-13- 超低压差线性稳压控制器 MIC5刂 “51夕 /s158 ˉ :控 拄低在 差残性稳 珏 制 器 MIC5“ 乃157/5158 ●新 特 器 件 应 用 | 、 通信指挥学院 ∷ 钟利 平 | 刘成 芳 摘 要 :MIC51茹 冫5Ⅱ ″ 51ss系 列超 低 压 差 线 性 稳 压 控 制 器 可 使 稳 压 器输 入 输 出 电压 差 特 别低 ,外 部 元件 很 少 ,应 用 范 围很 广 。∶本 文 介 绍 了该 系列 器件 的 结 构 、特 `点 和 管脚 功 能 ,详 ∷ 细 地 /,x析 了 工 作 原 理 -并 给 出 了女 痴 电路 。 ・ 关键词:低 压差 线枉瘾压架 后盅癔压器 ∵ 工 种 固定 电压 稳 压控 制器 ,输 出电压 分别 为 1.概 述 3.3V,5.0V或 ⒓V。 MIC51sB可 以组成输 出 电压为 5V的 稳压器 ,同 时 ,利 用两只外接电 阻 将 MIC51ss组 成的稳压器输 出电压可从 1,3V调 整到 %V。 ∶ MIC51“ /557/51ss主 要用于大电流低 压差线性稳压电j源 中。 `为 了输1出 棘末 B0电 流 应外接 N沟 道功率 MOSFET作 为线性串联调 ˇ 整元件。 , ・ , ,∷ 主要特点如下 ● 工作电流 :4。 smA; : MIC51“ /51夕/51ss组 成 的稳 压 器输 人 ◆ ●静态电流∵般小于 1uA; ●外部元件数很少 ● 限流值可选 (工 般 门限是 “mV); ●MIC51“ 输 出电压恒定 :3.3V`5,0V; MOsmT妁 导 通 电 阻 RDs(c,N)与 输出电流的乘积:最 太输出电流由 MOSFET的 额定吧流决定。 ~ 输 出 电压 差 等 于 外 接 : MIC51“ /5157/5158系 列控制器 的工作 电压范围为直流 3V至 %V。 MIC51“ 需要较 高的栅极驱动电压,以 便驱动外接 M0sFET。 为此,MIC51夕 和 MIC51“ 都有一个三倍压 充电泵电路,以 便产生栅极驱动电压 接 3.5V :∶ 电源时,充 电泵电路可驱动 :MOsFET使 之输 出电压为 3.3V,同 时它还可将输出电压箝位在 高于电源电压的 n9.5V。 三倍压 电路薷要三只 外接电容器。 该控制器 外接取样 电阻 的两端龟 压 为 5mV时 ,稳 压器输出电流恒定。开路集电极输 出,低 电平时 FLAG脚 指示输 出电压低于额定 8%。 与 TTL兼 容的关断信号(低 电平)可 值的∴ 使该控制器的电流降至 lltA,从而使锢 出电压 ∷ ∵ ∵ 降为零。 MI()51“ -3.3和 MIC51“ |5.0控 制 器 : 内部 具 有 固 定 的 输 出 电压 。 外 接 两 个 电 阻 , MIC51“ 的输 出 电压 可 以 调 整 。 MIC51W是 ; Ⅱ ●MIC5157输 出电压恒定:3,3V、 12V; 5.0V、 ′ ● MIC51∞ /51ss外 接 二 个 电阻输 出电压 可在 1.3V到 “ V之 间调整 ; ● Enable(使 能 )脚 可导通 /关 断稳压 器 ● 元 件 内部 有 栅 极 一 源 极 箝 位 保 护 电路 ; , 如 图 1所 示 。 2.最 大额定值 ∶ MIC51“ /51乡/51狁 系列最大 额定值 如 下 : ●⒕ D∶ 38V; ● EN:ˉ 0.3≈ 36V; 、 ∵ ●%(MIC51“ ):ssV∵ ●VtP(MIC51夕 /B):“ V; 3~36V; ●V源 极△・ ●FLAG:ˉ 0.3~硐 V; :电 源专辑 199⒏ 午第 9期 ∷1g98年 0月 《国外电子元器件》 4.1MIC51狁 管脚功能 ●工作结温 TJ△ sO℃ ∷ ●贮存温度△ˉ甾 t1sO℃ ;∷ ;∵∷ -14- l 晶瑞扩 ; ・焊接温度(1汛 ):sO0℃ ; ' 3.管 脚封装 ^ ∷ 5isg系 ,lj管 踟葑嚷如囱 血l己 si宽 /sls″ = ' : ∶∷ 所示,管 脚封装参数如表 1所 列。 表 ∶∶ |∵ |‘ 醐 畿茹 1 MIC51“ /5157/8管 脚封装 卜亡 4.管 脚 功 能 °,1uF∶ 02 "01 0.1uE II亠 C1+IC1-IC2+l(冫 卜 l Vcρ 图1 ME51sT方 框原理图 啷 X , 口 V。 。 s(souⅡ → D(0mlol∷ G(GaloJ ∝弘 V。 β(Gatel GND‰ cND% G(G:l!ol (Df。 in) GNDvP D(Drah) E^ ≡ s(sourool EN啷 EN咖 "IC516⒍ EN V。 。 C1C1△ ∶ 泓 ‰∝弘 瓿⑾ 帅 ∷ 〓 w.哪 X。 . 图2 M眵 51“ /T/8系 列管脚封装图 EN s(sourco) 0(Dfa") C〈 od。 J∶ V。 。 C1C1+ 超低 压 差线性稳 压 控 制 器 MIC51甾 /s157/51sg ∶∴ Ⅱ 时,关 断稳压器。 ∷ ∶ FLAG(脚 :z,:输 出端:当 .%uT∷ 电压降低的 : 数值超过额定值 8%时 ,开 路集 电极输 出低电 ∷ 平,该 电路有 3%的 滞后。 ‘ GND觯 F3):地 。 %(脚 4):N沟 遣栅极驱动电源电压,可 驱 ¨ ′ 动外部 M0SFET的 栅极。 'Ⅱ ∷∷ %。 (脚 5):电 源电压输入脚。若需要限流 该脚应接在取样电阻 Rs和 ‰ 脚之间。同时 ∶ 该脚到地之间还应接人旁路电容。 G(脚 ω∵栅极 (G。 te)驱 动输出脚。可驱动 ∵ ∶ .∴ j ∶∷ ∶ 外部 MOsFEt的 栅极。 i , , D(脚 7):漏 极(Drai0利 .限 流输人脚j需 要 限流时,该 脚应接 MOsFET漏 极和外部取样 电阻(限 流 ),不 需要限流时,该 脚应接在 %D和 ∶ ∷ 外接 MOSFET的 漏极。∴ S(脚 8:3,3V,5V):源 极(输 人脚 )。 内部串 联分压电阻的顶端,为 F更 好地稳压,该 脚可直 ’ 接接负载。 EA(脚 8:可 调 ):误 差放大器输人脚。接外 ∴ Ⅱ ∴Ⅱ 部电阻分压器。 4.2MIC51夕 、MIC51ss管 脚 功 能 5Ⅴ (MIC5157脚 1):输 出 5V电 压时,该 脚应接 M0sFET的 源极 (S脚 )。 ⅡⅡ ∷ EA(MIC51ss脚 1):误 差放大器输人脚 外接电阻分压器,可 调节输由电压。 3∶ 3ˇ (M℃ 51sT脚 0:输 出 ⒊3V电 压 Ⅱ∷ ∵ ∶ 时,该 脚应接源极(S脚 )。 5V FB(MIC51sB脚 V:钾 反馈电压输入 (脚 EA脚 ,可 输出 5V电 压。 ∷ 。该脚接∵ FLAG(脚 ω :输 出电压指示 (输 出脚),当 V。 uT屯 压低于额定值的 8%时 ,开 路集电极输 - 出低电平。 : ′ . ∶i ⅡⅢ ∶ (脚 :三 倍压充电泵输出脚 (滤 波电 ⒒” ′ 分 容器)。 该脚到地之间应接ˉ个 lltF≈ lOuF的 ∵ ∷ 电容。 GND(脚 4):地 。 C2亠 (脚 6):充 电泵电容∷ C2,∵ 内部三倍压 -15亠 电路的第二级。C2+与 C2△ 之间应接人 0,lf.F 电容 。 C2+(脚 V:充 电泵电容 ∞ ,见 脚 6的 功 能。 ∷ C1+(脚 g9:充 电泵电容 CL内 部三倍压 电路的第一级,C1+与 C1-之 间应接人 炜F 0∶ 电容。 ∷ ∷ ・ C1-(脚 9):充 电泵电容 C1,见 脚 8的 功 ∶ ∴ ∶{ ∷ ∶ j 能。∶ VDD(脚 IO):电 源电压输人脚。若 电路中有 限流电阻,该 脚应接取样电阻 Rs和 :‰ 脚。同 时,该 脚到地之间还应接旁路电容。 Ⅱ G(脚 :11):MOSFET栅 极输出脚。该脚接 ∷ i 外部 MOSFET栅 极。 D(脚 1z):MOsFET漏 极和限流电路输人 脚。电路中有限流电阻时,该 脚接 MOSFET漏 极和外部取样电阻 ;电 路申没有限流电阻时,该 ¢ 脚接 VDD和 外部 MOsFET的 漏极。 ∷ S(MIC5157脚 1s):该 脚接内部串联电阻 顶端和外部 MOSFET的 源极 ,可 输 出 3.3Ⅴ 、 ∶ W和 lzV稳 定电压。 S(MICs1ss脚 13):该 脚接内部串联电阻 顶端 、外部分压 电阻和外 部 Mα FET的 源 ∷ ∶ 极。 EN(脚 14):使 能输人脚。该脚输人 TTL L低 电平 高电平时,稳 压器正常工作 ;输 人 时,稳 压器关断。 5.工 作原 理 "Γ ∷ 、 5.1MICs15“ 515T/s158规 格说明 MIC51“ 需要 用外部 电压来 驱 动 Mo⒏ mT。 它有输 出电压为 3.3V、 5V和 可调三种 ∷ 规格。 ∴MIC51夕 和 MIC515g内 部都有三倍压充 电泵电路 ,该 电路可给 MOsFET提 供栅极驱 动电压。MIC51夕 有输 出电压为 ⒊3V(5V和 12V三 种规格。MIC51狁 有输 出 5V恒 定电压 和输出电压可调两种规格。 -16- 《国外电子元器件》1998年 第9期 ∷199B年 9月 :/电 源专辑 5.2Enable(EN)使 能脚 : ∶ %D脚 电压高于 3.0V且 使能脚 (EN)为 TTL低 电平时,控 制器关断。使能脚 (EN)为 TTL高 电平时,内 部偏压 电路为整个内部电路 供电。EN脚 悬空时 ,电 平可拉高到 %V。 在关 断状态下 ,该 控制器的输人 电流只有 △A。 ∷ 5.3栅 极增强电压 超 低压差线性稳压控制器可以控制电源和 负载之间的 N沟 道 MOSFET(串 联调整元件 ) 的i栅 极△ 源极增强电压 据电源电压和负载 ^根 不同J栅 ÷源电压应‘ OV之 间。 ∷∷ 在△△ 邑 当稳压器工作在低压差状态时,由 于源极 电压 (即 输 出电压 )与 漏极电压非常接近,就 需 要更高的电压来驱动栅极。MIC51“ 这个更高 的 栅 极 驱I动 电 压 由 外 部 驱 动 电 源 提 供 。 MIC51sT和 MIC5158则 油内部充电泵提供。 ⒌4栅 极驱动电源电压 (仅 限于 MIC51“ ) 栅极驱动电压不能高于 ⒕V,即 VPˉ %D 驱动电压最小值-由 下式给:出 Ⅱ∶ ・ VI,△ ˇ ∷ ・ 。iΠ `十 Vls+1 式中,Vl,是 栅极驱动电源电压 ;Vr)uT是 稳 压器输出电压∷Vtis是 栅极 一源极 电压。 ∫ 误差放大器利用栅极驱动电源电压来驱动 <1z】 V。 放 大 器 输 出 可 在 V口 ± 1V内 变 化 。∶ 虽然 MIC5157/51Ss曲 内部充 电泵产生 驱动 电压 的,但 是外接栅极驱动电压也可加到Ⅱ 杨 脚。此 ∷ 时,VtP不 能比 VI,D高 ⒕V以 上 。 负载恒定时,充 电泵导通和关断的转换波 形十分规则。该:波 形 的周期 由下 列 因素决定 输人电压 、lmA运 算放大器负载 电流 、Mo⒊ FET栅 极漏电流、产 充电泵贮能 电容值及输人 电 压和 负载的特性 等。