ETC VIPER28-CN

CHlNA P0VVER sUPPLY sURVEY
Ⅶ PER28低 待机功率开关 电源转换器
原理 与应用
作者 :高 思恩
(山
东沂光电子股份有限公司
)
PwM控 制 器和 SrlOv高 压功 率MOSFET于 同
1w,适 用于机顶盒 、DVD播 放机 、录音机
i费 类与 家用设备 的辅助 电源和 LED照 明 电
作 ;频 率抖 动 ;突 发模 式
其它功能和 电路主 要有两 电平过 电流保护 、过 电压和
-、 概 述
意法半导体
(ST)公 司推 出的离线
过载保护 、滞后热保护 、软启动和故障解除之后的 自
(off line)
——
高 压 变 换 器 系 列 IC又 增 加 了 一 个 新 的 成 员
VIPER28。 这 种 新 型 器 件 是 一 种 将 800V功 率 MOSFET
动重新启动 。突发 (burst)模 式操作和非常低 的功率
和高性能低压 PWM控 制器 组合在一起 的IC。 Ⅵ PEV8
可以降低 电磁干扰
消耗满足待机 (stalldby)节 能规范 。先进 的频率抖动
s
R
BVRsT-M0DE
REFERENCEs
图1
VIPER28芯
片 电路
Q
(EMI)滤 波器 的成本 。高压启动
CHlNA P0WER sUPPLY sURVEY
技术研 究与应 用
表1
引脚
名称
功能
丐
1
GND
IC控 制 电路地 ,同 时也是功率 M0sFET源 极
2
VDD
控 制 电路 电源 电压 ,该 引脚在启 动期 间为外部 电容器提 供 充 电电流
3
CONT
4
FB
5
EPT
控 制 引脚 ,可 以选择 下面的功能
1.电 流 限制设定点调 节 。连接该 引脚 到地 的 一个 电阻 ,逐 周 电流 限制的设置 缺省 (默 认 )置 减 少
2输 出电压监视 。该 引脚上 的 一个超 过 3V的 电压将关 闭 IC减 少器件消耗
:
占空 因数控 制输入 。 内部 电流产 生器为环路调节提 供偏 置 电流 ;一 个低 于0,6V的 电压激活 突发操作
一 个接近 33V的 电平意味着 lC接 近逐周过 电流设定点
该引脚允许 为 附加 电源管理连接一个外部 电容 。如果该功能不用 ,这 个 引脚必须接地
MOsFET高 压漏极端 ,内 部开关启 动偏 置 电流也从该 引脚汲取
7,8
MOsFET由 于 带 有 各 种 无 损 耗 电流感 测 特 性 ,故 被 称
GND
VDD
DRAIN
V|PER28
‘
‘
丿氵 senscFET”
'
形与引脚排列如图2所 示 。
VIPEV8的 各个引脚功能见表
1。
EPT
FB
D丨
三 、主要性 能 与特点
P-7
VIPEV8的 主要性能与特点有
图2VIPER28外 形 与 引脚 排 列
电路 已嵌 入 到 芯 片 上 。VIPER28的 工 作 频 率 有 60KHz
(VIPER28LN)和 115KHz(VIPEVSHN)两 种 。
VIPEV8主 要 由高性能低压PWM控 制器和带 电流
感测 的高压 MOSFET两 个部分 组 成 ,芯 片 电路组成如
围AC输 入的反激 式离线转换器 。
荡器 、 带软 启 动特征 的启 动 电路 、 PWM逻 辑 、 带可
电源 电压VDD在 导通之后的范 围为8.5~23.5V,
VDD启 动门限 电平是 14V±
(3)SenseFET的
(。
,脉 冲漏极 电流达3A,最 大漏极 电流限制在
VIPEV8适 用功率如表2所 示 。
08A。
表2vIPER28适 用功 率
230Vac
(EPT)电 路 、 欠 电
电路 等 。栅极 驱 动器 驱动一个 BVDs冫 800v、
RDs(。 n)
=7Ω (在 25℃ 时 )的 N沟 道 功率 MOsFET。 这种 集成
B VDss≥ 800V,导 通态 电阻 RDs
n)兰 7Ω
调设定点 的 电流 限制 电路 、 第 二 过 电流保护 电路 、 突
(UVLo)电 路 、 自动重新启 动 电路 和热保 护
lV,欠 电压关 闭门限 电平
是8V± 0.5V,钳 位 电压彐 3,5V(ID疒 ⒛1nA)。
图 1所 示 。
VIPER28的 控制器 电路包 含带频率颤抖特性 的振
:
(1)集 低压PWM控 制器与800V的 scnseFET与 同一
芯片上 ,仅 需外加少量元件 ,即 可构建 高性能的宽范
(⑷
二、ⅥPER2aJ0基 本结构和引脚功能
发模 式管理 电路 、 额外 电源管理
。
vIPER28采 用 7引 脚 双 列直 插 式 (DIP)封 装 ,外
DRAIN
C0NT
压锁 定
;
85~265VaC
适配器
敞开架构
适 配器
敞开 架构
18VV
24W
10VV
13W
CHlNA P0VVER sUPPLY SURVEY
(⑶
工 作频率有 ω KHZ(L型 )和 115KHz(H型 )
两种版本 ,PWM操 作带频率颤抖具有低 EMI。
(5)在 265响 c下 的待机
(“
andby)功 率 <50mW。
(6)提 供 软 启 动 和 故 障状 态 之 后 的 自动 重 新 启
通 ,从 引脚VDD流 出3mA的 电流对 C3充 电。对于故
障之后 的 自动 重 新启动模 式 ,充 电C3的 电流减少到
06n1A。
当VDEl电 压达 到启 动 门限VDLl。 n(约 14V)时
,U1
