skipped. It is recommended that a preload resistor
is added to draw ~2% of the full load current (12 mA at 5 V in a
3 W power supply). Although this reduces full load efficiency
slightly, it has no influence on the power consumption during
power down mode since the power supply output is fully
discharged under this condition. Low value feedback resistors
may also be used as a preload too. Recommended value of the
feedback resistors is such that they should draw ~1% of full load
current. Finally a capacitor in parallel to the high side feedback
resistor can be used to increase the speed of the loop (C9 in
Figure 4).
These recommendations apply for full load to zero load
transients. For applications with more limited load range, the
preload and the capacitor in parallel to the high side feedback
resistor may not be necessary.
Layout Considerations
LinkZero-AX Layout Considerations
Layout
See Figure 5 for a recommended circuit board layout for
LinkZero-AX (U1).
Single Point Grounding
Use a single point ground (Kelvin) connection from the input
filter capacitor to the area of copper connected to the SOURCE
pins.
Bypass Capacitor (CBP), FEEDBACK Pin Noise Filter
Capacitor (CFB) and Feedback Resistors
To minimize loop area, these two capacitors should be physically
located as near as possible to the BYPASS and SOURCE pins,
and FEEDBACK pin and source pins respectively. Also note
that to minimize noise pickup, feedback resistors RFB1 and RFB2
are placed close to the FEEDBACK pin.
Primary Loop Area
The area of the primary loop that connects the input filter
capacitor, transformer primary and LinkZero-AX should be kept
as small as possible.
Primary Clamp Circuit
An external clamp may be used to limit peak voltage on the
DRAIN pin at turn off. This can be achieved by using an RCD
clamp or a Zener (~200 V) and diode clamp across the primary
winding. In all cases, to minimize EMI, care should be taken to
minimize the circuit path from the clamp components to the
transformer and LinkZero-AX (U1).
Thermal Considerations
The copper area underneath the LinkZero-AX (U1) acts not only
as a single point ground, but also as a heatsink. As it is
connected to the quiet source node, this area should be
maximized for good heat sinking of U1. The same applies to
the cathode of the output diode.
Y Capacitor
The placement of the Y-type capacitor (if used) should be
directly from the primary input filter capacitor positive terminal to
the common/return terminal of the transformer secondary.
Such a placement will route high magnitude common-mode
surge currents away from U1. Note: If an input π EMI filter is
used, the inductor in the π filter should be placed between the
negative terminals on the input filter capacitors.
5
www.powerint.com
Rev. A 10/10
LNK584
DB
CB
RS
CS
DBP
RBP
DO
RFB2
CFB
CO
CBP
RFB1
R6
Transformer
U1
J3
–
HV DC
IN
T1
+
–
+
LV DC
OUT
PI-6098-092410
Figure 5. PCB Layout of a 2.1 W, 6 V, 350 mA Charger.
Output Diode (DO)
For best performance, the area of the loop connecting the
secondary winding, the output diode (DO) and the output filter
capacitor (CO)should be minimized. In addition, sufficient
copper area should be provided at the anode and cathode
terminals of the diode for heat sinking. A larger area is preferred
at the electrically “quiet” cathode terminal. A large anode area
can increase high frequency conducted and radiated EMI.
Resistor RS and CS represent the secondary side RC snubber.
Quick Design Checklist
As with any power supply design, all LinkZero-AX designs
should be verified on the bench to make sure that component
specifications are not exceeded under worst-case conditions.
The following minimum set of tests is strongly recommended:
1. Maximum drain voltage – Verify that VDS does not exceed
660 V at the highest input voltage and peak (overload) output
power. This margin to the 700 V BVDSS specification gives
margin for design variation, especially in clampless designs.
2. Maximum drain current – At maximum ambient temperature,
maximum input voltage and peak output (overload) power,
verify drain current waveforms for any signs of transformer
saturation and excessive leading-edge current spikes at
startup. Repeat under steady state conditions and verify that
the leading-edge current spike event is below ILIMIT(MIN) at the
end of the tLEB(MIN). Under all conditions, the maximum drain
current should be below the specified absolute maximum
ratings.
3. Thermal check – At specified maximum output power,
minimum input voltage and maximum ambient temperature,
verify that the temperature specifications are not exceeded
for LinkZero-AX, transformer, output diode and output
capacitors. Enough thermal margin should be allowed for
part-to-part variation of the RDS(ON) of LinkZero-AX as specified
in the data sheet. Under low line and maximum power, maximum LinkZero-AX source pin temperature of 100 °C is
recommended to allow for these variations.
6
Rev. A 10/10
www.powerint.com
LNK584
Absolute Maximum Ratings(1,6)
DRAIN Voltage ............................................ ..............-0.3 V to 700 V
Peak DRAIN Current (LNK584).............................200 (375) mA(2)
Peak Negative Pulsed Drain Current ............................. -100 mA(3)
Feedback Voltage ......................................................... -0.3 V to 9 V
Feedback Current ................................................................ 100 mA
BYPASS Pin Voltage ................................................... -0.3 V to 9 V
BYPASS Pin Voltage in Power Down Mode......... -0.3 V to 11 V(7)
Storage Temperature ............................................ -65 °C to 150 °C
Operating Junction Temperature...................... -40 °C to 150 °C(4)
Lead Temperature(4) .............................................................. 260 °C(5)
Notes:
1. All voltages referenced to SOURCE, TA = 25 °C.
2. Higher peak DRAIN current allowed while DRAIN source voltage does not exceed 400V.
3. Duration not to exceed 2 ms.
4. Normally limited by internal circuitry.
5. 1/16 in. from case for 5 seconds.
6. Maximum ratings specified may be applied, one at a time without causing permanent damage to the product. Exposure to Absolute Maximum ratings for extended
periods of time may affect product reliability.
7. Maximum current into pin is 300 mA.
Thermal Resistance
Thermal Resistance: D Package:
(qJA) ..................................100 °C/W(2); 80 °C/W(3)
(qJC)(1) .........................................................30 °C/W
G Package:
(qJA) ....................................70 °C/W(2); 60 °C/W(3)
(qJC)(1) ......................................................... 11 °C/W
Parameter
Notes:
1. Measured on the SOURCE pin close to plastic interface.
2. Soldered to 0.36 sq. in. (232 mm2), 2 oz. copper clad.
3. Soldered to 1 sq. in. (645 mm2), 2 oz. copper clad.
Symbol
Conditions
SOURCE = 0 V; TJ = -40 to 125 °C
(Unless Otherwise Specified)
Min
Typ
Max
Units
fOSC
TJ = 25 °C
VFB = 1.70 V, See Note C
93
100
107
kHz
Control Functions
Output Frequency
Frequency Jitter
Peak-Peak Jitter Compared to
Average Frequency, TJ = 25 °C
±3
%
TJ = 25 °C
VFB = VFB(AR)
See Note B
60
%
%
Ratio of Output
Frequency at
Auto-Restart to fOSC
fOSC(AR)
Maximum Duty Cycle
DCMAX
60
63
FEEDBACK Pin
Voltage at No Skipped
Cycles
VFB
1.63
1.70
1.77
V
FEEDBACK Pin
Voltage at AutoRestart
VFB(AR)
0.8
0.9
1.05
V
Minimum Switch
ON-Time
tON(MIN)
700
ns
7
www.powerint.com
Rev. A 10/10
LNK584
Parameter
Symbol
Conditions
SOURCE = 0 V; TJ = -40 to 125 °C
(Unless Otherwise Specified)
Min
Typ
Max
IS1
FeedBack Voltage > VFB
(MOSFET not Switching)
150
195
260
IS2
0.9 V ≤ VFB ≤ 1.70 V
(MOSFET Switching)
210
260
310
Units
Control Functions (cont.)
