Design Example Report Title No Electrolytic Capacitor, High Efficiency (≥90%), High Power Factor (>0.9) 15 W LED Driver Using LinkSwitchTM-PH LNK407EG Specification 90 VAC – 265 VAC Input; 30 V, 500 mA Output Application LED Driver Author Applications Engineering Department Document Number DER-278 Date April 19, 2011 Revision 1.0 Summary and Features No electrolytic capacitors Clean monotonic start-up – no output blinking Fast start-up (<100 ms) – no perceptible delay Highly energy efficient o ≥90% at 230 VAC Low cost, low component count and small printed circuit board footprint solution o No current sensing required o Frequency jitter for smaller, lower cost EMI filter components Integrated protection and reliability features o Output open circuit / output short-circuit protected with auto-recovery o Line input overvoltage shutdown extends voltage withstand during line faults. o Auto-recovering thermal shutdown with large hysteresis protects both components and printed circuit board o No damage during brown-out or brown-in conditions Meets IEC 61000-4-5 ring wave, IEC 61000-3-2 Class C harmonics and EN55015 B conducted EMI PATENT INFORMATION The products and applications illustrated herein (including transformer construction and circuits external to the products) may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at www.powerint.com. Power Integrations grants its customers a license under certain patent rights as set forth at <http://www.powerint.com/ip.htm>. Power Integrations 5245 Hellyer Avenue, San Jose, CA 95138 USA. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-278 No Electrolytic Capacitor, 15 W LED Driver Using LNK407EG 19-Apr-11 Table of Contents 1 2 3 4 5 Introduction ............................................................................................................. 4 Populated Circuit Board .......................................................................................... 5 Power Supply Specification..................................................................................... 6 Schematic ............................................................................................................... 7 Description .............................................................................................................. 8 5.1 Input Filtering....................................................................................................... 8 5.2 LinkSwitch-PH Primary ........................................................................................ 8 5.3 Bias Supply and Output Overvoltage Sensing..................................................... 8 5.4 Output Feedback ................................................................................................. 9 5.5 Output Rectification and Filtering ........................................................................ 9 5.6 Considerations for higher efficiency .................................................................... 9 6 Bill of Materials...................................................................................................... 10 7 Transformer Specification ..................................................................................... 11 7.1 Electrical Diagram ............................................................................................. 11 7.2 Materials ............................................................................................................ 11 7.3 Transformer Build Diagram ............................................................................... 12 7.4 Transformer Construction .................................................................................. 12 8 Transformer Design Spreadsheet ......................................................................... 13 9 Performance Data ................................................................................................. 16 9.1 Efficiency vs. Line and Output (LED String) Voltage ......................................... 16 9.1.1 30 V ............................................................................................................ 16 9.1.2 27 V ............................................................................................................ 16 9.1.3 33 V ............................................................................................................ 16 9.2 Regulation ......................................................................................................... 18 9.2.1 Line Regulation .......................................................................................... 18 10 Thermal Performance ........................................................................................... 20 10.1 VIN = 115 VAC ................................................................................................... 20 10.2 VIN = 230 VAC ................................................................................................... 20 11 Harmonic Data ...................................................................................................... 21 12 Waveforms ............................................................................................................ 23 12.1 Input Line Voltage and Current.......................................................................... 