POWERINT LNK407EG

Design Example Report
Title
No Electrolytic Capacitor, High Efficiency
(≥90%), High Power Factor (>0.9) 15 W LED
Driver Using LinkSwitchTM-PH LNK407EG
Specification 90 VAC – 265 VAC Input; 30 V, 500 mA Output
Application
LED Driver
Author
Applications Engineering Department
Document
Number
DER-278
Date
April 19, 2011
Revision
1.0
Summary and Features







No electrolytic capacitors
Clean monotonic start-up – no output blinking
Fast start-up (<100 ms) – no perceptible delay
Highly energy efficient
o ≥90% at 230 VAC
Low cost, low component count and small printed circuit board footprint solution
o No current sensing required
o Frequency jitter for smaller, lower cost EMI filter components
Integrated protection and reliability features
o Output open circuit / output short-circuit protected with auto-recovery
o Line input overvoltage shutdown extends voltage withstand during line faults.
o Auto-recovering thermal shutdown with large hysteresis protects both components
and printed circuit board
o No damage during brown-out or brown-in conditions
Meets IEC 61000-4-5 ring wave, IEC 61000-3-2 Class C harmonics and EN55015 B
conducted EMI
PATENT INFORMATION
The products and applications illustrated herein (including transformer construction and circuits external to the products) may be covered
by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A
complete list of Power Integrations' patents may be found at www.powerint.com. Power Integrations grants its customers a license under
certain patent rights as set forth at <http://www.powerint.com/ip.htm>.
Power Integrations
5245 Hellyer Avenue, San Jose, CA 95138 USA.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-278 No Electrolytic Capacitor, 15 W LED Driver Using LNK407EG
19-Apr-11
Table of Contents
1 2 3 4 5 Introduction ............................................................................................................. 4 Populated Circuit Board .......................................................................................... 5 Power Supply Specification..................................................................................... 6 Schematic ............................................................................................................... 7 Description .............................................................................................................. 8 5.1 Input Filtering....................................................................................................... 8 5.2 LinkSwitch-PH Primary ........................................................................................ 8 5.3 Bias Supply and Output Overvoltage Sensing..................................................... 8 5.4 Output Feedback ................................................................................................. 9 5.5 Output Rectification and Filtering ........................................................................ 9 5.6 Considerations for higher efficiency .................................................................... 9 6 Bill of Materials...................................................................................................... 10 7 Transformer Specification ..................................................................................... 11 7.1 Electrical Diagram ............................................................................................. 11 7.2 Materials ............................................................................................................ 11 7.3 Transformer Build Diagram ............................................................................... 12 7.4 Transformer Construction .................................................................................. 12 8 Transformer Design Spreadsheet ......................................................................... 13 9 Performance Data ................................................................................................. 16 9.1 Efficiency vs. Line and Output (LED String) Voltage ......................................... 16 9.1.1 30 V ............................................................................................................ 16 9.1.2 27 V ............................................................................................................ 16 9.1.3 33 V ............................................................................................................ 16 9.2 Regulation ......................................................................................................... 18 9.2.1 Line Regulation .......................................................................................... 18 10 Thermal Performance ........................................................................................... 20 10.1 VIN = 115 VAC ................................................................................................... 20 10.2 VIN = 230 VAC ................................................................................................... 20 11 Harmonic Data ...................................................................................................... 21 12 Waveforms ............................................................................................................ 23 12.1 Input Line Voltage and Current.......................................................................... 23 12.2 Drain Voltage and Current ................................................................................. 23 12.3 Output Voltage and Ripple Current ................................................................... 24 12.4 Output Rectifier Voltage and Current ................................................................ 25 12.5 Output Voltage and Current Start-up Profile ...................................................... 25 12.6 Output Current and Drain Voltage with Shorted Output .................................... 26 12.7 Output Current and Output Voltage with Shorted Output .................................. 26 12.8 Open Load Output Voltage ................................................................................ 27 13 Line Surge............................................................................................................. 28 14 Conducted EMI ..................................................................................................... 29 15 Revision History .................................................................................................... 33 Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 2 of 34
19-Apr-11
DER-278 No Electrolytic Capacitor, 15 W LED Driver Using LNK407EG
Important Note: Although this board is designed to satisfy safety isolation requirements, the engineering
prototype has not been agency approved. Therefore, all testing should be performed using an isolation
transformer to provide the AC input to the prototype board.
Page 3 of 34
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-278 No Electrolytic Capacitor, 15 W LED Driver Using LNK407EG
19-Apr-11
1 Introduction
This document describes an isolated, power factor corrected, very high efficiency
LED driver designed to drive an LED string of 30 V at a current of 500 mA (both nominal)
from an input voltage range of 90 to 265 VAC.
The LED driver uses a LNK407EG device from the LinkSwitch-PH family of ICs. This
integrated controller and 725 V MOSFET dramatically reduces the complexity and
component count of the solution.
The key design goals were to achieve the highest possible efficiency and eliminate
electrolytic capacitors. Both are key factors for increasing the lifetime and reliability of
LED drivers making this solution ideal for industrial and commercial applications.
This document contains the LED driver specification, schematic, bill of material,
transformer documentation and typical performance characteristics. The design was
based on the reference design board RD-194 with simple component changes to meet
the new specification.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 4 of 34
19-Apr-11
DER-278 No Electrolytic Capacitor, 15 W LED Driver Using LNK407EG
2 Populated Circuit Board
Figure 1 – Populated Circuit Board Photograph (Top View).
PCB Outline Designed to Fit Inside PAR38 Enclosure.
Figure 2 – Populated Circuit Board Photograph (Bottom View).
Page 5 of 34
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-278 No Electrolytic Capacitor, 15 W LED Driver Using LNK407EG
19-Apr-11
3 Power Supply Specification
The table below represents the minimum acceptable performance of the design. Actual
performance is listed in the results section.
Description
Input
Voltage
Frequency
Output
Output Voltage
Output Current
Total Output Power
Continuous Output Power
Efficiency
Full Load
Symbol
Min
Typ
Max
Units
Comment
VIN
fLINE
90
47
115
50/60
265
64
VAC
Hz
2 Wire – no P.E.
VOUT
IOUT
27
30
0.50
33
V
A
15
POUT
(115)
(230)
W
o
89.6
90.6
Measured at POUT, 25 C, 115 VAC
%
o
Measured at POUT, 25 C, 230 VAC
Environmental
Conducted EMI
Meets CISPR 15B / EN55015B
Designed to meet IEC950 / UL1950
Class II
Safety
Ring Wave (100 kHz)
Differential Mode (L1-L2)
Common mode (L1/L2-PE)
2.5
Power Factor
kV
Measured at VOUT(TYP), IOUT(TYP)
and 115/230 VAC
0.9
Harmonics
IEC 61000-4-5, 200 A
EN 61000-3-2 Class D
Ambient Temperature
a
TAMB
40
o
C
Free convection, sea level
Notes:
a
Maximum ambient temperature specification may be increased by adding a small heat
sink to the LinkSwitch-PH device.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 6 of 34
19-Apr-11
DER-278 No Electrolytic Capacitor, 15 W LED Driver Using LNK407EG
4 Schematic
Figure 3 – Schematic.
