一 18- 、〈国外电子元器件)1997 年第 4 期 1997 年 4 月 ·新特器件应用 功率升美铺餐器 MC34167、 MC33167 输系 S重怠其法用 南京航空航天大学自控系 纪宗南 摘要: MC34167/MC33167 是 Motorola 公司生产的高性能固定频率稳压控制器,内 含固定频率的振荡器和大电流开关管,内设过热、欠压保护电路,具有 DC-DC 变换 所需的主要功能,能完成降压、开压和极性变换功能。本文介绍了其内部工作原理, 并给出了实用电路。 关键词:稳压器 PWM 欠压锁定逐周期限流 MC34167 和 MC33167 是高性 V阳 能固定频率的功率开关调整器,它 具有 DC-DC 变换所需要的主要功 能,即能完成升压、降压和反极性变 换,因此广泛应用在汽车、微控制器 应用系统、仪表、工业用品及家用电 气等领域。 L 该芯片内含一个温度补偿的基 准电压、记录单脉冲的锁定脉冲宽 度调制器、片内定时元件的固定频 率振荡器、高增益误差放大器和一 个大电流输出开关管、用于保护芯 片的保护电路(逐个周期的电流限 图 2 MC34167/MC33167 的功能框图 止、欠电压锁定和热断路)。 MC34167 和 MC33167 功能框图如图 2 1 、芯片简介 所示。 1. 1 引脚图和引脚功能 1. 3 主要性能 M04167 和 Mα3167 引脚四日阁"标。 ·输出电流大于 5.0A。 MC34167 和 MC33167 引脚功能 .片含固定频率的振荡器二 ①电压反馈输入 ·无需外部电阻分压器即可提供 亏] ②开关输出 5.05V 输出。 ③地、 ·外围元件少。 ④输入电压/ .基准电压的精度为 2% 。 ·输出占空比范围大,即从 0% 到 Vα ⑤补偿岁待机 图 1 MC34167/33167 引脚图1. 2 功能框图 95% 。 .逐个周期的电流限制。 .'.町 川 U 嘻气与~l)-可~'~'7X ~竟是专产苛飞 功率开关调整器 MC34167、 MC33167 的原理及其应用 ·具有滞后的欠电压锁定。 一 19 一 MC34167 系列采用逐个周期限制电流 ·片内具有热关断电路。 的办法防止输出开关晶体管超负荷与电流限 ·工作电压范围宽,即从 7.5-40V。 制是通过对输出开关晶体管导通时电流增长 ·待机方式下电源电流降到 36μAo 过程的检测而实现的。每当检测到过电流 ·采用 5 引脚的 TO,,220 封装。 时,就断开使振荡器波形上升的开关。 集电极电流通过一个内部调节的电阻转 2、工作原理 换成电压。这个电压加到电流传感器的同相 从图 2 中看出,该芯片由振荡器、脉冲宽 端,并与反相端的基准电压进行比较。当电 度调制器、电流传感、误差放大器和基准电压 流限制门限(通常门限值设定为 4.3A) 到达 等组成。现对其中的主要电路作简要介绍。 时,比较器使 PWM 锁存器复位。 2.1 振荡器 2.4 误差放大器和基准电压 片含固定频率的振荡器是该芯片重要特 误差放大器是一个高增益放大器,该放 点之一,其振荡频率由电容器 G 和调定的恒 大器的特点是能提供 80dB 直流增益,单位 流源决定 (72kHz) 。只要控制充、放电的比例 增益带宽在 70。相位裕度时为 600kHz 。同相 就可以在开关输出使最大占空比为 95% 。在 输入偏置值是由片内 5.05V 基准电压提供 G 放电时,振荡器产生一个内部空脉冲,它使 的,它不用引脚引到外面。基准电压在室温 与门的反相输入保持为高电平,使输出开关晶 下的精度为:t 2. 0% ,由于要向负载提供 5V 体管截止。可从时序图 3 中看出振荡器的峰、 电压,所以基准电压值必须较输出电压 (5V) 谷门限的标称值分别为 4.1V 和 2.3V。 高出 50mV,这个 50mV 用来补偿来自变换 2.2 脉冲宽度调制器 器输出电缆和接头上的压降二如果设计要求 脉冲宽度调制器是由一个比较器组成。 输出电压大于 5.0饥T, 则必须增加一个电阻 振荡器的锯齿电压加到它的同相输入端,而 Rl , 以便在反馈输入形成一个分压网络。采 误差放大器的输出馈入到它的反相输入端。 用分压后,计算输出电压的公式如下: 输出开关的导通是当 G 放电达到振荡器的 谷底电压时开始的。当 CT 充电超过误差放 Vα厅= R2 5. 05f一一+ 1) Rl 大器的输出时,锁存器复位,结束振荡器波形 为了使变换器达到稳定状态,必须外接 的斜向上升阶段(此时输出晶体管导通)。这 补偿电阻 R2 和低通滤波器(~、 G) 。在选 种 PWM/ 锁存器的组合可以防止在一个给. 择电路中补偿元件值时,应保证在整个测试 定的振荡器时钟周期内输出多个脉冲。 2.3 电流传感器 工作条件下的稳定性。降压变换器是最容易 通过补偿来保证稳定性的,而升压变换器和 反极性变换器的补偿较 JLJYAJ 为叫要得到最佳网 络补偿,其简单的方法是 补偿一+ 在负载逐步变化时观察 tl:!通一→· 一「产---, I 输出电压的响应,同时将 岛、 G 调整到临界阻尼 }1 关输出 断开- '---J L 图 3 日苦序图 值。最后的电路应在四种 边界条件(极小和极大负 一 20 一 〈国外电子元器件)1997 年第 4 期 1997 年 4 月 载下的极小和极大输出电压)下验证其稳定 由于该芯片是单片功率开关调整器§又具 性。如果将误差放大器的输出电压(引脚 5) 有 DC-OC 变换器的主要功能γ 所以应用极为 籍位到低于 15OmV,则内部电路将置于低功 广泛。现对其中的典型应用电路作些介绍。 耗待机方式,此时电源电流只有 36μA( 在 3.1 升/降压变换器 由 MC34167 和少量外围元件组成的升 12V 电源、条件下〉。 为了实现软起动,误差放大器的输出备 压/降压变换器如图 4 所示。从图中看出,该 有一个 100μA 的电流源。 电路与降压变换器相比较,只增加干个功率 2.5 欠电压锁定和热保护 MOSFET( 金属氧化物半导体场效应晶体 片内有一个欠电压锁定比较器,以保证 管)。在晶体管 Q1 和 Q2 导通时,能量存放在 在输出级恢复工作前集成电路是完全起作用 电感线圈中。在截止时,能量送到滤波电容 的。内部的 5.05V 基准电压由比较器监测, 和负载。这种电路结构与基本升压电路相比 它在 Vα 超过 5.9V 时使输出级恢复工作。为 较,有两个重要优点:①由 MC34167 提供输 了防止在跨越门限时输出切换不确定,提供 出短路保护,这是因为 Q1 直接和 V切及负载 了 0.9V 的滞后。 串联;②输出电压可低于 Vino 内部热保护电路是在结温超过最大值时 当 Vin 大于 20V 时, MOSFET 需要一个 保护集成电路的。在高温时(通常为 170"C ), 栅极保护网络,该网络由民、 D3 和 D4 组成, 迫使锁存器处于复位状态,使输出开关不工 如图中虚线所示。 该电路经实际测试,其结果如表 1 所 作,这样可以防止在器件过热时产生灾难性 后果,但它不能取代适当的散热器。 刁\0 ' 3.2 三输出变换器 3 、典型应用 具有三路电压输出的变换器如图 5 所 ~ lN驰22 .一-0 co 土+ n∞i 4.711 ,1 图 4 升/降压变换器 L户半ι , ~ R 1.511 Vo 28V.a.9A 功率开关调整器 MC34167 、 MC33167 的原理及其应用 -21 一 Vin r--- 一---一-一-一-一一-一-一-------一-一-一---, 24V 1(i 乙士 1J1儿 6.8k r一飞辛 ~ 川 iM 川川川 放川 1J点 i.t VOl 5.0VI3 .OA 1 删主 L_ 一一一一一」一一-一一一一一一-牛 L 一一一一一二 J --L L一→←一一代灿一 68k 0.1 图 5 三路电压输出的变换器 表 1 测 时 线路调整 组的顶部,这样可以减少次级绕组的圈数并 升压/降压变换器测试结果 条 件 Vin = 1024V. Io = O. 9A 10mV= 改善引线的调整。为了获得最佳的辅助调 果 结 士 0.017% Vin = 12V. Io = 0.10. 9P 国OmV= 士 0.053% 140mVp - p 输出纹披 VIN = 12V.. Io = O. 9A 6.0A 短路电流 V1N = 12V. RL = 0.1 .0 负载调整 , 效率 VIN = 12V. 10 = O. 9A VIN = 24V. Io = O. 9A 80.1 % 87.8% 整,辅助输出应小于总功率的 33% 。 3.3 离线前置变换器 利用 MC34167 组成离线前置变换器的 电路如图 6 所示。该电路总功率为 125W,变 换效率为 90% 。图中变压器 T1 能使输出和 交流电路隔离,同时也使每个次级线圈彼此 」一 示。该电路具有三路电压输出,即 5.05V/ 隔离。电路在 50kHz 时会产生自振,这可由 2. OA; 12V /300mA;一 12V/100mA。只要改 T2 的饱和和特性控制。本电路具有多个输 变次级绕绵的圈数,即可改变输出电压的大 出,从而可以为分布式功率系统提供多个独 小,这种多路输出在实际应用系统中是很受 立的精确调整器。 勘查理绩主棋锦5 欢迎的。 次级绕组的连接应该在开关断开时将能 (上接 P44) 量传送到次级输出。截止时,初级绕组上的 4 : 3 ,各种不同尺寸的有效感光面积如图 3 所 电压由反馈同路调节,产生一个恒定的伏特/ 示,分别对应于1/4" , 1/了,1/2"摄像机。 圈数比,任何给定的次级电压的圈数可以用 下式算出: #圈数 VO(sÈC) + VF(SEU ( VIO(PR l> + VF<P'R I>、ì 飞 #圈数 PRl i ,1 电路图中 12V 绕组连到 5.0V 绕 3.;!mm 48mm . /1 罩/ I ./1 2.4mml 4,!)IIfm 3. 伽 ml. 6ω~ ./ I 1/4" 图3 I 4.8mml 113" 的有效感片面积 CCD .. 1尼 • 7"?- 〈国外电子元器件)1997 年第 4 期 1997 年 4 月 a∞1 图 6 离线前置变换器 ..叫....'.......'..~.....,.......,......唱'唱...啡唱'咖唱.......咱...啡..时,.咽'饨'唱'叶间...帽" ‘Þ-<....叫...啡.....唱'咱'而'咿......唱....'...'.,.........…~.....'..崎........................,.....什..咽..'.~...,...........,.. 驰创(深圳I )电子有限公'司 Chi-Chuang Electronics Company Limited INGONEXT ·没有驰创找不到的 IC! 我们连接美国的 IC 库存数据库:四百万种的 IC 可供查询!十亿条以上现货可供购买。从Al liance. AMD. AD. 到 Motorla. MX-COM. NSC. 到 Xicor. Xilinx. Zilog. 我们经销所有的厂 牌。我们尤其擅长供应偏门(如军品和工业品)、停产、计划分配的产品。 .报价迅j乞交货及时、保证质量 竭诚为工厂供应紧缺货,为大专院校和研究所提供配套服务,为代理商和贸易商扩充货源。所 有询价将在 24-48 小时内答复。现货交货期在 12-14 天。我们对发出的所有产品都有严格 的质量保证。若实属不合格产品,在两周内凭质检报告,将予以换货或退货。 ·收购剩余库存 变废为宝,解决资金积压。我们同全世界专业厂商的广泛联系使您的剩余库存能尽快找到销 路。 中国深圳市深南东路华裕花园 23 楼 1 座, 518003 23-1 Huayu Huayuan"ihennan E.Rd. , Shenzhen , 518003 ,Cbina Tel: 86-755-542-6105 , Fax: 86-755-542-8319; Email: szwendy @ public. szptf. nct. cn • 、 1-9 SMPS 电路 功率开关调节器 MC33167/34167 MC34167/33167 系列是高性能、固定频率功率开关调节器 i 它包含 DC-DC( 直流到直流〉转换器所需的 俨)~ J俨 ι 主要功能。该系列器件外接元件极小,专门用于降压、升压和电压倒相。 特点 2 ·贮存温度 T吨:一 65~ 十 150'C 封装:‘ ·输出开关电流超过 5.0A ·具有片内定时的固定频率振荡器 (72kHz) ·带后缀 T 为塑封,外形图 :CASE 314D .