23 12.2 Drain Voltage and Current ................................................................................. 23 12.3 Output Voltage and Ripple Current ................................................................... 24 12.4 Output Rectifier Voltage and Current ................................................................ 25 12.5 Output Voltage and Current Start-up Profile ...................................................... 25 12.6 Output Current and Drain Voltage with Shorted Output .................................... 26 12.7 Output Current and Output Voltage with Shorted Output .................................. 26 12.8 Open Load Output Voltage ................................................................................ 27 13 Line Surge............................................................................................................. 28 14 Conducted EMI ..................................................................................................... 29 15 Revision History .................................................................................................... 33 Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 2 of 34 19-Apr-11 DER-278 No Electrolytic Capacitor, 15 W LED Driver Using LNK407EG Important Note: Although this board is designed to satisfy safety isolation requirements, the engineering prototype has not been agency approved. Therefore, all testing should be performed using an isolation transformer to provide the AC input to the prototype board. Page 3 of 34 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-278 No Electrolytic Capacitor, 15 W LED Driver Using LNK407EG 19-Apr-11 1 Introduction This document describes an isolated, power factor corrected, very high efficiency LED driver designed to drive an LED string of 30 V at a current of 500 mA (both nominal) from an input voltage range of 90 to 265 VAC. The LED driver uses a LNK407EG device from the LinkSwitch-PH family of ICs. This integrated controller and 725 V MOSFET dramatically reduces the complexity and component count of the solution. The key design goals were to achieve the highest possible efficiency and eliminate electrolytic capacitors. Both are key factors for increasing the lifetime and reliability of LED drivers making this solution ideal for industrial and commercial applications. This document contains the LED driver specification, schematic, bill of material, transformer documentation and typical performance characteristics. The design was based on the reference design board RD-194 with simple component changes to meet the new specification. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 4 of 34 19-Apr-11 DER-278 No Electrolytic Capacitor, 15 W LED Driver Using LNK407EG 2 Populated Circuit Board Figure 1 – Populated Circuit Board Photograph (Top View). PCB Outline Designed to Fit Inside PAR38 Enclosure. Figure 2 – Populated Circuit Board Photograph (Bottom View). Page 5 of 34 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-278 No Electrolytic Capacitor, 15 W LED Driver Using LNK407EG 19-Apr-11 3 Power Supply Specification The table below represents the minimum acceptable performance of the design. Actual performance is listed in the results section. Description Input Voltage Frequency Output Output Voltage Output Current Total Output Power Continuous Output Power Efficiency Full Load Symbol Min Typ Max Units Comment VIN fLINE 90 47 115 50/60 265 64 VAC Hz 2 Wire – no P.E. VOUT IOUT 27 30 0.50 33 V A 15 POUT (115) (230) W o 89.6 90.6 Measured at POUT, 25 C, 115 VAC % o Measured at POUT, 25 C, 230 VAC Environmental Conducted EMI Meets CISPR 15B / EN55015B Designed to meet IEC950 / UL1950 Class II Safety Ring Wave (100 kHz) Differential Mode (L1-L2) Common mode (L1/L2-PE) 2.5 Power Factor kV Measured at VOUT(TYP), IOUT(TYP) and 115/230 VAC 0.9 Harmonics IEC 61000-4-5, 200 A EN 61000-3-2 Class D Ambient Temperature a TAMB 40 o C Free convection, sea level Notes: a Maximum ambient temperature specification may be increased by adding a small heat sink to the LinkSwitch-PH device. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 6 of 34 19-Apr-11 DER-278 No Electrolytic Capacitor, 15 W LED Driver Using LNK407EG 4 Schematic Figure 3 – Schematic. Page 7 of 34 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-278 No Electrolytic Capacitor, 15 W LED Driver Using LNK407EG 19-Apr-11 5 Description The LinkSwitch-PH device is a controller and integrated 725 V MOSFET intended for use in LED driver applications. The LinkSwitch-PH is configured for use in a single-stage continuous conduction mode flyback topology and provides a primary side regulated constant current output while maintaining high power factor from the AC input. 5.1 Input Filtering Fuse F1 fuses the input and BR1 rectifies the AC line voltage. Inductor L2-L4, C1, R1, and R5 form the EMI filter and together with C9 (Y1 safety) capacitor allow the design to meet EN55015B conducted EMI limits. Capacitor C8 provides a low impedance path for the primary switching current, a low value of capacitance is necessary to maintain a power factor of greater than 0.9. 