Page 7 of 34
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-278 No Electrolytic Capacitor, 15 W LED Driver Using LNK407EG
19-Apr-11
5 Description
The LinkSwitch-PH device is a controller and integrated 725 V MOSFET intended for use
in LED driver applications. The LinkSwitch-PH is configured for use in a single-stage
continuous conduction mode flyback topology and provides a primary side regulated
constant current output while maintaining high power factor from the AC input.
5.1 Input Filtering
Fuse F1 fuses the input and BR1 rectifies the AC line voltage. Inductor L2-L4, C1, R1,
and R5 form the EMI filter and together with C9 (Y1 safety) capacitor allow the design to
meet EN55015B conducted EMI limits. Capacitor C8 provides a low impedance path for
the primary switching current, a low value of capacitance is necessary to maintain a
power factor of greater than 0.9.
5.2 LinkSwitch-PH Primary
Diode D1 and high-voltage SMD ceramic capacitors C11 and C10 detect the peak AC
line voltage. This voltage is converted to a current into the VOLTAGE MONITOR (V) pin
via R2, R7 and R13. This current is also used by the device to set the input
over/undervoltage protection thresholds. The V pin current and the FEEDBACK (FB) pin
current are used internally to control the average output LED current. Non-dimming
designs require 24.9 k resistor on the REFERENCE (R) pin (R10) and 3.9 M on the V
pin (R2+R7+R13). Resistor R10 also sets the internal references to select the line
undervoltage threshold. Resistor R14 is added to further improve line regulation,
providing a constant output current over the specified input voltage range.
Diode D2 and VR1 clamp the drain voltage to below the BVDSS rating (725 V) of the
internal power MOSFET in U1. Diode D5 is necessary to prevent reverse current from
flowing through the LinkSwitch-PH device (the result of the minimal input capacitance).
5.3 Bias Supply and Output Overvoltage Sensing
Diode D4, D6, C7, R3, R6 and R8 form the primary bias supply. This supplies the IC
operating current into the BYPASS (BP) pin through D6 and R8 during normal operation.
Resistor R3 provides filtering to improve output regulation while R6 acts as a minimum
load.
Capacitor C13 is the supply decoupling for the LinkSwitch-PH. During start-up C13 is
charged to ~6 V from an internal high-voltage current source tied to the device DRAIN (D)
pin. Once charged the energy stored in C13 is used to run the device until the output and
bias winding voltage rise and current is supplied via R8.
A disconnected load / overvoltage shutdown function is provided by D7, C14, R11, VR2,
C12, R12 and Q1. A second bias winding output voltage is used to eliminate the delay
introduced by the larger value of C7 compared to C14. Should the output LED load be
disconnected, the output voltage and therefore the bias winding voltage across C14 will
rise. Once this exceeds the voltage rating of VR2 plus the VBE of Q1 then Q1 is biased on
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 8 of 34
19-Apr-11
DER-278 No Electrolytic Capacitor, 15 W LED Driver Using LNK407EG
which pulls the FB pin down. Once the current into the FB pin of U1 falls below IFB(AR) the
device enters auto-restart, thereby limiting the output voltage. Resistor R11, C12 provide
filtering and R12 defines the Zener current at the point Q1 turns on.
5.4 Output Feedback
A current proportional to the output voltage from the primary bias winding is fed into the
FB pin through R9. This information together with the line input voltage and the drain
current are used to maintain a constant output current.
5.5 Output Rectification and Filtering
Diode D2 rectifies the secondary winding while ceramic capacitors C2, C3, C4, C5 and
C6 filter the output. A 20 A, 200 V Schottky diode was selected for high efficiency.
Resistor R4 provides a minimum load to ensure the LED current falls when the AC is
removed.
5.6 Considerations for higher efficiency
The following changes were made over the standard RD-194 to achieve higher efficiency.



Larger LinkSwitch-PH device (LNK407EG vs. LNK406EG).
20 A vs. 4 A Schottky output diode
Larger RM10 core size vs. RM8 to allow lower winding current density (and lower
winding losses).