增大充 电泵贮能电容 C3 : 的容量,周 期将增 汽 电容 C1和 C2∶ 的容量决 定波形的振幅σ・ 应用时,如 果脉 冲窄,贮 能电容 C3可 选 用 10uF电 容器:∶ rc】 租 ∞ 可选 用 0.01uF电 容器。应 当注意 ,充 电泵电容的容量 过小 时 ,可 重复 负载:瞬 变的恢复时间将:受 影 ●∶, Ⅱi 日 ∷ i l∶ Ⅱ 向。 ∷ Ⅱ 5.6栅 极 一源极电压箝位 ∴ Ⅲ M(BFET的 栅极… 源极 ⒗。6V∶ 箝位 电压 ˉ 可 防 止 因输 出 电压 突 变 到 零、 而 损 坏,Mo⒊ FET。 (注 :MIC51“ 输出电压可调规格中没有 箝位电压。 ) : . 5.7输 出稳压电路 起动时,误 差放大器反馈 电压 (EA》 或内部 外部 M(DSFET的 栅极。误差放大器的输 出电 1V内 变化占|∷ 压 叮在 .⒕ ±、 5,5充 电泵电路 (汉限于 M℃ 51贸/51s8) 反馈 电压 (输 出固定定型 )与 内部 1.⒛ 5V带 隙 基准电压 比较。若输 出电压低于额定值 ,误 差 放大 器输 出 电压 升 高并使外部 MOSFET Q1 导通。然后 ,控 制器根据反馈 电压 ,调 整误差放 三 倍压充 电泵电路在贮能电容 C3两 端产 大器输 出电压 ,调 节输人电压和负载 ,使 稳压器 生直流电压。 外部电容 C1和 c?给 压充 电泵提供所需的贮肓 =倍 ⒏)三 倍 压充电泵直流输出 △ ,Ⅲ ∶ ∷ 电压为: .Vr・P≈ 3(V】 丬 ,-1) 输 出电压保持恒定。 5,⒏ 电压过低 检测 Ⅱ 当输 出电压 比额定 值 低 8%或 更低时、开 路集 电极 F△ AG脚 输 出低 电平并发 出故幛 告 . 式中,Ⅵ Ⅱ是充电泵输 出电压 ;VDD是 电源 警信号。FLAG脚 输 出电压控制外 部电路 ,同 时也可通过 EN脚 关断稳压器。 ∷ 5.9限 流方法 : 振荡器i限 制充电泵输出电压∫该电压 比 VDD高 t6V∷ ∶ 充电泵振荡器的工作频率为 “0kHz⒍ ∷ 超低压差线性稳压器具有恒定电流限制。 ・ : 电压。 ∷∷ Vt・ |箝 位 电路通过 适时接通或关 断充电泵 误差放大器给充 电泵电路提供 1mA电 流 并利用充电泵输 出电压来驱动:MOsFET。 误差 为 F限 制输 出电流 ,取 样 电阻 Rs必 须接在 V1】 )脚 和 D(漏 极 )脚 之间的功率通路 中。 ∶ 取样电阻两 端 的压降达到 ss血 V时 ,电 流 -17- 超低 压差 线性 稳压控 制 器 MIC51“ /5157/51ss 5.0V脚 都 不 接 S脚 时 ,稳 压 器 输 出 电 压 为 限制比较器使误差放大器的输出电压 降低 ,从 而避免取样电阻两端 电压超过 3smV。 6.应 用 电路 MIC51sB的 5V FB脚 接 EA脚 时,稳 压 器 输 出电压是 5V(不 需 外接分 压 电阻 )。 6,1MOSFET选 择 6.4.2可 调 输 出电压 准 N沟 道增强型 MOsFET,当 外部栅极驱动 电压 过 低时 ,可 选用逻辑 电平 N沟 道增强型 整 。为 了达到理 想效 果 ,R2可 选 10kΩ 电阻 ,如 图 4所 示 ,R1的 阻值 由下式计 算 MOSFET(MIC51“ ),当 输入 电源 电压过低 时,MIC51夕 /5158内 部的充 电泵可为标准型 MOsFET提 供所需的驱动电压。 . MIC51“ (可 调型 )和 MIC51ss外 接分压 电阻后 ,输 出 电压 可 在 1.z35V~“ V之 间调 在大部分超低压差线性稳压器中都选择标 ' ∷ 12V。 : R∴ ^ 6.2电 路布局 贯-1) =1× 104frl夕 f二 6.5输 入滤波电容器 ∷ . 为了适应负载电流在很宽的范围内变 化 并且消除误差放大器与充电泵之间的耦合 ,超 低压差线性稳压器输人端应 接人 只低 EsR 一 ∵ 的旁路电容。 ∵ 为 了获得最佳稳压效果 ,源 极 、 接地点和误 , 差放大器接点应当尽可能靠近负载 ,如 图 3所 示。 6.3MOsFET栅极 -源 极保护电路 除输 出电压可调 的规格外 ,MIC51“ 内部 都有栅极 -源 极箝位保护电路。采用输出电压 可调的器件时,为 了保护 MOSFET,栅 极和源 极间应接 △只 :“ V∷ 稳压管 ,如 图 3(c)所 示。 6.6输 出滤波电容 ∴ 6.4输 出电压 6.4,1恒 定输 出电压 i MIC515⒍ ∴ 的 输 出 电 压 为 3.3V; '3.⒊ MIC5156△ 5,0的 输 出电压为 5.0V。 MIC5157的 3.3V脚 接 S脚 时,稳 压器输 出电压为 3.3V。 MIC51s,的 5.0V脚 接 S脚 电容一般应选用容量较大的铝电解 电容 ,而 不 选 ESR较 小的电容器。因为输 出滤波电容的主 要作用不是 降低 ESR。 该电容的容量应当足够 输 出滤波电容可减少纹波 ,提 高负载调整 率。若 工作电压稳定 ,通 常不需接较大容量的 电容器。但是 ,为 了提高瞬变负载调整率 ,输 出∷ 大 ,以 便提供与瞬变负载调整率∵致的大电流 I=C× dV/dJ。 当负载电流突增时:输 出电压 将降低。上式中,I代 表在时间 t内 负载电流的 增 量 。 该 式 表 明 .,在 负 载 两 端 并 联 一 只 0・ 0蜘F、 10uF的 薄膜 电 时 ,稳 压器 输 出电压为 5.OV。 当 3.3V脚 和 G 容器 ,可 大大提高瞬变 负 载响应能力。 C5iso "∶ GND (a)MI“ 15X‘ 恒爿 宦 输出电压电路 EA i (b)MIC515X可 调 (c)MIC51“ 可调 输 出电压 电路 输出电压电路 图 3 MIC515× 输 出电压 电路 图 图 4 电阻分压器连接电路图 -18- 《国外电子元器件》1998年 第9期 1998年 9月 ⒍7电 流限制 为了取样输 出电流 ,应 在 VDr,脚 和 D脚 之 间接人阻值很小的电阻 Rs。 器件内部的限流 电 路限定取样电阻两端的电压 为 35mV。 取样电 阻 氐 的阻值可 由下式计算 屯源专辑 稳压器在电池达 到充 足电状态之|前 J可 提供 3smV/Rl的 恒定电流。 VFI'=1.235(1+R1/Rz) ‘ 式中,VFL是 电池充足电电压。 (下 轳 - : Rs= 35mV ILrM 闸极 电源 ・ 式中,Rs为 取样电阻的阻值 ∶ 输 出电流。 6.8非 限流应用 ,∶ LM为 最大 % 臼N 。 D 戈x G s "Cs1∞ -0N0 若不需要限流 ,VDD脚 和 D脚 之间不需接 ∷ 取样电阻,如 图 5所 示。 ,∷ 6.93.3V微 处理器应用∵ ° -5V逻 辑来设 计 3.3V微 处理器时 FLAG输 出电压可对 5V电 源电压降额。可参 考 MIC51“ 方框 图外接元件。 6,10开 关电源 (sMPs)后 置稳压器 1 ∵ - ∷ MIcsl“ /515T/51ss系 列稳压器可作为 采用 v。 , (a)大 电流 开关 电路 VD。 EN 开关电源的后置稳压器。加人超低压差线性稳 压器,可 大大降低峰 工峰值纹波电压。 ∷∵ ⒍ 11大 电流开关 : Ⅲ Cs1sO 间内关断时,充 电泵电容器将会放完电。若给 充电泵电容充电使负载在达到工作电压之前产 生迟滞 :就 不能通过 EN脚 导通 断稳压器。 '关 使充电泵连 MIC51ss的 EN脚 保持高电平 ,可 v" 续工作。通过补偿误 差放大器输人可控制 ’ MOsFET, 高端开关 ∷ 如图 “b)所 示。 6.1z电 池充电器应用 MIC51ss在 电池 充电器 中可提供恒定 图 5不 限流时的连接电路图 电流,如 图 7所 示。该 s EA MIC51冗 /51夕/51sS系 列用于大电流开 关时,s脚 应悬空 ,如 图 “a)所 示。当器件发生 故 障时 ,接 在 MOsFET栅 极 和源极 之 间 的 16V稳 压管可保护 MOsFET。 如果 MIC51夕 或 M℃ 51ss用 于在给定时 G GND 卫 嚣毖 夺 (b)快 速高端 开关 电路 图 6MIC51“ /T/g系 列应用开关 电路 Vw EN G mIc5158 s 图 7 电池充电器 电路 .psO) 《国外电子元器件》1∞ 8年 第 9期 ∶ tHM 冖 刀 ”丿 8年 9月 电源专辑 x,冖 arnx`ε 饣 ' Bs.⒁ α oρ D・ GNocs scι ⑾ 泌〓 Ι Nˉ 图3 MAX1“ 7典 型应用电路 “ ” ●设 定 充 电模 式 。 ●通 过 ●输人 MAX1647测 出充 电 电流 、充 电 电 ⑾ sMBus地 址 0× 1T,ˉ 向 CMD7~ D0输 人 0× 14,此 后 D15~D0・ 就是充 电 电 流值 。记下该 二 进 制码 。 压。 ●输人 sMBⅡ 地 址 0× 17,向 CMD7~ CMDO输 入 0× 5,此 后 D15~D0就 是 充 电电 由上 面所 得设 定 充 电电压 ,充 电电流 。 咨洵 编 号 四gOgO7 压 值 。记 下该 二 进 制码 。 雾 棼 赛 冢 癸 搴 棼 莽 雾 癸 界 抖 科 黏 黏 肀 莽 犭” P1s) 当电池达到该电压时,MOSFET 关断。输 人 电源通过 R4对 电池涓流充电。 界 奉 莽 癸 瘀 棼 搴 棼 参 棼 癸 癸 棼 棼 棼 搴 棼 棼 漭 蔡 莽 棼 (上 接 ⒗。 13不 间断电源 EN V。 。 D G 如 图 8所 示 ,MIC51夕 和 二 个 N沟 道 MOSFET在 不 间断电源中,可 起到电池转换的 作用。关断后 ,两 只ktDSFET的 源极与源极相 接 ,以 防止电流流过各 自的源极 -漏 极间的二 田 "IC5“ GND s EA 极管。同时,稳 压器应确保快速接通电池电路。 电池接通后 ,应 对交流电路进行监测以防止输 出电压 降至设计标准极限之下 。 