5.2 LinkSwitch-PH Primary Diode D1 and high-voltage SMD ceramic capacitors C11 and C10 detect the peak AC line voltage. This voltage is converted to a current into the VOLTAGE MONITOR (V) pin via R2, R7 and R13. This current is also used by the device to set the input over/undervoltage protection thresholds. The V pin current and the FEEDBACK (FB) pin current are used internally to control the average output LED current. Non-dimming designs require 24.9 k resistor on the REFERENCE (R) pin (R10) and 3.9 M on the V pin (R2+R7+R13). Resistor R10 also sets the internal references to select the line undervoltage threshold. Resistor R14 is added to further improve line regulation, providing a constant output current over the specified input voltage range. Diode D2 and VR1 clamp the drain voltage to below the BVDSS rating (725 V) of the internal power MOSFET in U1. Diode D5 is necessary to prevent reverse current from flowing through the LinkSwitch-PH device (the result of the minimal input capacitance). 5.3 Bias Supply and Output Overvoltage Sensing Diode D4, D6, C7, R3, R6 and R8 form the primary bias supply. This supplies the IC operating current into the BYPASS (BP) pin through D6 and R8 during normal operation. Resistor R3 provides filtering to improve output regulation while R6 acts as a minimum load. Capacitor C13 is the supply decoupling for the LinkSwitch-PH. During start-up C13 is charged to ~6 V from an internal high-voltage current source tied to the device DRAIN (D) pin. Once charged the energy stored in C13 is used to run the device until the output and bias winding voltage rise and current is supplied via R8. A disconnected load / overvoltage shutdown function is provided by D7, C14, R11, VR2, C12, R12 and Q1. A second bias winding output voltage is used to eliminate the delay introduced by the larger value of C7 compared to C14. Should the output LED load be disconnected, the output voltage and therefore the bias winding voltage across C14 will rise. Once this exceeds the voltage rating of VR2 plus the VBE of Q1 then Q1 is biased on Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 8 of 34 19-Apr-11 DER-278 No Electrolytic Capacitor, 15 W LED Driver Using LNK407EG which pulls the FB pin down. Once the current into the FB pin of U1 falls below IFB(AR) the device enters auto-restart, thereby limiting the output voltage. Resistor R11, C12 provide filtering and R12 defines the Zener current at the point Q1 turns on. 5.4 Output Feedback A current proportional to the output voltage from the primary bias winding is fed into the FB pin through R9. This information together with the line input voltage and the drain current are used to maintain a constant output current. 5.5 Output Rectification and Filtering Diode D2 rectifies the secondary winding while ceramic capacitors C2, C3, C4, C5 and C6 filter the output. A 20 A, 200 V Schottky diode was selected for high efficiency. Resistor R4 provides a minimum load to ensure the LED current falls when the AC is removed. 5.6 Considerations for higher efficiency The following changes were made over the standard RD-194 to achieve higher efficiency. Larger LinkSwitch-PH device (LNK407EG vs. LNK406EG). 20 A vs. 4 A Schottky output diode Larger RM10 core size vs. RM8 to allow lower winding current density (and lower winding losses). Page 9 of 34 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-278 No Electrolytic Capacitor, 15 W LED Driver Using LNK407EG 19-Apr-11 6 Bill of Materials Item 1 2 Qty 1 1 Ref Des BR1 C1 C2,C3,C 4,C5, C6,C7 C8 C9 C10, C11 C12 C13 C14 3 4 5 6 1 1 6 7 8 9 2 1 1 1 10 11 12 13 14 15 16 17 1 1 1 1 1 1 1 1 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 3 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 D1 D2 D3 D4 D5 D6 D7 F1 L2, L3,L4 Q1 R1, R5 R2 R3 R4 R6 R7 R8 R9 R10 R11 R12 R13 R14 RV1 34 1 T1 35 36 37 1 1 1 U1 VR1 VR2 Description 600 V, 2 A, Bridge Rectifier, Glass Passivated 47 nF, 275 VAC, Film, X2 22 F, 50 V, Ceramic 100 nF, 630 V, Film 2.2 nF, Ceramic, Y1 100 nF, 500 V, Ceramic, X7R, 1812 100 nF, 50 V, Ceramic, X7R, 0805 10 F, 16 V, Ceramic, X5R, 1210 1 F, 50 V, Ceramic, X7R, 0805 1000 V, 1 A, Rectifier, Glass Passivated, DO-213AA (MELF) 1000 V, 1 A, Ultrafast Recovery, 75 ns, DO-41 200 V, 20 A, Dual Schottky, SMD, TO-263AB 200 V, 1 A, Ultrafast Recovery, 25 ns, DO-214AC 400 V, 1 A, Ultrafast Recovery, 50 ns, DO-41 100 V, 1 A, Fast Recovery, 150 ns, SMA 250 V, 0.2 A, Fast Switching, 50 ns, SOD-323 3.15 A, 250V, Slow, TR5 1000 H, 0.3 A NPN, Small Signal BJT, 40 V, 0.2 A, SOT-23 10 k, 5%, 1/8 W, Thick Film, 0805 2.00 M, 1%, 1/4 W, Thick Film, 1206 150 , 1%, 1/8 W, Thick Film, 0805 20 k, 5%, 1/4 W, Thick Film, 1206 51 k, 5%, 1/8 W, Thick Film, 0805 1.00 M, 1%, 1/4 W, Thick Film, 1206 3.01 k, 1%, 1/4 W, Thick Film, 1206 100 k, 1%, 1/8 W, Thick Film, 0805 24.9 k, 1%, 1/8 W, Thick Film, 0805 10 k, 5%, 1/8 W, Thick Film, 0805 1 k, 5%, 1/8 W, Thick Film, 0805 887 k, 1%, 1/4 W, Thick Film, 1206 1.33 M, 1%, 1/4 W, Thick Film, 1206 275 V, 80J, 10 mm, RADIAL Mfg Part Number 2KBP06M-E4/51 ECQU2A473ML Mfg Vishay Panasonic THCS60E1H226ZT ECQ-E6104KF 440LD22-R United Chem Panasonic Vishay VJ1812Y104KXEAT ECJ-2YB1H104K C1210C106K4PACTU 08055D105KAT2A Vishay Panasonic Kemet AVX DL4007-13-F UF4007-E3 MBRB20200CTG ES1D UF4004-E3 RS1B-13-F BAV21WS-7-F 37213150411 Diodes, Inc Vishay On Semi Vishay Vishay Diodes, Inc Diodes, Inc Wickman RLB0914-102KL MMBT3904LT1G ERJ-6GEYJ103V ERJ-8ENF2004V ERJ-6ENF1500V ERJ-8GEYJ203V ERJ-6GEYJ513V ERJ-8ENF1004V ERJ-8ENF3011V ERJ-6ENF1003V ERJ-6ENF2492V ERJ-6GEYJ103V ERJ-6GEYJ102V ERJ-8ENF8873V MCR18EZHF1334 