DRAIN Supply Current
mA
BYPASS Pin
Charge Current
ICH1
VBP = 0 V, TJ = 25 °C
-5.5
-3.8
-1.8
ICH2
VBP = 4 V, TJ = 25 °C
-3.8
-2.5
-1.0
BYPASS Pin Voltage
VBP
5.60
5.85
6.10
V
VBP(H)
0.8
1.0
1.2
V
BYPASS Pin
Shunt Voltage
BPSHUNT
6.0
6.45
6.9
V
BYPASS Pin
Supply Current
IBPSC
See Note E
84
ILIMIT
di/dt = 40 mA/ms
TJ = 25 °C
126
136
146
mA
Power Coefficient
I2f
di/dt = 40 mA/ms
TJ = 25 °C
1665
1850
2091
A2Hz
Leading Edge
Blanking Time
tLEB
TJ = 25 °C
220
265
BYPASS Pin Shutdown
Threshold Current
ISD
6.2 V < VBP < 6.8 V
5.0
6.5
8.0
mA
Thermal Shutdown
Temperature
TSD
See Note B
135
142
150
°C
Thermal Shutdown
Hysteresis
TSD(H)
See Note B
70
OFF-State Drain Leakage
in Power Down Mode
IDSS(PD)
TJ = 25 °C,
VDRAIN = 325 V
See Figure 21
6.5
9
mA
BYPASS Pin Power Up
Reset Threshold (in
Power Down Mode or at
Power Supply Start-up)
VBP(PU)
1.5
3
4
V
BYPASS Pin Overvoltage
Protection in Power
Down Mode
VBP(PDP)
IBP = 300 mA
TJ ≤ 100 °C
7.25
8.5
10.9
V
BYPASS Pin Voltage in
Power Down Mode
VBP(PD)
TJ = 25 °C
VDRAIN = 325 V
BYPASS Pin
Voltage Hysteresis
mA
mA
Circuit Protection
Current Limit
ns
°C
Power Down (PD) Mode
4
V
8
Rev. A 10/10
www.powerint.com
LNK584
Parameter
Symbol
Conditions
SOURCE = 0 V; TJ = -40 to 125 °C
(Unless Otherwise Specified)
Min
Typ
Max
TJ = 25 °C
48
55
TJ = 100 °C
76
88
Units
Output
ON-State
Resistance
RDS(ON)
OFF-State
Leakage
IDSS
VBP = 6.2 V, VDS = 560 V, VFB > 1.70 V
TJ = 125 °C, See Note A
Breakdown
Voltage
BVDSS
VBP = 6.2 V, TJ = 25 °C
ID = 13 mA
50
tAR
Auto-Restart
OFF-Time
DCAR
Output Enable Delay
V
50
V
VIN = 85 VAC, TJ = 25 °C,
See Note D
tEN
mA
700
DRAIN Supply
Voltage
Auto-Restart
ON-Time
W
See Figure 8
145
ms
1.0
s
14
ms
NOTES:
A. When the duty-cycle exceeds DCMAX the LNK584 operates in on-time extension mode.
B. This parameter is derived from characterization.
C. Output frequency specification applies to low line input voltage in the final application. The controller is designed to reduce output
frequency by approximately 20% at high line input voltages to balance low line and high line maximum output power.
D. The auto-restart on-time/off-time is increased by 20% from low to high line voltage input (85 VAC to 265 VAC).
E. This current is only intended to supply an optional optocoupler connected between the BYPASS and FEEDBACK pins and not any other external circuitry.
9
www.powerint.com
Rev. A 10/10
LNK584
BP/M
S
FB
S
S
0-2 V
0.1 µF
S1
D
470 Ω
5W
S
50 V
PI-6067-072110
Figure 6. General Test Circuit.
DCMAX
(internal signal)
tP
FB
tEN
VDRAIN
tP =
1
fOSC
PI-3707-112503
Figure 8. Output Enable Timing.
PI-4021-101305
DRAIN Current (mA)
Figure 7. Duty Cycle Measurement.
100
2 ms
0
-100
Time (ms)
Figure 9. Peak Negative Pulsed DRAIN Current Waveform.
10
Rev. A 10/10
www.powerint.com
LNK584
Typical Performance Characteristics
1.0
0.9
-50 -25
0
25
50
PI-6065-071910
1.2
Output Frequency
(Normalized to 25 °C)
PI-2213-012301
Breakdown Voltage
(Normalized to 25 °C)
1.1
1.0
0.8
0.6
0.4
0.2
0
75 100 125 150
-50
-25
Junction Temperature (°C)
Figure 10. Breakdown vs. Temperature.
25
50
75
100 125
Figure 11. Frequency vs. Temperature.
1.0
0.8
PI-4057-071905
Current Limit
(Normalized to 25 °C)
1.2
1.1
FEEDBACK Pin Voltage
(Normalized to 25 °C)
PI-6066-071910
1.4
1.0
0.6
0.4
0.2
0.9
0
0
50
100
-50 -25
150
0
25
50
75 100 125 150
Temperature (°C)
Temperature (°C)
Figure 12. Current Limit vs. Temperature.
Figure 13. FEEDBACK Pin Voltage vs. Temperature.
6
5
4
3
2
1
200
175
DRAIN Current (mA)
PI-2240-012301
7
PI-3927-083104
-50
BYPASS Pin Voltage (V)
0
Junction Temperature (°C)
25 °C
150
100 °C
125
100
75
50
25
0
0
0
0.2
0.4
0.6
0.8
Time (ms)
Figure 14. BYPASS Pin Start-up Waveform (CBP = 0.22 mF).
1.0
0
2
4
6
8 10 12 14 16 18 20
DRAIN Voltage (V)
Figure 15. Output Characteristics.
11
www.powerint.com
Rev. A 10/10
LNK584
Typical Performance Characteristics (cont.)
100
Frequency (kHz)
100
10
PI-6068-071910
110
PI-3928-083104
Drain Capacitance (pF)
1000
90
80
70
1
60
0
100
200
300
400
500
0
600
10
Drain Voltage (V)
50
60
70
30
20
10
0
-10
-20
PI-6071-072110
40
0
FEEDBACK Pin Current (µA)
PI-6070-072110
FEEDBACK Pin Current (µA)
40
Figure 17. Frequency Reduction vs. Duty Cycle (Line Voltage).
50
-2
-4
-6
-8
-10
-12
-14
-16
-18
-20
-30
0.0
1.0
2.0
3.0
4.0
5.0
6.0
0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
7.0
FEEDBACK Pin Voltage (V)
FEEDBACK Pin Voltage (V)
Figure 18. FEEDBACK Pin Input Characteristics.
Figure 19. FEEDBACK Pin Input Characteristics During Output
Power Limiting (1.70 V to 0.9 V).
9
Drain Current (µA)
Auto-Restart
PI-6111-081810
10
PI-6139-091010
FEEDBACK Pin Current (µA)
30
Duty Cycle (%)
Figure 16. CDSS vs. Drain Voltage.
0
-1
-2
-3
-4
-5
-6
-7
-8
-9
-10
-11
-12
-13
-14
-15
20
8
7
6
5
4
3
2
1
0
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Frequency Normalized to 1
Figure 20. Frequency Cut Back During Output Power Limiting.
-50
-25
0
25
50
75
100 125
Temperature (°C)
Figure 21. Typical Drain Current vs. Temperature in
Power Down Mode.
12
Rev. A 10/10
www.powerint.com
LNK584
SO-8C (D Package)
4
B
0.10 (0.004) C A-B 2X
2
DETAIL A
4.90 (0.193) BSC
A
8
4
D
5
2 3.90 (0.154) BSC
GAUGE
PLANE
SEATING
PLANE
6.00 (0.236) BSC
C
0-8
1.04 (0.041) REF
0.10 (0.004) C D
2X
Pin 1 ID
1
0.40 (0.016)
1.27 (0.050)
0.20 (0.008) C
2X
7X 0.31 - 0.51 (0.012 - 0.020)
0.25 (0.010) M C A-B D
1.27 (0.050) BSC
1.35 (0.053)
1.75 (0.069)
4
0.25 (0.010)
BSC
1.25 - 1.65
(0.049 - 0.065)
0.10 (0.004)
0.25 (0.010)
DETAIL A
0.10 (0.004) C
H
7X
SEATING PLANE
C
Reference
Solder Pad
Dimensions
2.00 (0.079)
4.90 (0.193)
0.17 (0.007)
0.25 (0.010)
Notes:
1. JEDEC reference: MS-012.
2. Package outline exclusive of mold flash and metal burr.
3. Package outline inclusive of plating thickness.
4. Datums A and B to be determined at datum plane H.
5. Controlling dimensions are in millimeters. Inch dimensions
are shown in parenthesis. Angles in degrees.
D07C
1.27 (0.050)
0.60 (0.024)
PI-4526-040110
13
www.powerint.com
Rev. A 10/10
LNK584
SMD-8C (G Package)
⊕ D S .004 (.10)
.046 .060
.060 .046
-E-
.080
.086
Pin 1
.137 (3.48)
MINIMUM
Solder Pad Dimensions
.420
.367 (9.32)
.387 (9.83)
.057 (1.45)
.068 (1.73)
(NOTE 5)
.125 (3.18)
.145 (3.68)
.032 (.81)
.037 (.94)
.286
Pin 1
.100 (2.54) (BSC)
-D-
.186
.372 (9.45)
.388 (9.86)
⊕ E S .010 (.25)
.240 (6.10)
.260 (6.60)
Notes:
1. Controlling dimensions are
inches. Millimeter sizes are
shown in parentheses.