咨询编号 :9BOgO4 图8 UPS电 源电路 MIC5156/5157/5158 Micrel MIC5156/5157/5158 Super LDO™ Regulator Controller Final Information either 3.3V, 5.0V, or 12V. The MIC5158 can be configured as a fixed 5V controller or programmed to any voltage from 1.3V to 36V using two external resistors. The MIC5156 is available in an 8-pin DIP or SOP. The MIC5157 and MIC5158 are available in a 14-pin DIP or SOP which operate from –40°C to +85°C. General Description The MIC5156, MIC5157, and MIC5158 Super Low-Dropout (LDO) Regulator Controllers are single IC solutions for highcurrent low-dropout linear voltage regulation. Super LDO™ Regulators have the advantages of an external N-channel power MOSFET as the linear pass element. The MIC5156/7/8 family features a dropout voltage as low as the RDS(ON) of the external power MOSFET multiplied by the output current. The output current can be as high as the largest MOSFETs can provide. The MIC5156/7/8 family operates from 3V to 36V. The MIC5156 requires an external gate drive supply to provide the higher voltage needed to drive the gate of the external MOSFET. The MIC5157 and MIC5158 each have an internal charge pump tripler to produce the gate drive voltage. The tripler is capable of providing enough voltage to drive a logiclevel MOSFET to 3.3V output from a 3.5V supply and is clamped to 17.5V above the supply voltage. The tripler requires three external capacitors. The regulator output is constant-current limited when the controller detects 35mV across an optional external sense resistor. An active-low open-collector flag indicates a low voltage of 8% or more below nominal output. A shutdown (low) signal to the TTL-compatible enable control reduces controller supply current to less than 1µA while forcing the output voltage to ground. The MIC5156-3.3 and MIC5156-5.0 controllers have internally fixed output voltages. The MIC5156 [adjustable] output is configured using two external resistors. The MIC5157 is a fixed output controller which is externally configured to select Features • • • • • • • • • • • • • 4.5mA typical operating current <1µA typical standby current Low external parts count Optional current limit (35mV typical threshold) 1% initial output voltage tolerance in most configurations 2% output voltage tolerance over temperature Fixed output voltages of 3.3V, 5.0V (MIC5156) Fixed output voltages of 3.3V, 5.0V, 12V (MIC5157) Programmable (1.3 to 36V) with 2 resistors (MIC5156/8) Internal charge pump voltage tripler (MIC5157/8) Enable pin to activate or shutdown the regulator Internal gate-to-source protective clamp All versions available in DIP and SOP Applications • • • • • Ultrahigh current ultralow dropout voltage regulator Constant high-current source Low parts count 5.0V to 3.3V computer supply Low noise/low-dropout SMPS post regulator High-current, current-limited switch Typical Applications +12V 1.0µF 5V VDD C1– C1+ 8 8 9 10 11 12 13 0.1µF 3mΩ VIN 5V 47µF RS RS = 0.035V / ILIMIT SMP60N03-10L 1 EN 2 3.3V 3 S EN 7 S G D VDD 6 4 MIC5157 MIC5156-3.3 5 5 FLAG FLAG 6 D GND 7 GND 1 G 2 C2– 3 C2+ 4 VCP 0.1µF Enable Shutdown VP 0.1µF CL* 47µF VOUT 3.3V, 10A VIN (3.61V min.) 3mΩ 47µF RS RS = 0.035V / ILIMIT * Improves transient response to load changes IRLZ44 (Logic Level MOSFET) 10A 5V to 3.3V Desktop Computer Regulator 14 Enable Shutdown CL* 47µF VOUT 3.3V, 10A * Improves transient response to load changes 10A Low-Dropout Voltage Regulator Super LDO is a trademark of Micrel, Inc. Micrel, Inc. • 1849 Fortune Drive • San Jose, CA 95131 • USA • tel + 1 (408) 944-0800 • fax + 1 (408) 944-0970 • http://www.micrel.com March 1999 1 MIC5156/5157/5158 MIC5156/5157/5158 Micrel Ordering Information MIC5156 Part Number Temperature Range Voltage Package MIC5156-3.3BN –40°C to +85°C 3.3V 8-pin DIP MIC5156-5.0BN –40°C to +85°C 5.0V 8-pin DIP MIC5156BN –40°C to +85°C Adjustable 8-pin DIP MIC5156-3.3BM –40°C to +85°C 3.3V 8-pin SOP MIC5156-5.0BM –40°C to +85°C 5.0V 8-pin SOP MIC5156BM –40°C to +85°C Adjustable 8-pin SOP Ordering Information MIC5157 Part Number Temperature Range Voltage Package MIC5157BN –40°C to +85°C Selectable 14-pin DIP MIC5157BM –40°C to +85°C Selectable 14-pin SOP Ordering Information MIC5158 Part Number Temperature Range Voltage Package MIC5158BN –40°C to +85°C 5.0V/Adj. 14-pin DIP MIC5158BM –40°C to +85°C 5.0V/Adj. 14-pin SOP Pin Configuration MIC5156-x.x EN 1 MIC5156 EN 1 8 S (Source) 8 EA FLAG 2 7 D (Drain) FLAG 2 7 D (Drain) GND 3 6 G (Gate) GND 3 6 G (Gate) MIC5157 5V 1 3.3V 2 5 VD D VP 4 5 VD D VP 4 MIC5158 EA 1 14 EN 14 EN 13 S (Source) 5V FB 2 13 S (Source) FLAG 3 12 D (Drain) FLAG 3 12 D (Drain) GND 4 11 G (Gate) GND 4 11 G (Gate) MIC5156/5157/5158 VCP 5 10 VD D VCP 5 10 VD D C2– 6 9 C1– C2– 6 9 C1– C2+ 7 8 C1+ C2+ 7 8 C1+ 2 March 1999 MIC5156/5157/5158 Micrel Pin Description MIC5156 Pin Number Pin Name Pin Function 1 EN 2 FLAG Output Flag (Output): Open collector output is active (low) when VOUT is more than 8% below nominal output. Circuit has 3% hysteresis. 3 GND Circuit ground. 4 VP N-channel Gate Drive Supply Voltage: User supplied voltage for driving the gate of the external MOSFET. 5 VDD Supply Voltage (Input): Supply voltage connection. Connect sense resistor (RS) to VDD if current limiting used. Connect supply bypass capacitor to ground near device. 