ERZ-V10D431 Bourns On Semi Panasonic Panasonic Panasonic Panasonic Panasonic Panasonic Panasonic Panasonic Panasonic Panasonic Panasonic Panasonic Rohm Panasonic Power Integrations Power Integrations On Semi Diodes, Inc Custom Transformer, RM10, 5 pins LinkSwitch, eSIP 200 V, 5 W, 5%, TVS, DO204AC (DO-15) 39 V, 5%, 500 mW, DO-213AA (MELF) Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com LNK407EG P6KE200ARLG ZMM5259B-7 Page 10 of 34 19-Apr-11 DER-278 No Electrolytic Capacitor, 15 W LED Driver Using LNK407EG 7 Transformer Specification 7.1 Electrical Diagram Figure 4 – Transformer Electrical Diagram. Electrical Specifications Electrical Strength Primary Inductance Resonant Frequency Primary Leakage Inductance 7.2 1 second, 60 Hz, from pins 1, 2, 3, 4 ,5 to pins FL1, FL2 Measured at 1 V pk-pk, typical switching frequency, between pin 1 to pin 3, with all other windings open. Pins 1-FL1, all other windings open Measured between pin 1 to pin 3, with all other Windings shorted. 3000 VAC 1.6 mH ±10% 750 kHz (Min.) 40 H ±10% Materials Item [1] [2] [3] [4] [5] [6] [7] [8] Description Core: RM10, NC-2H (Nicera) or Equivalent, gapped for ALG of 792 nH/t² Bobbin: Generic, 5 primary + 0 secondary Barrier Tape: Polyester film [1 mil (25 µm) base thickness], 10.00 mm wide Separation Tape: Polyester film [1 mil (25 µm) base thickness], 10.0 mm wide Varnish Magnet Wire: #27 AWG, Solderable Double Coated Triple Insulated Wire: 26 AWG Magnet Wire: #32 AWG, Solderable Double Coated Page 11 of 34 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-278 No Electrolytic Capacitor, 15 W LED Driver Using LNK407EG 7.3 19-Apr-11 Transformer Build Diagram Pins Side Figure 5 – Transformer Build Diagram. 7.4 Transformer Construction Bobbin Preparation Primary Winding 1 Insulation Secondary Winding Insulation Bias Winding Insulation Primary Winding 2 Insulation Final Assembly Place the bobbin item [2] on the mandrel such that pin side on the left side. Winding direction is the clockwise direction. Start on pin 3 and wind 23 turns (x 1 filar) of item [6] in 1 layer(s) from left to right. Add 1 layer of tape, item [4], in between each primary winding layer. On the final layer, spread the winding evenly across entire bobbin. Finish this winding on pin 2. Add 1 layer of tape, item [3], for insulation. Start on pin FL1 and wind 15 turns (x 2 filar) of item [7]. Spread the winding evenly across entire bobbin. Wind in same rotational direction as primary winding. Finish this winding on pin FL2. Add 3 layers of tape, item [3], for insulation. Start on pin 5 and wind 9 turns (x 2 filar) of item [8]. Wind in same rotational direction as primary winding. Spread the winding evenly across entire bobbin. Finish this winding on pin(s) 4. Add 1 layer of tape, item [3], for insulation. Start on pin 2 and wind 22 turns (x 1 filar) of item [6] in 1 layer(s) from left to right. Add 1 layer of tape, item [4], in between each primary winding layer. On the final layer, spread the winding evenly across entire bobbin. Finish this winding on pin 1. Add 3 layers of tape, item [3], for insulation. Assemble and secure core halves. Item [1]. Dip varnish uniformly in item [5]. Do not vacuum impregnate. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 12 of 34 19-Apr-11 DER-278 No Electrolytic Capacitor, 15 W LED Driver Using LNK407EG 8 Transformer Design Spreadsheet ACDC_LinkSwitchPH_011111; Rev.1.2; INPUT Copyright Power Integrations 2011 ENTER APPLICATION VARIABLES Dimming required INFO NO VO_MAX VO_MIN V_OVP IO UNIT NO VACMIN VACMAX fL VO OUTPUT 90 265 50 30.00 V V Hz V 33.00 27.00 36.30 V V V PO 15.0 W n 0.90 VB 17 ENTER LinkSwitch-PH VARIABLES LinkSwitch-PH LNK407 0.9 17 V 0.50 Chosen Device Current Limit Mode Universal LNK407 RED ILIMITMIN ILIMITMAX fS fSmin fSmax IV RV RV2 IFB RFB1 VDS Power Out 12W RED 1.42 1.66 66000 62000 70000 38.7 3.909 1.402 126.3 110.8 A A Hz Hz Hz uA M-ohms M-ohms uA k-ohms 10 V VD 0.50 V VDB Key Design Parameters 0.70 V KP 0.78 LP VOR Expected IO (average) KP_VACMAX 91.50 TON_MIN 0.78 1603 91.5 0.48 1.02 uH V A 2.28 us PCLAMP 0.12 ENTER TRANSFORMER CORE/CONSTRUCTION VARIABLES Core Type RM10 RM10 Bobbin RM10_BOBBIN AE 0.966 LE 4.46 AL 4050 BW 10.0 10 M L Page 13 of 34 0 2.00 2 W P/N: cm^2 cm nH/T^2 mm mm LinkSwitch-PH_011111: Flyback Transformer Design Spreadsheet Select 'YES' option if dimming is required. Otherwise select 'NO'. Minimum AC Input Voltage Maximum AC input voltage AC Mains Frequency Typical output voltage of LED string at full load Maximum expected LED string Voltage. Minimum expected LED string Voltage. Over-voltage protection setpoint Typical full load LED current !!! For Universal Input reduce Continuous Output Power PO_CONT below 12W (or use larger LinkSwitch-PH) Estimated efficiency of operation Bias Voltage 115 Doubled/230V 5.5W Select "RED" for reduced Current Limit mode or "FULL" for Full current limit mode Minimum current limit Maximum current limit Switching Frequency Minimum Switching Frequency Maximum Switching Frequency V pin current Upper V pin resistor Lower V pin resistor FB pin current (85 uA < IFB < 210 uA) FB pin resistor LinkSwitch-PH on-state Drain to Source Voltage Output Winding Diode Forward Voltage Drop (0.5 V for Schottky and 0.8 V for PN diode) Bias Winding Diode Forward Voltage Drop Ripple to Peak Current Ratio (For PF > 0.9, 0.4 < KP < 0.9) Primary