可提供不带外部电阻分压器的 5.05V 输出 ·基准精度 2% r 一←--一一一一一一一-一-一一一-一-一一 --1 ·输出占空比 :O~95% ·循环周期的限流 !CrÎ ·内部过热断路保护 、 '--;:t i 开关. 三气工~A Urr----r一飞↓雪白 11椭 '------1 ~Æ f!定 i 1 <:5号卜一I 二一一~ 5.05V 二三一 + 平、 | JUl IιJ l' 石正1 ·电压反馈和补偿输入电压 V FB , V cornp : 斗斗料'← I 川→fγJl牛~ rr=花一./ 1 M:;调制器 . ·开关输出电压 V O (5wit出:一 2.0~+Vin 一1. O~+7. L一一--.J 厂1;:-/ ·备用方式可将电菁、电流降到 36μA ·电源电压 Vα:40V I ;于江三 ·工作电压 .7.5~40V 千 !fi ~一一一一,--------<,-/个一-寸→-0-→输入电压 IVct. :~再副叫千叮「 ·具有滞后的欠压锁定 极限参凯 电流传感A A飞 VW1 脚咔〕 z1 I LL: 11 L L坐~I +i 误差 |φ| 电压反 量大\~高工 : 一、大寸寸丁十?-r-T←一个-o Vo OW ·最大功耗 P D @T A=25'C: 1. 9W; L______J 主 _l~ 一一一旦 咛 @TA=70'C:34. 7W ·热阻〈结到大气 )R创A@T A =25'C :65'C/\\ 亨 ·工作结温 T p 150'C îCO 补偿仨-iLlLJ j:)>- .仅正真逻键时 的陷电流 机 寸Y ·工作温度 T A :O~70'C "2 (MC3416 7); -40~+85'C (MC3316 7) MC34167 电路功能框图 ' , 、 斗 二~咛‘ 合 .' 主要电特性参数 (Vα=12V ,对于典型值, TA =25'C ,对于最小/最大值,飞为整个工作环境温度范围) 参 数 , 振荡器频率 条 Vcr. =7. 5-40V. TA=25'C TA=TIo..-Thigh ' 误差放大摞电压反馈输入门限 TA=25'C TA = Tlo..-Thig 5-40V , TA=25'C 线性调整 Vc汇 =7. 输入偏置电流 VFB = VFB(thl +0. 15V 电源抑制率 Vα=10-20V 输出电压摆幅 符号 最小值 典型值 最大值 单位 f""" 65 62 72 79 81 kHz VFB(thl 4.95 4.85 5.05 5.15 5.20 V RegJ ine 0.03 0.078 %/v 118 0.15 1.0 μA PSRR 60 80 I.ource= 75μA , VFB=4.7V La nk=O. 4mA , VFB=5. 5V VO H VOL 4.2 待机 TA=25'C , Vtc= 12V. Vcomp<O. 15V 工作. Vcr. =40V.1 端=地,用于最大占空比 Icc 4.9 1.6 36 40 离态 低态 整个器件电掠电流 件 dB 1.9 100 53 V μA mA .l LI 3 - 375 169 叮…-隘, 明耐-跚跚哥如 Table 7. Single龄 nded Controllers with On静 hip Power Switch These monolithic power switching regulators contain all the active functions required to implement standard dc2!fu与c ∞ nverter configurations with a minimum number of external components 10 (mA) Max 1500 (Uncommitted Power Switch) Maximum Useful Minimum Operating Voltage Range (V) Operating Mode Reference (V) Frequency (kHz) Device TA (O C) Suffixl Package 2.5 to 40 Voltage 1.25 :l: 5.2%(1) 100 μA78 S40 o to +70 PC/648 。scillator o to +85 1.25 :l: 2.0% MC34063A PV/648 o to +70 0/751 P1/626 MC33063A o to +85 0/751 P1/626 o to +125 3.0 to 65 1500 Voltage (Uncommi忧ed Power Switch) 1.25 :l: 2.0% and 5.05 :l: 30% 100 o to +70 P/648C , D叭11751G MC33165 MC34163 2.5 to 40 3400 MC34165 0/751 o to +85 o to +70 (Uncommi忧ed MC33163 Power Switch) 3400(2) (Oedicated Emitter Power Switch) 5.05 :l: 2.0% 7.5 to 40 72 土 12% MC34166 Internally Fixed MC33166 o to +70 02T/936A , TH , TV, MC34167 5500(3) (Oedicated Emitter Power Switch) o to +85 MC33167 o to +85 T/3140 o to +70 o to +85 ' (1) Tolerance applies over the specified operating temperature range (2) Guaranteed minimum , typically 4300 mA (3) Guaranteed minimum , typically 6500 mA Table 8. Easy Switcher™ Single龄 nded Controllers with On静 hip Power Switch The Easy Switcher™ series is ideally suited for easy, convenient design of a step主bown switching regulator (buck converter) , with a minimum'number of external components Minimum 。 perating Voltage Range (V) l。 (mA) Max 1000 , Oscillator Frequency (kHz) Output Voltage (V) Device 3.3 5.0 12 15 1.231037 LM2575T ..3 LM2575T LM2575T 2 LM2575T 5 LM2575TlÞl dj 4.751040 8.01040 151040 181040 8.0 to 40 3.3 5.0 12 15 1.23 to 37 LM2575TV _.3 LM2575TV LM2575TV 2 LM2575TV 5 4.75 to 40 8.0 to 40 15 to 40 18 to 40 8.0 to 40 3.3 5.0 12 15 1.23 to 37 LM257502T ..3 LM257502T LM257502T 2 LM257502T 5 LM257502 Ttil dj 4.751040 8.0 to 40 151040 181040 8.0 to 40 Operating Mode Voltage 52 Fixed Internal ANALOG AND INTERFACE INTEGRATED CIRCUITS SELECTOR GUIDE & CROSS REFERENCE ' Suffixl Package TJ (O C) o to +125 T/3140 TV/314B LM2575TVk时 dj 02T/936A MOTOROLA 41 MC34167, MC33167 5.0 A, Step−Up/Down/ Inverting Switching Regulators The MC34167, MC33167 series are high performance fixed frequency power switching regulators that contain the primary functions required for dc−to−dc converters. This series was specifically designed to be incorporated in step−down and voltage−inverting configurations with a minimum number of external components and can also be used cost effectively in step−up applications. These devices consist of an internal temperature compensated reference, fixed frequency oscillator with on−chip timing components, latching pulse width modulator for single pulse metering, high gain error amplifier, and a high current output switch. Protective features consist of cycle−by−cycle current limiting, undervoltage lockout, and thermal shutdown. Also included is a low power standby mode that reduces power supply current to 36 mA. MARKING DIAGRAMS TO−220 TH SUFFIX CASE 314A 1 5 MC 3x167T AWLYWWG Heatsink surface connected to Pin 3 Features • • • • • • • • • • • • • • http://onsemi.com Output Switch Current in Excess of 5.0 A Fixed Frequency Oscillator (72 kHz) with On−Chip Timing Provides 5.05 V Output without External Resistor Divider Precision 2% Reference 0% to 95% Output Duty Cycle Cycle−by−Cycle Current Limiting Undervoltage Lockout with Hysteresis Internal Thermal Shutdown Operation from 7.5 V to 40 V Standby Mode Reduces Power Supply Current to 36 mA Economical 5−Lead TO−220 Package with Two Optional Leadforms Also Available in Surface Mount D2PAK Package Moisture Sensitivity Level (MSL) Equals 1 Pb−Free Packages are Available Vin 5 5 Pin S Q 1. 2. 3. 4. 5. 