2. Dimensions shown do not
include mold flash or other
protrusions. Mold flash or
protrusions shall not exceed
.006 (.15) on any side.
3. Pin locations start with Pin 1,
and continue counter-clockwise to Pin 8 when viewed
from the top. Pin 3 is omitted.
4. Minimum metal to metal
spacing at the package body
for the omitted lead location
is .137 inch (3.48 mm).
5. Lead width measured at
package body.
6. D and E are referenced
datums on the package
body.
.048 (1.22)
.053 (1.35)
.004 (.10)
.009 (.23)
.004 (.10)
.012 (.30)
.036 (0.91)
.044 (1.12)
0°- 8°
G08C
PI-4015-101507
14
Rev. A 10/10
www.powerint.com
LNK584
Part Ordering Information
• LinkSwitch Product Family
• AX Series Number
• Package Identifier
D
Plastic SO-8C
G
Plastic SMD-8C
• Package Material
G
GREEN: Halogen Free and RoHS Compliant
• Tape & Reel and Other Options
Blank
LNK 584
D G - TL
TL
Standard Configurations
Tape & Reel, 2.5 k pcs minimum for D package, 1 k pcs minimum for G Package.
15
www.powerint.com
Rev. A 10/10
Revision
A
Notes
Date
Initial release
10/10
For the latest updates, visit our website: www.powerint.com
Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability. Power
Integrations does not assume any liability arising from the use of any device or circuit described herein. POWER INTEGRATIONS MAKES
NO WARRANTY HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING, WITHOUT LIMITATION, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.
Patent Information
The products and applications illustrated herein (including transformer construction and circuits external to the products) may be covered by
one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A
complete list of Power Integrations patents may be found at www.powerint.com. Power Integrations grants its customers a license under
certain patent rights as set forth at http://www.powerint.com/ip.htm.
Life Support Policy
POWER INTEGRATIONS PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR
SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF POWER INTEGRATIONS. As used herein:
1. A Life support device or system is one which, (i) is intended for surgical implant into the body, or (ii) supports or sustains life, and (iii) whose failure to perform, when properly used in accordance with instructions for use, can be reasonably expected to result in significant
injury or death to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause
the failure of the life support device or system, or to affect its safety or effectiveness.
The PI logo, TOPSwitch, TinySwitch, LinkSwitch, DPA-Switch, PeakSwitch, CAPZero, SENZero, EcoSmart, Clampless, E-Shield, Filterfuse,
StakFET, PI Expert and PI FACTS are trademarks of Power Integrations, Inc. Other trademarks are property of their respective companies.
©2010, Power Integrations, Inc.
Power Integrations Worldwide Sales Support Locations
World Headquarters
5245 Hellyer Avenue
San Jose, CA 95138, USA.
Main: +1-408-414-9200
Customer Service:
Phone: +1-408-414-9665
Fax: +1-408-414-9765
e-mail: [email protected]
China (Shanghai)
Room 1601/1610, Tower 1
Kerry Everbright City
No. 218 Tianmu Road West
Shanghai, P.R.C. 200070
Phone: +86-21-6354-6323
Fax: +86-21-6354-6325
e-mail: [email protected]
China (Shenzhen)
Rm A, B & C 4th Floor, Block C,
Electronics Science and
Technology Bldg., 2070
Shennan Zhong Rd,
Shenzhen, Guangdong,
China, 518031
Phone: +86-755-8379-3243
Fax: +86-755-8379-5828
e-mail: [email protected]
Germany
Rueckertstrasse 3
D-80336, Munich
Germany
Phone: +49-89-5527-3910
Fax: +49-89-5527-3920
e-mail: [email protected]
India
#1, 14th Main Road
Vasanthanagar
Bangalore-560052 India
Phone: +91-80-4113-8020
Fax: +91-80-4113-8023
e-mail: [email protected]
Italy
Via De Amicis 2
20091 Bresso MI
Italy
Phone: +39-028-928-6000
Fax: +39-028-928-6009
e-mail: [email protected]
Japan
Kosei Dai-3 Bldg.
2-12-11, Shin-Yokohama,
Kohoku-ku
Yokohama-shi Kanagwan
222-0033 Japan
Phone: +81-45-471-1021
Fax: +81-45-471-3717
e-mail: [email protected]
Korea
RM 602, 6FL
Korea City Air Terminal B/D, 159-6
Samsung-Dong, Kangnam-Gu,
Seoul, 135-728, Korea
Phone: +82-2-2016-6610
Fax: +82-2-2016-6630
e-mail: [email protected]
Taiwan
5F, No. 318, Nei Hu Rd., Sec. 1
Nei Hu Dist.
Taipei, Taiwan 114, R.O.C.
Phone: +886-2-2659-4570
Fax: +886-2-2659-4550
e-mail: [email protected]
Europe HQ
1st Floor, St. James’s House
East Street, Farnham
Surrey GU9 7TJ
United Kingdom
Phone: +44 (0) 1252-730-141
Fax: +44 (0) 1252-727-689
e-mail: [email protected]
Applications Hotline
World Wide +1-408-414-9660
Singapore
51 Newton Road
Applications Fax
#15-08/10 Goldhill Plaza
World Wide +1-408-414-9760
Singapore, 308900
Phone: +65-6358-2160
Fax: +65-6358-2015
e-mail: [email protected]
Design Example Report
Title
1.5 W Non-Isolated Flyback Power Supply
with 0.00 W Power Down Mode Using
LinkZeroTM-AX LNK584DG
Specification 85 VAC – 265 VAC Input; 5 V, 300 mA Output
Application
LinkZero-AX Reference Design
Author
Applications Engineering Department
Document
Number
DER-260
Date
October 13, 2010
Revision
1.3
Summary and Features







Non-isolated design provides tight regulation.
Low cost, low component count solution
Power Down (PD) Mode set and reset functionality. Less than 5 mW no load consumption at
230 VAC (IEC62301 Clause 4.5 rounds standby power use below 5 mW to zero)
Auto-restart functionality provides protection against output short circuit and open loop
conditions
Hysteretic over temperature shutdown protection
Meets EN-550022 and CISPR-22 Class B conducted EMI with more than 10 dB margin.
Meets IEC61000-4-5 Class 3 AC line surge specifications
Power Integrations
5245 Hellyer Avenue, San Jose, CA 95138 USA.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-260 5 V 300 mA Non-Isolated Flyback Converter
13-Oct-10
PATENT INFORMATION
The products and applications illustrated herein (including transformer construction and circuits external to the products) may be covered
by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A
complete list of Power Integrations' patents may be found at www.powerint.com. Power Integrations grants its customers a license under
certain patent rights as set forth at <http://www.powerint.com/ip.htm>.
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 2 of 41
13-Oct-10
DER-260 5 V 300 mA Non-Isolated Flyback Converter
Table of Contents
1
2
3
4
Introduction .................................................................................................................5
Power Supply Specification ........................................................................................6
Schematic ...................................................................................................................7
Circuit Description.......................................................................................................8
4.1
Input Rectification and Filtering ...........................................................................8
4.2
LinkZero-AX Primary ...........................................................................................8
4.3
Primary Clamp and Transformer Construction ....................................................8
4.4
Output Rectification .............................................................................................8
4.5
Power Down (PD) Mode – Set and Reset ...........................................................8
4.6
Feedback.............................................................................................................9
5 PCB Layout...............................................................................................................10
6 Bill of Materials .........................................................................................................11
7 Transformer Design Spreadsheet .............................................................................12
8 Transformer Specification .........................................................................................14
8.1
Electrical Diagram..............................................................................................14
8.2
Electrical Specifications .....................................................................................14
8.3
Materials ............................................................................................................14
8.4
Transformer Build Diagram................................................................................15
8.5
Transformer Construction ..................................................................................15
9 Performance Data.....................................................................................................16
9.1
Active Mode Efficiency.......................................................................................16
9.2
No-load Input Power (not in Power Down Mode)...............................................17
9.3
No-load Input Power in Power Down Mode .......................................................18
9.4
Available Standby Output Power .......................................................................19
9.5
Line Regulation..................................................................................................20
9.6
Load Regulation ................................................................................................21
10
Thermal Performance............................................................................................22
11
Waveforms ............................................................................................................23
11.1 Drain Voltage and Current, Normal Operation...................................................23
11.2 Output Voltage Start-up Profile with Input Voltage ............................................24
11.3 Power Down Mode Reset via Q2.......................................................................25
11.4 Power Down Mode Set via Switch Q1 ...............................................................26
11.5 Drain Voltage and Current Start-up Profile ........................................................27
11.6 Load Transient Response..................................................................................28
11.6.1 ~ 0% to 100% Load Step............................................................................28
11.6.2 50% to 100% Load Step.............................................................................29
11.6.3 100% to 0% (No-Load) Load Step..............................................................30
11.6.4 0% to 100% Load Step...............................................................................31
11.7 Output Ripple Measurements ............................................................................32
11.7.1 Ripple Measurement Technique.................................................................32
11.7.2 Measurement Results at 25˚C Ambient Temperature ................................33
11.8 Output Short-Circuit at Room Ambient ..............................................................34
11.8.1 Auto-Restart On/Off Time Test ...................................................................34
11.8.2 Drain Voltage and Current Under Output Short-Circuit...............................35
Page 3 of 41
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-260 5 V 300 mA Non-Isolated Flyback Converter
13-Oct-10
12
Line Surge.............................................................................................................36
13
EMI Tests at Full Load ..........................................................................................37
13.1 EMI Results .......................................................................................................37
14
Revision History ....................................................................................................40
Important Note:
Although this board is designed to satisfy safety isolation requirements, the engineering
prototype has not been agency approved. Therefore, all testing should be performed
using an isolation transformer to provide the AC input to the prototype board.