Inductance Reflected Output Voltage. Expected Average Output Current Expected ripple current ratio at VACMAX Minimum on time at maximum AC input voltage Estimated dissipation in primary clamp CPV-RM10-1S-12PD Core Effective Cross Sectional Area Core Effective Path Length Ungapped Core Effective Inductance Bobbin Physical Winding Width Safety Margin Width (Half the Primary to Secondary Creepage Distance) Number of Primary Layers Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-278 No Electrolytic Capacitor, 15 W LED Driver Using LNK407EG NS 15 DC INPUT VOLTAGE PARAMETERS VMIN VMAX CURRENT WAVEFORM SHAPE PARAMETERS DMAX IAVG 15 127 375 V V 0.44 0.17 A IP 0.81 A IRMS 0.28 A TRANSFORMER PRIMARY DESIGN PARAMETERS LP NP NB ALG 1603 45 9 792 uH 19-Apr-11 Number of Secondary Turns Peak input voltage at VACMIN Peak input voltage at VACMAX Minimum duty cycle at peak of VACMIN Average Primary Current Peak Primary Current (calculated at minimum input voltage VACMIN) Primary RMS Current (calculated at minimum input voltage VACMIN) Primary Inductance Primary Winding Number of Turns Bias Winding Number of Turns nH/T^2 Gapped Core Effective Inductance Maximum Flux Density at PO, VMIN BM 2986 Gauss (BM<3100) BP 3613 Gauss Peak Flux Density (BP<3700) AC Flux Density for Core Loss Curves (0.5 X BAC 1164 Gauss Peak to Peak) ur 1488 Relative Permeability of Ungapped Core LG 0.12 mm Gap Length (Lg > 0.1 mm) BWE 20 mm Effective Bobbin Width Maximum Primary Wire Diameter including OD 0.44 mm insulation Estimated Total Insulation Thickness (= 2 * INS 0.06 mm film thickness) DIA 0.38 mm Bare conductor diameter Primary Wire Gauge (Rounded to next AWG 27 AWG smaller standard AWG value) CM 203 Cmils Bare conductor effective area in circular mils !!! DECREASE CMA (200 < CMA < 600) CMA 724 Cmils/Amp Decrease L(primary layers),increase Warning NS,smaller Core LP_TOL 10 Tolerance of primary inductance TRANSFORMER SECONDARY DESIGN PARAMETERS (SINGLE OUTPUT EQUIVALENT) Lumped parameters ISP 2.43 A Peak Secondary Current ISRMS 0.90 A Secondary RMS Current IRIPPLE 0.75 A Output Capacitor RMS Ripple Current Secondary Bare Conductor minimum circular CMS 180 Cmils mils Secondary Wire Gauge (Rounded up to next AWGS 27 AWG larger standard AWG value) Secondary Minimum Bare Conductor DIAS 0.36 mm Diameter Secondary Maximum Outside Diameter for ODS 0.67 mm Triple Insulated Wire VOLTAGE STRESS PARAMETERS Estimated Maximum Drain Voltage assuming VDRAIN 566 V maximum LED string voltage (Includes Effect of Leakage Inductance) Output Rectifier Maximum Peak Inverse PIVS 161 V Voltage (calculated at VOVP, excludes leakage inductance spike) Bias Rectifier Maximum Peak Inverse Voltage PIVB 93 V (calculated at VOVP, excludes leakage inductance spike) FINE TUNING (Enter measured values from prototype) V pin Resistor Fine Tuning RV1 3.91 M-ohms Upper V Pin Resistor Value RV2 1.40 M-ohms Lower V Pin Resistor Value VAC1 115.0 V Test Input Voltage Condition1 VAC2 230.0 V Test Input Voltage Condition2 Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 14 of 34 19-Apr-11 DER-278 No Electrolytic Capacitor, 15 W LED Driver Using LNK407EG IO_VAC1 IO_VAC2 RV1 (new) RV2 (new) 0.50 0.50 3.91 1.40 A A M-ohms M-ohms V_OV 318.3 V V_UV 70.8 V 111 1E+012 15.3 18.7 0.50 0.50 110.8 1.00E+12 k-ohms k-ohms V V A A k-ohms k-ohms FB pin resistor Fine Tuning RFB1 RFB2 VB1 VB2 IO1 IO2 RFB1 (new) RFB2(new) Page 15 of 34 Measured Output Current at VAC1 Measured Output Current at VAC2 New RV1 New RV2 Typical AC input voltage at which OV shutdown will be triggered Typical AC input voltage beyond which power supply can startup Upper FB Pin Resistor Value Lower FB Pin Resistor Value Test Bias Voltage Condition1 Test Bias Voltage Condition2 Measured Output Current at Vb1 Measured Output Current at Vb2 New RFB1 New RFB2 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-278 No Electrolytic Capacitor, 15 W LED Driver Using LNK407EG 19-Apr-11 9 Performance Data All measurements performed at room temperature. 9.1 Efficiency vs. Line and Output (LED String) Voltage 9.1.1 30 V Input VAC (VRMS) Input Measurement Freq (Hz) VIN (VRMS) IIN (mARMS) PIN (W) PF Load Measurement %ATHD VOUT (VDC) IOUT (mADC) POUT (W) Calculation PCAL (W) Efficiency (%) Loss (W) 90 60 89.87 190.68 16.96 0.99 14.38 29.80 486.41 15.04 14.50 89 1.92 115 60 114.94 153.09 17.36 0.99 16.46 29.83 504.01 15.58 15.03 90 1.78 132 60 131.93 135.16 17.52 0.98 18.48 29.84 511.50 15.80 15.26 90 1.73 180 50 179.96 101.94 17.83 0.97 23.39 29.88 523.51 16.15 15.64 91 1.67 220 50 219.91 83.94 17.73 0.96 26.81 29.87 522.39 16.08 15.60 91 1.65 230 50 229.95 80.16 17.66 0.96 27.34 29.85 520.91 16.01 15.55 91 1.65 265 50 264.95 69.07 17.34 0.95 29.18 29.80 512.46 15.70 15.27 91 1.63 9.1.2 27 V Input VAC (VRMS) Input Measurement Freq (Hz) VIN (VRMS) IIN (mARMS) Load Measurement Calculation PIN (W) PF %ATHD VOUT (VDC) IOUT (mADC) POUT (W) PCAL (W) Efficiency (%) Loss (W) 90 60 89.89 169.86 15.09 0.99 15.25 26.72 481.48 13.34 12.87 88 1.76 115 60 114.95 136.85 15.49 0.98 17.44 26.76 501.50 13.89 13.42 90 1.60 132 60 131.94 121.32 15.70 0.98 19.56 26.78 510.53 14.14 13.67 90 1.56 180 50 179.97 91.63 15.98 0.97 24.11 26.83 523.10 14.48 14.03 91 1.50 220 50 219.91 75.45 15.89 0.96 27.17 26.82 521.51 14.40 13.98 91 1.49 230 50 229.95 72.08 15.83 0.96 27.67 26.80 519.83 14.34 13.93 91 1.49 265 50 264.95 62.21 15.54 0.94 