2 R PWM Thermal MC 3x167T AWLYWWG Heatsink surface (shown as terminal 6 in case outline 1 drawing) is connected to Pin 3 L Reference EA 1 VO 5.05 V/ 5.0 A 5 This device contains 143 active transistors. x A WL Y WW G 5 = 3 or 4 = Assembly Location = Wafer Lot = Year = Work Week = Pb−Free Package ORDERING INFORMATION Figure 1. Simplified Block Diagram See detailed ordering and shipping information in the package dimensions section on page 17 of this data sheet. (Step Down Application) November, 2005 − Rev. 7 MC 3x167T AWLYWWG 5 UVLO © Semiconductor Components Industries, LLC, 2005 MC 3x167T AWLYWWG Voltage Feedback Input Switch Output Ground Input Voltage/VCC Compensation/Standby D2PAK D2T SUFFIX CASE 936A 1 3 TO−220 TV SUFFIX CASE 314B TO−220 T SUFFIX CASE 314D 1 4 ILIMIT Oscillator 1 1 Publication Order Number: MC34167/D MC34167, MC33167 MAXIMUM RATINGS (Note 1 and 2) Rating Power Supply Input Voltage Switch Output Voltage Range Symbol Value Unit VCC 40 V VO(switch) −2.0 to + Vin V VFB, VComp −1.0 to + 7.0 V Power Dissipation Case 314A, 314B and 314D (TA = +25°C) Thermal Resistance, Junction−to−Ambient Thermal Resistance, Junction−to−Case Case 936A (D2PAK) (TA = +25°C) Thermal Resistance, Junction−to−Ambient Thermal Resistance, Junction−to−Case PD qJA qJC PD qJA qJC Internally Limited 65 5.0 Internally Limited 70 5.0 W °C/W °C/W W °C/W °C/W Operating Junction Temperature TJ +150 °C Operating Ambient Temperature (Note 3) MC34167 MC33167 TA Storage Temperature Range Tstg Voltage Feedback and Compensation Input Voltage Range °C 0 to + 70 − 40 to + 85 − 65 to +150 °C Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected. 1. Maximum package power dissipation limits must be observed to prevent thermal shutdown activation. 2. This device series contains ESD protection and exceeds the following tests: Human Body Model 2000 V per MIL−STD−883, Method 3015. Machine Model Method 200 V. 3. Tlow = 0°C for MC34167 Thigh = + 70°C for MC34167 = − 40°C for MC33167 = + 85°C for MC33167 http://onsemi.com 2 MC34167, MC33167 ELECTRICAL CHARACTERISTICS (VCC = 12 V, for typical values TA = +25°C, for min/max values TA is the operating ambient temperature range that applies (Notes 4, 5), unless otherwise noted.) Symbol Min Typ Max Unit TA = +25°C TA = Tlow to Thigh fOSC 65 62 72 − 79 81 kHz TA =+ 25°C TA = Tlow to Thigh VFB(th) 4.95 4.85 5.05 − 5.15 5.20 V Regline − 0.03 0.078 %/V Characteristic OSCILLATOR Frequency (VCC = 7.5 V to 40 V) ERROR AMPLIFIER Voltage Feedback Input Threshold Line Regulation (VCC = 7.5 V to 40 V, TA = +25°C) Input Bias Current (VFB = VFB(th) + 0.15 V) Power Supply Rejection Ratio (VCC = 10 V to 20 V, f = 120 Hz) Output Voltage Swing High State (ISource = 75 mA, VFB = 4.5 V) Low State (ISink = 0.4 mA, VFB = 5.5 V) IIB − 0.15 1.0 mA PSRR 60 80 − dB VOH VOL 4.2 − 4.9 1.6 − 1.9 V DC(max) DC(min) 92 0 95 0 100 0 % Vsat − (VCC −1.5) (VCC −1.8) V PWM COMPARATOR Duty Cycle (VCC = 20 V) Maximum (VFB = 0 V) Minimum (VComp = 1.9 V) SWITCH OUTPUT Output Voltage Source Saturation (VCC = 7.5 V, ISource = 5.0 A) Isw(off) − 0 100 mA Ipk(switch) 5.5 6.5 8.0 A tr tf − − 100 50 200 100 Startup Threshold (VCC Increasing, TA = +25°C) Vth(UVLO) 5.5 5.9 6.3 V Hysteresis (VCC Decreasing, TA = +25°C) VH(UVLO) 0.6 0.9 1.2 V − − 36 40 100 60 mA mA Off−State Leakage (VCC = 40 V, Pin 2 = GND) Current Limit Threshold (VCC = 7.5 V) Switching Times (VCC = 40 V, Ipk = 5.0 A, L = 225 mH, TA = +25°C) Output Voltage Rise Time Output Voltage Fall Time ns UNDERVOLTAGE LOCKOUT TOTAL DEVICE Power Supply Current (TA = +25°C ) Standby (VCC = 12 V, VComp < 0.15 V) Operating (VCC = 40 V, Pin 1 = GND for maximum duty cycle) ICC 4. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible. 5. Tlow = 0°C for MC34167 Thigh = + 70°C for MC34167 = − 40°C for MC33167 = + 85°C for MC33167 http://onsemi.com 3 5.25 100 VCC = 12 V I IB, INPUT BIAS CURRENT (nA) VFB(th) Max = 5.15 V 5.17 5.09 VFB(th) Typ = 5.05 V 5.01 VFB(th) Min = 4.95 V 4.93 4.85 −55 −25 0 25 50 75 TA, AMBIENT TEMPERATURE (°C) 100 60 40 20 Figure 2. Voltage Feedback Input Threshold versus Temperature 80 Gain VCC = 12 V VComp = 3.25 V RL = 100 k TA = +25°C 0 30 60 60 40 90 Phase 20 120 0 150 −20 10 100 1.0 k 10 k 100 k f, FREQUENCY (Hz) 180 10 M 1.0 M DC, SWITCH OUTPUT DUTY CYCLE (%) Δ f OSC, OSCILLATOR FREQUENCY CHANGE (%) −4.0 −8.0 0 25 50 75 100 TA, AMBIENT TEMPERATURE (°C) 125 1.2 0.8 VCC = 12 V VFB = 5.5 V TA = +25°C 0.4 0 0.4 0.8 1.2 1.6 ISink, OUTPUT SINK CURRENT (mA) 2.0 Figure 5. Error Amp Output Saturation versus Sink Current VCC = 12 V −25 100 1.6 0 4.0 −12 −55 0 25 50 75 TA, AMBIENT TEMPERATURE (°C) 2.0 Figure 4. Error Amp Open Loop Gain and Phase versus Frequency 0 −25 Figure 3. Voltage Feedback Input Bias Current versus Temperature φ, EXCESS PHASE (DEGREES) 100 A VOL , OPEN LOOP VOLTAGE GAIN (dB) VCC = 12 V VFB = VFB(th) 80 0 −55 125 Vsat , OUTPUT SATURATION VOLTAGE (V) V FB(th), VOLTAGE FEEDBACK INPUT THRESHOLD (V) MC34167, MC33167 100 80 60 40 20 0 1.5 125 VCC = 12 V TA = +25°C Figure 6. Oscillator Frequency Change versus Temperature 2.0 2.5 3.0 3.5 4.0 VComp, COMPENSATION VOLTAGE (V) Figure 7. Switch Output Duty Cycle versus Compensation Voltage http://onsemi.com 4 4.5 0 0 VCC −0.5 Vsw, SWITCH OUTPUT VOLTAGE (V) Vsat, SWITCH OUTPUT SOURCE SATURATION (V) MC34167, MC33167 TA = +25°C −1.0 −1.5 −2.0 −2.5 −3.0 0 2.0 4.0 6.0 ISource, SWITCH OUTPUT SOURCE CURRENT (A) GND −0.2 VCC = 12 V Pin 5 = 2.0 V Pins 1, 3 = GND Pin 2 Driven Negative −0.4 −0.6 −0.8 Isw = 10 mA −1.0 −1.2 −55 8.0 7.2 100 125 6.8 6.4 6.0 −25 0 25 50 