Page 9 of 34
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-278 No Electrolytic Capacitor, 15 W LED Driver Using LNK407EG
19-Apr-11
6 Bill of Materials
Item
1
2
Qty
1
1
Ref Des
BR1
C1
C2,C3,C
4,C5,
C6,C7
C8
C9
C10,
C11
C12
C13
C14
3
4
5
6
1
1
6
7
8
9
2
1
1
1
10
11
12
13
14
15
16
17
1
1
1
1
1
1
1
1
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
3
1
2
1
1
1
1
1
1
1
1
1
1
1
1
1
D1
D2
D3
D4
D5
D6
D7
F1
L2,
L3,L4
Q1
R1, R5
R2
R3
R4
R6
R7
R8
R9
R10
R11
R12
R13
R14
RV1
34
1
T1
35
36
37
1
1
1
U1
VR1
VR2
Description
600 V, 2 A, Bridge Rectifier, Glass Passivated
47 nF, 275 VAC, Film, X2
22 F, 50 V, Ceramic
100 nF, 630 V, Film
2.2 nF, Ceramic, Y1
100 nF, 500 V, Ceramic, X7R, 1812
100 nF, 50 V, Ceramic, X7R, 0805
10 F, 16 V, Ceramic, X5R, 1210
1 F, 50 V, Ceramic, X7R, 0805
1000 V, 1 A, Rectifier, Glass Passivated, DO-213AA
(MELF)
1000 V, 1 A, Ultrafast Recovery, 75 ns, DO-41
200 V, 20 A, Dual Schottky, SMD, TO-263AB
200 V, 1 A, Ultrafast Recovery, 25 ns, DO-214AC
400 V, 1 A, Ultrafast Recovery, 50 ns, DO-41
100 V, 1 A, Fast Recovery, 150 ns, SMA
250 V, 0.2 A, Fast Switching, 50 ns, SOD-323
3.15 A, 250V, Slow, TR5
1000 H, 0.3 A
NPN, Small Signal BJT, 40 V, 0.2 A, SOT-23
10 k, 5%, 1/8 W, Thick Film, 0805
2.00 M, 1%, 1/4 W, Thick Film, 1206
150 , 1%, 1/8 W, Thick Film, 0805
20 k, 5%, 1/4 W, Thick Film, 1206
51 k, 5%, 1/8 W, Thick Film, 0805
1.00 M, 1%, 1/4 W, Thick Film, 1206
3.01 k, 1%, 1/4 W, Thick Film, 1206
100 k, 1%, 1/8 W, Thick Film, 0805
24.9 k, 1%, 1/8 W, Thick Film, 0805
10 k, 5%, 1/8 W, Thick Film, 0805
1 k, 5%, 1/8 W, Thick Film, 0805
887 k, 1%, 1/4 W, Thick Film, 1206
1.33 M, 1%, 1/4 W, Thick Film, 1206
275 V, 80J, 10 mm, RADIAL
Mfg Part Number
2KBP06M-E4/51
ECQU2A473ML
Mfg
Vishay
Panasonic
THCS60E1H226ZT
ECQ-E6104KF
440LD22-R
United Chem
Panasonic
Vishay
VJ1812Y104KXEAT
ECJ-2YB1H104K
C1210C106K4PACTU
08055D105KAT2A
Vishay
Panasonic
Kemet
AVX
DL4007-13-F
UF4007-E3
MBRB20200CTG
ES1D
UF4004-E3
RS1B-13-F
BAV21WS-7-F
37213150411
Diodes, Inc
Vishay
On Semi
Vishay
Vishay
Diodes, Inc
Diodes, Inc
Wickman
RLB0914-102KL
MMBT3904LT1G
ERJ-6GEYJ103V
ERJ-8ENF2004V
ERJ-6ENF1500V
ERJ-8GEYJ203V
ERJ-6GEYJ513V
ERJ-8ENF1004V
ERJ-8ENF3011V
ERJ-6ENF1003V
ERJ-6ENF2492V
ERJ-6GEYJ103V
ERJ-6GEYJ102V
ERJ-8ENF8873V
MCR18EZHF1334
ERZ-V10D431
Bourns
On Semi
Panasonic
Panasonic
Panasonic
Panasonic
Panasonic
Panasonic
Panasonic
Panasonic
Panasonic
Panasonic
Panasonic
Panasonic
Rohm
Panasonic
Power
Integrations
Power
Integrations
On Semi
Diodes, Inc
Custom Transformer, RM10, 5 pins
LinkSwitch, eSIP
200 V, 5 W, 5%, TVS, DO204AC (DO-15)
39 V, 5%, 500 mW, DO-213AA (MELF)
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
LNK407EG
P6KE200ARLG
ZMM5259B-7
Page 10 of 34
19-Apr-11
DER-278 No Electrolytic Capacitor, 15 W LED Driver Using LNK407EG
7 Transformer Specification
7.1
Electrical Diagram
Figure 4 – Transformer Electrical Diagram.
Electrical Specifications
Electrical Strength
Primary Inductance
Resonant Frequency
Primary Leakage
Inductance
7.2
1 second, 60 Hz, from pins 1, 2, 3, 4 ,5 to pins FL1, FL2
Measured at 1 V pk-pk, typical switching frequency,
between pin 1 to pin 3, with all other windings open.
Pins 1-FL1, all other windings open
Measured between pin 1 to pin 3, with all other Windings
shorted.
3000 VAC
1.6 mH ±10%
750 kHz (Min.)
40 H ±10%
Materials
Item
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
Description
Core: RM10, NC-2H (Nicera) or Equivalent, gapped for ALG of 792 nH/t²
Bobbin: Generic, 5 primary + 0 secondary
Barrier Tape: Polyester film [1 mil (25 µm) base thickness], 10.00 mm wide
Separation Tape: Polyester film [1 mil (25 µm) base thickness], 10.0 mm wide
Varnish
Magnet Wire: #27 AWG, Solderable Double Coated
Triple Insulated Wire: 26 AWG
Magnet Wire: #32 AWG, Solderable Double Coated
Page 11 of 34
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-278 No Electrolytic Capacitor, 15 W LED Driver Using LNK407EG
7.3
19-Apr-11
Transformer Build Diagram
Pins Side
Figure 5 – Transformer Build Diagram.
7.4
Transformer Construction
Bobbin
Preparation
Primary
Winding 1
Insulation
Secondary
Winding
Insulation
Bias Winding
Insulation
Primary
Winding 2
Insulation
Final
Assembly
Place the bobbin item [2] on the mandrel such that pin side on the left side. Winding
direction is the clockwise direction.
Start on pin 3 and wind 23 turns (x 1 filar) of item [6] in 1 layer(s) from left to right. Add 1
layer of tape, item [4], in between each primary winding layer. On the final layer, spread
the winding evenly across entire bobbin. Finish this winding on pin 2.
Add 1 layer of tape, item [3], for insulation.
Start on pin FL1 and wind 15 turns (x 2 filar) of item [7]. Spread the winding evenly
across entire bobbin. Wind in same rotational direction as primary winding. Finish this
winding on pin FL2.
Add 3 layers of tape, item [3], for insulation.
Start on pin 5 and wind 9 turns (x 2 filar) of item [8]. Wind in same rotational direction as
primary winding. Spread the winding evenly across entire bobbin. Finish this winding on
pin(s) 4.
Add 1 layer of tape, item [3], for insulation.
Start on pin 2 and wind 22 turns (x 1 filar) of item [6] in 1 layer(s) from left to right. Add 1
layer of tape, item [4], in between each primary winding layer. On the final layer, spread
the winding evenly across entire bobbin. Finish this winding on pin 1.
Add 3 layers of tape, item [3], for insulation.