动。
中的功率 MOsFET开 始开 关 ,HV电 流产 生器 关 断 c
(7)供 两 电平 过 电流 保 护 、 过 载 保 护 、 可 调 过
电压保 护及 门限是 170℃ (带 30℃ 滞 后 )的 热 关 闭保
U1开 始 正 常 工 作 后 ,绕 组 Nb感 生 的高频 电压 经 D4整
护。
式计算
流和 R5、 C3滤 波 ,为 VDD引 脚供 电 。VDD电 容根据下
:
C3=
・
rD£ )c″ rssJ″ . =3P,a/×
r$夕
莎
$四 〃.=3r9F/×
J庄
-’
67
’
14/-8/
%D口 ″ fDDl,f/
式中tssaux是 偏置 (辅 助 )绕 组Nb进 入稳态所需要
四 、功 能与 工作 原 理
1.典 型 应 用 电路
由 VIPER28组 成 的 离 线 反 激 式 开 关 电 源
的时间 。
如果 VDD电 压降至 VDIl。 疒 8Ⅴ 以下 ,U1中 的功率
R5和 C3组
MOSFET将 被关断 ,传 送到IC的 能量 中断 。如果变换
器输入DC电 压VⅨ 低于 80V,启 动时序被禁 止 。
(2)自 动重新启动操作
如果在变换器掉 电后 ,VIN高 于 80V,启 动 时序
流滤波 电路 ,变 压器 T1辅 助绕组Nb、
成 VIPER28(U1)的
D4、
VDD偏 置 电源 电路 ,R1、 C2和
D2组 成 RCD型 初级 NP钳 位 电路 ,D5、 C6组 成次级输
出整流滤波 电路 ,R8汊 9、
U2(TL431)和 光 电耦合
则不被禁 止 ,并 且 在 VDD电 压降至 VDEl(REsTA
器 U3等 组成反馈环路 。
RT)门
限
(4,5V)以 下 时被激活 。这意味着HV启 动 吧流产 生
2.工 作 原 理
器重新开始对VDD电 容 C3充 电。在一个故障之后 ,对
㈠ )启 动
,DC高 压加至U1
(HV)电 流产 生器启动导
当 电容 C1上 的电压超过 80V时
的DRAIN引 脚 ,内 部高压
C3的 充 电电流是 0.6mA,而 正 常启动变换器 时的充
电电流是 3mA。 在 一 个故 障之后 ,IC重 新启 动有一
个 非常 长 的重 复 率 ,变 换 器 安 全
工 作 ,仅 有 非常低 的功率通 过 量
(througllptlt)。
图4为 发 生短 路
后 的IC特 性 。
(3)振 荡器
VIPER28的 开 关频 率 固定在
60KHz或 I15KHz,在 250Hz的 速
上↑⊥〓
率 上利 用 ±4KHZ(60KHZ版 本 )
或 ±8KHZ(115KHz版 本 )对 开
关频率进行调制 。扩展频谱影响
开 关频 率 每 个 谐 波 上 的分 布 能
量 ,但 总 的说来在若干边带 上 的
谐波有相 同的能量 ,只 是幅度较
/l、
。
‘(4)电
图3VIPER28组 成 的 离线反 激 式 开 关 电 源 电路
护
流限制与过 电压保
(oVP)
2010年 10期
|63
屮
一△∷〓
(SMPs)电 路如 图3所 示 。其 中 ,D1和 C1为 桥式整
CHlNA P0WER sUPPLY sURVEY
技术研 究与应 用
VDD
式 中 :V。 vP=3V,为 oVP门 限 ;Nb/Ns为 偏置绕组
、
/DD。 n
VDD°
与次级绕组 匝数 比 ;V。 uT。 vP为 设计者设置 的激活 oVP
“
VDD(REst^Rη
的变换器输 出 电压值 ;VDs℃ 是次级整流二极管 的正 向
VDs
ˉˉˉ^ˉ
弯
电压降 。
Trep^
=ˉ
DD_cH御
R3电 阻值可 以表示 为
in仰
Ρ矧
R3=R4×
:
[ll-Κ @/P)/JCε /P]
(5)反 馈与过载保护 (oLP)
电流型控 制器 的反馈 引脚FB控 制PWM操 作和突
发模式 ,并 用来激活过载保 护 (oLP)。 FB引 脚 上 的
图4在 发 生短路后 的Ic相 关波形
VIPER28中 MOSFET漏 极 电流 被 内部 Rscnse感 测
并转换 为 电压输 入到 PWM比 较器 的 同相 输 入端 ,并 与
引脚 FB上 的 电压进 行 比较 。通 过 引脚 CoNT,可 以调
节 电流 限制 设 置 点 。MOsFET的 最 大 漏 极 限制 电流 是
08A。
在 T1的 辅 助 (即 偏 置 )绕 组 Nb上
,连 接 一 个 电阻
R3/R4。
分压器
在 MOsFET关 断期 间 ,偏 置 绕 组 产 生
一 个 跟踪 输 出 的一 个 电压 ,并 利 用 U1的 CONT引 脚
来监视变换器 输 出电压 。当引脚 CONT上 的电压超过
3V的 参考 时 ,通 过 内部计数器在 4个 连续的时间中
,
电压在0,6V与 3,5V之 间 ,PWM比 较器非反相输入端上
的电流感测信号通过分压器在逐周偏置上与引脚FB上
的一个 电压相比较 。当两个 电压相等时 ,PWM逻 辑命
令功率MOSFET关 断 。在过载情况下 ,引 脚FB上 的电
压增加 。当VF沪 35v时 ,MOSFET漏 极 电流被限制
PWM比 较器失能 ,内 部 电流产生器开始充 电反馈 电容
C5。
时间与c5值 有关 ,计 算公式是
‰
控制器能够识 别过 电压故 障 。 当在 一 个振荡周期 中
。″
=
R4
R3+R4 (Ⅳ b/Ⅳs)(%(∫ Tc,Ⅱ +%跖 C)-%"c.