75 TA, AMBIENT TEMPERATURE (°C) 100 Pin 4 = VCC Pins 1, 3, 5 = GND Pin 2 Open TA = +25°C 120 80 40 0 0 125 Figure 10. Switch Output Current Limit Threshold versus Temperature 10 20 30 VCC, SUPPLY VOLTAGE (V) 40 Figure 11. Standby Supply Current versus Supply Voltage 6.5 50 Startup Threshold VCC Increasing 6.0 I CC, SUPPLY CURRENT (mA) V th(UVLO) , UNDERVOLTAGE LOCKOUT THRESHOLD (V) 0 25 50 75 TA, AMBIENT TEMPERATURE (°C) 160 VCC = 12 V Pins 1, 2, 3 = GND 5.5 Turn−Off Threshold VCC Decreasing 5.0 4.5 4.0 −55 −25 Figure 9. Negative Switch Output Voltage versus Temperature I CC , SUPPLY CURRENT (μ A) I pk(switch), CURRENT LIMIT THRESHOLD (A) Figure 8. Switch Output Source Saturation versus Source Current 5.6 −55 Isw = 100 mA −25 0 25 50 75 TA, AMBIENT TEMPERATURE (°C) 100 40 30 20 10 0 125 Pin 4 = VCC Pins 1, 3 = GND Pins 2, 5 Open TA = +25°C 0 Figure 12. Undervoltage Lockout Thresholds versus Temperature 10 20 30 VCC, SUPPLY VOLTAGE (V) Figure 13. Operating Supply Current versus Supply Voltage http://onsemi.com 5 40 MC34167, MC33167 Vin Current Sense + 4 Input Voltage/V CC Cin Oscillator S CT Switch Output Q R Pulse Width Modulator 2 Undervoltage Lockout PWM Latch Thermal Shutdown L 5.05 V Reference + + Error Amp 100 mA 3 Compensation = 5 CF RF Sink Only Positive True Logic Figure 14. MC34167 Representative Block Diagram 4.1 V Timing Capacitor CT Compensation 2.3 V ON Switch Output OFF Figure 15. Timing Diagram http://onsemi.com 6 R2 1 120 GND Voltage Feedback Input R1 VO CO MC34167, MC33167 INTRODUCTION The MC34167, MC33167 series are monolithic power switching regulators that are optimized for dc−to−dc converter applications. These devices operate as fixed frequency, voltage mode regulators containing all the active functions required to directly implement step−down and voltage−inverting converters with a minimum number of external components. They can also be used cost effectively in step−up converter applications. Potential markets include automotive, computer, industrial, and cost sensitive consumer products. A description of each section of the device is given below with the representative block diagram shown in Figure 14. Figure 10 illustrates switch output current limit threshold versus temperature. Error Amplifier and Reference A high gain Error Amplifier is provided with access to the inverting input and output. This amplifier features a typical dc voltage gain of 80 dB, and a unity gain bandwidth of 600 kHz with 70 degrees of phase margin (Figure 4). The noninverting input is biased to the internal 5.05 V reference and is not pinned out. The reference has an accuracy of ± 2.0% at room temperature. To provide 5.0 V at the load, the reference is programmed 50 mV above 5.0 V to compensate for a 1.0% voltage drop in the cable and connector from the converter output. If the converter design requires an output voltage greater than 5.05 V, resistor R1 must be added to form a divider network at the feedback input as shown in Figures 14 and 19. The equation for determining the output voltage with the divider network is: Oscillator The oscillator frequency is internally programmed to 72 kHz by capacitor CT and a trimmed current source. The charge to discharge ratio is controlled to yield a 95% maximum duty cycle at the Switch Output. During the discharge of CT, the oscillator generates an internal blanking pulse that holds the inverting input of the AND gate high, disabling the output switch transistor. The nominal oscillator peak and valley thresholds are 4.1 V and 2.3 V respectively. ǒ Ǔ R Vout + 5.05 2 ) 1 R1 External loop compensation is required for converter stability. A simple low−pass filter is formed by connecting a resistor (R2) from the regulated output to the inverting input, and a series resistor−capacitor (RF, CF) between Pins 1 and 5. The compensation network component values shown in each of the applications circuits were selected to provide stability over the tested operating conditions. The step−down converter (Figure 19) is the easiest to compensate for stability. The step−up (Figure 21) and voltage−inverting (Figure 23) configurations operate as continuous conduction flyback converters, and are more difficult to compensate. The simplest way to optimize the compensation network is to observe the response of the output voltage to a step load change, while adjusting RF and CF for critical damping. The final circuit should be verified for stability under four boundary conditions. These conditions are minimum and maximum input voltages, with minimum and maximum loads. By clamping the voltage on the error amplifier output (Pin 5) to less than 150 mV, the internal circuitry will be placed into a low power standby mode, reducing the power supply current to 36 mA with a 12 V supply voltage. Figure 11 illustrates the standby supply current versus supply voltage. The Error Amplifier output has a 100 mA current source pull−up that can be used to implement soft−start. Figure 18 shows the current source charging capacitor CSS through a series diode. The diode disconnects CSS from the feedback loop when the 1.0 M resistor charges it above the operating range of Pin 5. Pulse Width Modulator The Pulse Width Modulator consists of a comparator with the oscillator ramp voltage applied to the noninverting input, while the error amplifier