Assemble and secure core halves. Item [1]. Dip varnish uniformly in item [5]. Do not
vacuum impregnate.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 12 of 34
19-Apr-11
DER-278 No Electrolytic Capacitor, 15 W LED Driver Using LNK407EG
8 Transformer Design Spreadsheet
ACDC_LinkSwitchPH_011111; Rev.1.2;
INPUT
Copyright Power
Integrations 2011
ENTER APPLICATION VARIABLES
Dimming required
INFO
NO
VO_MAX
VO_MIN
V_OVP
IO
UNIT
NO
VACMIN
VACMAX
fL
VO
OUTPUT
90
265
50
30.00
V
V
Hz
V
33.00
27.00
36.30
V
V
V
PO
15.0
W
n
0.90
VB
17
ENTER LinkSwitch-PH VARIABLES
LinkSwitch-PH
LNK407
0.9
17
V
0.50
Chosen Device
Current Limit Mode
Universal
LNK407
RED
ILIMITMIN
ILIMITMAX
fS
fSmin
fSmax
IV
RV
RV2
IFB
RFB1
VDS
Power
Out
12W
RED
1.42
1.66
66000
62000
70000
38.7
3.909
1.402
126.3
110.8
A
A
Hz
Hz
Hz
uA
M-ohms
M-ohms
uA
k-ohms
10
V
VD
0.50
V
VDB
Key Design Parameters
0.70
V
KP
0.78
LP
VOR
Expected IO (average)
KP_VACMAX
91.50
TON_MIN
0.78
1603
91.5
0.48
1.02
uH
V
A
2.28
us
PCLAMP
0.12
ENTER TRANSFORMER CORE/CONSTRUCTION VARIABLES
Core Type
RM10
RM10
Bobbin
RM10_BOBBIN
AE
0.966
LE
4.46
AL
4050
BW
10.0
10
M
L
Page 13 of 34
0
2.00
2
W
P/N:
cm^2
cm
nH/T^2
mm
mm
LinkSwitch-PH_011111: Flyback
Transformer Design Spreadsheet
Select 'YES' option if dimming is required.
Otherwise select 'NO'.
Minimum AC Input Voltage
Maximum AC input voltage
AC Mains Frequency
Typical output voltage of LED string at full
load
Maximum expected LED string Voltage.
Minimum expected LED string Voltage.
Over-voltage protection setpoint
Typical full load LED current
!!! For Universal Input reduce Continuous
Output Power PO_CONT below 12W (or use
larger LinkSwitch-PH)
Estimated efficiency of operation
Bias Voltage
115 Doubled/230V
5.5W
Select "RED" for reduced Current Limit mode
or "FULL" for Full current limit mode
Minimum current limit
Maximum current limit
Switching Frequency
Minimum Switching Frequency
Maximum Switching Frequency
V pin current
Upper V pin resistor
Lower V pin resistor
FB pin current (85 uA < IFB < 210 uA)
FB pin resistor
LinkSwitch-PH on-state Drain to Source
Voltage
Output Winding Diode Forward Voltage Drop
(0.5 V for Schottky and 0.8 V for PN diode)
Bias Winding Diode Forward Voltage Drop
Ripple to Peak Current Ratio (For PF > 0.9,
0.4 < KP < 0.9)
Primary Inductance
Reflected Output Voltage.
Expected Average Output Current
Expected ripple current ratio at VACMAX
Minimum on time at maximum AC input
voltage
Estimated dissipation in primary clamp
CPV-RM10-1S-12PD
Core Effective Cross Sectional Area
Core Effective Path Length
Ungapped Core Effective Inductance
Bobbin Physical Winding Width
Safety Margin Width (Half the Primary to
Secondary Creepage Distance)
Number of Primary Layers
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-278 No Electrolytic Capacitor, 15 W LED Driver Using LNK407EG
NS
15
DC INPUT VOLTAGE PARAMETERS
VMIN
VMAX
CURRENT WAVEFORM SHAPE PARAMETERS
DMAX
IAVG
15
127
375
V
V
0.44
0.17
A
IP
0.81
A
IRMS
0.28
A
TRANSFORMER PRIMARY DESIGN PARAMETERS
LP
NP
NB
ALG
1603
45
9
792
uH
19-Apr-11
Number of Secondary Turns
Peak input voltage at VACMIN
Peak input voltage at VACMAX
Minimum duty cycle at peak of VACMIN
Average Primary Current
Peak Primary Current (calculated at minimum
input voltage VACMIN)
Primary RMS Current (calculated at minimum
input voltage VACMIN)
Primary Inductance
Primary Winding Number of Turns
Bias Winding Number of Turns
nH/T^2
Gapped Core Effective Inductance
Maximum Flux Density at PO, VMIN
BM
2986
Gauss
(BM<3100)
BP
3613
Gauss
Peak Flux Density (BP<3700)
AC Flux Density for Core Loss Curves (0.5 X
BAC
1164
Gauss
Peak to Peak)
ur
1488
Relative Permeability of Ungapped Core
LG
0.12
mm
Gap Length (Lg > 0.1 mm)
BWE
20
mm
Effective Bobbin Width
Maximum Primary Wire Diameter including
OD
0.44
mm
insulation
Estimated Total Insulation Thickness (= 2 *
INS
0.06
mm
film thickness)
DIA
0.38
mm
Bare conductor diameter
Primary Wire Gauge (Rounded to next
AWG
27
AWG
smaller standard AWG value)
CM
203
Cmils
Bare conductor effective area in circular mils
!!! DECREASE CMA (200 < CMA < 600)
CMA
724
Cmils/Amp Decrease L(primary layers),increase
Warning
NS,smaller Core
LP_TOL
10
Tolerance of primary inductance
TRANSFORMER SECONDARY DESIGN PARAMETERS (SINGLE OUTPUT EQUIVALENT)
Lumped parameters
ISP
2.43
A
Peak Secondary Current
ISRMS
0.90
A
Secondary RMS Current
IRIPPLE
0.75
A
Output Capacitor RMS Ripple Current
Secondary Bare Conductor minimum circular
CMS
180
Cmils
mils
Secondary Wire Gauge (Rounded up to next
AWGS
27
AWG
larger standard AWG value)
Secondary Minimum Bare Conductor
DIAS
0.36
mm
Diameter
Secondary Maximum Outside Diameter for
ODS
0.67
mm
Triple Insulated Wire
VOLTAGE STRESS PARAMETERS
Estimated Maximum Drain Voltage assuming
VDRAIN
566
V
maximum LED string voltage (Includes Effect
of Leakage Inductance)
Output Rectifier Maximum Peak Inverse
PIVS
161
V
Voltage (calculated at VOVP, excludes
leakage inductance spike)
Bias Rectifier Maximum Peak Inverse Voltage
PIVB
93
V
(calculated at VOVP, excludes leakage
inductance spike)
FINE TUNING (Enter measured values from prototype)
V pin Resistor Fine
Tuning
RV1
3.91
M-ohms
Upper V Pin Resistor Value
RV2
1.40
M-ohms
Lower V Pin Resistor Value
VAC1
115.0
V
Test Input Voltage Condition1
VAC2
230.0
V
Test Input Voltage Condition2
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 14 of 34
19-Apr-11
DER-278 No Electrolytic Capacitor, 15 W LED Driver Using LNK407EG
IO_VAC1
IO_VAC2
RV1 (new)
RV2 (new)
0.50
0.50
3.91
1.40
A
A
M-ohms
M-ohms
V_OV
318.3
V
V_UV
70.8
V
111
1E+012
15.3
18.7
0.50
0.50
110.8
1.00E+12
k-ohms
k-ohms
V
V
A
A
k-ohms
k-ohms
FB pin resistor Fine Tuning
RFB1
RFB2
VB1
VB2
IO1
IO2
RFB1 (new)
RFB2(new)
Page 15 of 34
Measured Output Current at VAC1
Measured Output Current at VAC2
New RV1
New RV2
Typical AC input voltage at which OV
shutdown will be triggered
Typical AC input voltage beyond which power
supply can startup
Upper FB Pin Resistor Value
Lower FB Pin Resistor Value
Test Bias Voltage Condition1
Test Bias Voltage Condition2
Measured Output Current at Vb1
Measured Output Current at Vb2
New RFB1
New RFB2
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-278 No Electrolytic Capacitor, 15 W LED Driver Using LNK407EG
19-Apr-11
9 Performance Data
All measurements performed at room temperature.