鄂
=6叩 阴
⒁
当负载减小 时 ,反 馈 端 上 的 电压 VF:降 低 。 只要
VF:达 到
:
⑾ =6×
:
(6)突 发摸式操作
oVP信 号不被触发时 ,计 数器则复位 ,如 图5所 示 。
Κ
当反馈 电压达到48V的 过载关闭门限时 ,变 换器
关断 ,同 时启动状态被激活 。从过载检测到U1关 闭的
,
UI引 脚CONT上 的分压比K。 xfP可 表示为
,
突 出 模 式 门 限 V":M(06V),MOSFET就
会停 止 开关 。在 MOSFET截 止 之 后 ,由 于 反馈 的反
作 用 ,在 引脚 FB上 的 电压 增
加 。 当 VF:比 VF::M高 出 0,1V
时 ,MOSFET再 次开始开关
CONT
(pin4)
,
如 图 6所 示 。在 突 发模 式操作
3V
期 间 ,MOSFET漏 极 电流 被
限制 在 IDs田 M)=16omA。 进 入
sTROBE
突 发模 式后 ,VFIl降 低 。一 旦
0VP
VF:=0.6V,开 关 则 又 一 次停
COUNTER
止 。突 发模 式工 作 频 率 远 低
REsET
COUNTER
sTATUs
FAULT
1→
2 ∶2→ 0 ∶
o
293 ∶∶3,4
o→ 1
于正 常操作频率 ,可 大大减 小
轻 载 或 无 载 时 的功 率 损 耗
正常工作
暂时干扰
:
∴
反馈回路故障
图5过 电压保护(OⅥ ))相 关波 形
,
致 使 在 265Vac时 的待 机 功 率
CHlNA POWER SUPPLY SURVEY
技术研 究与应 用
被 接 受 ,保 护 逻 辑 在 其 空 闲状 态 将
复 位 。如 果 在 两 个 连 续 开 关 周 期 中
超过第 二 个 oCP门 限
(12A),功 率
MOsFET将 关断 。如果故 障状态不解
除 ,IC进 入重 新 启 动模 式 ,并 导 致
“
低频 间歇操作 ,即 所谓 打嗝模式操
”
作 ,在 功率 电路上仅有非常小 的应
i
|
ˉ
|(-ˉ Norma卜 mode-
Burst m。
力 。 图7为 打嗝模 式0CP定 时图 。
突发 模 式
de
图6突 发 模 式 操 作
五 、结 束语
secondary diode is shorted here
流传 感 的功率 SCnscFET和 高性 能低
压 PWM控 制器 集 成在 一 起 的 组 合 离
线 转 换 器 IC。 基 于 VIPER28的 反 激
式 sMPs,仅 需 用很少量 的元件 ,即
可输 出 10~24W的 功率 。突 发模 式操
作 ,使 待 机 功耗 (50mW,满 足 待机
节能规 范 。 先进 的PWM操 作 带 频率
<50mW。
抖动 ,有 非常低 的EMI。 高压启 动 电
图7打 嗝 模 式 O CP定 时 图
路嵌 入到芯 片 上 ,无 需外加启动元件
即可使 IC启 动 。ⅤIPER28提 供 两 电平
oCP、 过 电压保护 、滞后过热保护 、过载保护和故障
(7)额 外 电源管理 (EPT)
VIPER28引 脚 EPT上 连接 一个 电容 C4(CEPT),
用逐 周 5uA的 电流对 其充 电和放 电 。 当MOsFET漏 极
电流增加到 限制值 IDLIIvl的 85%时 ,Ul内 部 的 电流产 生
器对 C4充 电 ;一 旦漏 极 电流低于 0.85IDuM,C4放 电 。
如果 C4上 电压达 到 4V的 门 限VEPT,变 换 器 关 闭 。在
(典 型
变换器 关 闭之 亏 ,VDD电 压降至启 动 门限VD以 。
Ⅱ
值 是 14,5V)以 下 。为 了重新启动操作 ,VDD必 须低子
门限 电平 45V,才 能对 VDD电 容 C3充 电 。 当引脚 EPT
上 的 电压低于 06V的 门限VE町
(RE阢 A町 )时
,PWM操 作
重新赋能 。如果 EPT功 能不 用 ,U1的 引脚 EPT可 以接
地。
(8)第 二 电平过 电流保 护和打 嗝模式 (hiccup
mode)
后的安全重新启动 。VIPER28可 以用于机顶盒 、DVD
播放机和录音机及wh∞ goods等 sMPs,也 可用于ATX
辅助电源 、低/中 功率Aα DC适 配器 以及消费类和家用
电器 的辅助电源 ,还 可以用于LED照 明电源 。∷
钮 ∷
|∷
参考 文献
:
[11VIPER28of— hnc
st con△
hlgh voltagc convcrtc‘
Ⅵ、
V、厂
,2008,9
I2]叶 慧 贞 ,杨 兴洲 新 颖开关稳压 电源 [Ml北 京
:
国防 工业 出版社 ,,ll00
[3]沙 占友 ,马 洪 涛 特 种 集成 电源设 计 与应 用
IMl北 京 :中 国电力 出版社 ,⒛ Clb
VIPER28对 次级整 流器短路 、 次级绕 组短 路和反
激变压器硬饱和提供保护 。为从 一 个干扰信号辨别真
正 的故 障 ,在 第一个信号 断开之后则进入预警状态 。
如果在连 续 的开关周期 中信号不断开 ,一 个暂 时干扰
zOi0钔 0期
卜
∞∷
一
一一∷
∷∷扌∷
∷〓∵
∷一
VIPER28是 一 种 将 800V的 带 电
次级二极管短路
VIPER28
Off-line high voltage converters
Features
■
800 V avalanche rugged power section
■
PWM operation with frequency jittering for low
EMI
■
Operating frequency:
– 60 kHz for L type
– 115 kHz for H type
SDIP10
SO16 narrow
Description
■
Standby power < 50 mW at 265 VAC
■
Limiting current with adjustable set point
■
Adjustable and accurate over-voltage
protection
■
On-board soft-start
■
Safe auto-restart after a fault condition
■
Hysteretic thermal shutdown
■
Delayed overload protection
DIP-7
SO 16
The device is an off-line converter with an 800 V
rugged power section, a PWM control, two levels
of over-current protection, over-voltage and
overload protections, hysteretic thermal
protection, soft-start and safe auto-restart after
any fault condition removal. Burst mode operation
and device very low consumption helps to meet
the standby energy saving regulations. Advance
frequency jittering reduces EMI filter cost. The
extra power timer allows the management of
output peak power for a designed time window.
Application
■
Auxiliary power supply for consumer and home
equipment
■
ATX auxiliary power supply
■
Low / medium power AC-DC adapters
■
SMPS for set-top boxes, DVD players and
recorders, white goods
The high voltage start-up circuit is embedded in
the device.
Figure 1.
Typical topology
+
+
DC input high voltage
wide range
DC Output voltage
DRAIN DRAIN
EPT
VIPER28
GND
Table 1.
VDD
CONT
FB
Device summary
Order codes
Package
VIPER28LN / VIPER28HN
DIP-7
VIPER28LE / VIPER28HE
SDIP10
Packaging
Tube
VIPER28HD / VIPER28LD
SO16 narrow
VIPER28HDTR / VIPER28LDTR
October 2009
Tape and reel
Doc ID 15028 Rev 3
1/32
www.st.com
32
Contents
VIPER28
Contents
1
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2
Typical power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3
Pin settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
4
Electrical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4.1
Maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4.2
Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4.3
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
5
Typical electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
6
Typical circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
7
Operation descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
7.1
Power section and gate driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
7.2
High voltage startup generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
7.3
Power-up and soft-start up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
7.4
Power down operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
7.5
Auto restart operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
7.6
Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
7.7
Current mode conversion with adjustable current limit set point . . . . . . . 18
7.8
Over-voltage protection (OVP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
7.9
About CONT pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
7.10
Feed-back and overload protection (OLP) . . . . . . . . . . . . . . . . . . . . . . . . 20
7.11
Burst-mode operation at no load or very light load . . . . . . . . . . . . . . . . . . 23
7.12
Extra power management function (EPT) . . . . . . . . . . . . . . . . . . . . . . . . 24
7.13
2nd level over-current protection and hiccup mode . . . . . . . . . . . . . . . . . 24
8
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
9
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2/32
Doc ID 15028 Rev 3
VIPER28
Block diagram
1
Block diagram
Figure 2.