output is applied into the inverting input. Output switch conduction is initiated when CT is discharged to the oscillator valley voltage. As CT charges to a voltage that exceeds the error amplifier output, the latch resets, terminating output transistor conduction for the duration of the oscillator ramp−up period. This PWM/Latch combination prevents multiple output pulses during a given oscillator clock cycle. Figures 7 and 15 illustrate the switch output duty cycle versus the compensation voltage. Current Sense The MC34167 series utilizes cycle−by−cycle current limiting as a means of protecting the output switch transistor from overstress. Each on cycle is treated as a separate situation. Current limiting is implemented by monitoring the output switch transistor current buildup during conduction, and upon sensing an overcurrent condition, immediately turning off the switch for the duration of the oscillator ramp−up period. The collector current is converted to a voltage by an internal trimmed resistor and compared against a reference by the Current Sense comparator. When the current limit threshold is reached, the comparator resets the PWM latch. The current limit threshold is typically set at 6.5 A. http://onsemi.com 7 MC34167, MC33167 Switch Output functional before the output stage is enabled. The internal reference voltage is monitored by the comparator which enables the output stage when VCC exceeds 5.9 V. To prevent erratic output switching as the threshold is crossed, 0.9 V of hysteresis is provided. The output transistor is designed to switch a maximum of 40 V, with a minimum peak collector current of 5.5 A. When configured for step−down or voltage−inverting applications, as in Figures 19 and 23, the inductor will forward bias the output rectifier when the switch turns off. Rectifiers with a high forward voltage drop or long turn on delay time should not be used. If the emitter is allowed to go sufficiently negative, collector current will flow, causing additional device heating and reduced conversion efficiency. Figure 9 shows that by clamping the emitter to 0.5 V, the collector current will be in the range of 100 mA over temperature. A 1N5825 or equivalent Schottky barrier rectifier is recommended to fulfill these requirements. Thermal Protection Internal Thermal Shutdown circuitry is provided to protect the integrated circuit in the event that the maximum junction temperature is exceeded. When activated, typically at 170°C, the latch is forced into a ‘reset’ state, disabling the output switch. This feature is provided to prevent catastrophic failures from accidental device overheating. It is not intended to be used as a substitute for proper heatsinking. The MC34167 is contained in a 5−lead TO−220 type package. The tab of the package is common with the center pin (Pin 3) and is normally connected to ground. Undervoltage Lockout An Undervoltage Lockout comparator has been incorporated to guarantee that the integrated circuit is fully DESIGN CONSIDERATIONS tight component layout is recommended. Capacitors Cin, CO, and all feedback components should be placed as close to the IC as physically possible. It is also imperative that the Schottky diode connected to the Switch Output be located as close to the IC as possible. Do not attempt to construct a converter on wire−wrap or plug−in prototype boards. Special care should be taken to separate ground paths from signal currents and ground paths from load currents. All high current loops should be kept as short as possible using heavy copper runs to minimize ringing and radiated EMI. For best operation, a http://onsemi.com 8 MC34167, MC33167 + Error Amp 100 mA + Error Amp 100 mA 120 Compensation Compensation 1 120 1 5 R1 5 R1 I = Standby Mode VShutdown = VZener + 0.7 Figure 17. Over Voltage Shutdown Circuit Figure 16. Low Power Standby Circuit + Error Amp 100 mA 1 120 Compensation D2 5 R1 D1 Vin 1.0 M Css tSoft−Start ≈ 35,000 Css Figure 18. Soft−Start Circuit http://onsemi.com 9 MC34167, MC33167 Vin 12 V + 4 ILIMIT + Oscillator Cin 330 S Q1 Q R 2 PWM D1 1N5825 UVLO L 190 mH Thermal Reference + + EA R2 5 3 Test CF RF 0.1 68 k CO 4700 6.8 k 1 VO 5.05 V/5.0 A + R1 Conditions Results Line Regulation Vin = 10 V to 36 V, IO = 5.0 A 4.0 mV = ± 0.039% Load Regulation Vin = 12 V, IO = 0.25 A to 5.0 A 1.0 mV = ± 0.01% Output Ripple Vin = 12 V, IO = 5.0 A 20 mVpp Short Circuit Current Vin = 12 V, RL = 0.1 W 6.5 A Efficiency Vin = 12 V, IO = 5.0 A Vin = 24 V, IO = 5.0 A 78.9% 82.6% L = Coilcraft M1496−A or General Magnetics Technology GMT−0223, 42 turns of #16 AWG on Magnetics Inc. 58350−A2 core. Heatsink = AAVID Engineering Inc. 5903B, or 5930B. The Step−Down Converter application is shown in Figure 19. The output switch transistor Q1 interrupts the input voltage, generating a squarewave at the LCO filter input. The filter averages the squarewaves, producing a dc output voltage that can be set to any level between Vin and Vref by controlling the percent conduction time of Q1 to that of the total oscillator cycle time. If the converter design requires an output voltage greater than 5.05 V, resistor R1 must be added to form a divider network at the feedback input. Figure 19. Step−Down Converter + − + ÉÉÉÉÉ ÉÉÉÉÉ ÉÉÉÉÉ ÉÉÉÉÉ ÉÉÉÉÉ ÉÉÉ ÉÉÉÉÉ ÉÉÉ + R2 − VO CO Vin 1.9 ″ + (Bottom View) D1 R1 L