6 G Gate (Output): Drives the gate of the external MOSFET. 7 D Drain and Current Limit (Input): Connect to external MOSFET drain and external sense resistor (current limit), or connect to VDD and external MOSFET drain (no current limit). 8 (3.3V, 5V) S Source (Input): Top of internal resistive divider chain. Connect directly to the load for best load regulation. 8 (adjustable) EA Enable (Input): TTL high enables regulator; TTL low shuts down regulator. Error Amplifier (Input): Connect to external resistive divider. Pin Description MIC5157, MIC5158 Pin Number Pin Name 1 (MIC5157) 5V 5V Configuration (Input): Connect to S (source) pin for 5V output. 1 (MIC5158) EA Error Amplifier (Input): Connect to external resistive divider to obtain adjustable output. 2 (MIC5157) 3.3V 2 (MIC5158) 5V FB 5V Feedback (Input): Connect to EA for fixed 5V output. 3 FLAG Output Voltage Flag (Output): Open collector is active (low) when VOUT is 8% or more below its nominal value. 4 GND Circuit ground. 5 VCP Voltage Tripler Output [Filter Capacitor]. Connect a 1 to 10µF capacitor to ground. 6 C2– Charge Pump Capacitor 2: Second stage of internal voltage tripler. Connect a 0.1µF capacitor from C2+ to C2–. 7 C2+ Charge Pump Capacitor 2: See C2– pin 6. 8 C1+ Charge Pump Capacitor 1: First stage of internal voltage tripler. Connect a 0.1µF capacitor from C1+ to C1–. 9 C1– Charge Pump Capacitor 1: See C1+ pin 8. 10 VDD Supply Voltage (Input): Supply voltage connection. Connect sense resistor (RS) to VDD if current limiting used. Connect supply bypass capacitor to ground near device. 11 G Gate (Output): Connect to External MOSFET gate. 12 D Drain and Current Limit (Input): Connect to external MOSFET drain and external sense resistor (current limit), or connect to VDD and external MOSFET drain (no current limit). 13 (MIC5157) S Source and 3.3V/5V Configuration: Top of internal resistor chain. Connect to source of external MOSFET for 3.3V, 5V, and 12V operation. Also see 3.3V and 5V pin descriptions. 13 (MIC5158) S Source (Input): Top of internal resistor chain. Connect to top of external resistive divider and source of external MOSFET. 14 EN March 1999 Pin Function 3.3V Configuration (Input): Connect to S (source) pin for 3.3V output. Enable (Input): TTL high enables regulator; TTL low shuts down regulator. 3 MIC5156/5157/5158 MIC5156/5157/5158 Micrel Absolute Maximum Ratings (Note 1) Operating Ratings (Note 2) Supply Input (VDD) ...................................................... +38V Enable Input (VEN) ......................................... –0.3V to 36V Gate Output (VG) MIC5156 ......................................... +55V Charge Pump Node (VCP) MIC5157/8 ........................ +55V Source Connection (VS) .................................... 1.3 to +36V Flag (VFLAG) .................................................... –0.3 to +40V Storage Temperature (TS) ....................... –65°C to +150°C Lead Temperature (soldering 10 sec.) ...................... 300°C Ambient Temperature Range (TA) MIC515xBM/BN ..................................... –40°C to +85°C Junction Temperature (TJ) ...................................... +150°C Thermal Resistance (θJA) Package MIC5156 MIC5157/8 DIP ............................... 100°C/W ..................... 90°C/W SOP .............................. 160°C/W ................... 120°C/W Electrical Characteristics(Note 5) VDD = 5V, VEN = 5V; TA = 25°C; unless noted. Symbol Parameter Condition Min VDD Supply Voltage IDD(ON) IDD(OFF) Supply Current MIC5156 Operating, VEN = 5V Shutdown, VEN = 0V IDD(ON) IDD(OFF) Supply Current MIC5157/8 Operating, VEN = 5V Shutdown, VEN = 0V VIH VIL Enable Input Threshold High Low EN IB Enable Input Bias Current VEN = 2.4V VCP Max. Charge Pump Voltage VCP – VDD, VDD > 10V fCP Charge Pump Frequency VOUT MAX Maximum Gate Drive Voltage (MIC5157/8) VSOURCE = 0V VDD = 3.5V VDD = 5V VDD = 12V VOUT MIN Minimum Gate Drive Voltage VSOURCE > VOUT(NOM) VLIM Current Limit Threshold VDD – VD @ ILIM VS Source Voltage Typ Max Units 36 V 2.7 0.1 10 5 mA µA 4.5 0.1 10 5 mA µA 1.3 1.3 0.8 V V 20 25 µA 17.5 18.5 V 3 2.4 160 5 9 24 7.0 11.3 28 kHz 9 15 30 1.0 V V V V 28 35 42 mV Short G (gate) to (S) source, Note 4 MIC5156-3.3 MIC5156-5.0 MIC5157, 3.3V pin to S pin (3.3V config.) MIC5157, 5V pin to S pin (5V config.) MIC5157, VDD = 7V, (12V config.) MIC5158, 5V FB pin to EA pin (5V config.) 