Block diagram
Vcc
VDD
DRAIN
LEB
Internal Supply bus
&
Ref erence Voltages
EPT
Tov l
BLOCK
EPT
Tovl
SUPPLY
& UVLO
HV_ON
UVLO
OSCILLATOR
Istart-up
THERMAL
SHUTDOWN
OLP
SOFT
START
OCP
BLOCK
-
CONT
TURN-ON
LOGIC
BURST
OCP
+
OVP DETECTION
+
LOGIC
PWM
BLOCK
LEB
R
Q
S
HV_ON
R
2nd OCP
+
+
-
Q
PWM
-
OVP
OTP
S
Disable
2nd OCP
LOGIC
OTP
OVP
OLP
Rsense
BURST-MODE
REFERENCES
BURST-MODE
LOGIC
BURST
FB
GND
2
Typical power
Table 2.
Typical power
230 VAC
Part number
VIPER28
85-265 VAC
Adapter(1)
Open frame(2)
Adapter(1)
Open frame(2)
18 W
24 W
10 W
13 W
1. Typical continuous power in non ventilated enclosed adapter measured at 50 °C ambient.
2. Maximum practical continuous power in an open frame design at 50 °C ambient, with adequate heat sinking.
Doc ID 15028 Rev 3
3/32
Pin settings
3
VIPER28
Pin settings
Figure 3.
Connection diagram (top view)
'.$
$2!).
6$$
$2!).
#/.4
$2!).
&"
$2!).
%04
$2!).
&15
&15
3$)0
$)0
3/.
Note:
The copper area for heat dissipation has to be designed under the DRAIN pins.
Table 3.
Pin description
Pin n.
Name
Function
SDIP10
DIP-7
SO16N
1
1
4
GND
This pin represents the device ground and the source of the power section.
2
2
5
VDD
Supply voltage of the control section. This pin also provides the charging
current of the external capacitor during start-up time.
3
3
6
Control pin. The following functions can be selected:
1. current limit set point adjustment. The internal set default value of the cycleby-cycle current limit can be reduced by connecting to ground an external
CONT resistor.
2. output voltage monitoring. A voltage exceeding 3 V shuts the IC down
reducing the device consumption. This function is strobed and digitally filtered
for high noise immunity.
4
4
7
FB
5
5
8
EPT
6...10
7,8
4/32
Control input for duty cycle control. Internal current generator provides bias
current for loop regulation. A voltage below 0.6 V activates the burst-mode
operation. A level close to 3.3 V means that the device is approaching the
cycle-by-cycle over-current set point.
This pin allows the connection of an external capacitor for the extra power
management. If the function is not used, the pin has to be connected to GND.
High voltage drain pin. The built-in high voltage switched start-up bias current
13...16 DRAIN is drawn from this pin too.
Pins connected to the metal frame to facilitate heat dissipation.
Doc ID 15028 Rev 3
VIPER28
Electrical data
4
Electrical data
4.1
Maximum ratings
Table 4.
Absolute maximum ratings
Value
Symbol
Parameter
Unit
Min
Max
VDRAIN Drain-to-source (ground) voltage
V
EAV
Repetitive avalanche energy
(limited by TJ = 150 °C)
5
mJ
IAR
Repetitive avalanche current
(limited by TJ = 150 °C)
1.5
A
3
A
IDRAIN
Pulse drain current
VCONT
Control input pin voltage (with ICONT = 1 mA)
-0.3
Self limited
V
VFB
Feed-back voltage
-0.3
5.5
V
VEPT
EPT input pin voltage
-0.3
5
V
VDD
Supply voltage (IDD = 25 mA)
-0.3
Self limited
V
IDD
Input current
25
mA
Power dissipation at TA < 50 °C
1
W
PTOT
TJ
TSTG
4.2
800
Operating junction temperature range
-40
150
°C
Storage temperature
-55
150
°C
Thermal data
Table 5.
Thermal data
Max value
Symbol
Parameter
Unit
SO16N
DIP7
SDIP10
RthJP
Thermal resistance junction pin
(Dissipated power = 2 W)
20
40
25
°C/W
RthJA
Thermal resistance junction ambient
(Dissipated power = 2 W)
50
100
75
°C/W
RthJA
Thermal resistance junction ambient (1)
(Dissipated power = 2 W)
40
80
55
°C/W
1. When mounted on a standard single side FR4 board with 100 mm2 (0.155 sq in) of Cu (35 µm thick)
Doc ID 15028 Rev 3
5/32
Electrical data
4.3
VIPER28
Electrical characteristics
(TJ = -25 to 125 °C, VDD = 14 V; unless otherwise specified)
Table 6.
Symbol
VBVDSS
IOFF
RDS(on)
COSS
Table 7.
Symbol
Power section
Parameter
Break-down voltage
OFF state drain current
Drain-source on state
resistance
Effective (energy related)
output capacitance
Test condition
Min
IDRAIN = 1 mA, VFB = GND
TJ = 25 °C
800
Typ
Max
Unit
V
VDRAIN = max rating,
60
μA
IDRAIN = 0.4 A, VFB = 3 V,
VEPT = GND, TJ = 25 °C
7
Ω
IDRAIN = 0.4 A, VFB = 3 V,
VEPT = GND, TJ = 125 °C
14
Ω
VFB = GND
VDRAIN = 0 to 640 V
40
pF
Supply section
Parameter
Test condition
Min
Typ
Max
Unit
60
80
100
V
VDRAIN = 120 V,
VEPT = GND, VFB = GND,
VDD = 4 V
-2
-3
-4
mA
VDRAIN = 120 V,
VEPT = GND, VFB = GND,
VDD = 4 V after fault.
-0.4
-0.6
-0.8
mA
Operating voltage range
After turn-on
8.5
23.5
V
VDD clamp voltage
IDD = 20 mA
23.5
Voltage
VDRAIN_START
IDDch
VDD
VDDclamp
Drain-source start voltage
Start up charging current
V
13
14
15
V
VEPT = GND, VFB = GND
7.5
8
8.5
V
VDD restart voltage
threshold
VDRAIN = 120 V,
VEPT = GND, VFB = GND
4
4.5
5
V
IDD0
Operating supply current,
not switching
VFB = GND, FSW = 0 kHz,
VEPT = GND, VDD = 10 V
0.9
mA
IDD1
Operating supply current,
switching
VDRAIN = 120 V,
FSW = 60 kHz
2.5
mA
VDRAIN = 120 V,
FSW = 115 kHz
3.5
mA
400
uA
270
uA
VDDon
VDD start up threshold
VDDoff
VDD under voltage
shutdown threshold
VDD(RESTART)
VDRAIN = 120 V,
Current
6/32
IDD_FAULT
Operating supply current,
with protection tripping
IDD_OFF
Operating supply current
with VDD < VDD_OFF
VDD = 7 V
Doc ID 15028 Rev 3
VIPER28
Electrical data
Table 8.