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 4 of 41
13-Oct-10
DER-260 5 V 300 mA Non-Isolated Flyback Converter
1 Introduction
This report describes a universal input, 5 V, 300 mA non-isolated flyback power supply
which is designed with LNK584DG device from the LinkZero-AX family of ICs. It contains
the complete specification of the power supply, a detailed circuit diagram, the entire bill of
materials required to build the supply, extensive documentation of the power transformer,
along with test data and oscillographs of the most important electrical waveforms.
Figure 1 – Prototype Top View.
Figure 2 – Prototype Bottom View.
Page 5 of 41
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-260 5 V 300 mA Non-Isolated Flyback Converter
13-Oct-10
2 Power Supply Specification
The table below represents the minimum acceptable performance of the design. Actual
performance is listed in the results section.
Description
Input
Voltage
Frequency
No-load Input Power
Output
Output Voltage
Output Ripple Voltage
Output Current
Total Output Power
Continuous Output Power
Efficiency
Full load efficiency
Symbol
Min
Typ
Max
Units
Comment
VIN
fLINE
85
47
265
64
VAC
Hz
mW
2 Wire – no P.E.
50/60
V
mV
mA
See V-I Curves for limits
50
300
1.5
W
5
VOUT
VRIPPLE
IOUT
POUT

67
230 VAC
20 MHz bandwidth
%
Environmental
Conducted EMI
Meets CISPR22B / EN55015B
Designed to meet IEC950, UL1950
Class II
Safety
Surge
Ambient Temperature
DM
1
CM
2
TAMB
0
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
kV
50
o
C
1.2/50 s surge, IEC 1000-4-5,
Series Impedance:
Differential Mode: 2 
Common Mode: 12 
Free convection, sea level
Page 6 of 41
13-Oct-10
DER-260 5 V 300 mA Non-Isolated Flyback Converter
3 Schematic
Figure 3 – Circuit Schematic.
Page 7 of 41
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-260 5 V 300 mA Non-Isolated Flyback Converter
13-Oct-10
4 Circuit Description
4.1 Input Rectification and Filtering
Diodes D1 to D4 rectify the AC input which is filtered by C1 and C2. Inductor L3, C1 and
C2 form a π filter that attenuates differential mode conducted EMI. Resistor R2 provides
high frequency damping. Shielding techniques (E-Shield™) were used in the construction
of T1 to reduce common mode EMI displacement currents. This filter arrangement, the
proprietary E-Shield techniques together with IC’s frequency jitter function provide
excellent EMI performance for this solution even without a Y capacitor or a primary-side
RCD clamp circuit.
4.2 LinkZero-AX Primary
The LNK584DG device (U1) integrates an oscillator, an ON/OFF controller, startup and
protection circuitry and a power MOSFET all on one monolithic IC.
One side of the power transformer is connected to the positive leg of C2 and the other
side is connected to the DRAIN pin of U1. At the start of a switching cycle, the controller
turns the MOSFET on, and current ramps up in the primary winding, which stores energy
in the core of the transformer. When that current reaches the limit threshold, the
controller turns the MOSFET off. Due to the phasing of the transformer windings and the
orientation of the output diode, the stored energy then induces a voltage across the
secondary winding, which forward biases the output diode, and the stored energy is
delivered to the output capacitor.
4.3 Primary Clamp and Transformer Construction
A Clampless primary circuit is achieved due to the very tight tolerance current limit
trimming techniques used in manufacturing the LNK584DG, together with some special
transformer construction techniques that were used. Peak drain voltage is therefore
limited to typically less than 550 V at 265 VAC – providing significant margin to the 700 V
drain voltage (BVDSS).
4.4 Output Rectification
Output rectification is provided by diode D6 and filtering is provided by capacitor C6.
Resistor R8 and C4 provide high frequency filtering for improved EMI.
4.5 Power Down (PD) Mode – Set and Reset
LinkZero-AX goes into Power Down mode when one of the following two conditions have
been met:
(i)
160 consecutive cycles have been skipped.
(ii)
FB voltage exceeds 1.7 V for 160 consecutive switching cycles (approximately
2 ms).
The latter condition is the preferred way of setting the supply into “Power Down” (PD)
mode. In this circuit the FB pin is pulled high through Q1 and R16. The value of the BP
pin capacitor should be high enough to sustain enough current through R16 for more
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 8 of 41
13-Oct-10
DER-260 5 V 300 mA Non-Isolated Flyback Converter
than 2 ms to successfully trigger the Power Down mode. LinkZero-AX stops switching
once the power down mode is triggered (PD set), and the chip cannot wake up (PD reset)
until the BP pin capacitor is pulled below 1.5 V and then released to be recharged.
Transistor Q2 or the mechanical switch SW1 can be used to reset the Power Down
mode.
Load transients from full load to very light or no load can cause accidental triggering of
the Power Down mode. To avoid this undesired effect, a preload must be used at the
output of the power supply. Additionally, a capacitor (C9) in parallel to the high side
feedback resistor (R9) can be used to speed up the high frequency loop response. Low
value feedback resistors can act as preload too. For applications with limited load range,
which guarantee that accidental power down mode will not be triggered, the preload and
the capacitor in parallel to the high side feedback resistor are not necessary.
4.6 Feedback
The output voltage is sensed through resistor divider R3 and R9 and fed back to U1.
Switching cycles are skipped if the FB pin disable threshold voltage (1.7 V) is exceeded.
When the sensed voltage at the FB pin falls below the disable threshold, switching cycles
are re-enabled. By adjusting the ratio of enabled to disable switching cycles, output
regulation is maintained.
At increased loads, beyond the output power limiting point, the FB pin voltage begins to
reduce as the power supply output voltage falls. As the FB pin voltage falls, the switching
frequency reduces to provide some output current limiting. When the FB pin voltage
drops below the auto-restart threshold (typically 0.9 V on the FB pin), the power supply
enters the auto-restart mode. In this mode, the power supply will turn off for 1.2 s and
then turn back on for 170 ms. The auto-restart function reduces the average output
current during an output short-circuit condition.