3.267 4.950 3.250 4.950 11.70 4.925 3.3 5.0 3.3 5.0 12 5.0 3.333 5.050 3.350 5.050 12.30 5.075 V V V V V V 1.222 1.235 1.248 V 2 7 mV 16.6 20 V VBG Bandgap Reference Voltage MIC5156 [adjustable] and MIC5158 VLR Output Voltage Line Regulation 5V < VDD < 15V, VOUT = 3.3V VGS MAX Gate to Source Clamp VFT Flag Comparator Threshold % of nominal VSOURCE 92 % VFH Flag Comparator Hysteresis % of nominal VSOURCE 3 % VSAT Flag Comparator Sat. Voltage IFLAG = 1mA 14 0.09 Note 1. Exceeding the absolute maximum rating may damage the device. Note 2. The device is not guaranteed to function outside its operating rating. Note 3. Devices are ESD sensitive. Handling precautions recommended. Note 4. Test configuration. External MOSFET not used. Note 5. Specification for packaged product only. MIC5156/5157/5158 4 0.2 V March 1999 MIC5156/5157/5158 Micrel Typical Characteristics 5.0V Regulator Output Voltage vs. Temperature 3.33 5.03 10 3.31 3.30 3.29 3.28 3.27 MIC5157/8 On-State Supply Current vs. Supply Voltage 10.0 9.0 8.0 7.0 6.0 5.0 4.0 3.0 0 5 10 15 20 25 SUPPLY VOLTAGE (V) 30 5.01 5.00 4.99 4.98 4.96 -60 -30 0 30 60 90 120 150 TEMPERATURE (°C) MIC5157/8 On-State Supply Current vs. Temperature 5.0 4.5 4.0 3.5 3.0 2.5 VDD = 5V 2.0 1.5 1.0 0.5 0.0 -60 -30 0 30 60 90 120 150 TEMPERATURE (°C) 10 150 125 100 75 50 25 0 5 10 15 20 25 SUPPLY VOLTAGE (V) 0 -60 -30 0 30 60 90 120 150 TEMPERATURE (°C) 30 Enable Threshold Voltage vs. Temperature Enable Input Bias Current vs. Enable Voltage 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 -60 -30 0 30 60 90 120 150 TEMPERATURE (°C) March 1999 120 ENABLE BIAS CURRENT (µA) ENABLE THRESHOLD VOLTAGE (V) 0 VDD = 5V IFLAG = 1mA 175 20 4 LOGIC INPUT 2 3.3V OUTPUT 100 80 60 40 20 0 0 2 4 6 8 10 12 14 16 ENABLE VOLTAGE (V) 5 0.0 0.2 0.4 TIME (ms) 0.6 Off-State Supply Current vs. Temperature 5.0 4.5 VDD = 5V 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -60 -30 0 30 60 90 120 150 TEMPERATURE (°C) Flag Output Voltage vs. Flag Current 200 30 CCP = 1µF CL = 50µF 6 -2 -0.2 1.0 0.9 FLAG VOLTAGE (V) 60 40 8 Flag Output Voltage vs. Temperature FLAG VOLTAGE (mV) CHARGE PUMP VOLTAGE (V) Charge-Pump Output Voltage vs. Supply Voltage 50 MOSFET = IRF540 VIN = 5V, IL = 0.5A CC1 = CC2 = 0.1µF 0 4.97 VDD = 5V 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 CURRENT LIMIT THRESHOLD (mV) 2.0 5.02 OFF-STATE SUPPLY CURRENT (µA) 3.32 VOLTAGE (V) OUTPUT VOLTAGE (V) 12 3.26 -60 -30 0 30 60 90 120 150 TEMPERATURE (°C) ON-STATE SUPPLY CURRENT (mA) MIC5157/8 Turn-On Response Time for 3.3V 5.04 ON-STATE SUPPLY CURRENT (mA) OUTPUT VOLTAGE (V) 3.3V Regulator Output Voltage vs. Temperature 3.34 0 2 4 6 8 10 FLAG SINK CURRENT (mA) Current Limit Threshold vs. Temperature 70 60 50 40 30 20 10 0 -60 -30 0 30 60 90 120 150 TEMPERATURE (°C) MIC5156/5157/5158 MIC5156/5157/5158 Micrel Block Diagram MIC5156 +12V Input +5V Input 0.1µF VP VDD Internal Bias EN RS 3mΩ Enable Shutdown 12k to all internal blocks ILIMIT Comparator D (Drain) [ILIMIT] 35mV 1.235V Bandgap Reference +5V Input Q2 FLAG G (Gate) Error Amp 16.6V Q1 SMP60N03-10L S* (Source) Regulated +3.3V Output 75mV * fixed version only † 3.3V = 17k, 5V = 32k ‡ 17k† 10k GND CL Load 1 Load 2 Switched 5V Load VOUT Comparator EA‡ adjustable version only Block Diagram with External Components Fixed 3.3V Power Supply with 5.0V Load Switch Block Diagram MIC5157 +5V Input 0.1µF C1+ Oscillator C1 0.1µF C1– C2+ C3 1µF C2 C2– VCP VDD VCP Clamp Charge Pump Tripler Internal Bias ILIMIT Comparator 35mV FLAG RS 3mΩ Enable Shutdown to all internal blocks 1.235V Bandgap Reference VOUT Comparator EN D (Drain) [ILIMIT] G (Gate) Error Amp 16.6V Q1 IRFZ44 S (Source)* Regulated +3.3V Output 75mV 58k 15k 5V CL 3.3V 10k Load 17k GND Block Diagram with External Components Fixed 3.3V 10A Power Supply MIC5156/5157/5158 6 March 1999 MIC5156/5157/5158 Micrel Block Diagram MIC5158 +5V Input 0.1µF C1+ Oscillator C1 0.1µF C1– C2+ C3 1µF C2 C2– VCP VDD VCP Clamp Charge Pump Tripler Internal Bias ILIMIT Comparator 35mV FLAG RS 3mΩ Enable Shutdown to all internal blocks 1.235V Bandgap Reference VOUT Comparator EN D (Drain) [ILIMIT] G (Gate) Error Amp 16.6V Q1 IRFZ44 S (Source) Regulated +3.6V Output 32k 10k 5V FB CL Load 75mV GND EA 19.1k 10.0k Block Diagram with External Components Adjustable Power Supply, 3.6V Configuration MOSFET (regulator pass element) placed between the supply and the load. The gate-to-source voltage may vary from 1V to 16V depending upon the supply and load conditions. Because the source voltage (output) approaches the drain voltage (input) when the regulator is in dropout and the MOSFET is fully enhanced, an additional higher supply voltage is required to produce the necessary gate-to-source enhancement. This higher gate drive voltage is provided by an external gate drive supply (MIC5156) or by an internal charge pump (MIC5157 and MIC5158). Gate Drive Supply Voltage (MIC5156 only) The gate drive supply voltage