Controller section
(TJ = -25 to 125 °C, VDD = 14 V; unless otherwise specified)
Symbol
Parameter
Test condition
Min
Typ
Max
Unit
Feed-back pin
VFBolp
Over-load shut down
threshold
4.5
4.8
5.2
V
VFBlin
Linear dynamics upper limit
3.2
3.5
3.7
V
VFBbm
Burst mode threshold
Voltage falling
0.6
V
VFBbmhys
Burst mode hysteresis
Voltage rising
100
mV
IFB
RFB(DYN)
HFB
Feed-back sourced current
VFB = 0.3 V
-150
3.3 V < VFB < 4.8 V
Dynamic resistance
VFB < 3.3 V
ΔVFB / ΔID
-200
-280
-3
uA
uA
14
20
kΩ
2
6
V/A
CONT pin
VCONT_l
Low level clamp voltage
ICONT = -100 µA
0.5
V
Current limitation
IDlim
Max drain current limitation
tSS
Soft-start time
TON_MIN
td
tLEB
ID_BM
VFB = 4 V,
ICONT = -10 µA
TJ = 25 °C
0.75
0.80
0.85
8.5
Minimum turn ON time
220
400
A
ms
480
ns
Propagation delay
100
ns
Leading edge blanking
300
ns
160
mA
Peak drain current during
burst mode
VFB = 0.6 V
Oscillator section
VIPER28L
FOSC
FD
VDD = operating
voltage range,
VFB = 1 V
VIPER28H
Modulation depth
FM
Modulation frequency
DMAX
Maximum duty cycle
54
60
66
kHz
103
115
127
kHz
VIPER28L
±4
kHz
VIPER28H
±8
kHz
250
Hz
Doc ID 15028 Rev 3
70
80
%
7/32
Electrical data
VIPER28
Table 8.
Controller section (continued)
(TJ = -25 to 125 °C, VDD = 14 V; unless otherwise specified)
Symbol
Parameter
Test condition
Min
Typ
Max
Unit
Over-current protection (2nd OCP)
IDMAX
Second over-current
threshold
1.2
A
Over-voltage protection
VOVP
Over-voltage protection
threshold
TSTROBE
Over-voltage protection
strobe time
2.7
3
3.3
V
2.2
us
85%
IDLIM
A
4
V
0.6
V
5
μA
160
°C
30
°C
Extra power management
IDLIM_EPT
Drain current limit with
EPT function
VEPT(STOP)
EPT shut down threshold
VEPT(RESTART)
EPT restart threshold
IEPT
Sourced EPT current
ICONT < -10 μA
TJ = 25 °C
ICONT < -10 μA
Thermal shutdown
8/32
TSD
Thermal shutdown
temperature
THYST
Thermal shutdown
hysteresis
Doc ID 15028 Rev 3
150
VIPER28
Electrical data
Figure 4.
Minimum turn-on time test circuit
EPT
Figure 5.
OVP threshold test circuits
EPT
(The OVP protection is triggered
after four consecutive oscillator cycles)
Doc ID 15028 Rev 3
9/32
Typical electrical characteristics
VIPER28
5
Typical electrical characteristics
Figure 6.
Current limit vs TJ
Figure 7.
Switching frequency vs TJ
Figure 8.
Drain start-up voltage vs TJ
Figure 9.
HFB vs TJ
Figure 10. Operating supply current
(no switching) vs TJ
10/32
Figure 11. Operating supply current
(switching) vs TJ
Doc ID 15028 Rev 3
VIPER28
Typical electrical characteristics
Figure 12. Current limit vs RLIM
Figure 13. Power MOSFET on-resistance vs TJ
Figure 14. Power MOSFET break down voltage
vs TJ
Doc ID 15028 Rev 3
11/32
Typical electrical characteristics
VIPER28
Figure 15. Thermal shutdown
TJ
TSD
THYST
t
VDD
VDD ON
VDD OFF
VDD RESTART
t
VDS
t
12/32
Doc ID 15028 Rev 3
VIPER28
6
Typical circuit
Typical circuit
Figure 16. Min-features flyback application
EPT
Figure 17. Full-feature flyback application
EPT
Doc ID 15028 Rev 3
13/32
Operation descriptions
7
VIPER28
Operation descriptions
VIPER28 is a high-performance low-voltage PWM controller chip with an 800 V, avalanche
rugged power section.
The controller includes: the oscillator with jittering feature, the start up circuits with soft-start
feature, the PWM logic, the current limit circuit with adjustable set point, the second
over-current circuit, the burst mode management circuit, the EPT circuit, the UVLO circuit,
the auto-restart circuit and the thermal protection circuit.
The current limit set-point is set by the CONT pin. The burst mode operation guaranties high
performance in the stand-by mode and helps in the energy saving norm accomplishment.
All the fault protections are built in auto restart mode with very low repetition rate to prevent
IC's overheating.
7.1
Power section and gate driver
The power section is implemented with an avalanche ruggedness n-channel power
MOSFET, which guarantees safe operation within the specified energy rating as well as high
dv/dt capability. The power section has a BVDSS of 800 V min. and a typical RDS(on) of 7 Ω
at 25 °C.
The integrated SenseFET structure allows a virtually loss-less current sensing.
The gate driver is designed to supply a controlled gate current during both turn-on and turnoff in order to minimize common mode EMI. Under UVLO conditions an internal pull-down
circuit holds the gate low in order to ensure that the Power section cannot be turned on
accidentally.
7.2
High voltage startup generator
The HV current generator is supplied through the DRAIN pin and it is enabled only if the
input bulk capacitor voltage is higher than VDRAIN_START threshold, 80 VDC typically. When
the HV current generator is ON, the IDDch current (3 mA typical value) is delivered to the
capacitor on the VDD pin. In case of Auto Restart mode after a fault event, the IDDch current
is reduced to 0.6 mA, typ. in order to have a slow duty cycle during the restart phase.
See Figure 18 on page 15.
14/32
Doc ID 15028 Rev 3
VIPER28
7.3
Operation descriptions
Power-up and soft-start up
If the input voltage rises up till the device start level (VDRAIN_START), the VDD voltage begins
to grow due to the IDDch current (see Table 6 on page 6) coming from the internal high
voltage start up circuit. If the VDD voltage reaches VDDon threshold (~14 V) the power
MOSFET starts switching and the HV current generator is turned OFF. See Figure 19 on
page 16.
The IC is powered by the energy stored in the capacitor on the VDD Pin, CVDD, until the selfsupply circuit (typically an auxiliary winding of the transformer and a steering diode)
develops a voltage high enough to sustain the operation.
CVDD capacitor must be sized enough to avoid fast discharge and keep the needed voltage
value higher than VDDoff threshold: a too low capacitance value could terminate the
switching operation before the controller receives any energy from the auxiliary winding.