Page 9 of 41
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-260 5 V 300 mA Non-Isolated Flyback Converter
13-Oct-10
5 PCB Layout
Figure 4 – PCB Layout 2.10” (53.3 mm) x 1.81” (46.1 mm)
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 10 of 41
13-Oct-10
DER-260 5 V 300 mA Non-Isolated Flyback Converter
6 Bill of Materials
Item
1
2
3
4
Qty
1
1
1
1
Ref
Des
C1
C2
C4
C5
5
6
7
8
1
1
1
1
C6
C7
C8
C9
9
10
11
12
12
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
C10
D1
D2
D3
D4
D6
L3
L4
Q1
Q2
R1
R2
R3
R4
R8
R9
R10
R11
R12
R13
R14
R16
SW1
T1
TP1
TP2
TP3
TP4
TP5
TP6
TP7
U1
Page 11 of 41
Description
3.3 F, 400 V, Electrolytic, (8 x 11.5)
3.3 F, 400 V, Electrolytic, (8 x 11.5)
220 pF, 100 V, Ceramic, X7R, 0805
150 nF, 25 V, Ceramic, X7R, 0805
220 F, 25 V, Electrolytic, Very Low ESR,
72 m, (8 x 11.5)
1 nF, 50 V, Ceramic, X7R, 0805
56 F, 16 V, Electrolytic, Gen. Purpose, (5 x 11)
330 nF, 50 V, Ceramic, X7R, 1206
47 F, 25 V, Electrolytic, Very Low ESR,
300 m, (5 x 11)
1000 V, 1 A, Rectifier, DO-41
1000 V, 1 A, Rectifier, DO-41
1000 V, 1 A, Rectifier, DO-41
1000 V, 1 A, Rectifier, DO-41
50 V, 1 A, Schottky, DO-214AC
1 mH, 0.15 A, Ferrite Core
1.8 H, 0.48 A, Iron Core
NPN, Small Signal BJT, 40 V, 0.2 A, SOT-23
NPN, Small Signal BJT, 40 V, 0.2 A, SOT-23
10 , 2 W, Fusible/Flame Proof Wire Wound
4.7 k, 5%, 1/8 W, Thick Film, 0805
511 , 1%, 1/4 W, Metal Film
10.0 k, 5%, 1/10 W, Thick Film, 0603
5.1 , 5%, 1/8 W, Thick Film, 0805
1.0 k, 1%, 1/4 W, Thick Film, 1206
20 k, 5%, 1/10 W, Thick Film, 0603
100 , 5%, 1/10 W, Thick Film, 0603
20 k, 5%, 1/10 W, Thick Film, 0603
510 , 5%, 1/8 W, Thick Film, 0805
2 k, 5%, 1/4 W, Carbon Film
750 , 5%, 1/8 W, Thick Film, 0805
Pushbutton Switch SPST D6 Series
Bobbin, EE16, Horizontal, 10 pins
Test Point, WHT, THRU-HOLE MOUNT
Test Point, BLK ,THRU-HOLE MOUNT
Test Point, RED, THRU-HOLE MOUNT
Test Point, BLK, THRU-HOLE MOUNT
Test Point, ORG, THRU-HOLE MOUNT
Test Point, BLK, THRU-HOLE MOUNT
Test Point, YEL, THRU-HOLE MOUNT
LinkZero-AX, LNK584DG, SO-8
Manufacturer P/N
TAQ2G3R3MK0811MLL3
TAQ2G3R3MK0811MLL3
ECJ-2VB2A221K
GRM21BR71E154KA01L
Manufacturer
Taicon Corporation
Taicon Corporation
Panasonic
Murata
EKZE250ELL221MHB5D
ECJ-2VB1H102K
EKZE160ELL560ME11D
12065C334KAT2A
Nippon Chemi-Con
Panasonic
Nichicon
AVX Corp
EKZE250ELL470ME11D
1N4007-E3/54
1N4007-E3/54
1N4007-E3/54
1N4007-E3/54
SS15-TP
SBCP-47HY102B
1025-26K
MMBT3904LT1G
MMBT3904LT1G
CRF253-4 10R
ERJ-6GEYJ472V
MFR-25FBF-511R
ERJ-3GEYJ103V
ERJ-6GEYJ5R1V
ERJ-8ENF1001V
ERJ-3GEYJ203V
ERJ-3GEYJ101V
ERJ-3GEYJ203V
ERJ-6GEYJ511V
CFR-25JB-2K0
ERJ-6GEYJ751V
D6C10LFS
PM-9820
5012
5011
5010
5011
5013
5011
5014
LNK584DG
Nippon Chemi-Con
Vishay
Vishay
Vishay
Vishay
Micro commercial
Tokin
API Delevan
On Semiconductor
On Semiconductor
Vitrohm
Panasonic
Yageo
Panasonic
Panasonic
Panasonic
Panasonic
Panasonic
Panasonic
Panasonic
Yageo
Panasonic
ITT Ind
Ho Jinn Plastic Elect
Keystone
Keystone
Keystone
Keystone
Keystone
Keystone
Keystone
Power Integrations
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-260 5 V 300 mA Non-Isolated Flyback Converter
13-Oct-10
7 Transformer Design Spreadsheet
ACDC_LinkZeroAX_082510; Rev.1.1;
Copyright Power
Integrations 2010
INPUT
INFO
ENTER APPLICATION VARIABLES
VACMIN
85
VACMAX
265
fL
50
VO
5.00
IO
0.30
PO
OUTPUT
Volts
Volts
Hertz
Volts
Amps
1.50
Feedback Type
Direct
Clampless Design
Yes
n
0.65
Z
UNIT
Watts
Direct
0.65
0.5
tC
2.90
CIN
6.60
Input Rectification
Type
F
mSec
onds
uFara
ds
ENTER LinkZero-AX VARIABLES
LinkZero-AX
Auto
ILIMITMIN
ILIMITMAX
LNK584
0.126
Amps
0.146
Amps
fSmin
93000
1664.64
I^2fTYP
1849.6
Hertz
A^2H
z
A^2H
z
Volts
Volts
Volts
VOR
61.00
61
VDS
10
VD
0.5
KP
1.58
ENTER TRANSFORMER CORE/CONSTRUCTION VARIABLES
Core Type
EE16
EE16
EE16
P/N:
Core
EE16_BOBBIN
P/N:
Bobbin
AE
0.192
cm^2
LE
3.5
cm
nH/T^
AL
1140
2
BW
8.6
mm
M
0
mm
L
NS
NB
VB
2
10
28
15.13
Volts
1.00
k
R1
10.00
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Minimum AC Input Voltage
Maximum AC Input Voltage
AC Mains Frequency
Output Voltage (main) measured at the end of output cable
(For CV/CC designs enter typical CV tolerance limit)
Power Supply Output Current (For CV/CC designs enter
typical CC tolerance limit)
Output Power (VO x IO + dissipation in output cable)
Choose 'Bias' for Bias winding feedback, 'Direct' for direct
sensing of output and 'Opto' for Optocoupler feedback from
the 'Feedback Type' drop down box at the top of this
spreadsheet
Choose 'YES' from the 'Clampless Design' drop down box at
the top of this spreadsheet for a clampless design. Choose
'NO' to add an external clamp circuit. Clampless design
lowers the total cost of the power supply
Efficiency Estimate at output terminals. For CV only designs
enter 0.7 if no better data available
Loss Allocation Factor (Secondary side losses / Total losses)
Bridge Rectifier Conduction Time Estimate
Input Capacitance
Choose H for Half Wave Rectifier and F for Full Wave
Rectification from the 'Rectification' drop down box at the top
of this spreadsheet
F
I^2fMIN
ACDC_LinkZero-AX_082510_Rev1-1.xls; LinkZero-AX
Flyback Transformer Design Spreadsheet
LinkZero-AX device.
Minimum Current Limit
Maximum Current Limit
Minimum Device Switching Frequency. May be lowwer than
93 kHz for high line (230 VAC) designs
I^2f Minimum value (product of current limit squared and
frequency is trimmed for tighter tolerance)
I^2f typical value (product of current limit squared and
frequency is trimmed for tighter tolerance)
Reflected Output Voltage
LinkZero-AX on-state Drain to Source Voltage
Output Winding Diode Forward Voltage Drop
Ripple to Peak Current Ratio (0.9<KRP<1.0 : 1.0<KDP<6.0)
User-Selected transformer core
PC40EE16-Z
EE16_BOBBIN
Core Effective Cross Sectional Area
Core Effective Path Length
Ungapped Core Effective Inductance
Bobbin Physical Winding Width
Safety Margin Width (Half the Primary to Secondary
Creepage Distance)
Number of primary layers
Number of Secondary Turns
Number of Bias winding turns
Bias Winding Voltage
Calculated standard value (1%) of Upper Resistor in the
resistor divider component between bias winding and FB pin
Page 12 of 41
13-Oct-10
DER-260 5 V 300 mA Non-Isolated Flyback Converter
R2
0.51
k
RBP
56.00
k
CBIAS (or COUT)
100.00
uF
CFB
680.00
pF
CBP
220.00
nF
Recommended Bias
1N4003
Diode
DC INPUT VOLTAGE PARAMETERS
VMIN
97
Volts
VMAX
375
Volts
CURRENT WAVEFORM SHAPE PARAMETERS
DMAX
0.33
IAVG
0.03
Amps
IP
0.13
Amps
IR
0.13
Amps
IRMS
0.04
Amps
TRANSFORMER PRIMARY DESIGN PARAMETERS
uHenr
LP
2287
ies
LP_TOLERANCE
10
%
NP
111
nH/T^
ALG
186
2
Gaus
BM
1568
s
Gaus
BAC
784
s
ur
1654
LG
0.12
mm
BWE
17.2
mm
OD
0.16
mm
INS
0.04
mm
DIA
0.12
mm
AWG
37
AWG
CM
20
CMA
452
Cmils
Cmils/
Amp
TRANSFORMER SECONDARY DESIGN PARAMETERS
Lumped parameters
ISP
1.40
ISRMS
0.59
IRIPPLE
0.51
CMS
118
Amps
Amps
Amps
Cmils
AWGS
29
AWG
DIAS
0.29
mm
ODS
0.86
mm
INSS
VOLTAGE STRESS PARAMETERS
0.29
mm
-
Volts
39
Volts
VDRAIN
PIVS
Page 13 of 41
of LinkZero-AX
Calculated standard value (1%) of Lower Resistor in the
resistor divider component between bias winding and FB pin
of LinkZero-AX
Optional BP pin resistor (connected between BP pin and bias
winidng) to improve efficiency. Calculated standard 5% value
is displayed
Maximum value of output capacitor. Larger value may result in
issues during startup. Lower value of COUT can be used.