CF RF Cin MC34167 STEP−DOWN 3.0″ (Top View) Figure 20. Step−Down Converter Printed Circuit Board and Component Layout http://onsemi.com 10 MC34167, MC33167 Vin 12 V + 4 ILIMIT + Oscillator Cin 330 S D1 1N5825 Q1 Q R 2 PWM L 190 mH UVLO *RG 620 D4 1N4148 Thermal Q2 MTP3055EL Reference + D3 1N967A + D2 1N5822 EA R2 1 CF RF 0.47 4.7 k 5 3 + VO 28 V/0.9 A R1 1.5 k *Gate resistor RG, zener diode D3, and diode D4 are required only when Vin is greater than 20 V. Test CO 2200 6.8 k Conditions Results Line Regulation Vin = 10 V to 24 V, IO = 0.9 A 10 mV = ± 0.017% Load Regulation Vin = 12 V, IO = 0.1 A to 0.9 A 30 mV = ± 0.053% Output Ripple Vin = 12 V, IO = 0.9 A 140 mVpp Short Circuit Current Vin = 12 V, RL = 0.1 W 6.0 A Efficiency Vin = 12 V, IO = 0.9 A Vin = 24 V, IO = 0.9 A 80.1% 87.8% L = Coilcraft M1496−A or General Magnetics Technology GMT−0223, 42 turns of #16 AWG on Magnetics Inc. 58350−A2 core. Heatsink = AAVID Engineering Inc. MC34167: 5903B, or 5930B MTP3055EL: 5925B Figure 21 shows that the MC34167 can be configured as a step−up/down converter with the addition of an external power MOSFET. Energy is stored in the inductor during the ON time of transistors Q1 and Q2. During the OFF time, the energy is transferred, with respect to ground, to the output filter capacitor and load. This circuit configuration has two significant advantages over the basic step−up converter circuit. The first advantage is that output short circuit protection is provided by the MC34167, since Q1 is directly in series with Vin and the load. Second, the output voltage can be programmed to be less than Vin. Notice that during the OFF time, the inductor forward biases diodes D1 and D2, transferring its energy with respect to ground rather than with respect to Vin. When operating with Vin greater than 20 V, a gate protection network is required for the MOSFET. The network consists of components RG, D3, and D4. D3 ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎ ÎÎÎ R2 + + (Bottom View) CF R1 + D1 Cin RF D2 (Top View) Figure 22. Step−Up/Down Converter Printed Circuit Board and Component Layout http://onsemi.com 11 Î Î ÎÎ Î ÎÎ Î ÎÎ Î Q2 − − CO Vin VO L + 1.9″ 3.45 ″ MC34167 STEP UP-DOWN Figure 21. Step−Up/Down Converter RG MC34167, MC33167 Vin 12 V + 4 ILIMIT + Oscillator Cin 330 S Q1 Q R 2 PWM UVLO L 190 mH D1 1N5825 Thermal Reference + + EA R1 5 3 Test CF RF 0.47 4.7 k 2.4 k VO −12 V/1.7 A CO 4700 + 1 C1 R2 3.3 k Conditions 0.047 Results Line Regulation Vin = 10 V to 24 V, IO = 1.7 A 15 mV = ± 0.61% Load Regulation Vin = 12 V, IO = 0.1 A to 1.7 A 4.0 mV = ± 0.020% Output Ripple Vin = 12 V, IO = 1.7 A 78 mVpp Short Circuit Current Vin = 12 V, RL = 0.1 W 5.7 A Efficiency Vin = 12 V, IO = 1.7 A Vin = 24 V, IO = 1.7 A 79.5% 86.2% L = Coilcraft M1496−A or General Magnetics Technology GMT−0223, 42 turns of #16 AWG on Magnetics Inc. 58350−A2 core. Heatsink = AAVID Engineering Inc. 5903B, or 5930B. Two potential problems arise when designing the standard voltage−inverting converter with the MC34167. First, the Switch Output emitter is limited to −1.5 V with respect to the ground pin and second, the Error Amplifier’s noninverting input is internally committed to the reference and is not pinned out. Both of these problems are resolved by connecting the IC ground pin to the converter’s negative output as shown in Figure 23. This keeps the emitter of Q1 positive with respect to the ground pin and has the effect of reversing the Error Amplifier inputs. Note that the voltage drop across R1 is equal to 5.05 V when the output is in regulation. Figure 23. Voltage−Inverting Converter 3.0″ + + + ÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎ Cin CF + + (Bottom View) L RF D1 R2 − CO VO − R1 C1 + Vin 1.9 ″ MC34167 VOLTAGE-INVERTING + (Top View) Figure 24. Voltage−Inverting Converter Printed Circuit Board and Component Layout http://onsemi.com 12 + MC34167, MC33167 Vin 24 V + 4 ILIMIT + Oscillator 1000 S Q R 2 PWM 1N5825 UVLO MUR110 VO3 1000 −12 V/200 mA + Thermal T1 Reference + MUR110 VO2 + 1000 12 V/250 mA + EA 6.8 k 1 1000 + VO1 5.0 V/3.0 A 5 3 0.1 68 k Figure 25. Triple Output Converter Tests Conditions Results Line Regulation 5.0 V 12 V −12 V Vin = 15 V to 30 V, IO1 = 3.0 A, IO2 = 250 mA, IO3 = 200 mA 3.0 mV = ± 0.029% 572 mV = ± 2.4% 711 mV = ± 2.9% Load Regulation 5.0 V 12 V −12 V Vin = 24 V, IO1 = 30 mA to 3.0 A, IO2 = 250 mA, IO3 = 200 mA Vin = 24 V, IO1 = 3.0 A, IO2 = 100 mA to 250 mA, IO3 = 200 mA Vin = 24 V, IO1 = 3.0 A, IO2 = 250 mA, IO3 = 75 mA to 200 mA 1.0 mV = ± 0.009% 409 mV = ±1.5% 528 mV = ± 2.0% Output Ripple 5.0 V 12 V −12 V Vin = 24 V, IO1 = 3.0 A, IO2 = 250 mA, IO3 = 200 mA 75 mVpp 20 mVpp 20 mVpp Short Circuit Current 5.0 V 12 V −12 V Vin = 24 V, RL = 0.1 W 6.5 A 2.7 A 2.2 A Vin = 24 V, IO1 = 3.0 A, IO2 = 250 mA, IO3 = 200 mA 84.2% Efficiency TOTAL T1 = Primary: Coilcraft M1496−A or General Magnetics Technology GMT−0223, 42 turns of #16 AWG on Magnetics Inc. 58350−A2 core. T1 = Secondary: VO2 − 69 turns of #26 AWG T1 = Secondary: VO3 − 104 turns of #28 AWG Heatsink = AAVID Engineering Inc. 5903B, or 5930B. Multiple auxiliary outputs can easily be derived by winding secondaries on the main output inductor to form a transformer. The secondaries must be connected so that the energy is delivered to the auxiliary outputs when the Switch Output