The following formula can be used for the VDD capacitor calculation:
Equation 1
I DDch × t SSaux
C VDD = ---------------------------------------V DDon – V DDoff
The tSSaux is the time needed for the steady state of the auxiliary voltage. This time is
estimated by applicator according to the output stage configurations (transformer, output
capacitances, etc.).
During the converter start up time, the drain current limitation is progressively increased to
the maximum value. In this way the stress on the secondary diode is considerably reduced.
It also helps to prevent transformer saturation. The soft-start time lasts 8.5 ms and the
feature is implemented for every attempt of start up converter or after a fault. See Figure 20
on page 16.
Figure 18. Start up IDD current
IDD
VDS = 120V
FSW = 0 kHz
AFTER FAULT
2 mA
1 mA
IDD0
IDD_FAULT
IDD_OFF
IDS_CH_FAULT
-1 mA
VDDrestart
VDDoff
VDDon
VDD
-2 mA
-3 mA
IDS_CH
-4 mA
Doc ID 15028 Rev 3
15/32
Operation descriptions
VIPER28
Figure 19. Timing diagram: normal power-up and power-down sequences
Vin
VStart
VVcc
DD
regulation is lost here
t
VVcc
DD ON
VVcc
DD OFF
VVcc
DD restart
t
VDRAIN
IDDch
Icharge
t
3 mA
Normal
operation
Power -on
t
Power -off
Figure 20. Soft-start: timing diagram
I DRAIN
tss
IDLIM
t
V FB
V FB OLP
V FB_lin
t
16/32
Doc ID 15028 Rev 3
VIPER28
7.4
Operation descriptions
Power down operation
At converter power down, the system loses regulation as soon as the input voltage is so low
that the peak current limitation is reached. The VDD voltage drops and when it falls below
the VDDoff threshold (8 V typical) the power MOSFET is switched OFF, the energy transfer to
the IC is interrupted and consequently the VDD voltage continues to decreases, Figure 19
on page 16. Later, if the VIN is lower than VDRAIN_START (80 V typical), the start up sequence
is inhibited and the power down completed. This feature is useful to prevent converter’s
restart attempts and ensures monotonic output voltage decay during the system power
down.
7.5
Auto restart operation
If after a converter power down, the VIN is higher than VDRAIN_START, the start up sequence
is not inhibited and will be activated only when the VDD voltage drops down the VDDrestart
threshold (4.5 V typical). This means that the HV start up current generator restarts the VDD
capacitor charging only when the VDD voltage drops below VDDrestart. The scenario above
described is for instance a power down because of a fault condition. After a fault condition,
the charging current is 0.6 mA (typ.) instead of the 3 mA (typ.) of a normal start up converter
phase. This feature together with the low VDDrestart threshold (4.5 V) ensures that, after a
fault, the restart attempts of the IC has a very long repetition rate and the converter works
safely with extremely low power throughput. The Figure 21 shows the IC behavioral after a
short circuit event.
Figure 21. Timing diagram: behavior after short circuit
VDD
Short circuit occurs here
VDDon
DD
VDDoff
DD
VDD(RESTART)
VDS
Trep
t
< 0.03Trep
t
t
IDD_CH
0.6 mA
FB Pin
t
4.8 V
3.3 V
t
Doc ID 15028 Rev 3
17/32
Operation descriptions
7.6
VIPER28
Oscillator
The switching frequency is internally fixed to 60 kHz or 115 kHz. In both case the switching
frequency is modulated by approximately ±4 kHz (60 kHz version) or ±8 kHz
(115 kHz version) at 250 Hz (typical) rate, so that the resulting spread-spectrum action
distributes the energy of each harmonic of the switching frequency over a number of
side-band harmonics having the same energy on the whole but smaller amplitudes.
7.7
Current mode conversion with adjustable current limit set
point
The device is a current mode converter: the drain current is sensed and converted in voltage
that is applied to the non inverting pin of the PWM comparator. This voltage is compared
with the one on the feed-back pin through a voltage divider on cycle by cycle basis.
The VIPER28 has a default current limit value, IDLIM, that the designer can adjust according
the electrical specification, by the RLIM resistor connected to the CONT see Figure 12 on
page 11.
The CONT pin has a minimum current sunk needed to activate the IDLIM adjustment: without
RLIM or with high RLIM (i.e. 100 kΩ) the current limit is fixed to the default value (see IDLIM,
Table 8 on page 7).
7.8
Over-voltage protection (OVP)
The device can monitor the converter output voltage. This operation is done by CONT pin
during power MOSFET OFF-time, when the voltage generated by the auxiliary winding
tracks converter's output voltage, through turn ratio N
See Figure 22.
AUX
-------------N SEC
In order to perform the output voltage monitor, the CONT pin has to be connected to the aux
winding through a resistor divider made up by RLIM and ROVP
(see Figure 17 (R3, R4 are respectively ROVP and RLIM)and Figure 23). If the voltage
applied to the CONT pin exceeds the internal 3 V reference for four consecutive times the
controller recognizes an over-voltage condition. This special feature uses an internal
counter; that is to reduce sensitivity to noise and prevent the latch from being erroneously
activated. see Figure 22 on page 19. The counter is reset every time the OVP signal is not
triggered in one oscillator cycle.
Referring to the Figure 17, the resistors divider ratio kOVP will be given by:
Equation 2
V OVP
k OVP = -------------------------------------------------------------------------------------------------N AUX
-------------- ⋅ ( V OUTOVP + V DSEC ) – V DAUX
N SEC
18/32
Doc ID 15028 Rev 3
VIPER28
Operation descriptions
Equation 3
R LIM
k OVP = --------------------------------R LIM + R OVP
Where:
●
VOVP is the OVP threshold (see Table 8 on page 7)
●
VOUT OVP is the converter output voltage value to activate the OVP set by designer
●
NAUX is the auxiliary winding turns
●
NSEC is the secondary winding turns
●
VDSEC is the secondary diode forward voltage
●
VDAUX is the auxiliary diode forward voltage
●
ROVP together RLIM make the output voltage divider
Than, fixed RLIM, according to the desired IDLIM, the ROVP can be calculating by:
Equation 4
1 – k OVP
R OVP = R LIM × ----------------------k OVP
The resistor values will be such that the current sourced and sunk by the CONT pin be
within the rated capability of the internal clamp.
Figure 22. OVP timing diagram
VDS
t
VAUX
0
CONT
(pin 4)
t
3V
t
2 µs
STROBE
0.5 µs
t
OVP
t
COUNTER
RESET
COUNTER
STATUS
t
0
0
0
0 →1
1 →2
2 →0
0
0 →1
1 →2
2 →3
FAULT
3 →4
t
NORMAL OPERATION
TEMPORARY DISTURBANCE
Doc ID 15028 Rev 3
FEEDBACK LOOP FAILURE
t
19/32
Operation descriptions
7.9
VIPER28
About CONT pin
Referring to the Figure 23, through the CONT PIN, the below features can be implemented:
1.
