19-0260; Rev 1; 3/95 Single/Dual/Quad, 10MHz Single-Supply Op Amps ________________________Applications Portable Equipment Battery-Powered Instruments Signal Processing Discrete Filters Signal Conditioning ____________________________Features ♦ 15V/µs Min Slew Rate ♦ +3V Single-Supply Operation ♦ Guaranteed 10MHz Unity-Gain Bandwidth ♦ 2mA Supply Current per Amplifier ♦ Input Range Includes Negative Rail ♦ Outputs Short-Circuit Protected ♦ Rail-to-Rail Output Swing (to within ±50mV) ♦ µMAX Package (the smallest 8-pin SO) ______________Ordering Information TEMP. RANGE PIN-PACKAGE MAX473CPA PART 0°C to +70°C 8 Plastic DIP MAX473CSA 0°C to +70°C 8 SO MAX473CUA MAX473C/D MAX473EPA MAX473ESA MAX473MJA 0°C to +70°C 0°C to +70°C -40°C to +85°C -40°C to +85°C -55°C to +125°C 8 µMAX Dice* 8 Plastic DIP 8 SO 8 CERDIP Ordering Information continued on last page. * Dice are specified at TA = +25°C, DC parameters only. Servo-Loops __________Typical Operating Circuit 9.9k _________________Pin Configurations TOP VIEW 82pF 82pF 9.9k 3V 3V 3V 9.9k NULL 1 8 NULL IN- 2 7 VCC IN+ 3 6 OUT VEE 4 5 N.C. 8 VCC MAX473 9.9k VIN 100mVp-p 9.9k 1/4 MAX475 DIP/SO/µMAX 1/4 MAX475 1/4 MAX475 OUTA 1 1V 1V 127k INA- 2 MAX474 A INA+ 3 BANDPASS OUTPUT 1Vp-p at 190kHz 9.9k 1V fo = 190kHz Q = 10 BANDPASS FILTER B VEE 4 7 OUTB 6 INB- 5 INB+ DIP/SO/µMAX Pin Configurations continued on last page. ________________________________________________________________ Maxim Integrated Products Call toll free 1-800-998-8800 for free samples or literature. 1 MAX473/MAX474/MAX475 _______________General Description The single MAX473, dual MAX474, and quad MAX475 are single-supply (2.7V to 5.25V), unity-gain-stable op amps with rail-to-rail output swing. Each op amp guarantees a 10MHz unity-gain bandwidth, 15V/µs slew rate, and 600Ω drive capability while typically consuming only 2mA supply current. In addition, the input range includes the negative supply rail and the output swings to within 50mV of each supply rail. Single-supply operation makes these devices ideal for low-power and low-voltage portable applications. With their fast slew rate and settling time, they can replace higher-current op amps in large-signal applications. The MAX473/MAX474/MAX475 are available in DIP and SO packages in the industry-standard op-amp pin configurations. The MAX473 and MAX474 are also offered in the µMAX package, the smallest 8-pin SO. MAX473/MAX474/MAX475 Single/Dual/Quad, 10MHz Single-Supply Op Amps ABSOLUTE MAXIMUM RATINGS Supply Voltage (VCC - VEE)......................................................7V Input Voltage (IN+, IN-, IN_+, IN_-) .........................(VCC + 0.3V) to (VEE - 0.3V) Output Short-Circuit Duration.....................................Continuous Continuous Power Dissipation (TA = +70°C) 8-Pin Plastic DIP (derate 9.09mW/°C above +70°C) ...727mW 8-Pin SO (derate 5.88mW/°C above +70°C)................471mW 8-Pin µMAX (derate 4.1mW/°C above +70°C) .............330mW 8-Pin CERDIP (derate 8.00mW/°C above +70°C)........640mW 14-Pin Plastic DIP (derate 10.00mW/°C above +70°C)...800mW 14-Pin SO (derate 8.33mW/°C above +70°C)..............667mW 14-Pin CERDIP (derate 9.09mW/°C above +70°C)......727mW Operating Temperature Ranges MAX47_C_ _ ......................................................0°C to +70°C MAX47_E_ _.....................................................