turns off. During the OFF time, the voltage across the primary winding is regulated by the feedback loop, yielding a constant Volts/Turn ratio. The number of turns for any given secondary voltage can be calculated by the following equation: # TURNS(SEC) + VO(SEC) ) VF(SEC) VO(PRI))VF(PRI) #TURNS(PRI) ǒ Ǔ Note that the 12 V winding is stacked on top of the 5.0 V output. This reduces the number of secondary turns and improves lead regulation. For best auxiliary regulation, the auxiliary outputs should be less than 33% of the total output power. http://onsemi.com 13 MC34167, MC33167 + 4 ILIMIT Oscillator 22 0.01 1N5825 S Q1 Q R Ǔ 2 UVLO PWM ǒ VO + 5.05 R1 ) 0.7 R2 L D1 Thermal + R1 36 k MTP 3055E Reference + VO +36 V/0.3 A MUR415 R1 + EA Z1 2N3906 1 6.8 k 5 3 0.22 470 k R2 5.1 k 0.002 Vin −12 V 1000 + *Gate resistor RG, zener diode D3, and diode D4 are required only when Vin is greater than 20 V. Test Conditions Results Line Regulation Vin = −10 V to − 20 V, IO = 0.3 A 266 mV = ± 0.38% Load Regulation Vin = −12 V, IO = 0.03 A to 0.3 A 7.90 mV = ±1.1% Output Ripple Vin = −12 V, IO = 0.3 A 100 mVpp Efficiency Vin = −12 V, IO = 0.3 A 78.4% L = General Magnetics Technology GMT−0223, 42 turns of #16 AWG on Magnetics Inc. 58350−A2 core. Heatsink = AAVID Engineering Inc. 5903B or 5930B Figure 26. Negative Input/Positive Output Regulator + Vin 18 V 4 ILIMIT + Oscillator 1000 S Q R UVLO 2 PWM Brush Motor Thermal Reference + EA 1N5825 + 1 5.6 k 1.0 k + 47 5 3 0.1 56 k Test Conditions Results Low Speed Line Regulation Vin = 12 V to 24 V 1760 RPM ±1% High Speed Line Regulation Vin = 12 V to 24 V 3260 RPM ± 6% Figure 27. Variable Motor Speed Control with EMF Feedback Sensing http://onsemi.com 14 50 k Faster 1000 MC34167, MC33167 0.001 T1 MBR20100CT + 1000 0.001 1N5404 MC34167 Step−Down Converter + MC34167 Step−Down Converter + MC34167 Step−Down Converter + Output 1 0.001 RFI 115 VAC Filter + 220 MJE13005 MBR20100CT 0.047 1N4937 100k T2 + 1000 0.01 50 0.001 Output 2 0.001 3.3 + 100 1N4003 MBR20100CT + 1000 0.001 T1 = Core and Bobbin − Coilcraft PT3595 T1 = Primary − 104 turns #26 AWG T1 = Base Drive − 3 turns #26 AWG T1 = Secondaries − 16 turns #16 AWG T1 = Total Gap − 0.002, Output 3 T2 = Core − TDK T6 x 1.5 x 3 H5C2 T2 = 14 turns center tapped #30 AWG T2 = Heatsink = AAVID Engineering Inc. T2 = MC34167 and MJE13005 − 5903B T2 = MBR20100CT − 5925B The MC34167 can be used cost effectively in off−line applications even though it is limited to a maximum input voltage of 40 V. Figure 28 shows a simple and efficient method for converting the AC line voltage down to 24 V. This preconverter has a total power rating of 125 W with a conversion efficiency of 90%. Transformer T1 provides output isolation from the AC line and isolation between each of the secondaries. The circuit self−oscillates at 50 kHz and is controlled by the saturation characteristics of T2. Multiple MC34167 post regulators can be used to provide accurate independently regulated outputs for a distributed power system. JUNCTION-TO-AIR (° C/W) R θ JA, THERMAL RESISTANCE 80 3.5 PD(max) for TA = +50°C 70 3.0 Free Air Mounted Vertically 60 ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ 2.0 oz. Copper L Minimum Size Pad 50 2.5 2.0 L 40 1.5 RqJA 30 1.0 0 5.0 10 15 20 25 30 L, LENGTH OF COPPER (mm) Figure 29. D2PAK Thermal Resistance and Maximum Power Dissipation versus P.C.B. Copper Length http://onsemi.com 15 PD, MAXIMUM POWER DISSIPATION (W) Figure 28. Off−Line Preconverter MC34167, MC33167 Table 1. Design Equations Calculation Step−Down Step−Up/Down Voltage−Inverting ton toff (Notes 1, 2) Vout ) VF Vin * Vsat * Vout Vout ) VF1 ) VF2 Vin * VsatQ1 * VsatQ2 |Vout| ) VF Vin * Vsat ton ton toff ton fosc )1 toff ton toff ton fosc )1 toff ton toff ton fosc )1 toff Duty Cycle (Note 3) ton fosc ton fosc ton fosc IL avg Iout t Iout on ) 1 toff t Iout on ) 1 toff Ipk(switch) DI IL avg ) L 2 DI IL avg ) L 2 DI IL avg ) L 2 L ǒVin * VDIsatL * VoutǓton * VsatQ2 ǒVin * VsatQ1 Ǔton DIL ǒVin *DILVsatǓton Vripple(pp) Vout ǒ DIL Ǹǒ Ǔ ǒ Ǔ 1 2 ) (ESR)2 8foscCo ǒ ǒ Ǔ R Vref 2 ) 1 R1 Ǔ Ǔ ǒtton ) 1Ǔ Ǹǒ 1 Ǔ2 ) (ESR)2 foscCo off ǒ Ǔ R Vref 2 ) 1 R1 ǒ ǒ Ǔ Ǔ ǒtton ) 1Ǔ Ǹǒ 1 Ǔ2 ) (ESR)2 foscCo off ǒ Ǔ R Vref 2 ) 1 R1 1. Vsat − Switch Output source saturation voltage, refer to Figure 8. 2. VF − Output rectifier forward voltage drop. Typical value for 1N5822 Schottky barrier rectifier is 0.35 V. 3. Duty cycle is calculated at the minimum operating input voltage and must not exceed the guaranteed minimum DC(max) specification of 0.92. The following converter characteristics must be chosen: Vout − Desired output voltage. Iout − Desired output current. DIL − Desired peak−to−peak inductor ripple current. For maximum output current especially when the duty cycle is greater than 0.5, it is suggested that DIL be chosen minimum current limit threshold of 5.5 A. If the design goal is to use a minimum inductance value, let DIL = 2 (IL avg). This will proportionally reduce the converter’s output current capability. Vripple(pp) − Desired peak−to−peak output ripple voltage. For best performance, the ripple voltage should be kept to less than 2% of Vout. Capacitor CO should be a low equivalent series resistance (ESR) electrolytic designed for switching regulator applications. http://onsemi.com 16 MC34167, MC33167 ORDERING INFORMATION