Current limit set point
2.
Over-voltage protection on the converter output voltage
The Table 9 on page 20 referring to the Figure 23, lists the external resistance combinations
needed to activate one or plus of the CONT pin functions.
Figure 23. CONT pin configuration
Rov p
SOFT
START
CONT
OCP Comparator
Current Limit
Curr. Lim.
BLOCK
-
Daux
+
Auxiliary
winding
To PWM Logic
OVP DETECTION
Rlim
LOGIC
From SenseFET
To OVP Protection
Table 9.
7.10
CONT pin configurations
Function / component
RLIM
ROVP
DAUX
IDlim reduction
See Figure 6
No
No
OVP
≥ 80 KΩ
See Equation 4
Yes
IDlim reduction + OVP
See Figure 6
See Equation 4
Yes
Feed-back and overload protection (OLP)
The VIPER28 is a current mode converter: the feedback pin controls the PWM operation,
controls the burst mode and actives the overload protection of the device. Figure 24 on
page 22 and Figure 25 show the internal current mode structure.
With the feedback pin voltage between VFB_bm and VFBlin, (respectively 0.6 V and 3.5 V,
typical values) the drain current is sensed and converted in voltage that is applied to the non
inverting pin of the PWM comparator.
This voltage is compared with the one on the feedback pin through a voltage divider on
cycle-by-cycle basis. When these two voltages are equal, the PWM logic orders the switch
off of the power MOSFET. The drain current is always limited to IDLIM value.
20/32
Doc ID 15028 Rev 3
VIPER28
Operation descriptions
In case of overload the feedback pin increases in reaction to this event and when it goes
higher than VFBlin the drain current is limited or to the default IDLIM value or the one imposed
through a resistor at the CONT pin (using the RLIM, see Figure 6 on page 10); the PWM
comparator is disabled.
At the same time an internal current generator starts to charge the feedback capacitor
(CFB) and when the feedback voltage reaches the VFBolp threshold, the converter is turned
off and the start up phase is activated with reduced value of Icharge to 0.6 mA.
During the first start up phase of the converter, after the soft-start up time (typical value is
8.5 ms) the output voltage could force the feedback pin voltage to rise up to the VFBolp
threshold that switches off the converter itself.
To avoid this event, the appropriate feedback network has to be selected according to the
output load. More the network feedback fixes the compensation loop stability. The Figure 24
on page 22 and Figure 25 on page 23 show the two different feedback networks.
The time from the overload detection (VFB = VFBlin) to the device shutdown
(VFB = VFBolp) can be calculated by CFB value (see Figure 24 on page 22 and Figure 25),
using the formula:
Equation 5
V FBolp – V FBlin
T OLP – delay = C FB × ---------------------------------------3μA
In the Figure 24, the capacitor connected to FB pin (CFB) is used as part of the circuit to
compensate the feedback loop but also as element to delay the OLP shut down owing to the
time needed to charge the capacitor (see 5).
After the start up time, 8.5 ms typ value, during which the feedback voltage is fixed at VFBlin,
the output capacitor could not be at its nominal value and the controller interpreters this
situation as an overload condition. In this case, the OLP delay helps to avoid an incorrect
device shut down during the start up face.
Owing to the above considerations, the OLP delay time must be long enough to by-pass the
initial output voltage transient and check the overload condition only when the output voltage
is in steady state. The output transient time depends from the value of the output capacitor
and from the load.
When the value of the CFB capacitor calculated for the loop stability is too low and cannot
ensure enough OLP delay, an alternative compensation network can be used and it is
showed in Figure 25 on page 23.
Using this alternative compensation network, two poles (fPFB, fPFB1) and one zero (fZFB) are
introduced by the capacitors CFB and CFB1 and the resistor RFB1.
The capacitor CFB introduces a pole (fPFB) at higher frequency than fZB and fPFB1. This pole
is usually used to compensate the high frequency zero due to the ESR (Equivalent Series
Resistor) of the output capacitance of the fly-back converter.
The mathematical expressions of these poles and zero frequency, considering the scheme
in Figure 25 are reported by the equations below:
Doc ID 15028 Rev 3
21/32
Operation descriptions
VIPER28
Equation 6
fZFB =
1
2 ⋅ π ⋅ CFB1 ⋅ RFB1
Equation 7
fPFB =
RFB(DYN) + RFB1
2 ⋅ π ⋅ CFB ⋅ RFB(DYN) ⋅ RFB1
(
)
1
2 ⋅ π ⋅ CFB1 ⋅ RFB1 + RFB(DYN)
)
Equation 8
fPFB1 =
(
The RFB(DYN) is the dynamic resistance seen by the FB pin and reported on Table 8 on
page 7.
The CFB1 capacitor fixes the OLP delay and usually CFB1 results much higher than CFB.
The equation 5 can be still used to calculate the OLP delay time but CFB1 has to be
considered instead of CFB. Using the alternative compensation network, the designer can
satisfy, in all case, the loop stability and the enough OLP delay time alike.
Figure 24. FB pin configuration
From sense FET
PWM
To PWM Logic
+
PWM
CONTROL
-
Cfb
BURST
BURST-MODE
REFERENCES
BURST-MODE
LOGIC
OLP comparator
+
4.8V
22/32
Doc ID 15028 Rev 3
-
To disable logic
VIPER28
Operation descriptions
Figure 25. FB pin configuration
From sense FET
PWM
To PWM Logic
+
PWM
CONTROL
-
Rfb1
Cfb
BURST
Cfb1
BURST-MODE
REFERENCES
BURST-MODE
LOGIC
OLP comparator
+
4.8V
7.11
To disable logic
-
Burst-mode operation at no load or very light load
When the load decrease the feedback loop reacts lowering the feedback pin voltage. As the
voltage reach the burst mode threshold VFBbm MOSFET stops switching. After the MOSFET
stops, as a result of the feedback reaction to the energy delivery stop, the feedback pin
voltage increases and exceeding VFBbm threshold of 100 mV, the burst mode hysteresis
typical value MOSFET the power device start switching again. Figure 26 shows this
behavior called burst mode. Systems alternates period of time where power MOSFET is
switching to period of time where power MOSFET is not switching. The power delivered to
output during switching periods exceeds the load power demands; the excess of power is
balanced from not switching period where no power is processed. The advantage of burst
mode operation is an average switching frequency much lower then the normal operation
working frequency, up to some hundred of hertz, minimizing all frequency related losses.
During the burst mode operation the drain current is limited to ID_BM, 160 mA typ. value.