must not be more than 14V above the supply voltage (VP – VDD < 14V). The minimum necessary gate drive supply voltage is: VP = VOUT + VGS + 1 where: Functional Description A Super LDO Regulator is a complete regulator built around Micrel’s Super LDO Regulator Controller. Refer to Block Diagrams MIC5156, MIC5157, and MIC5158. Version Differences The MIC5156 requires an external voltage for MOSFET gate drive and is available in 3.3V fixed output, 5V fixed output, or adjustable output versions. With 8-pins, the MIC5156 is the smallest of the Super LDO Regulator Controllers. The MIC5157 and MIC5158 each have an internal charge pump which provides MOSFET gate drive voltage. The MIC5157 has a selectable fixed output of 3.3V, 5V, or 12V. The MIC5158 may be configured for a fixed 5V or adjustable output. Enable (EN) With at least 3.0V on VDD, applying a TTL low to EN places the controller in shutdown mode. A TTL high on EN enables the internal bias circuit which powers all internal circuitry. EN must be pulled high if unused. The voltage applied to EN may be as high as 36V. The controller draws less than 1µA in shutdown mode. Gate Enhancement The Super LDO Regulator Controller manages the gate-tosource enhancement voltage for an external N-channel March 1999 VP = gate drive supply voltage VOUT = regulator output voltage VGS = gate-to-source voltage for full MOSFET gate enhancement The error amplifier uses the gate drive supply voltage to drive the gate of the external MOSFET. The error amplifier output can swing to within 1V of VP. 7 MIC5156/5157/5158 MIC5156/5157/5158 Micrel Charge Pump (MIC5157/5158 only) The charge pump tripler creates a dc voltage across reservoir capacitor C3. External capacitors C1 and C2 provide the necessary storage for the stages of the charge pump tripler. The tripler’s approximate dc output voltage is: VCP ≈ 3 (VDD – 1) where: VCP = charge pump output voltage VDD = supply voltage The VCP clamp circuit limits the charge pump voltage to 16V above VDD by gating the charge pump oscillator ON or OFF as required. The charge pump oscillator operates at 160kHz. The error amplifier uses the charge pump voltage to drive the gate of the external MOSFET. It provides a constant load of about 1mA to the charge pump. The error amplifier output can swing to within 1V of VCP. Although the MIC5157/8 is designed to provide gate drive using its internal charge pump, an external gate drive supply voltage can be applied to VCP . When using an external gate drive supply, VCP must not be forced more than 14V higher than VDD. When constant loads are driven, the ON/OFF switching of the charge pump may be evident on the output waveform. This is caused by the charge pump switching ON and rapidly increasing the supply voltage to the error amplifier. The period of this small charge pump excitation is determined by a number of factors: the input voltage, the 1mA op-amp load, any dc leakage associated with the MOSFET gate circuit, the size of the charge pump capacitors, the size of the charge pump reservoir capacitor, and the characteristics of the input voltage and load. The period is lengthened by increasing the charge pump reservoir capacitor (C3). The amplitude is reduced by weakening the charge pump—this is accomplished by reducing the size of the pump capacitors (C1 and C2). If this small burst is a problem in the application, use a 10µF reservoir capacitor at C3 and 0.01µF pump capacitors at C1 and C2. Note that the recovery time to repetitive load transients may be affected with small pump capacitors. Gate-to-Source Clamp A gate-to-source protective voltage clamp of 16.6V protects the MOSFET in the event that the output voltage is suddenly forced to zero volts. This prevents damage to the external MOSFET during shorted load conditions. Refer to “Charge Pump” for normal clamp circuit operation. The source connection required by the gate-to-source clamp is not available on the adjustable version of the MIC5156. Output Regulation At start-up, the error amplifier feedback voltage (EA), or internal feedback on fixed versions, is below nominal when compared to the internal 1.235V bandgap reference. This forces the error amplifier output high which turns on external MOSFET Q1. Once the output reaches regulation, the controller maintains constant output voltage under changing input and load conditions by adjusting the error amplifier output voltage (gate enhancement voltage) according to the feedback voltage. Out-of-Regulation Detection When the output voltage is 8% or more below nominal, the open-collector FLAG output (normally high) is forced low to signal a fault condition. The FLAG output can be used to signal or