29.35 26.76 510.78 14.05 13.67 90 1.49 9.1.3 33 V Input VAC (VRMS) Input Measurement Freq (Hz) VIN (VRMS) IIN (mARMS) PIN (W) PF Load Measurement %ATHD VOUT (VDC) IOUT (mADC) POUT (W) Calculation PCAL (W) Efficiency (%) Loss (W) 90 60 89.89 209.19 18.62 0.99 13.69 32.41 488.91 16.46 15.84 88 2.16 115 60 114.95 166.82 18.94 0.99 15.68 32.44 505.02 17.00 16.38 90 1.94 132 60 131.94 146.97 19.09 0.98 17.53 32.47 511.74 17.22 16.61 90 1.87 180 50 179.97 110.67 19.39 0.97 22.77 32.52 523.26 17.59 17.02 91 1.80 220 50 219.91 91.26 19.32 0.96 26.45 32.53 522.99 17.54 17.01 91 1.78 230 50 229.95 87.17 19.25 0.96 27.02 32.51 521.73 17.48 16.96 91 1.77 265 50 264.95 75.13 18.92 0.95 28.86 32.46 514.21 17.18 16.69 91 1.74 Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 16 of 34 19-Apr-11 DER-278 No Electrolytic Capacitor, 15 W LED Driver Using LNK407EG 91.0 27 V 30 V 33 V Efficiency (%) 90.5 90.0 89.5 89.0 88.5 88.0 80 100 120 140 160 180 200 220 240 260 Input voltage (VAC) Figure 6 – Efficiency vs. Input Voltage, Room Temperature. Page 17 of 34 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com 280 DER-278 No Electrolytic Capacitor, 15 W LED Driver Using LNK407EG 9.2 19-Apr-11 Regulation 9.2.1 Line Regulation 520 27 V 515 30 V 33 V 510 Output Current (mA) 505 500 495 490 485 480 475 470 85 90 95 100 105 110 115 120 125 130 135 Input Voltage (VAC) Figure 7 – Low-Line Regulation, Room Temperature, Full Load. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 18 of 34 19-Apr-11 DER-278 No Electrolytic Capacitor, 15 W LED Driver Using LNK407EG 560 27 V 30 V 33 V 550 Output Current (mA) 540 530 520 510 500 490 480 170 180 190 200 210 220 230 240 250 260 Input Voltage (VAC) Figure 8 – High-Line Regulation, Room Temperature, Full Load. Page 19 of 34 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com 270 DER-278 No Electrolytic Capacitor, 15 W LED Driver Using LNK407EG 19-Apr-11 10 Thermal Performance Images captured after running for 30 minutes at room temperature (25 °C), full load (30 V, 500 mA). Hottest component is U1, providing system thermal protection via internal hysteretic thermal shutdown. 10.1 VIN = 115 VAC Figure 9 – Top Side. Figure 10 – Bottom Side. 10.2 VIN = 230 VAC Figure 11 – Top Side. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Figure 12 – Bottom Side. Page 20 of 34 19-Apr-11 DER-278 No Electrolytic Capacitor, 15 W LED Driver Using LNK407EG 11 Harmonic Data The design passes Class C requirement. 140 115 VAC Class C Harmonic Limits DER-278 Harmonic Content Harmonic Content (mA) 120 100 80 60 40 20 0 1 3 5 7 9 11 13 15 17 Harmoinc Order Figure 13 – 115 VAC Harmonic, Room Temperature, Full Load. Page 21 of 34 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com 19 DER-278 No Electrolytic Capacitor, 15 W LED Driver Using LNK407EG 19-Apr-11 140 115 VAC Class C Harmonic Limits DER-278 Harmonic Content Harmonic Content (mA) 120 100 80 60 40 20 0 1 3 5 7 9 11 13 15 17 19 Harmoinc Order Figure 14 – 230 VAC Harmonic, Room Temperature, Full Load. THD (%) VIN = 115 VAC Limit (%) Margin (%) 17 THD (%) 27 33 16 VIN = 230 VAC Limit (%) Margin (%) 33 6 Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 22 of 34 19-Apr-11 DER-278 No Electrolytic Capacitor, 15 W LED Driver Using LNK407EG 12 Waveforms 12.1 Input Line Voltage and Current Figure 15 – 90 VAC, Full Load. Upper: IIN, 0.2 A / div. Lower: VIN, 200 V, 10 ms / div. Figure 16 – 265 VAC, Full Load. Upper: IIN, 0.1 A / div. Lower: VIN, 500 V / div., 10 ms / div. 12.2 Drain Voltage and Current Figure 17 – 90 VAC, Full Load. Upper: IDRAIN, 0.5 A / div. Lower: VDRAIN, 200 V, 5 ms / div. Page 23 of 34 Figure 18 – 265 VAC, Full Load. Upper: IDRAIN, 0.5 A / div. Lower: VDRAIN, 500 V / div., 5 ms / div. Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-278 No Electrolytic Capacitor, 15 W LED Driver Using LNK407EG 19-Apr-11 12.3 Output Voltage and Ripple Current Figure 19 – 90 VAC, Full Load. Upper: IRIPPLE, 0.5 A / div. Lower: VOUT 10 V, 5 ms / div. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Figure 20 – 265 VAC, Full Load. Upper: IRIPPLE, 0.5 A / div. Lower: VOUT 10 V, 5 ms / div. Page 24 of 34 19-Apr-11 DER-278 No Electrolytic Capacitor, 15 W LED Driver Using LNK407EG 12.4 Output Rectifier Voltage and Current Figure 21 – 110 VAC, Full Load. Upper: IRIPPLE, 0.5 A / div. Lower: VDIODE, 100 V, 5 ms/200 s / div. Figure 22 – 265 VAC, Full Load. Upper: IRIPPLE, 0.5 A / div. Lower: VDIODE, 100 V, 5 ms/200 s / div. 12.5 Output Voltage and Current Start-up Profile Figure 23 – 110 VAC, Full Load. Upper: IOUT, 0.5 A / div. Lower: VOUT, 10 V, 10 ms / div. Page 25 of 34 Figure 24 – 230 VAC, Full Load. Upper: IOUT, 0.5 A / div. Lower: VOUT, 10 V, 10 ms / div. Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-278 No Electrolytic Capacitor, 15 W LED Driver Using LNK407EG 19-Apr-11 12.6 Output Current and Drain Voltage with Shorted Output Figure 25 – 90 VAC, Full Load. Upper: IOUT, 2 A / div. Lower: VDRAIN, 200 V, 500 ms / div. Figure 26 – 265 VAC, Full Load. Upper: IOUT, 2 A / div. Lower: VDRAIN, 200 V, 500 ms / div. 12.7 Output Current and Output Voltage with Shorted Output Figure 27 – 110 VAC, Full Load. Upper: IOUT, 1 A / div. Lower: VDRAIN, 10 V, 1 s / div. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 26 of 34 19-Apr-11 DER-278 No Electrolytic Capacitor, 15 W LED Driver Using LNK407EG 12.8 Open Load Output Voltage Figure 28 – Output Voltage: 110 VAC. VOUT, 20 V / div., 1 s / div. Figure 29 – Output Voltage: 230 VAC. VOUT, 20 V / div., 1 s / div. Note: Under open load conditions the OV shutdown function is designed to prevent the output voltage exceeding SELV limits (45 V). This is achieved, however, the voltage rating of the output capacitors is exceeded which is acceptable for a fault condition. Page 27 of 34 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-278 No Electrolytic Capacitor, 15 W LED Driver Using LNK407EG 19-Apr-11 13 Line Surge Differential and common input line 200 A ring wave testing was completed on a single test unit to IEC61000-4-5. Input voltage was set at 230 VAC / 60 Hz. Output was loaded at full load and operation was verified following each surge event. Surge Level (V) 2500 2500 2500 2500 2500 2500 Input Voltage (VAC) 230 230 230 230 230 230 Injection Location L to N L to N L to PE L to PE N to PE N to PE Injection Phase (°) 90 90 90 90 90 90 Test Result (Pass/Fail) Pass Pass Pass Pass Pass Pass Unit passes under all test conditions. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 28 of 34 19-Apr-11 DER-278 No Electrolytic Capacitor, 15 W LED Driver Using LNK407EG 14 Conducted EMI Note: Refer to table for margin to standard – blue line is peak measurement but limit line is quasi peak. Power Integrations 14.Apr 11 16:52 RBW MT 9 kHz 500 ms Att 10 dB AUTO dBµV 100 kHz 120 EN55015Q LIMIT CHECK 110 1 MHz PASS 10 MHz SGL 1 QP CLRWR 100 90 2 AV CLRWR TDF 80 70 60 EN55015A 50 6DB 40 30 20 10 0 -10 -20 9 kHz Trace1: 30 MHz EDIT PEAK LIST (Final Measurement Results) EN55015Q Trace2: EN55015A Trace3: --- TRACE FREQUENCY LEVEL dBµV DELTA LIMIT dB 2 Average 130.825395691 kHz 40.06 L1 gnd 2 Average 136.137431366 kHz 37.36 L1 gnd 2 Average 198.193645035 kHz 43.43 L1 gnd -10.25 1 Quasi Peak 200.175581485 kHz 52.81 N gnd -10.78 1 Quasi Peak 264.49018761 kHz 52.54 L1 gnd -8.74 2 Average 264.49018761 kHz 42.56 L1 gnd -8.72 1 Quasi Peak 332.507282579 kHz 47.18 L1 gnd -12.20 2 Average 332.507282579 kHz 35.76 L1 gnd -13.62 1 Quasi Peak 397.727746704 kHz 49.83 L1 gnd -8.06 2 Average 397.727746704 kHz 38.88 L1 gnd -9.01 1 Quasi Peak 466.367062279 kHz 48.40 L1 gnd -8.17 2 Average 466.367062279 kHz 36.38 L1 gnd -10.19 1 Quasi Peak 598.084042089 kHz 49.67 L1 gnd -6.32 2 Average 598.084042089 kHz 36.89 L1 gnd -9.10 1 Quasi Peak 926.622115652 kHz 47.94 L1 gnd -8.05 2 Average 1.46448812765 MHz 35.67 L1 gnd -10.32 1 Quasi Peak 2.11629733595 MHz 43.34 L1 gnd -12.65 1 Quasi Peak 12.3157210828 MHz 45.68 L1 gnd -14.31 2 Average 14.016439408 MHz 38.35 L1 gnd -11.65 1 Quasi Peak 26.4975442467 MHz 47.24 N gnd -12.75 Figure 30 – Conducted EMI, Maximum Steady-State Load, 110 VAC, Line, 60 Hz, and EN55015 B Limits. Page 29 of 34 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-278 No Electrolytic Capacitor, 15 W LED Driver Using LNK407EG Power Integrations 14.Apr 11 17:36 RBW MT 19-Apr-11 9 kHz 500 ms Att 10 dB AUTO dBµV 100 kHz 120 EN55015Q LIMIT CHECK 110 1 MHz PASS 10 MHz SGL 1 QP CLRWR 100 90 2 AV CLRWR TDF 80 70 60 EN55015A 50 6DB 40 30 20 10 0 -10 -20 9 kHz Trace1: 30 MHz EDIT PEAK LIST (Final Measurement Results) EN55015Q Trace2: EN55015A Trace3: --- TRACE FREQUENCY LEVEL dBµV DELTA LIMIT dB 2 Average 126.977840157 kHz 38.17 L1 gnd 2 Average 130.825395691 kHz 45.25 L1 gnd 2 Average 136.137431366 kHz 42.21 L1 gnd 1 Quasi Peak 198.193645035 kHz 56.14 L1 gnd 2 Average 198.193645035 kHz 47.02 L1 gnd -6.65 1 Quasi Peak 267.135089486 kHz 48.17 N gnd -13.03 1 Quasi Peak 332.507282579 kHz 51.95 L1 gnd -7.43 2 Average 332.507282579 kHz 41.95 L1 gnd -7.42 1 Quasi Peak 397.727746704 kHz 54.27 L1 gnd -3.62 2 Average 397.727746704 kHz 42.62 L1 gnd -5.27 1 Quasi Peak 466.367062279 kHz 52.01 L1 gnd -4.56 2 Average 466.367062279 kHz 39.64 L1 gnd -6.93 1 Quasi Peak 660.656865747 kHz 52.78 L1 gnd -3.21 2 Average 660.656865747 kHz 40.95 L1 gnd -5.04 1 Quasi Peak 926.622115652 kHz 51.54 L1 gnd -4.45 1 Quasi Peak 2.09534389698 MHz 46.71 L1 gnd -9.28 2 Average 2.53140371619 MHz 38.11 N gnd -7.88 1 Quasi Peak 11.9535175476 MHz 47.49 L1 gnd -12.50 2 Average 13.0733860985 MHz 40.02 L1 gnd -9.97 1 Quasi Peak 26.2351923234 MHz 43.94 N gnd -16.05 -7.54 Figure 31 – Conducted EMI, Maximum Steady-State Load, 230 VAC, Line, 60 Hz, and EN55015 B Limits. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 30 of 34 19-Apr-11 DER-278 No Electrolytic Capacitor, 15 W LED Driver Using LNK407EG 14.Apr 11 18:41 MT 500 ms Att 10 dB AUTO dBµV 100 kHz 120 EN55015Q LIMIT CHECK 110 1 MHz PASS 10 MHz SGL 1 QP CLRWR 100 90 2 AV CLRWR TDF 80 70 60 EN55015A 50 6DB 40 30 20 10 0 -10 -20 9 kHz Trace1: 30 MHz EDIT PEAK LIST (Final Measurement Results) EN55015Q Trace2: EN55015A Trace3: --- TRACE FREQUENCY LEVEL dBµV DELTA LIMIT dB 2 Average 130.825395691 kHz 40.16 L1 gnd 1 Quasi Peak 198.193645035 kHz 52.30 N gnd -11.38 2 Average 200.175581485 kHz 42.90 N gnd -10.70 1 Quasi Peak 264.49018761 kHz 52.60 L1 gnd -8.68 2 Average 264.49018761 kHz 42.79 L1 gnd -8.49 1 Quasi Peak 332.507282579 kHz 47.05 L1 gnd -12.33 1 Quasi Peak 397.727746704 kHz 49.35 L1 gnd -8.54 2 Average 397.727746704 kHz 38.54 L1 gnd -9.35 1 Quasi Peak 466.367062279 kHz 49.93 L1 gnd -6.64 2 Average 466.367062279 kHz 37.54 L1 gnd -9.03 1 Quasi Peak 598.084042089 kHz 49.58 L1 gnd -6.41 2 Average 598.084042089 kHz 37.20 L1 gnd -8.79 1 Quasi Peak 798.145472681 kHz 