9.1
Efficiency vs. Line and Output (LED String) Voltage
9.1.1 30 V
Input
VAC
(VRMS)
Input Measurement
Freq
(Hz)
VIN
(VRMS)
IIN
(mARMS)
PIN
(W)
PF
Load Measurement
%ATHD
VOUT
(VDC)
IOUT
(mADC)
POUT
(W)
Calculation
PCAL
(W)
Efficiency
(%)
Loss
(W)
90
60
89.87
190.68
16.96
0.99
14.38
29.80
486.41
15.04
14.50
89
1.92
115
60
114.94
153.09
17.36
0.99
16.46
29.83
504.01
15.58
15.03
90
1.78
132
60
131.93
135.16
17.52
0.98
18.48
29.84
511.50
15.80
15.26
90
1.73
180
50
179.96
101.94
17.83
0.97
23.39
29.88
523.51
16.15
15.64
91
1.67
220
50
219.91
83.94
17.73
0.96
26.81
29.87
522.39
16.08
15.60
91
1.65
230
50
229.95
80.16
17.66
0.96
27.34
29.85
520.91
16.01
15.55
91
1.65
265
50
264.95
69.07
17.34
0.95
29.18
29.80
512.46
15.70
15.27
91
1.63
9.1.2 27 V
Input
VAC
(VRMS)
Input Measurement
Freq
(Hz)
VIN
(VRMS)
IIN
(mARMS)
Load Measurement
Calculation
PIN
(W)
PF
%ATHD
VOUT
(VDC)
IOUT
(mADC)
POUT
(W)
PCAL
(W)
Efficiency
(%)
Loss
(W)
90
60
89.89
169.86
15.09
0.99
15.25
26.72
481.48
13.34
12.87
88
1.76
115
60
114.95
136.85
15.49
0.98
17.44
26.76
501.50
13.89
13.42
90
1.60
132
60
131.94
121.32
15.70
0.98
19.56
26.78
510.53
14.14
13.67
90
1.56
180
50
179.97
91.63
15.98
0.97
24.11
26.83
523.10
14.48
14.03
91
1.50
220
50
219.91
75.45
15.89
0.96
27.17
26.82
521.51
14.40
13.98
91
1.49
230
50
229.95
72.08
15.83
0.96
27.67
26.80
519.83
14.34
13.93
91
1.49
265
50
264.95
62.21
15.54
0.94
29.35
26.76
510.78
14.05
13.67
90
1.49
9.1.3 33 V
Input
VAC
(VRMS)
Input Measurement
Freq
(Hz)
VIN
(VRMS)
IIN
(mARMS)
PIN
(W)
PF
Load Measurement
%ATHD
VOUT
(VDC)
IOUT
(mADC)
POUT
(W)
Calculation
PCAL
(W)
Efficiency
(%)
Loss
(W)
90
60
89.89
209.19
18.62
0.99
13.69
32.41
488.91
16.46
15.84
88
2.16
115
60
114.95
166.82
18.94
0.99
15.68
32.44
505.02
17.00
16.38
90
1.94
132
60
131.94
146.97
19.09
0.98
17.53
32.47
511.74
17.22
16.61
90
1.87
180
50
179.97
110.67
19.39
0.97
22.77
32.52
523.26
17.59
17.02
91
1.80
220
50
219.91
91.26
19.32
0.96
26.45
32.53
522.99
17.54
17.01
91
1.78
230
50
229.95
87.17
19.25
0.96
27.02
32.51
521.73
17.48
16.96
91
1.77
265
50
264.95
75.13
18.92
0.95
28.86
32.46
514.21
17.18
16.69
91
1.74
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 16 of 34
19-Apr-11
DER-278 No Electrolytic Capacitor, 15 W LED Driver Using LNK407EG
91.0
27 V
30 V
33 V
Efficiency (%)
90.5
90.0
89.5
89.0
88.5
88.0
80
100
120
140
160
180
200
220
240
260
Input voltage (VAC)
Figure 6 – Efficiency vs. Input Voltage, Room Temperature.
Page 17 of 34
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
280
DER-278 No Electrolytic Capacitor, 15 W LED Driver Using LNK407EG
9.2
19-Apr-11
Regulation
9.2.1 Line Regulation
520
27 V
515
30 V
33 V
510
Output Current (mA)
505
500
495
490
485
480
475
470
85
90
95
100
105
110
115
120
125
130
135
Input Voltage (VAC)
Figure 7 – Low-Line Regulation, Room Temperature, Full Load.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 18 of 34
19-Apr-11
DER-278 No Electrolytic Capacitor, 15 W LED Driver Using LNK407EG
560
27 V
30 V
33 V
550
Output Current (mA)
540
530
520
510
500
490
480
170
180
190
200
210
220
230
240
250
260
Input Voltage (VAC)
Figure 8 – High-Line Regulation, Room Temperature, Full Load.
Page 19 of 34
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
270
DER-278 No Electrolytic Capacitor, 15 W LED Driver Using LNK407EG
19-Apr-11
10 Thermal Performance
Images captured after running for 30 minutes at room temperature (25 °C), full load
(30 V, 500 mA). Hottest component is U1, providing system thermal protection via
internal hysteretic thermal shutdown.
10.1 VIN = 115 VAC
Figure 9 – Top Side.
Figure 10 – Bottom Side.
10.2 VIN = 230 VAC
Figure 11 – Top Side.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Figure 12 – Bottom Side.
Page 20 of 34
19-Apr-11
DER-278 No Electrolytic Capacitor, 15 W LED Driver Using LNK407EG
11 Harmonic Data
The design passes Class C requirement.