Operating Temperature Range Package Shipping † MC33167D2T D2PAK (Surface Mount) 50 Units / Rail MC33167D2TG D2PAK MC33167D2TR4 D2PAK (Surface Mount) MC33167D2TR4G D2PAK MC33167T TO−220 (Straight Lead) 50 Units / Rail TO−220 (Straight Lead) (Pb−Free) 50 Units / Rail MC33167TH TO−220 (Horizontal Mount) 50 Units / Rail MC33167THG TO−220 (Horizontal Mount) (Pb−Free) 50 Units / Rail MC33167TV TO−220 (Vertical Mount) 50 Units / Rail MC33167TVG TO−220 (Vertical Mount) (Pb−Free) 50 Units / Rail MC34167D2T D2PAK (Surface Mount) 50 Units / Rail MC34167D2TG D2PAK (Surface Mount) (Pb−Free) 50 Units / Rail MC34167D2TR4 D2PAK (Surface Mount) 800 / Tape & Reel MC34167D2TR4G D2PAK Device MC33167TG (Surface Mount) (Pb−Free) (Surface Mount) (Pb−Free) TA= −40° to +85°C (Surface Mount) (Pb−Free) MC34167T 50 Units / Rail 800 / Tape & Reel 800 / Tape & Reel 800 / Tape & Reel TO−220 (Straight Lead) 50 Units / Rail TO−220 (Straight Lead) (Pb−Free) 50 Units / Rail MC34167TH TO−220 (Horizontal Mount) 50 Units / Rail MC34167THG TO−220 (Horizontal Mount) (Pb−Free) 50 Units / Rail MC34167TV TO−220 (Vertical Mount) 50 Units / Rail MC34167TVG TO−220 (Vertical Mount) (Pb−Free) 50 Units / Rail MC34167TG TA= 0° to +70°C †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. http://onsemi.com 17 MC34167, MC33167 PACKAGE DIMENSIONS TO−220 TH SUFFIX CASE 314A−03 ISSUE E −T− B −P− Q C E OPTIONAL CHAMFER A U F L G DIM A B C D E F G J K L Q S U K 5X J S D 5X NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION D DOES NOT INCLUDE INTERCONNECT BAR (DAMBAR) PROTRUSION. DIMENSION D INCLUDING PROTRUSION SHALL NOT EXCEED 0.043 (1.092) MAXIMUM. SEATING PLANE 0.014 (0.356) M T P M INCHES MIN MAX 0.572 0.613 0.390 0.415 0.170 0.180 0.025 0.038 0.048 0.055 0.570 0.585 0.067 BSC 0.015 0.025 0.730 0.745 0.320 0.365 0.140 0.153 0.210 0.260 0.468 0.505 MILLIMETERS MIN MAX 14.529 15.570 9.906 10.541 4.318 4.572 0.635 0.965 1.219 1.397 14.478 14.859 1.702 BSC 0.381 0.635 18.542 18.923 8.128 9.271 3.556 3.886 5.334 6.604 11.888 12.827 TO−220 TV SUFFIX CASE 314B−05 ISSUE L OPTIONAL CHAMFER E A U K NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION D DOES NOT INCLUDE INTERCONNECT BAR (DAMBAR) PROTRUSION. DIMENSION D INCLUDING PROTRUSION SHALL NOT EXCEED 0.043 (1.092) MAXIMUM. C B −P− Q S L W V F 5X G 5X 0.24 (0.610) M J T H D 0.10 (0.254) M T P M N −T− http://onsemi.com 18 SEATING PLANE DIM A B C D E F G H J K L N Q S U V W INCHES MIN MAX 0.572 0.613 0.390 0.415 0.170 0.180 0.025 0.038 0.048 0.055 0.850 0.935 0.067 BSC 0.166 BSC 0.015 0.025 0.900 1.100 0.320 0.365 0.320 BSC 0.140 0.153 −−− 0.620 0.468 0.505 −−− 0.735 0.090 0.110 MILLIMETERS MIN MAX 14.529 15.570 9.906 10.541 4.318 4.572 0.635 0.965 1.219 1.397 21.590 23.749 1.702 BSC 4.216 BSC 0.381 0.635 22.860 27.940 8.128 9.271 8.128 BSC 3.556 3.886 −−− 15.748 11.888 12.827 −−− 18.669 2.286 2.794 MC34167, MC33167 PACKAGE DIMENSIONS TO−220 T SUFFIX CASE 314D−04 ISSUE F −T− B −Q− DETAIL A−A B1 SEATING PLANE C E A U L J H G D DIM A B B1 C D E G H J K L Q U 1234 5 K NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION D DOES NOT INCLUDE INTERCONNECT BAR (DAMBAR) PROTRUSION. DIMENSION D INCLUDING PROTRUSION SHALL NOT EXCEED 10.92 (0.043) MAXIMUM. 5 PL 0.356 (0.014) M T Q M B B1 DETAIL A−A http://onsemi.com 19 INCHES MIN MAX 0.572 0.613 0.390 0.415 0.375 0.415 0.170 0.180 0.025 0.038 0.048 0.055 0.067 BSC 0.087 0.112 0.015 0.025 0.977 1.045 0.320 0.365 0.140 0.153 0.105 0.117 MILLIMETERS MIN MAX 14.529 15.570 9.906 10.541 9.525 10.541 4.318 4.572 0.635 0.965 1.219 1.397 1.702 BSC 2.210 2.845 0.381 0.635 24.810 26.543 8.128 9.271 3.556 3.886 2.667 2.972 MC34167, MC33167 D2PAK D2T SUFFIX CASE 936A−02 ISSUE C −T− OPTIONAL CHAMFER A E U S K B NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. TAB CONTOUR OPTIONAL WITHIN DIMENSIONS A AND K. 4. DIMENSIONS U AND V ESTABLISH A MINIMUM MOUNTING SURFACE FOR TERMINAL 6. 5. DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH OR GATE PROTRUSIONS. MOLD FLASH AND GATE PROTRUSIONS NOT TO EXCEED 0.025 (0.635) MAXIMUM. TERMINAL 6 V H 1 2 3 4 5 M D 0.010 (0.254) M T L P N G INCHES MIN MAX 0.386 0.403 0.356 0.368 0.170 0.180 0.026 0.036 0.045 0.055 0.067 BSC 0.539 0.579 0.050 REF 0.000 0.010 0.088 0.102 0.018 0.026 0.058 0.078 5 _ REF 0.116 REF 0.200 MIN 0.250 MIN DIM A B C D E G H K L M N P R S U V R C MILLIMETERS MIN MAX 9.804 10.236 9.042 9.347 4.318 4.572 0.660 0.914 1.143 1.397 1.702 BSC 13.691 14.707 1.270 REF 0.000 0.254 2.235 2.591 0.457 0.660 1.473 1.981 5 _ REF 2.946 REF 5.080 MIN 6.350 MIN SOLDERING FOOTPRINT* 8.38 0.33 1.702 0.067 10.66 0.42 3.05 0.12 16.02 0.63 SCALE 3:1 1.016 0.04 mm Ǔ ǒinches *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: N. American Technical Support: 800−282−9855 Toll Free Literature Distribution Center for ON Semiconductor USA/Canada P.O. Box 61312, Phoenix, Arizona 85082−1312 USA Phone: 480−829−7710 or 800−344−3860 Toll Free USA/Canada Japan: ON Semiconductor, Japan Customer Focus Center 2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051 Fax: 480−829−7709 or 800−344−3867 Toll Free USA/Canada Phone: 81−3−5773−3850 Email: [email protected] http://onsemi.com 20 ON Semiconductor Website: http://onsemi.com Order Literature: http://www.onsemi.com/litorder For additional information, please contact your local Sales Representative. MC34167/D