FB pin resistor (Improve noise sensitivity)
BP pin capacitor
Place this diode on the return leg of the bias winding for
optimal EMI.
Minimum DC Input Voltage
Maximum DC Input Voltage
Maximum Duty Cycle
Average Primary Current
Minimum Peak Primary Current
Primary Ripple Current
Primary RMS Current
Typical Primary Inductance. +/- 10%
Primary inductance tolerance
Primary Winding Number of Turns
Gapped Core Effective Inductance
Maximum Operating Flux Density, BM<2000 is recommended
AC Flux Density for Core Loss Curves (0.5 X Peak to Peak)
Relative Permeability of Ungapped Core
Gap Length (Lg > 0.08 mm)
Effective Bobbin Width
Maximum Primary Wire Diameter including insulation
Estimated Total Insulation Thickness (= 2 * film thickness)
Bare conductor diameter
Primary Wire Gauge (Rounded to next smaller standard AWG
value)
Bare conductor effective area in circular mils
Primary Winding Current Capacity (150 < CMA < 500)
Peak Secondary Current
Secondary RMS Current
Output Capacitor RMS Ripple Current
Secondary Bare Conductor minimum circular mils
Secondary Wire Gauge (Rounded up to next larger standard
AWG value)
Secondary Minimum Bare Conductor Diameter
Secondary Maximum Outside Diameter for Triple Insulated
Wire
Maximum Secondary Insulation Wall Thickness
Peak Drain Voltage is highly dependent on Transformer
capacitance and leakage inductance. Please verify this on the
bench and ensure that it is below 650 V to allow 50 V margin
for transformer variation.
Output Rectifier Maximum Peak Inverse Voltage
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-260 5 V 300 mA Non-Isolated Flyback Converter
13-Oct-10
8 Transformer Specification
8.1
Electrical Diagram
3
WD#2
Primary
WD#1
Cancellation
111T #34
1
3
18T #34x2
2
8
WD#3
10T TIW #31 x 2
10
Secondary
Figure 5 – Transformer Electrical Diagram.
8.2
Electrical Specifications
Electrical Strength
Primary Inductance
Resonant Frequency
Primary Leakage Inductance
8.3
1 second, 60 Hz, from pins 1-5 to pins 6-10
Pins 3-1, all other windings open, measured at
100 kHz, 0.4 VRMS
Pins 3-1, all other windings open
Pins 1-3, with pins 10-8 shorted, measured at
100kHz, 0.4 VRMS
3000 VAC
2.287 mH, ±10%
300 kHz (Min.)
50 H (Max.)
Materials
Item
[1]
[2]
[3]
[4]
[5]
Description
Core: PC44 EE16, TDK or equivalent Gapped for ALG of 186 nH/T2
Bobbin: Horizontal 10 pin
Magnet Wire: #34 AWG
Triple Insulated Wire: #31 AWG
Tape: 3M 1298 Polyester Film, 2.0 mils thick, 9.8 mm wide
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 14 of 41
13-Oct-10
8.4
DER-260 5 V 300 mA Non-Isolated Flyback Converter
Transformer Build Diagram
8
10
3
Primary Winding
1
1 layer of tape
2
Shield Winding
3
Figure 6 – Transformer Build Diagram.
8.5
Transformer Construction
Bobbin Preparation
WD #1
Feedback
Insulation
WD #2
Primary
Orient the bobbin such that the primary side pins of the bobbin are to the left
hand side.
Start on pin 3, wind 18 bifilar turns of item [3] from left to right. Wind with tight
tension across entire bobbin evenly. Finish on pin 2.
1 Layers of tape [5] for insulation
Start on pin 1, wind 37 turns of item [3] from left to right. After finishing the first
layer, placing one layer of tape [5]. Continue to wind the second layer the wire
from right to left with another 37 turns. After finishing the second layer, placing
one layer of tape [5]. Continue to wind the wire from left to right with another 37
turns. Finish on pin 3.
Insulation
1 layer of tape [5] for insulation.
WD #3
Secondary
Insulation
Grind core
Finish
Start at pin 8, wind 10 bifilar turns of item [4] from left to right. Wind uniformly.
After finishing the 10th turn, bring the wire back and finish it on pin 10.
3 layers of tape [5] for insulation.
Grind the core to get 2.265 mH. Secure the core with tape. Vanish.
Secure the core with tape. Vanish.
Page 15 of 41
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-260 5 V 300 mA Non-Isolated Flyback Converter
13-Oct-10
9 Performance Data
All measurements performed at room temperature and 50 Hz input frequency, except
where otherwise stated. For all tests, the full load is 300 mA.
9.1
Active Mode Efficiency
80
115 V
230 V
Efficiency (%)
70
60
50
40
30
20
0
10
20
30
40
50
60
70
80
90
100
Load (%)
Figure 7- Efficiency vs. Input Voltage, Room Temperature, 50 Hz.
Percent of Full
Load
25
50
75
100
Average
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Efficiency (%)
115 VAC
230 VAC
60.7
67.1
69.5
70.0
66.8
55.0
63.3
66.3
67.7
63.1
Page 16 of 41
13-Oct-10
9.2
DER-260 5 V 300 mA Non-Isolated Flyback Converter
No-load Input Power (Not in Power Down Mode)
0.2
No-load Input Power (W)
0.19
0.18
0.17
0.16
0.15
0.14
0.13
0.12
0.11
0.1
80
95
110
125
140
155
170
185
200
215
230
245
260
Input Voltage (VAC)
Figure 8 – No-load Input Power vs. Input Line Voltage, 25ºC, 50 Hz.
Page 17 of 41
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-260 5 V 300 mA Non-Isolated Flyback Converter
13-Oct-10
9.3 No-load Input Power in Power Down Mode
The chart below shows the no load input power when in power down mode. In this mode,
the input power is typically less than 5 mW at 230 VAC. The input power must be tested
after 30 minutes to allow for the leakage currents of the bulk capacitors to stabilize.
Power readings taken before this period will be higher. Also all measurements must be
made without any multi meter or probes attached to the board as these tend to load the
input.
No-load Input Power (mW)
10.5
8.5
6.5
4.5
2.5
0.5
80
95
110
125
140
155
170
185
200
215
230
245
260
Input Voltage (VAC)
Figure 9 – No-load Input Power in PD mode vs. Input Line Voltage, 25 ºC, 50 Hz. 30 Minute Dwell Time at
230 VAC Prior to Taking Measurements.
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 18 of 41
13-Oct-10
DER-260 5 V 300 mA Non-Isolated Flyback Converter
9.4 Available Standby Output Power
The chart below shows the available output power vs. line voltage for an input power of
0.5 W and 1.0 W.
0.7
0.6
Output (W)
0.5
0.5 W Input
1.0 W Input
0.4
0.3
0.2
0.1
0
80
100
120
140
160
180
200
220
240
260
Input (VAC)
Figure 10 – Available Output Power for 0.5 W and 1 W Input Power.
Page 19 of 41
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-260 5 V 300 mA Non-Isolated Flyback Converter
9.5
13-Oct-10
Line Regulation
5.25
5.20
Output Voltage (V)
5.15
5.10
5.05
5.00
4.95
4.90
4.85
4.80
4.75
80
95
110
125
140
155
170
185
200
215
230
245
260
Input Voltage (VAC)
Figure 11 – Full Load Regulation at Room Ambient.
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 20 of 41
13-Oct-10
9.6
DER-260 5 V 300 mA Non-Isolated Flyback Converter
Load Regulation
5.25
85 V
115 V
230 V
265 V
5.20
Output Voltage (V)
5.15
5.10
5.05
5.00
4.95
4.90
4.85
4.80
4.75
0
10
20
30
40
50
60
70
80
90
100
Load (%)
Figure 12 – Load Regulation at Room Ambient.
Page 21 of 41
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-260 5 V 300 mA Non-Isolated Flyback Converter
13-Oct-10
10 Thermal Performance
Temperature measurements of key components were taken using T-type (CopperConstantan) thermocouples. The thermocouples were soldered directly to a Source pin of
the LNK584DG device and to the cathode of the output rectifier. The thermocouples were
glued to the external core and to winding surfaces of the transformer.