140
115 VAC Class C Harmonic Limits
DER-278 Harmonic Content
Harmonic Content (mA)
120
100
80
60
40
20
0
1
3
5
7
9
11
13
15
17
Harmoinc Order
Figure 13 – 115 VAC Harmonic, Room Temperature, Full Load.
Page 21 of 34
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
19
DER-278 No Electrolytic Capacitor, 15 W LED Driver Using LNK407EG
19-Apr-11
140
115 VAC Class C Harmonic Limits
DER-278 Harmonic Content
Harmonic Content (mA)
120
100
80
60
40
20
0
1
3
5
7
9
11
13
15
17
19
Harmoinc Order
Figure 14 – 230 VAC Harmonic, Room Temperature, Full Load.
THD (%)
VIN = 115 VAC
Limit (%)
Margin (%)
17
THD (%)
27
33
16
VIN = 230 VAC
Limit (%)
Margin (%)
33
6
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 22 of 34
19-Apr-11
DER-278 No Electrolytic Capacitor, 15 W LED Driver Using LNK407EG
12 Waveforms
12.1 Input Line Voltage and Current
Figure 15 – 90 VAC, Full Load.
Upper: IIN, 0.2 A / div.
Lower: VIN, 200 V, 10 ms / div.
Figure 16 – 265 VAC, Full Load.
Upper: IIN, 0.1 A / div.
Lower: VIN, 500 V / div., 10 ms / div.
12.2 Drain Voltage and Current
Figure 17 – 90 VAC, Full Load.
Upper: IDRAIN, 0.5 A / div.
Lower: VDRAIN, 200 V, 5 ms / div.
Page 23 of 34
Figure 18 – 265 VAC, Full Load.
Upper: IDRAIN, 0.5 A / div.
Lower: VDRAIN, 500 V / div., 5 ms / div.
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-278 No Electrolytic Capacitor, 15 W LED Driver Using LNK407EG
19-Apr-11
12.3 Output Voltage and Ripple Current
Figure 19 – 90 VAC, Full Load.
Upper: IRIPPLE, 0.5 A / div.
Lower: VOUT 10 V, 5 ms / div.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Figure 20 – 265 VAC, Full Load.
Upper: IRIPPLE, 0.5 A / div.
Lower: VOUT 10 V, 5 ms / div.
Page 24 of 34
19-Apr-11
DER-278 No Electrolytic Capacitor, 15 W LED Driver Using LNK407EG
12.4 Output Rectifier Voltage and Current
Figure 21 – 110 VAC, Full Load.
Upper: IRIPPLE, 0.5 A / div.
Lower: VDIODE, 100 V, 5 ms/200 s / div.
Figure 22 – 265 VAC, Full Load.
Upper: IRIPPLE, 0.5 A / div.
Lower: VDIODE, 100 V, 5 ms/200 s / div.
12.5 Output Voltage and Current Start-up Profile
Figure 23 – 110 VAC, Full Load.
Upper: IOUT, 0.5 A / div.
Lower: VOUT, 10 V, 10 ms / div.
Page 25 of 34
Figure 24 – 230 VAC, Full Load.
Upper: IOUT, 0.5 A / div.
Lower: VOUT, 10 V, 10 ms / div.
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-278 No Electrolytic Capacitor, 15 W LED Driver Using LNK407EG
19-Apr-11
12.6 Output Current and Drain Voltage with Shorted Output
Figure 25 – 90 VAC, Full Load.
Upper: IOUT, 2 A / div.
Lower: VDRAIN, 200 V, 500 ms / div.
Figure 26 – 265 VAC, Full Load.
Upper: IOUT, 2 A / div.
Lower: VDRAIN, 200 V, 500 ms / div.
12.7 Output Current and Output Voltage with Shorted Output
Figure 27 – 110 VAC, Full Load.
Upper: IOUT, 1 A / div.
Lower: VDRAIN, 10 V, 1 s / div.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 26 of 34
19-Apr-11
DER-278 No Electrolytic Capacitor, 15 W LED Driver Using LNK407EG
12.8 Open Load Output Voltage
Figure 28 – Output Voltage: 110 VAC.
VOUT, 20 V / div., 1 s / div.
Figure 29 – Output Voltage: 230 VAC.
VOUT, 20 V / div., 1 s / div.
Note: Under open load conditions the OV shutdown function is designed to prevent the
output voltage exceeding SELV limits (45 V). This is achieved, however, the voltage
rating of the output capacitors is exceeded which is acceptable for a fault condition.
Page 27 of 34
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-278 No Electrolytic Capacitor, 15 W LED Driver Using LNK407EG
19-Apr-11
13 Line Surge
Differential and common input line 200 A ring wave testing was completed on a single
test unit to IEC61000-4-5. Input voltage was set at 230 VAC / 60 Hz. Output was loaded
at full load and operation was verified following each surge event.
Surge Level
(V)
2500
2500
2500
2500
2500
2500
Input Voltage
(VAC)
230
230
230
230
230
230
Injection
Location
L to N
L to N
L to PE
L to PE
N to PE
N to PE
Injection Phase
(°)
90
90
90
90
90
90
Test Result
(Pass/Fail)
Pass
Pass
Pass
Pass
Pass
Pass
Unit passes under all test conditions.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 28 of 34
19-Apr-11
DER-278 No Electrolytic Capacitor, 15 W LED Driver Using LNK407EG
14 Conducted EMI
Note: Refer to table for margin to standard – blue line is peak measurement but limit line
is quasi peak.