Figure 26. Burst mode timing diagram, light load management
FB
100
50 mV
hyster.
VFBBM
I
t
DS
Normal -mode
Burst-mode
Doc ID 15028 Rev 3
Normal -mode
t
23/32
Operation descriptions
7.12
VIPER28
Extra power management function (EPT)
Some applications need an extra power for a limited time window during which the converter
regulation has to be guaranteed. The extra power management function allows to design a
converter that can satisfy this request and is provided by the EPT pin, see Table 8 on
page 8.
This function requires the use of a capacitor on EPT pin (CEPT) that is charged or
discharged by means of a 5 µA current cycle by cycle. When the drain current raises over
85% of Idlim value, see IDLIM_EPT (Table 8 on page 7), the current generator charges CEPT
while when the drain current is below IDLIM_EPT discharges the capacitor. If CEPT ‘s voltage
reaches the VEPT threshold (typical, 4 V), the converter is shut down.
After the converter shut down, the VDD voltage will drop below the VDD(ON) start up
threshold (typ. 14.5 V) and according to the auto restart operation
(see Section 7.5 on page 17) the VDD pin voltage have to fall below the VDD(RESTART)
threshold (typical, 4.5 V) in order to charge again the VDD capacitor. Moreover the PWM
operation is enabled again only when the voltage on EPT pin, drop below the VEPT(RESTART)
(typical, 0.6 V). The low CEPT discharge current in combination with its low restart threshold,
ensures safe operations and avoids overheating in case of repeated overload events. The
value of CEPT has to be selected in order to prevent the device overheating. The EPT pin
can be connected to GND if the function is not used.
7.13
2nd level over-current protection and hiccup mode
The VIPER28 is protected against short circuit of the secondary rectifier, short circuit on the
secondary winding or a hard-saturation of fly-back transformer. Such as anomalous
condition is invoked when the drain current exceed 1 A typical.
To distinguish a real malfunction from a disturbance (e.g. induced during ESD tests) a
“warning state” is entered after the first signal trip. If in the subsequent switching cycle the
signal is not tripped, a temporary disturbance is assumed and the protection logic will be
reset in its idle state; otherwise if the 2nd OCP threshold is exceeded for two consecutive
switching cycles a real malfunction is assumed and the power MOSFET is turned OFF.
The shutdown condition is latched as long as the device is supplied. While it is disabled, no
energy is transferred from the auxiliary winding; hence the voltage on the VDD capacitor
decays till the VDD under voltage threshold (VDDoff), which clears the latch.
The start up HV current generator is still off, until VDD voltage goes below its restart voltage,
VDD(RESTART). After this condition the VDD capacitor is charged again by 600 µA current,
and the converter switching restart if the VDDon occurs. If the fault condition is not removed
the device enters in auto-restart mode. This behavioral, results in a low-frequency
intermittent operation (Hiccup-mode operation), with very low stress on the power circuit.
See the timing diagram of Figure 27.
24/32
Doc ID 15028 Rev 3
VIPER28
Operation descriptions
Figure 27. Hiccup-mode OCP: timing diagram
VDD
Vcc
Secondary diode is shorted here
VDDON
VDD OFF
VVcc
DDrest
t
IDRAIN
IDmax
t
V DS
t
Doc ID 15028 Rev 3
25/32
Package mechanical data
8
VIPER28
Package mechanical data
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK is an ST trademark.
Table 10.
DIP-7 mechanical data
mm
Dim.
Typ
Min
A
5,33
A1
0,38
A2
3,30
2,92
4,95
b
0,46
0,36
0,56
b2
1,52
1,14
1,78
c
0,25
0,20
0,36
D
9,27
9,02
10,16
E
7,87
7,62
8,26
E1
6,35
6,10
7,11
e
2,54
eA
7,62
eB
L
M
(6)(8)
N
10,92
3,30
2,92
3,81
0,40
0,60
2,508
0,50
N1
O (7)(8)
0,60
0,548
1- The leads size is comprehensive of the thickness of the leads finishing material.
2- Dimensions do not include mold protrusion, not to exceed 0,25 mm in total (both side).
3- Package outline exclusive of metal burrs dimensions.
4- Datum plane “H” coincident with the bottom of lead, where lead exits body.
5- Ref. POA MOTHER doc. 0037880
6- Creepage distance > 800 V
7- Creepage distance 250 V
8- Creepage distance as shown in the 664-1 CEI / IEC standard.
26/32
Max
Doc ID 15028 Rev 3
VIPER28
Package mechanical data
Figure 28. Package dimensions
Doc ID 15028 Rev 3
27/32
Package mechanical data
Table 11.
VIPER28
SO16 narrow mechanical data
mm
Dim.
Min.
Typ.
A
1.75
A1
0.1
A2
1.25
b
0.31
0.51
c
0.17
0.25
D
9.8
9.9
10
E
5.8
6
6.2
E1
3.8
3.9
4
e
0.25
1.27
h
0.25
0.5
L
0.4
1.27
k
0
8
ccc
28/32
Max.
0.1
Doc ID 15028 Rev 3
VIPER28
Package mechanical data
Figure 29. SO16 narrow mechanical data
SO-16 MECHANICAL DATA
DIM.
mm.
MIN.
TYP
A
a1
inch
MAX.
MIN.
TYP.
1.75
0.1
0.25
b
0.35
b1
0.19
a2
0.068
0.004
0.010
0.46
0.013
0.018
0.25
0.007
0.010
1.64
C
MAX.
0.063
0.5
0.019
c1
45° (typ.)
D
9.8
10
0.385
0.393
E
5.8
6.2
0.228
0.244
e
1.27
e3
8.89
F
3.8
G
L
M
S
0.050
0.350
4.0
0.149
0.157
4.6
5.3
0.181
0.208
0.5
1.27
0.019
0.62
0.050
0.024
8° (max.)
0016020D
Doc ID 15028 Rev 3
29/32
Package mechanical data
Table 12.
VIPER28
SDIP10 mechanical data
mm
Dim.
Min.
Typ.
A
5.33
A1
0.38
A2
2.92
4.95
b
0.36
0.56
b2
0.51
1.15
c
0.2
0.36
D
9.02
10.16
E
7.62
8.26
E1
6.1
7.11
E2
7.62
E3
10.92
e
L
1.77
2.92
Figure 30. SDIP10 mechanical drawing
30/32
Max.
Doc ID 15028 Rev 3
3.81
VIPER28
9
Revision history
Revision history
Table 13.
Document revision history
Date
Revision
Changes
30-Sep-2008
1
Initial release
22-Jan-2009
2
Updated Figure 3 on page 4
21-Oct-2009
3
Added SO16N and SDIP10 packages
Doc ID 15028 Rev 3
31/32
VIPER28
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2009 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
32/32
Doc ID 15028 Rev 3