The unit was sealed inside a large box to eliminate any air currents. The box was placed
inside a thermal chamber. The ambient temperature within the large box was raised to
50 C. The unit was then operated at full load and the temperature measurements were
taken after they stabilized for 1 hour at 50 C.
Temperature (C)
Item
85 VAC
265 VAC
Ambient inside the box
51.0
51.0
LN584DG (U1)
64
68
Output diode
71
73
Transformer
60
61
These results show that the IC has an acceptable rise in temperature.
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 22 of 41
13-Oct-10
DER-260 5 V 300 mA Non-Isolated Flyback Converter
11 Waveforms
11.1 Drain Voltage and Current, Normal Operation
Figure 13 – 85 VAC, Full Load.
Upper: VDRAIN, 100 V / div.
Lower: IDRAIN, 0.1 A, 10 s / div.
Page 23 of 41
Figure 14 – 265 VAC, Full Load.
Upper: VDRAIN, 200 V / div.
Lower: IDRAIN, 0.1 A, 10 s / div.
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-260 5 V 300 mA Non-Isolated Flyback Converter
13-Oct-10
11.2 Output Voltage Start-up Profile with Input Voltage
Figure 15 – Start-up Profile, 85VAC, Full load,
1 V / div., 2 ms / div.
Figure 16 – Start-up Profile, 115VAC, Full load,
1 V / div., 2 ms / div.
Figure 17 – Start-up Profile, 230VAC, Full load,
1 V / div., 2 ms / div.
Figure 18 – Start-up Profile, 265VAC, Full load,
1 V / div., 2 ms / div.
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 24 of 41
13-Oct-10
DER-260 5 V 300 mA Non-Isolated Flyback Converter
11.3 Power Down Mode Reset via Q2
When U1 is reset from the power down mode, notice how the output starts increasing
after the BP pin voltage reaches 5.8 V.
Figure 19 – Start-up Profile, 85VAC, Full Load,
Upper: VO, 1 V / div., 2 ms / div.
Lower: VBP, 5 V / div.
Figure 20 – Start-up Profile, 115VAC, Full Load,
Upper: VO, 1 V / div., 2 ms / div.
Lower: VBP, 5 V/ div.
Figure 21 – Start-up Profile, 230VAC, Full Load,
Upper: VO, 1 V / div., 2 ms / div.
Lower: VBP, 5 V / div.
Figure 22 – Start-up Profile, 265VAC, Full Load,
Upper: VO, 1 V / div., 2 ms / div.
Lower: VBP, 5 V / div.
Page 25 of 41
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-260 5 V 300 mA Non-Isolated Flyback Converter
13-Oct-10
11.4 Power Down Mode Set via Switch Q1
Figure 23 – Power Down Latch Off, 85VAC,
Full Load, 1 V / div., 50 ms / div.
Figure 24 – Power Down Latch Off, 115VAC,
Full Load, 1 V / div., 50 ms / div.
Figure 25 – Power Down Latch Off, 230VAC,
Full Load, 1 V / div., 50 ms / div.
Figure 26 – Power Down Latch Off, 265VAC,
Full Load, 1 V / div., 50 ms / div.
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 26 of 41
13-Oct-10
DER-260 5 V 300 mA Non-Isolated Flyback Converter
11.5 Drain Voltage and Current Start-up Profile
Figure 27 – 85 VAC Input and Maximum Load.
Upper: VDRAIN, 200 V / div.
Lower: IDRAIN, 0.1 A, 1 ms / div.
Page 27 of 41
Figure 28 – 265 VAC Input and Maximum Load.
Upper: VDRAIN, 200 V / div.
Lower: IDRAIN, 0.1 A, 1 ms / div.
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-260 5 V 300 mA Non-Isolated Flyback Converter
13-Oct-10
11.6 Load Transient Response
11.6.1 ~ 0% to 100% Load Step
Figure 29 – Transient Response, 85VAC,
4 mA – 300 mA – 4 mA,
Upper: VO, 20 mV / div., 100 ms / div.
Lower: IO, 0.2 A / div.
Figure 30 – Transient Response, 115VAC
4 mA – 300 mA – 4 mA,
Upper: VO, 20 mV / div., 100 ms / div.
Lower: IO, 0.2 A / div.
Figure 31 – Transient Response, 230VAC,
4 mA – 300 mA – 4 mA,
Upper: VO, 20 mV / div., 100 ms / div.
Lower: IO, 0.2 A / div.
Figure 32 – Transient Response, 265VAC,
4 mA – 300 mA – 4 mA,
Upper: VO, 20 mV / div., 100 ms / div.
Lower: IO, 0.2 A / div.
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 28 of 41
13-Oct-10
DER-260 5 V 300 mA Non-Isolated Flyback Converter
11.6.2 50% to 100% Load Step
Figure 33 – Transient Response, 85VAC,
150 mA – 300 mA – 150 mA,
Upper: VO, 20 mV / div., 100 ms / div.
Lower: IO, 0.2 A / div.
Figure 34 – Transient Response, 115VAC,
150 mA – 300 mA – 150 mA,
Upper: VO, 20 mV / div., 100 ms / div.
Lower: IO, 0.2 A / div.
Figure 35 – Transient Response, 230VAC,
150 mA – 300 mA – 150 mA,
Upper: VO, 20 mV / div., 100 ms / div.
Lower: IO, 0.2 A / div.
Figure 36 – Transient Response, 265VAC,
150 mA – 300 mA – 150 mA,
Upper: VO, 20 mV / div., 100 ms / div.
Lower: IO, 0.2 A / div.
Page 29 of 41
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-260 5 V 300 mA Non-Isolated Flyback Converter
13-Oct-10
11.6.3 100% to 0% (No-Load) Load Step
This following transient load tests verify that under extreme conditions of transient loads,
power down mode is not triggered.
Figure 37 – Transient Response, 85VAC,
300 mA – 0 mA
Upper: VO, 20 mV / div., 50 ms / div.
Lower: IO, 0.2 A /div.
Figure 38 – Transient Response, 115VAC,
300 mA – 0 mA
Upper: VO, 20 mV / div., 50 ms / div.
Lower: IO, 0.2 A / div.
Figure 39 – Transient Response, 230VAC,
300 mA – 0 mA
Upper: VO, 20 mV / div., 50 ms / div.
Lower: IO, 0.2 A / div.
Figure 40 – Transient Response, 265VAC,
300 mA – 0 mA
Upper: VO, 20 mV / div., 50 ms / div.
Lower: IO, 0.2 A / div.
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 30 of 41
13-Oct-10
DER-260 5 V 300 mA Non-Isolated Flyback Converter
11.6.4 0% to 100% Load Step
Figure 41 – Transient Response, 85VAC,
0 mA – 300 mA
Upper: VO, 20 mV / div., 50 ms / div.
Lower: IO, 0.2 A / div.
Figure 42 – Transient Response, 115VAC,
0 mA – 300 mA
Upper: VO, 20 mV / div., 50 ms / div.
Lower: IO, 0.2 A / div.
Figure 43 – Transient Response, 230VAC,
0 mA – 300 mA
Upper: VO, 20 mV / div., 50 ms / div.
Lower: IO, 0.2 A / div.
Figure 44 – Transient Response, 265VAC,
0 mA – 300 mA
Upper: VO, 20 mV / div., 50 ms / div.
Lower: IO, 0.2 A / div.
Page 31 of 41
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-260 5 V 300 mA Non-Isolated Flyback Converter
13-Oct-10
11.7 Output Ripple Measurements
11.7.1 Ripple Measurement Technique
For DC output ripple measurements, a modified oscilloscope test probe must be utilized
in order to reduce spurious signals due to pickup. Details of the probe modification are
provided in the figures below.
The 5125BA probe adapter is affixed with two capacitors tied in parallel across the probe
tip. The capacitors include one (1) 0.1 F/50 V ceramic type and one (1) 1.0 F/50 V
aluminum electrolytic. The aluminum electrolytic type capacitor is polarized, so
proper polarity across DC outputs must be maintained (see below).
Probe Ground
Probe Tip
Figure 45 – Oscilloscope Probe Prepared for Ripple Measurement. (End Cap and Ground Lead Removed)
Figure 46 – Oscilloscope Probe with Probe Master 5125BA BNC Adapter. (Modified with wires for probe
ground for ripple measurement, and two parallel decoupling capacitors added)
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 32 of 41
13-Oct-10
DER-260 5 V 300 mA Non-Isolated Flyback Converter
11.7.2 Measurement Results at 25˚C Ambient Temperature
Figure 47 – Output Ripple, 85 VAC, Full Load,
Upper: Ripple, 2 ms, 20 mV / div.
Lower: Ripple, 50 s, 20 mV / div.