Power Integrations
14.Apr 11 16:52
RBW
MT
9 kHz
500 ms
Att 10 dB AUTO
dBµV
100 kHz
120
EN55015Q
LIMIT CHECK
110
1 MHz
PASS
10 MHz
SGL
1 QP
CLRWR
100
90
2 AV
CLRWR
TDF
80
70
60
EN55015A
50
6DB
40
30
20
10
0
-10
-20
9 kHz
Trace1:
30 MHz
EDIT PEAK LIST (Final Measurement Results)
EN55015Q
Trace2:
EN55015A
Trace3:
---
TRACE
FREQUENCY
LEVEL dBµV
DELTA LIMIT dB
2
Average
130.825395691 kHz
40.06
L1 gnd
2
Average
136.137431366 kHz
37.36
L1 gnd
2
Average
198.193645035 kHz
43.43
L1 gnd
-10.25
1
Quasi Peak
200.175581485 kHz
52.81
N gnd
-10.78
1
Quasi Peak
264.49018761 kHz
52.54
L1 gnd
-8.74
2
Average
264.49018761 kHz
42.56
L1 gnd
-8.72
1
Quasi Peak
332.507282579 kHz
47.18
L1 gnd
-12.20
2
Average
332.507282579 kHz
35.76
L1 gnd
-13.62
1
Quasi Peak
397.727746704 kHz
49.83
L1 gnd
-8.06
2
Average
397.727746704 kHz
38.88
L1 gnd
-9.01
1
Quasi Peak
466.367062279 kHz
48.40
L1 gnd
-8.17
2
Average
466.367062279 kHz
36.38
L1 gnd
-10.19
1
Quasi Peak
598.084042089 kHz
49.67
L1 gnd
-6.32
2
Average
598.084042089 kHz
36.89
L1 gnd
-9.10
1
Quasi Peak
926.622115652 kHz
47.94
L1 gnd
-8.05
2
Average
1.46448812765 MHz
35.67
L1 gnd
-10.32
1
Quasi Peak
2.11629733595 MHz
43.34
L1 gnd
-12.65
1
Quasi Peak
12.3157210828 MHz
45.68
L1 gnd
-14.31
2
Average
14.016439408 MHz
38.35
L1 gnd
-11.65
1
Quasi Peak
26.4975442467 MHz
47.24
N gnd
-12.75
Figure 30 – Conducted EMI, Maximum Steady-State Load, 110 VAC, Line, 60 Hz, and EN55015 B Limits.
Page 29 of 34
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-278 No Electrolytic Capacitor, 15 W LED Driver Using LNK407EG
Power Integrations
14.Apr 11 17:36
RBW
MT
19-Apr-11
9 kHz
500 ms
Att 10 dB AUTO
dBµV
100 kHz
120
EN55015Q
LIMIT CHECK
110
1 MHz
PASS
10 MHz
SGL
1 QP
CLRWR
100
90
2 AV
CLRWR
TDF
80
70
60
EN55015A
50
6DB
40
30
20
10
0
-10
-20
9 kHz
Trace1:
30 MHz
EDIT PEAK LIST (Final Measurement Results)
EN55015Q
Trace2:
EN55015A
Trace3:
---
TRACE
FREQUENCY
LEVEL dBµV
DELTA LIMIT dB
2
Average
126.977840157 kHz
38.17
L1 gnd
2
Average
130.825395691 kHz
45.25
L1 gnd
2
Average
136.137431366 kHz
42.21
L1 gnd
1
Quasi Peak
198.193645035 kHz
56.14
L1 gnd
2
Average
198.193645035 kHz
47.02
L1 gnd
-6.65
1
Quasi Peak
267.135089486 kHz
48.17
N gnd
-13.03
1
Quasi Peak
332.507282579 kHz
51.95
L1 gnd
-7.43
2
Average
332.507282579 kHz
41.95
L1 gnd
-7.42
1
Quasi Peak
397.727746704 kHz
54.27
L1 gnd
-3.62
2
Average
397.727746704 kHz
42.62
L1 gnd
-5.27
1
Quasi Peak
466.367062279 kHz
52.01
L1 gnd
-4.56
2
Average
466.367062279 kHz
39.64
L1 gnd
-6.93
1
Quasi Peak
660.656865747 kHz
52.78
L1 gnd
-3.21
2
Average
660.656865747 kHz
40.95
L1 gnd
-5.04
1
Quasi Peak
926.622115652 kHz
51.54
L1 gnd
-4.45
1
Quasi Peak
2.09534389698 MHz
46.71
L1 gnd
-9.28
2
Average
2.53140371619 MHz
38.11
N gnd
-7.88
1
Quasi Peak
11.9535175476 MHz
47.49
L1 gnd
-12.50
2
Average
13.0733860985 MHz
40.02
L1 gnd
-9.97
1
Quasi Peak
26.2351923234 MHz
43.94
N gnd
-16.05
-7.54
Figure 31 – Conducted EMI, Maximum Steady-State Load, 230 VAC, Line, 60 Hz, and EN55015 B Limits.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 30 of 34
19-Apr-11
DER-278 No Electrolytic Capacitor, 15 W LED Driver Using LNK407EG
14.Apr 11 18:41
MT
500 ms
Att 10 dB AUTO
dBµV
100 kHz
120
EN55015Q
LIMIT CHECK
110
1 MHz
PASS
10 MHz
SGL
1 QP
CLRWR
100
90
2 AV
CLRWR
TDF
80
70
60
EN55015A
50
6DB
40
30
20
10
0
-10
-20
9 kHz
Trace1:
30 MHz
EDIT PEAK LIST (Final Measurement Results)
EN55015Q
Trace2:
EN55015A
Trace3:
---
TRACE
FREQUENCY
LEVEL dBµV
DELTA LIMIT dB
2
Average
130.825395691 kHz
40.16
L1 gnd
1
Quasi Peak
198.193645035 kHz
52.30
N gnd
-11.38
2
Average
200.175581485 kHz
42.90
N gnd
-10.70
1
Quasi Peak
264.49018761 kHz
52.60
L1 gnd
-8.68
2
Average
264.49018761 kHz
42.79
L1 gnd
-8.49
1
Quasi Peak
332.507282579 kHz
47.05
L1 gnd
-12.33
1
Quasi Peak
397.727746704 kHz
49.35
L1 gnd
-8.54
2
Average
397.727746704 kHz
38.54
L1 gnd
-9.35
1
Quasi Peak
466.367062279 kHz
49.93
L1 gnd
-6.64
2
Average
466.367062279 kHz
37.54
L1 gnd
-9.03
1
Quasi Peak
598.084042089 kHz
49.58
L1 gnd
-6.41
2
Average
598.084042089 kHz
37.20
L1 gnd
-8.79
1
Quasi Peak
798.145472681 kHz
48.81
L1 gnd
-7.18
2
Average
1.32578199726 MHz
36.21
L1 gnd
-9.78
1
Quasi Peak
2.09534389698 MHz
43.46
L1 gnd
-12.54
2
Average
3.9219482581 MHz
35.39
N gnd
-10.60
1
Quasi Peak
11.9535175476 MHz
45.77
L1 gnd
-14.22
2
Average
12.9439466322 MHz
38.22
L1 gnd
-11.77
1
Quasi Peak
26.4975442467 MHz
47.10
N gnd
-12.89
2
Average
26.4975442467 MHz
38.16
N gnd
-11.83
Figure 32 – Conducted EMI, Maximum Steady-State Load, 110 VAC, Neutral, 60 Hz, and EN55015 B
Limits.