-40°C to +85°C MAX47_MJ_ ...................................................-55°C to +125°C Junction Temperatures MAX47_C_ _/E_ _........................................................ +150°C MAX47_MJ_ ................................................................ +175°C Storage Temperature Range .............................-65°C to +160°C Lead Temperature (soldering, 10sec) .............................+300°C Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ELECTRICAL CHARACTERISTICS (+3V ≤ VCC ≤ +5V, VEE = 0V, VCM = 0.5V, VOUT = 0.5V, TA = +25°C, unless otherwise noted.) PARAMETER Input Offset Voltage Input Bias Current Input Offset Current Common-Mode Voltage SYMBOL VOS IB TYP MAX MAX473 CONDITIONS ±0.70 ±2.0 MAX474 ±0.70 ±2.0 MAX475 ±0.80 ±2.5 Current flows out of terminals MIN 0 IOS VCM High VCC - 1.9 Low UNITS mV 80 150 nA ±10 ±30 nA VCC - 1.7 VEE - 0.1 VEE V Common-Mode Rejection Ratio CMRR VEE ≤ VCM ≤ (VCC - 1.9V) 80 90 Power-Supply Rejection Ratio PSRR VCC = 2.7V to 6.0V 80 90 dB 40 nV/√Hz Input Noise-Voltage Density en f = 10kHz 0.3V ≤ VOUT ≤ (VCC - 0.5V) Large-Signal Gain (Note 1) AVOL Sinking 5mA Sourcing 5mA Output Voltage Slew Rate Unity-Gain Bandwidth (Note 2) 2 RL = no load 110 RL = 10kΩ 94 RL = 600Ω 82 90 76 VCC = 3V 100 VCC = 5V 76 VCC = 3V dB 90 VIN+ - VIN- = +1V, RL = no load VOL VIN+ - VIN- = -1V, RL = no load SR VCC = 5V, RL = 10kΩ, CL = 20pF, VIN+ - VIN- = +1V step 15 3V ≤ VCC ≤ 5V 10 VCC = 2.7V 105 VCC = 5V VOH GBW dB VCC - 0.05 VEE + 0.05 17 12 10 _______________________________________________________________________________________ V V/µs MHz Single/Dual/Quad, 10MHz Single-Supply Op Amps (+3V ≤ VCC ≤ +5V, VEE = 0V, VCM = 0.5V, VOUT = 0.5V, TA = +25°C, unless otherwise noted.) PARAMETER Settling Time SYMBOL tS Power-Up Time tPU Overshoot CONDITIONS MIN TYP ns AV = +1, VIN = 1/2 VCC step, see Typical Operating Characteristics 700 ns CL = 150pF 10 CL = 20pF 5 RL = 10kΩ, CL = 20pF VCC = 5V 63 VCC = 3V 58 Gain Margin RL = 10kΩ, CL = 20pF VCC = 5V 10 VCC = 3V 12 IS Operating Supply-Voltage Range UNITS 400 Phase Margin Supply Current MAX To 0.1%, CL = 20pF Per amplifier 2.0 % degrees dB 3.0 Single supply 2.7 5.25 Dual supplies ±1.35 ±2.625 mA V ELECTRICAL CHARACTERISTICS (+3V ≤ VCC ≤ +5V, VEE = 0V, VCM = 0.5V, VOUT = 0.5V, TA = 0°C to +70°C, unless otherwise noted.) PARAMETER Input Offset Voltage Input Bias Current SYMBOL VOS IB Input Offset Current CONDITIONS MIN TYP MAX MAX473 ±2.0 MAX474 ±2.0 MAX475 ±3.0 Current flows out of terminals 0 IOS 175 ±35 UNITS mV nA nA Common-Mode Rejection Ratio CMRR VEE ≤ VCM ≤ (VCC - 1.9V) 78 dB Power-Supply Rejection Ratio PSRR VCC = 2.7V to 6.0V 78 dB AVOL 0.4V ≤ VOUT ≤ (VCC - 0.6V) VOH VIN+ - VIN- = +1V, RL = no load VOL VIN+ - VIN- = -1V, RL = no