48.81 L1 gnd -7.18 2 Average 1.32578199726 MHz 36.21 L1 gnd -9.78 1 Quasi Peak 2.09534389698 MHz 43.46 L1 gnd -12.54 2 Average 3.9219482581 MHz 35.39 N gnd -10.60 1 Quasi Peak 11.9535175476 MHz 45.77 L1 gnd -14.22 2 Average 12.9439466322 MHz 38.22 L1 gnd -11.77 1 Quasi Peak 26.4975442467 MHz 47.10 N gnd -12.89 2 Average 26.4975442467 MHz 38.16 N gnd -11.83 Figure 32 – Conducted EMI, Maximum Steady-State Load, 110 VAC, Neutral, 60 Hz, and EN55015 B Limits. Page 31 of 34 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-278 No Electrolytic Capacitor, 15 W LED Driver Using LNK407EG Power Integrations 14.Apr 11 18:09 RBW MT 19-Apr-11 9 kHz 500 ms Att 10 dB AUTO dBµV 100 kHz 120 EN55015Q LIMIT CHECK 110 1 MHz PASS 10 MHz SGL 1 QP CLRWR 100 90 2 AV CLRWR TDF 80 70 60 EN55015A 50 6DB 40 30 20 10 0 -10 -20 9 kHz Trace1: 30 MHz EDIT PEAK LIST (Final Measurement Results) EN55015Q Trace2: EN55015A Trace3: --- TRACE FREQUENCY LEVEL dBµV DELTA LIMIT dB 2 Average 130.825395691 kHz 45.51 L1 gnd 2 Average 136.137431366 kHz 42.49 L1 gnd 1 Quasi Peak 198.193645035 kHz 56.17 L1 gnd 2 Average 198.193645035 kHz 47.09 L1 gnd -6.59 2 Average 264.49018761 kHz 39.01 N gnd -12.27 1 Quasi Peak 267.135089486 kHz 48.15 N gnd -13.04 1 Quasi Peak 332.507282579 kHz 51.94 L1 gnd -7.44 2 Average 332.507282579 kHz 41.96 L1 gnd -7.42 1 Quasi Peak 397.727746704 kHz 54.31 L1 gnd -3.58 2 Average 397.727746704 kHz 42.67 L1 gnd -5.22 1 Quasi Peak 466.367062279 kHz 52.14 L1 gnd -4.43 2 Average 466.367062279 kHz 39.70 L1 gnd -6.87 2 Average 598.084042089 kHz 40.58 L1 gnd -5.41 1 Quasi Peak 660.656865747 kHz 52.81 L1 gnd -3.19 2 Average 2.58228493089 MHz 38.32 N gnd -7.67 1 Quasi Peak 3.21421100787 MHz 46.88 N gnd -9.11 1 Quasi Peak 11.9535175476 MHz 47.51 L1 gnd -12.48 2 Average 13.3361611591 MHz 39.83 L1 gnd -10.16 1 Quasi Peak 26.4975442467 MHz 43.49 N gnd -16.50 -7.50 Figure 33 – Conducted EMI, Maximum Steady-State Load, 230 VAC, Neutral, 60 Hz, and EN55015 B Limits. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 32 of 34 19-Apr-11 DER-278 No Electrolytic Capacitor, 15 W LED Driver Using LNK407EG 15 Revision History Date 19-Apr-11 Page 33 of 34 Author DK Revision 1.0 Description & changes Initial Release Reviewed Apps and Mktg Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-278 No Electrolytic Capacitor, 15 W LED Driver Using LNK407EG 19-Apr-11 For the latest updates, visit our website: www.powerint.com Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability. Power Integrations does not assume any liability arising from the use of any device or circuit described herein. POWER INTEGRATIONS MAKES NO WARRANTY HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS. PATENT INFORMATION The products and applications illustrated herein (including transformer construction and circuits external to the products) may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations’ patents may be found at www.powerint.com. Power Integrations grants its customers a license under certain patent rights as set forth at http://www.powerint.com/ip.htm. The PI Logo, TOPSwitch, TinySwitch, LinkSwitch, DPA-Switch, PeakSwitch, CAPZero, SENZero, LinkZero, HiperPFS, HiperTFS, Qspeed, EcoSmart, Clampless, E-Shield, Filterfuse, StackFET, PI Expert and PI FACTS are trademarks of Power Integrations, Inc. Other trademarks are property of their respective companies. ©Copyright 2011 Power Integrations, Inc. Power Integrations Worldwide Sales Support Locations WORLD HEADQUARTERS 5245 Hellyer Avenue San Jose, CA 95138, USA. Main: +1-408-414-9200 Customer Service: Phone: +1-408-414-9665 Fax: +1-408-414-9765 e-mail: [email protected] GERMANY Rueckertstrasse 3 D-80336, Munich Germany Phone: +49-89-5527-3911 Fax: +49-89-5527-3920 e-mail: [email protected] JAPAN Kosei Dai-3 Building 2-12-11, Shin-Yokohama, Kohoku-ku, Yokohama-shi, Kanagawa 222-0033 Japan Phone: +81-45-471-1021 Fax: +81-45-471-3717 e-mail: [email protected] TAIWAN 5F, No. 318, Nei Hu Rd., Sec. 1 Nei Hu District Taipei 114, Taiwan R.O.C. Phone: +886-2-2659-4570 Fax: +886-2-2659-4550 e-mail: [email protected] CHINA (SHANGHAI) Rm 1601/1610, Tower 1 Kerry Everbright City No. 218 Tianmu Road West Shanghai, P.R.C. 200070 Phone: +86-021-6354-6323 Fax: +86-021-6354-6325 e-mail: [email protected] INDIA #1, 14th Main Road Vasanthanagar Bangalore-560052 India Phone: +91-80-4113-8020 Fax: +91-80-4113-8023 e-mail: [email protected] KOREA RM 602, 6FL Korea City Air Terminal B/D, 159-6 Samsung-Dong, Kangnam-Gu, Seoul, 135-728 Korea Phone: +82-2-2016-6610 Fax: +82-2-2016-6630 e-mail: [email protected] EUROPE HQ 1st Floor, St. James’s House East Street, Farnham Surrey GU9 7TJ United Kingdom Phone: +44 (0) 1252-730-141 Fax: +44 (0) 1252-727-689 e-mail: [email protected] CHINA (SHENZHEN) Rm A, B & C 4th Floor, Block C, Electronics Science and Technology Building 2070 Shennan Zhong Road Shenzhen, Guangdong, P.R.C. 518031 Phone: +86-755-8379-3243 Fax: +86-755-8379-5828 e-mail: [email protected] ITALY Via De Amicis 2 20091 Bresso MI Italy Phone: +39-028-928-6000 Fax: +39-028-928-6009 e-mail: [email protected] SINGAPORE 51 Newton Road, #19-01/05 Goldhill Plaza Singapore, 308900 Phone: +65-6358-2160 Fax: +65-6358-2015 e-mail: [email protected] APPLICATIONS HOTLINE World Wide +1-408-414-9660 Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com APPLICATIONS FAX World Wide +1-408-414-9760 Page 34 of 34