Page 31 of 34
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-278 No Electrolytic Capacitor, 15 W LED Driver Using LNK407EG
Power Integrations
14.Apr 11 18:09
RBW
MT
19-Apr-11
9 kHz
500 ms
Att 10 dB AUTO
dBµV
100 kHz
120
EN55015Q
LIMIT CHECK
110
1 MHz
PASS
10 MHz
SGL
1 QP
CLRWR
100
90
2 AV
CLRWR
TDF
80
70
60
EN55015A
50
6DB
40
30
20
10
0
-10
-20
9 kHz
Trace1:
30 MHz
EDIT PEAK LIST (Final Measurement Results)
EN55015Q
Trace2:
EN55015A
Trace3:
---
TRACE
FREQUENCY
LEVEL dBµV
DELTA LIMIT dB
2
Average
130.825395691 kHz
45.51
L1 gnd
2
Average
136.137431366 kHz
42.49
L1 gnd
1
Quasi Peak
198.193645035 kHz
56.17
L1 gnd
2
Average
198.193645035 kHz
47.09
L1 gnd
-6.59
2
Average
264.49018761 kHz
39.01
N gnd
-12.27
1
Quasi Peak
267.135089486 kHz
48.15
N gnd
-13.04
1
Quasi Peak
332.507282579 kHz
51.94
L1 gnd
-7.44
2
Average
332.507282579 kHz
41.96
L1 gnd
-7.42
1
Quasi Peak
397.727746704 kHz
54.31
L1 gnd
-3.58
2
Average
397.727746704 kHz
42.67
L1 gnd
-5.22
1
Quasi Peak
466.367062279 kHz
52.14
L1 gnd
-4.43
2
Average
466.367062279 kHz
39.70
L1 gnd
-6.87
2
Average
598.084042089 kHz
40.58
L1 gnd
-5.41
1
Quasi Peak
660.656865747 kHz
52.81
L1 gnd
-3.19
2
Average
2.58228493089 MHz
38.32
N gnd
-7.67
1
Quasi Peak
3.21421100787 MHz
46.88
N gnd
-9.11
1
Quasi Peak
11.9535175476 MHz
47.51
L1 gnd
-12.48
2
Average
13.3361611591 MHz
39.83
L1 gnd
-10.16
1
Quasi Peak
26.4975442467 MHz
43.49
N gnd
-16.50
-7.50
Figure 33 – Conducted EMI, Maximum Steady-State Load, 230 VAC, Neutral, 60 Hz, and EN55015 B
Limits.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 32 of 34
19-Apr-11
DER-278 No Electrolytic Capacitor, 15 W LED Driver Using LNK407EG
15 Revision History
Date
19-Apr-11
Page 33 of 34
Author
DK
Revision
1.0
Description & changes
Initial Release
Reviewed
Apps and Mktg
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-278 No Electrolytic Capacitor, 15 W LED Driver Using LNK407EG
19-Apr-11
For the latest updates, visit our website: www.powerint.com
Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability.
Power Integrations does not assume any liability arising from the use of any device or circuit described herein. POWER
INTEGRATIONS MAKES NO WARRANTY HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING,
WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.
PATENT INFORMATION
The products and applications illustrated herein (including transformer construction and circuits external to the products)
may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications
assigned to Power Integrations. A complete list of Power Integrations’ patents may be found at www.powerint.com. Power
Integrations grants its customers a license under certain patent rights as set forth at http://www.powerint.com/ip.htm.
The PI Logo, TOPSwitch, TinySwitch, LinkSwitch, DPA-Switch, PeakSwitch, CAPZero, SENZero, LinkZero, HiperPFS, HiperTFS,
Qspeed, EcoSmart, Clampless, E-Shield, Filterfuse, StackFET, PI Expert and PI FACTS are trademarks of Power Integrations, Inc.
Other trademarks are property of their respective companies. ©Copyright 2011 Power Integrations, Inc.
Power Integrations Worldwide Sales Support Locations
WORLD HEADQUARTERS
5245 Hellyer Avenue
San Jose, CA 95138, USA.
Main: +1-408-414-9200
Customer Service:
Phone: +1-408-414-9665
Fax: +1-408-414-9765
e-mail:
[email protected]
GERMANY
Rueckertstrasse 3
D-80336, Munich
Germany
Phone: +49-89-5527-3911
Fax: +49-89-5527-3920
e-mail:
[email protected]
JAPAN
Kosei Dai-3 Building
2-12-11, Shin-Yokohama,
Kohoku-ku, Yokohama-shi,
Kanagawa 222-0033
Japan
Phone: +81-45-471-1021
Fax: +81-45-471-3717
e-mail: [email protected]
TAIWAN
5F, No. 318, Nei Hu Rd., Sec. 1
Nei Hu District
Taipei 114, Taiwan R.O.C.
Phone: +886-2-2659-4570
Fax: +886-2-2659-4550
e-mail:
[email protected]
CHINA (SHANGHAI)
Rm 1601/1610, Tower 1
Kerry Everbright City
No. 218 Tianmu Road West
Shanghai, P.R.C. 200070
Phone: +86-021-6354-6323
Fax: +86-021-6354-6325
e-mail:
[email protected]
INDIA
#1, 14th Main Road
Vasanthanagar
Bangalore-560052
India
Phone: +91-80-4113-8020
Fax: +91-80-4113-8023
e-mail:
[email protected]
KOREA
RM 602, 6FL
Korea City Air Terminal B/D, 159-6
Samsung-Dong, Kangnam-Gu,
Seoul, 135-728
Korea
Phone: +82-2-2016-6610
Fax: +82-2-2016-6630
e-mail: [email protected]
EUROPE HQ
1st Floor, St. James’s House
East Street, Farnham
Surrey GU9 7TJ
United Kingdom
Phone: +44 (0) 1252-730-141
Fax: +44 (0) 1252-727-689
e-mail:
[email protected]
CHINA (SHENZHEN)
Rm A, B & C 4th Floor, Block C,
Electronics Science and
Technology Building
2070 Shennan Zhong Road
Shenzhen, Guangdong,
P.R.C. 518031
Phone: +86-755-8379-3243
Fax: +86-755-8379-5828
e-mail:
[email protected]
ITALY
Via De Amicis 2
20091 Bresso MI
Italy
Phone: +39-028-928-6000
Fax: +39-028-928-6009
e-mail:
[email protected]
SINGAPORE
51 Newton Road,
#19-01/05 Goldhill Plaza
Singapore, 308900
Phone: +65-6358-2160
Fax: +65-6358-2015
e-mail:
[email protected]
APPLICATIONS HOTLINE
World Wide +1-408-414-9660
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
APPLICATIONS FAX
World Wide +1-408-414-9760
Page 34 of 34