load Slew Rate SR VCC = 5V, RL = 10kΩ, CL = 20pF, VIN+ - VIN- = +1V step Supply Current IS Per amplifier Large-Signal Gain (Note 1) Output Voltage Operating Supply-Voltage Range RL = 10kΩ 94 RL = 600Ω 80 dB VCC - 0.07 VEE + 0.07 12 V V/µs 3.3 Single supply 2.7 5.25 Dual supplies ±1.35 ±2.625 mA V _______________________________________________________________________________________ 3 MAX473/MAX474/MAX475 ELECTRICAL CHARACTERISTICS (continued) MAX473/MAX474/MAX475 Single/Dual/Quad, 10MHz Single-Supply Op Amps ELECTRICAL CHARACTERISTICS (+3V ≤ VCC ≤ +5V, VEE = 0V, VCM = 0.5V, VOUT = 0.5V, TA = -40°C to +85°C, unless otherwise noted.) PARAMETER Input Offset Voltage Input Bias Current Input Offset Current SYMBOL VOS IB CONDITIONS MIN TYP MAX MAX473 ±2.3 MAX474 ±2.3 MAX475 ±3.3 Current flows out of terminals 0 200 IOS ±50 UNITS mV nA nA Common-Mode Rejection Ratio CMRR VEE ≤ VCM ≤ (VCC - 2.0V) 72 dB Power-Supply Rejection Ratio PSRR VCC = 2.7V to 6.0V 72 dB AVOL 0.4V ≤ VOUT ≤ (VCC - 0.6V) VOH VIN+ - VIN- = +1V, RL = no load VOL VIN+ - VIN- = - 1V, RL = no load Slew Rate SR VCC = 5V, RL = 10kΩ, CL = 20pF, VIN + - VIN- = +1V step Supply Current IS Per amplifier Large-Signal Gain (Note 1) Output Voltage Operating Supply-Voltage Range RL = 10kΩ 94 RL = 600Ω 72 dB VCC - 0.08 VEE + 0.08 10 V V/µs 3.4 Single supply 2.7 5.25 Dual supplies ±1.35 ±2.625 mA V ELECTRICAL CHARACTERISTICS (+3V ≤ VCC ≤ +5V, VEE = 0V, VCM = 0.5V, VOUT = 0.5V, TA = -55°C to +125°C, unless otherwise noted.) PARAMETER Input Offset Voltage Input Bias Current Input Offset Current SYMBOL VOS IB CONDITIONS MIN TYP MAX MAX473 ±2.8 MAX474 ±2.8 MAX475 ±4.0 Current flows out of terminals 0 225 IOS ±60 UNITS mV nA nA Common-Mode Rejection Ratio CMRR VEE ≤ VCM ≤ (VCC - 2.15V) 70 dB Power-Supply Rejection Ratio PSRR VCC = 2.7V to 6.0V 70 dB AVOL 0.5V ≤ VOUT ≤ (VCC - 0.6V) VOH VIN+ - VIN- = +1V, RL = no load VOL VIN+ - VIN- = -1V, RL = no load Slew Rate SR VCC = 5V, RL = 10kΩ, CL = 20pF, VIN+ - VIN- = +1V step Supply Current IS Per amplifier Large-Signal Gain (Note 1) Output Voltage Operating Supply-Voltage Range RL = 10kΩ 90 RL = 600Ω 70 dB VCC - 0.1 VEE + 0.1 9 V/µs 3.6 Single supply 2.7 5.25 Dual supplies ±1.35 ±2.625 mA V Note 1: Gain decreases to zero as the output swings beyond the specified limits. Note 2: Guaranteed by correlation to slew rate. 4 V _______________________________________________________________________________________ Single/Dual/Quad, 10MHz Single-Supply Op Amps SUPPLY CURRENT PER AMPLIFIER vs. SUPPLY VOLTAGE 2.5 100 VCC = 5V 2.5 80 1.5 IB (nA) IS (mA) IS (mA) 2.0 2.0 473 TOC-03 120 473 TOC-02 3.0 473 TOC-01 3.0 INPUT BIAS CURRENT vs. TEMPERATURE SUPPLY CURRENT vs. TEMPERATURE VCC = 3V 60 1.0 40 0.5 20 1.5 2 3 4 5 0 -60 6 -20 20 VCC-VEE (V) GAIN-BANDWIDTH PRODUCT vs. TEMPERATURE 60 100 SLEW RATE vs. TEMPERATURE MAXIMUM OUTPUT VOLTAGE vs. LOAD RESISTANCE 5.2 VCC = 5V 140 VCC = 5V 5.1 VOUT MAX (V) SLEW RATE (V/µs) 20 TEMPERATURE (°C) 14 5.0 VCC 4.9 VCC = 3V 1V 11 13 4.8 RL 60 100 140 -20 20 60 100 0.1 1 10 100 1000 LOAD RESISTANCE (kΩ) MAXIMUM