Figure 48 – Output Ripple, 115 VAC, Full Load,
Upper: Ripple, 2 ms, 20 mV / div.
Lower: Ripple, 50 s, 20 mV / div.
Figure 49 – Output Ripple, 230 VAC, Full Load,
Upper: Ripple, 2 ms, 20 mV / div.
Lower: Ripple, 50 s, 20 mV / div.
Figure 50 – Output Ripple, 265 VAC, Full Load,
Upper: Ripple, 2 ms, 20 mV / div.
Lower: Ripple, 50 s, 20 mV / div.
Page 33 of 41
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-260 5 V 300 mA Non-Isolated Flyback Converter
13-Oct-10
11.8 Output Short-Circuit at Room Ambient
In the event of a short circuit on the output, the LNK584DG enters auto-restart mode. In
this protection model, switching is disabled. The auto-restart alternately enables and
disables the switching of the power MOSFET at a duty cycle of typically 12% until the
fault condition is removed.
11.8.1 Auto-Restart On/Off Time Test
Figure 51 – 85 VAC Input, Short-Circuit.
Upper: VDRAIN, 100 V / div.
Lower: IDRAIN, 0.2 A, 500 ms / div.
Auto-restart On Time, 313 ms. Auto-restart Off Time, 1.9 s.
Figure 52 – 265 VAC Input and Maximum Load.
Upper: VDRAIN, 200 V / div.
Lower: IDRAIN, 0.2 A, 20 s / div.
Auto-restart On Time, 395 ms. Auto-restart Off Time, 2.4 s
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 34 of 41
13-Oct-10
DER-260 5 V 300 mA Non-Isolated Flyback Converter
11.8.2 Drain Voltage and Current Under Output Short-Circuit
The waveforms show that there is no saturation of the transformer under output short
circuit and the voltage stress is also below the 700 V BVDSS rating of the LNK584DG.
Figure 53 – 85 VAC Input and Maximum Load.
Upper: VDRAIN, 100 V / div.
Lower: IDRAIN, 0.05 A, 5 ms / div.
Figure 54 – 85 VAC Input and Maximum Load.
Upper: VDRAIN, 100 V / div.
Lower: IDRAIN, 0.05 A, 20 s / div.
Figure 55 – 265 VAC Input and Maximum Load.
Upper: VDRAIN, 200 V / div.
Lower: IDRAIN, 0.05 A, 5 ms / div.
Figure 56 – 265 VAC Input and Maximum Load.
Upper: VDRAIN, 200 V / div.
Lower: IDRAIN, 0.05 A, 1 s / div.
Page 35 of 41
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-260 5 V 300 mA Non-Isolated Flyback Converter
13-Oct-10
12 Line Surge
Input line 1.2/50 μs common-mode and differential mode surge testing was completed on
a single test unit to IEC61000-4-5. Input voltage was set at 230 VAC / 60 Hz. Output was
loaded at full load and operation was verified following each surge event. Test conditions
and results are shown below.
Surge
Level
(V)
+1000
-1000
+2000
-2000
Input
Voltage
(VAC)
230
230
230
230
Injection
Location
L to N
L to N
L/N to GND
L/N to GND
Line
Impedance
()
2
2
12
12
Injection
Phase
(°)
90
270
90
270
Number of
Surges
Test Result
(Pass/Fail)
10
10
10
10
Pass
Pass
Pass
Pass
Units passed under all test conditions.
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 36 of 41
13-Oct-10
DER-260 5 V 300 mA Non-Isolated Flyback Converter
13 EMI Tests at Full Load
Conducted emissions tests were performed at 115 VAC and 230 VAC at full load.
Composite EN55022B / CISPR22B conducted limits are shown. All the tests show
excellent EMI performance.
13.1 EMI Results
Figure 57 – Conducted EMI at 115 VAC 60 Hz, 0.3 A Load, Secondary Ground Connected to Artificial
Hand.
Page 37 of 41
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-260 5 V 300 mA Non-Isolated Flyback Converter
13-Oct-10
Figure 58 – Conducted EMI at 230 VAC 60 Hz, 0.3 A Load, Secondary Ground Connected to Artificial
Hand.
Figure 59 – Conducted EMI at 115 VAC 60 Hz, 0.3 A Load, Secondary Ground Floating.
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 38 of 41
13-Oct-10
DER-260 5 V 300 mA Non-Isolated Flyback Converter
Figure 60 – Conducted EMI at 230 VAC 60 Hz, 0.3 A Load, Secondary Ground Floating
Page 39 of 41
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-260 5 V 300 mA Non-Isolated Flyback Converter
13-Oct-10
14 Revision History
Date
13-Oct-10
Author
PL
Revision
1.3
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Description & changes
Initial Release
Reviewed
Apps & Mktg
Page 40 of 41
13-Oct-10
DER-260 5 V 300 mA Non-Isolated Flyback Converter
For the latest updates, visit our website: www.powerint.com
Power Integrations reserves the right to make changes to its products at any time to improve reliability or
manufacturability. Power Integrations does not assume any liability arising from the use of any device or circuit
described herein. POWER INTEGRATIONS MAKES NO WARRANTY HEREIN AND SPECIFICALLY DISCLAIMS ALL
WARRANTIES INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.
PATENT INFORMATION
The products and applications illustrated herein (including transformer construction and circuits external to the products)
may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications
assigned to Power Integrations. A complete list of Power Integrations’ patents may be found at www.powerint.com.
Power Integrations grants its customers a license under certain patent rights as set forth at
http://www.powerint.com/ip.htm.
The PI Logo, TOPSwitch, TinySwitch, LinkSwitch, DPA-Switch, PeakSwitch, EcoSmart, Clampless, E-Shield, Filterfuse, StackFET,
PI Expert and PI FACTS are trademarks of Power Integrations, Inc. Other trademarks are property of their respective
companies. ©Copyright 2010 Power Integrations, Inc.
Power Integrations Worldwide Sales Support Locations
WORLD HEADQUARTERS
5245 Hellyer Avenue
San Jose, CA 95138, USA.
Main: +1-408-414-9200
Customer Service:
Phone: +1-408-414-9665
Fax: +1-408-414-9765
e-mail:
[email protected]
GERMANY
Rueckertstrasse 3
D-80336, Munich
Germany
Phone: +49-89-5527-3911
Fax: +49-89-5527-3920
e-mail:
[email protected]
JAPAN
Kosei Dai-3 Building
2-12-11, Shin-Yokohama,
Kohoku-ku, Yokohama-shi,
Kanagawa 222-0033
Japan
Phone: +81-45-471-1021
Fax: +81-45-471-3717
e-mail: [email protected]
TAIWAN
5F, No. 318, Nei Hu Rd., Sec. 1
Nei Hu District
Taipei 114, Taiwan R.O.C.
Phone: +886-2-2659-4570
Fax: +886-2-2659-4550
e-mail:
[email protected]
CHINA (SHANGHAI)
Rm 1601/1610, Tower 1
Kerry Everbright City
No. 218 Tianmu Road West
Shanghai, P.R.C. 200070
Phone: +86-021-6354-6323
Fax: +86-021-6354-6325
e-mail:
[email protected]
INDIA
#1, 14th Main Road
Vasanthanagar
Bangalore-560052
India
Phone: +91-80-4113-8020
Fax: +91-80-4113-8023
e-mail:
[email protected]
KOREA
RM 602, 6FL
Korea City Air Terminal B/D, 159-6
Samsung-Dong, Kangnam-Gu,
Seoul, 135-728
Korea
Phone: +82-2-2016-6610
Fax: +82-2-2016-6630
e-mail: [email protected]
UNITED KINGDOM
1st Floor, St. James’s House
East Street,
Farnham Surrey, GU9 7TJ
United Kingdom
Phone: +44 (0) 1252-730-141
Fax: +44 (0) 1252-727-689
e-mail:
[email protected]
CHINA (SHENZHEN)
Rm A, B & C 4th Floor, Block C,
Electronics Science and
Technology Building
2070 Shennan Zhong Road
Shenzhen, Guangdong,
P.R.C. 518031
Phone: +86-755-8379-3243
Fax: +86-755-8379-5828
e-mail:
[email protected]
ITALY
Via De Amicis 2
20091 Bresso MI
Italy
Phone: +39-028-928-6000
Fax: +39-028-928-6009
e-mail:
[email protected]
SINGAPORE
51 Newton Road,
#15-08/10 Goldhill Plaza
Singapore, 308900
Phone: +65-6358-2160
Fax: +65-6358-2015
e-mail:
[email protected]
APPLICATIONS HOTLINE
World Wide +1-408-414-9660
Page 41 of 41
APPLICATIONS FAX
World Wide +1-408-414-9760
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com