control external circuitry. The FLAG output can also be used to shut down the regulator using the EN control. Current Limiting Super LDO Regulators perform constant-current limiting (not foldback). To implement current limiting, a sense resistor (RS) must be placed in the “power” path between VDD and D (drain). If the voltage drop across the sense resistor reaches 35mV, the current limit comparator reduces the error amplifier output. The error amplifier output is decreased only enough to reduce the output current, keeping the voltage across the sense resistor from exceeding 35mV. Application Information MOSFET Selection Standard N-channel enhancement-mode MOSFETs are acceptable for most Super LDO regulator applications. Logic-level N-channel enhancement-mode MOSFETs may be necessary if the external gate drive voltage is too low (MIC5156), or the input voltage is too low, to provide adequate charge pump voltage (MIC5157/8) to enhance a standard MOSFET. Circuit Layout For the best voltage regulation, place the source, ground, and error amplifier connections as close as possible to the load. See figures (1a) and (1b). MIC5156/5157/5158 VIN G GND S Load MIC515x Figure 1a. Connections for Fixed Output 8 March 1999 MIC5156/5157/5158 Micrel Adjustable Configurations Micrel’s MIC5156 [adjustable] and MIC5158 require an external resistive divider to set the output voltage from 1.235V to 36V. For best results, use a 10kΩ resistor for R2. See equation (1) and figure (2). VIN G S Load MIC5157 or MIC5158 EA GND 1) V R1 = 1× 104 OUT − 1 1.235 G VOUT S Figure 1b. Connections for Adjustable Output MIC5157/8 GND VIN R1 EA* R2 10k G * MIC5156 EA GND Load Figure 2. Typical Resistive Divider Input Filter Capacitor The Super LDO requires an input bypass capacitor for accommodating wide changes in load current and for decoupling the error amplifier and charge pump. A medium to large value low-ESR (equivalent series resistance) capacitor is best, mounted close to the device. * Optional 16V zener diode recommended in applications where VG is greater than 18V Figure 1c. MIC5156 Connections for Adjustable Output Output Filter Capacitor An output filter capacitor may be used to reduce ripple and improve load regulation. Stable operation does not require a large capacitor, but for transient load regulation the size of the output capacitor may become a consideration. Common aluminum electrolytic capacitors perform nicely; very lowESR capacitors are not necessary. Increased capacitance (rather than reduced ESR) is preferred. The capacitor value should be large enough to provide sufficient I = C × dV/dt current consistent with the required transient load regulation quality. For a given step increase in load current, the output voltage will drop by about dV = I × dt/C, where I represents the increase in load current over time t. This relationship assumes that all output current was being supplied via the MOSFET pass device prior to the load increase. Small (0.01µF to 10µF) film capacitors parallel to the load will further improve response to transient loads. Some linear regulators specify a minimum required output filter capacitance because the capacitor determines the dominant pole of the system, and thereby stabilizes the system. This is not the situation for the MIC5156/7/8; its dominant pole is determined within its error amplifier. MOSFET Gate-to-Source Protection When using the adjustable version of the MIC5156, an external 16V zener diode placed from gate-to-source is recommended for MOSFET protection. All other versions of the Super LDO regulator controller use the internal gate-tosource clamp. Output Voltage Configuration Fixed Configurations The MIC5156-3.3 and MIC5156-5.0 are preset for 3.3V and 5.0V respectively. The MIC5157 operates at 3.3V when the 3.3V pin is connected to the S (source) pin; 5.0V when the 5.0V pin is connected to the S pin; or 12V if the 3.3V and 5.0V pins are open. The MIC5158 operates at a fixed 5V (without an external resistive divider) if the 5V FB pin is connected to EA. March 1999 9 MIC5156/5157/5158 MIC5156/5157/5158 Micrel Current Limiting Current sensing requires a low-value series resistance (Rs) between VDD and D (drain). Refer to the typical applications. The internal current-limiting circuit limits the voltage drop across the sense resistor to 35mV. Equation (2) provides the sense resistor value required for a given maximum current. Gate Supply Enable Shutdown VG EN VIN RS VDD D MIC5156-x.x G RS = 35mV ILIM S GND Load 2) where: RS = sense resistor value ILIM = maximum output current Most current-limited applications require low-value resistors. See Application Hints 21 and 25 for construction