OUTPUT VOLTAGE vs. LOAD RESISTANCE 3.1 140 TEMPERATURE (°C) TEMPERATURE (°C) MINIMUM OUTPUT VOLTAGE vs. LOAD RESISTANCE VCC = 3V 0.5 VCC 2.9 VCC RL 1V 0.4 3.0 473 TOC-08 20 4.7 VOUT MIN (V) -20 8 -60 473 TOC-07 12 -60 VOUT MAX (V) GBW (MHz) 14 -20 TEMPERATURE (°C) 17 15 0 -60 140 473 TOC-05 AVCL = 40dB 100 20 473 TOC-04 16 60 473 TOC-06 1.0 0.3 0.2 1V 2.8 0.1 RL 2.7 0.1 1 10 100 LOAD RESISTANCE (kΩ) 1000 VCC = 5V VCC = 3V 0 0.1 1 10 100 1000 10,000 LOAD RESISTANCE (kΩ) _______________________________________________________________________________________ 5 MAX473/MAX474/MAX475 __________________________________________Typical Operating Characteristics (VCC = 5V, VEE = 0V, TA = +25°C, unless otherwise noted.) ____________________________Typical Operating Characteristics (continued) (VCC = 5V, VEE = 0V, TA = +25°C, unless otherwise noted.) MAXIMUM OUTPUT VOLTAGE vs. TEMPERATURE 30 VCC = 3V -20 20 60 100 1V VCC = 3V VCC 5 0 -60 140 20 60 100 OPEN-LOOP GAIN vs. TEMPERATURE OVERSHOOT vs. CAPACITIVE LOAD 473 TOC-12 40 OVERSHOOT (%) RL = 600Ω 50 RL = NO LOAD 20 VCC = 3V 0.5V STEP 10 VCC = 5V 1.0V STEP 30 10 -60 1000 20 60 100 1 140 10 1000 100 10 100 1k -60 AV = +1 VIN = 1.5Vp-p THD + NOISE (dB) -70 -75 -80 -85 -90 10 100 1k FREQUENCY (Hz) 10k 1000 10,000 100 FREQUENCY (Hz) -65 10 100 TOTAL HARMONIC DISTORTION AND NOISE vs. FREQUENCY 473 TOC-15 CURRENT-NOISE DENSITY (pA/√Hz) INPUT REFERRED 10 INPUT REFERRED CAPACITIVE LOAD (pF) CURRENT-NOISE DENSITY vs. FREQUENCY 100 1 10 0 -20 TEMPERATURE (°C) 6 0.1 VOLTAGE-NOISE DENSITY vs. FREQUENCY 30 70 95 LOAD RESISTANCE (kΩ) 110 90 105 140 TEMPERATURE (°C) RL = 10kΩ VCC = 5V 85 -20 TEMPERATURE (°C) 130 473 TOC-11 473 TOC-10 VCC = 5V 10 VCC = 3V 115 473 TOC-17 0 -60 15 473 TOC-13 10 VCC = 5V 125 OPEN-LOOP VOLTAGE GAIN (dB) 40 20 20 VOLTAGE-NOISE DENSITY (nV/√Hz) VCC VOUT MAX, VCC -VOUT (mV) VOUT MIN, IVEE -VOUTI (mV) 1V 473 TOC-09 50 OPEN-LOOP VOLTAGE GAIN vs. LOAD RESISTANCE 473 TOC-14 MINIMUM OUTPUT VOLTAGE vs. TEMPERATURE OPEN-LOOP GAIN (dB) MAX473/MAX474/MAX475 Single/Dual/Quad, 10MHz Single-Supply Op Amps 100k 10 100 1k 10k 100k FREQUENCY (Hz) _______________________________________________________________________________________ 10k 100k Single/Dual/Quad, 10MHz Single-Supply Op Amps 1 180 VCC = 3V ± 300mV 50 40 GAIN 36 -1 0 PHASE -36 -2 -72 VCC = 5V ± 250mV 30 GAIN GAIN (dB) GAIN (dB) 60 100 1000 1k 10k 100k FREQUENCY (kHz) 1M -144 -180 1k 10k 144 VCC = 5V 40 GAIN -72 10k -144 100 10k 100k 1M 10M 0 -36 -72 -20 10k -108 10k 20pF -40 -144 100 -180 1k 10k 100k FREQUENCY (Hz) 1M 10M FREQUENCY (Hz) 0.1Hz to 10Hz VOLTAGE NOISE INPUT REFERRED VOLTAGE (2µV/div) 144 36 PHASE 0 -180 1k 180 72 -108 10k 20pF 10M 108 20 GAIN (dB) -36 -20 1M PHASE (DEGREES) 0 PHASE (DEGREES) 36 473 TOC-22 180 72 PHASE 100k FREQUENCY (Hz) 108 20 GAIN (dB) -108 GAIN AND PHASE vs. FREQUENCY 473 TOC-21 VCC = 3V -40 -36 FREQUENCY (Hz) GAIN 0 PHASE -4 10M GAIN AND PHASE vs. FREQUENCY 40 0 -2 -72 -180 10 36 -144 20 1 72 -1 -3 -108 -3 144 PHASE (DEGREES) 72 180 108 0 108 0 VCC = 5V RL = 10kΩ II 20pF 144 PHASE (DEGREES) PSRR (dB) VCC = 3V RL = 10kΩ II 20pF 1 70 473 TOC-19 473 TOC-23 80 UNITY-GAIN FOLLOWER FREQUENCY RESPONSE UNITY-GAIN FOLLOWER FREQUENCY RESPONSE 473 TOC-20 POWER-SUPPLY REJECTION RATIO vs. FREQUENCY POWER-UP TIME A 1k 1k B 100k 10pF 500ns/div 1sec/div A : VCC, 5V/div B : VOUT, 1V/div _______________________________________________________________________________________ 7 MAX473/MAX474/MAX475 ____________________________Typical Operating Characteristics (continued) (VCC = 5V, VEE = 0V, TA = +25°C, unless otherwise noted.) MAX473/MAX474/MAX475 Single/Dual/Quad, 10MHz Single-Supply Op Amps ____________________________Typical Operating Characteristics (continued) (VCC = 5V, VEE = 0V, TA = +25°C, unless otherwise noted.) SMALL-SIGNAL TRANSIENT RESPONSE (VCC = 5V) SMALL-SIGNAL TRANSIENT RESPONSE (VCC = 3V) A A 0.5V 0.5V B B 0.5V 0.5V 200ns/div 200ns/div VCC = 5V, AV = +1, RL = 10kΩ, CL = 220pF A : VIN, 50mV/div B : VOUT, 50mV/div VCC = 3V, AV = +1, RL = 10kΩ, CL = 100pF A : VIN, 50mV/div B : VOUT, 50mV/div LARGE-SIGNAL TRANSIENT RESPONSE OVERDRIVING THE OUTPUT A 0.5V A 1.5V B B 0.5V 0V 200ns/div VCC = 5V, AV = +1, RL = 10kΩ, CL = 220pF A : VIN, 1V/div B : VOUT, 500mV/div 8 200ns/div VCC = 5V, VIN- = 2.0V, RL = 10kΩ, CL = 33pF A : VIN+, 1V/div B : VOUT, 1V/div _______________________________________________________________________________________ Single/Dual/Quad, 10MHz Single-Supply Op Amps PIN NAME FUNCTION MAX473 MAX474 MAX475 1, 8 — — NULL Offset Null Input. Connect to one end of 2kΩ potentiometer for offset voltage trimming. Connect wiper to VEE. See Figure 1. — 1 1 OUTA Amplifier A Output 2 — — IN- — 2 2 INA- Inverting Input Amplifier A Inverting Input 3 — — IN+ Noninverting Input — 3 3 INA+ 4 4 11 VEE Negative Power-Supply Pin. Connect to ground or a negative voltage. 5 — — N.C. No Connect—not internally connected — 5 5 INB+ Amplifier B Noninverting Input 6 — — OUT Amplifier Output — 6 6 INB- Amplifier B Inverting Input — 7 7 OUTB 7 8 4 VCC — — 8 OUTC — — 9 INC- Amplifier C Inverting Input — — 10 INC+ Amplifier C Noninverting Input — — 12 IND+ Amplifier D Noninverting Input — — 13 IND- Amplifier D Inverting Input — — 14 OUTD Amplifier A Noninverting Input Amplifier B Output Positive Power-Supply Pin. Connect to (+) terminal of power supply. Amplifier C Output Amplifier D Output __________Applications Information Power Supplies The MAX473/MAX474/MAX475 operate from a single 2.7V to 5.25V power supply, or from dual supplies of ±1.35V to ±2.625V. For single-supply operation, bypass the power supply with 0.1µF. If operating from dual supplies, bypass each supply to ground. With 0.1µF bypass capacitance, channel separation (MAX474/MAX475) is typically better than 120dB with signal frequencies up to 300kHz. Increasing the bypass capacitance (e.g. 10µF || 0.1µF) maintains channel separation at higher frequencies. Minimizing Offsets The MAX473’s maximum offset voltage is ±2mV (TA = +25°C). If additional offset adjustment is required, connect a 2kΩ trim potentiometer between pins 1, 8, and 4 (Figure 1). Input offset voltage for the dual MAX474 and quad MAX475 cannot be externally trimmed. The MAX473/MAX474/MAX475 are bipolar op amps with low input bias currents. The bias currents at both inputs flow out of the device. Matching the resistance at the op amp’s inputs significantly reduces the offset error caused by the bias currents. Place a resistor (R3) from the noninverting input to ground when using the inverting configuration (Figure 2a); place R3 in series with the noninverting input when using the noninverting configuration (Figure 2b). Select R3 such that the parallel combination of R2 and R1 equals R3. Adding R3 will slightly increase the op amp’s voltage noise. Output Loading and Stability The MAX473/MAX474/MAX475 op amps are unity-gain stable. Any op amp’s stability depends on the configuration, closed-loop gain, and load capacitance. The unity-gain, noninverting buffer is the most sensitive gain configuration, and driving capacitive loads decreases stability. _______________________________________________________________________________________ 9 MAX473/MAX474/MAX475 ______________________________________________________________Pin Description MAX473/MAX474/MAX475 Single/Dual/Quad, 10MHz Single-Supply Op Amps R2 R1 VIN 2k VOUT 1 NULL 8 NULL R3 MAX473 4 R3 = R2R1 Figure 2a. Reducing Offset Error Due to Bias Current: Inverting Configuration VEE Figure 1. Offset Null Circuit R3 VIN VOUT The MAX473/MAX474/MAX475 have excellent phase margin (the difference between 180° and the unity-gain phase angle). It is typically 63° with a load of 10kΩ in parallel with 20pF. Generally, higher phase margins indicate greater stability. Capacitive loads form an RC network with the op amp’s output resistance, causing additional phase shift that reduces the phase margin. Figure 3 shows the MAX473/MAX474/MAX475 output response when driving a 390pF load in parallel with 10kΩ. When driving large capacitive loads, add an output isolation resistor, as shown in Figure 4. This resistor improves the phase margin by isolating the load capacitance from the amplifier output. Figure 5 shows the MAX473/MAX474/MAX475 driving a capacitive load of 1000pF using the circuit of Figure 4. Feedback Resistors The feedback resistors appear as a resistance network to the op amp’s feedback input (Figure 2). This resistance, combined with the op amp’s input and stray capacitance (total input capacitance), forms a pole that adds unwanted phase shift when either the total input capacitance or feedback resistance is too large. For example, using the noninverting configuration with a gain of 10, if the total capacitance at the negative input is 10pF and the effective resistance (R1 || R2) is 9kΩ, this RC network introduces a pole at fo = 1.8MHz. At 10 R2 R1 R3 = R2R1 Figure 2b. Reducing Offset Error Due to Bias Current: Noninverting Configuration input frequencies above fo, the pole introduces additional phase shift, which reduces the overall bandwidth and adversely affects stability. Choose feedback resistors small enough so they do not adversely affect the op