hints. Non-Current-Limited Applications For circuits not requiring current limiting, do not use a sense resistor between VDD and D (drain). See figure (3). The controller will not limit current when it does not detect a 35mV drop from VDD to D. Figure 4a. High-Side Switch If a MIC5157 or MIC5158 is used and is shutdown for a given time, the charge pump reservoir VCP will bleed off. If recharging the reservoir causes an unacceptable delay in the load reaching its operating voltage, do not use the EN pin for on/ off control. Instead, use the MIC5158, hold EN high to keep the charge pump in continuous operation, and switch the MOSFET on or off by overriding the error amplifier input as shown in figure (4b). VIN VIN VDD D G VDD S EN G S MIC5158 Figure 3. No Current Limit 3.3V Microprocessor Applications For computer designs that use 3.3V microprocessors with 5V logic, the FLAG output can be used to suppress the 5V supply until the 3.3V output is in regulation. Refer to the external components shown with the MIC5156 Block Diagram. SMPS Post Regulator Application A Super LDO regulator can be used as a post regulator for a switch-mode power supply. The Super LDO regulator can provide a significant reduction in peak-to-peak ripple voltage. High-Current Switch Application All versions of the MIC5156/7/8 may be used for currentlimited, high-current, high-side switching with or without voltage regulation. See figure (4a). Simply leave the “S” terminal open. A 16V zener diode from the gate to the source of the MOSFET protects the MOSFET from overdrive during fault conditions. EA GND Output Off Output On Load MIC5156 1N4148 Figure 4b. Fast High-Side Switch Battery Charger Application The MIC5158 may be used in constant-current applications such as battery chargers. See figure (5). The regulator supplies a constant-current (35mV ÷ R3) until the battery approaches the float voltage: R1 VFL = 1. 235 1 + R2 where: VFL = float voltage At float voltage, the MOSFET is shut off. A trickle charge is supplied by R4. MIC5156/5157/5158 10 March 1999 MIC5156/5157/5158 Micrel Uninterruptible Power Supply The MIC5157 and two N-channel MOSFETs provide battery switching for uninterruptible power as shown in figure (6). Two MOSFETs are placed source-to-source to prevent current flow through their body diodes when switched off. The Super LDO regulator is continuously enabled to achieve fast battery switch-in. Careful attention must be paid to the ac-line monitoring circuitry to ensure that the output voltage does not fall below design limits while the battery is being switched in. VIN R3 VDD R4 D EN G MIC5158 S R1 EA GND R2 VDD EN D Q1 G S MIC5158 Figure 5. Battery Charger Concept D G S S MOSFET body diodes shown for clarity G GND Line Battery AC Line EA Q2 D 40V max. 1N4148 Off-line Power Supply Uninterruptable DC Figure 6. UPS Power Supply Concept March 1999 11 MIC5156/5157/5158 MIC5156/5157/5158 Micrel Package Information PIN 1 DIMENSIONS: INCH (MM) 0.380 (9.65) 0.370 (9.40) 0.255 (6.48) 0.245 (6.22) 0.135 (3.43) 0.125 (3.18) 0.300 (7.62) 0.013 (0.330) 0.010 (0.254) 0.018 (0.57) 0.130 (3.30) 0.100 (2.54) 0.380 (9.65) 0.320 (8.13) 0.0375 (0.952) 8-Pin DIP (N) 0.026 (0.65) MAX) PIN 1 0.157 (3.99) 0.150 (3.81) DIMENSIONS: INCHES (MM) 0.050 (1.27) TYP 0.064 (1.63) 0.045 (1.14) 0.197 (5.0) 0.189 (4.8) 0.020 (0.51) 0.013 (0.33) 0.0098 (0.249) 0.0040 (0.102) 0°–8° SEATING PLANE 45° 0.010 (0.25) 0.007 (0.18) 0.050 (1.27) 0.016 (0.40) 0.244 (6.20) 0.228 (5.79) 8-Pin SOP (M) MIC5156/5157/5158 12 March 1999 MIC5156/5157/5158 Micrel .770 (19.558) MAX PIN 1 .235 (5.969) .215 (5.461) .060 (1.524) .045 (1.143) .310 (7.874) .280 (7.112) .160 MAX (4.064) .080 (1.524) .015 (0.381) .015 (0.381) .008 (0.2032) .160 (4.064) .100 (2.540) .110 (2.794) .090 (2.296) .023 (.5842) .015 (.3810) .060 (1.524) .045 (1.143) .400 (10.180) .330 (8.362) 14-Pin DIP (N) PIN 1 DIMENSIONS: INCHES (MM) 0.154 (3.90) 0.026 (0.65) MAX) 0.193 (4.90) 0.050 (1.27) 0.016 (0.40) TYP TYP 45° 0.006 (0.15) 0.057 (1.45) 0.049 (1.25) 0.344 (8.75) 0.337 (8.55) SEATING PLANE 3°–6° 0.244 (6.20) 0.228 (5.80) 14-Pin SOP (M) March 1999 13 MIC5156/5157/5158 MIC5156/5157/5158 MIC5156/5157/5158 Micrel 14 March 1999 MIC5156/5157/5158 March 1999 Micrel 15 MIC5156/5157/5158 MIC5156/5157/5158 Micrel MICREL INC. 1849 FORTUNE DRIVE SAN JOSE, CA 95131 TEL + 1 (408) 944-0800 FAX + 1 (408) 944-0970 WEB USA http://www.micrel.com This information is believed to be accurate and reliable, however no responsibility is assumed by Micrel for its use nor for any infringement of patents or other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent right of Micrel Inc. © 1999 Micrel Incorporated MIC5156/5157/5158 16 March 1999