amp’s operation at the frequencies of interest. Overdriving the Outputs The output voltage swing for specified operation is from (VEE + 0.3V) to (VCC - 0.5V) (see Electrical Characteristics). Exercising the outputs beyond these limits drives the output transistors toward saturation, resulting in bandwidth degradation, response-time increase, and gain decrease (which affects linearity). Operation in this region causes a slight distortion in the output waveform, but does not adversely affect the op amp. ______________________________________________________________________________________ Single/Dual/Quad, 10MHz Single-Supply Op Amps MAX473/MAX474/MAX475 Driving 390pF in parallel with 10kΩ, VCC = 5V, buffer configuration Figure 3. MAX474 Driving 390pF Figure 5. The MAX473 easily drives 1000pF using the Capacitive-Load Driving Circuit (Figure 4). MAX473/MAX474/ MAX475 RL 10Ω VOUT VIN CL MAX473-FIG6 FULL-POWER BANDWIDTH (MHz) 100 SMALL-SIGNAL GAIN BANDWIDTH 10 1 FULL-POWER BANDWIDTH 0.1 0 1 2 3 4 OUTPUT VOLTAGE SWING (Vp-p) Figure 4. Capacitive-Load Driving Circuit Figure 6. Full-Power Bandwidth vs. Peak-to-Peak AC Voltage Full-Power Bandwidth Layout The MAX473/MAX474/MAX475’s fast 15V/µs slew rate maximizes full-power bandwidth (FPBW). The FPBW is given by: A good layout improves performance by decreasing the amount of stray capacitance at the amplifier’s inputs and output. Since stray capacitance might be unavoidable, minimize trace lengths and resistor leads, and place external components as close to the pins as possible. SR FPBW (Hz) = ————————————— π [VOUT peak-to-peak(max)] where the slew rate (SR) is 15V/µs min. Figure 6 shows the full-power bandwidth as a function of the peak-topeak AC output voltage. ______________________________________________________________________________________ 11 MAX473/MAX474/MAX475 Single/Dual/Quad, 10MHz Single-Supply Op Amps _Ordering Information (continued) TEMP. RANGE PIN-PACKAGE MAX474CPA PART 0°C to +70°C 8 Plastic DIP MAX474CSA 0°C to +70°C 8 SO MAX474CUA MAX474C/D MAX474EPA MAX474ESA MAX474MJA MAX475CPD MAX475CSD MAX475EPD MAX475ESD MAX475MJD 0°C to +70°C 0°C to +70°C -40°C to +85°C -40°C to +85°C -55°C to +125°C 0°C to +70°C 0°C to +70°C -40°C to +85°C -40°C to +85°C -55°C to +125°C 8 µMAX Dice* 8 Plastic DIP 8 SO 8 CERDIP 14 Plastic DIP 14 SO 14 Plastic DIP 14 SO 14 CERDIP _________________Chip Topographies MAX473 NULL NULL IN- V CC IN+ 0.065" (1.651mm) OUT V EE 0.052" (1.321mm) * Dice are specified at TA = +25°C, DC parameters only. TRANSISTOR COUNT: 185 SUBSTRATE CONNECTED TO VEE ____Pin Configurations (continued) MAX474 V CC TOP VIEW OUTA 1 INA- 2 INA+ 3 14 OUTD A VCC 4 INB+ 5 INB- 6 D C OUTB 7 OUTB OUTA 12 IND+ 11 VEE MAX475 B 13 IND- INA- INB0.084" (2.134mm) INA+ INB+ 10 INC+ 9 INC- 8 OUTC DIP/SO V EE 0.058" (1.473mm) TRANSISTOR COUNT: 355 SUBSTRATE CONNECTED TO VEE Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. 12 __________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 (408) 737-7600 © 1995 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products.