AD AD713KNZ

Precision, High Speed, BiFET Quad Op Amp
AD713
CONNECTION DIAGRAMS
AC performance
1 μs settling to 0.01% for 10 V step
20 V/μs slew rate
0.0003% total harmonic distortion (THD)
4 MHz unity gain bandwidth
DC performance
1.5 mV maximum offset voltage
8 μV/°C typical drift
150 V/mV minimum open-loop gain
2 μV p-p typical noise, 0.1 Hz to 10 Hz
True 14-bit accuracy
Single version: AD711, dual version: AD712
Available in 16-lead SOIC, 14-lead PDIP and CERDIP
OUTPUT 1
–IN 2
+IN 3
+VS 4
+IN 5
–IN 6
1
4
AD713
14
OUTPUT
13
–IN
12
+IN
11 –VS
TOP VIEW
(Not to Scale)
10 +IN
2
3
OUTPUT 7
9
–IN
8
OUTPUT
00824-001
FEATURES
OUTPUT 1
–IN 2
1
4
+IN 3
APPLICATIONS
+VS 4
AD713
+IN 5
Active filters
Quad output buffers for 12- and 14-bit DACs
Input buffers for precision ADCs
Photo diode preamplifier applications
–IN 6
OUTPUT 7
NC 8
2
3
TOP VIEW
(Not to Scale)
16
OUTPUT
15
–IN
14
+IN
13
–VS
12
+IN
11
–IN
10
OUTPUT
9
NC
NC = NO CONNECT. DO NOT
CONNECT TO THIS PIN.
00824-002
Figure 1. 14-Lead PDIP (N) and CERDIP (Q) Packages
Figure 2. 16-Lead SOIC_W (RW) Package
GENERAL DESCRIPTION
The AD713 is a quad operational amplifier, consisting of four
AD711 BiFET op amps. These precision monolithic op amps
offer excellent dc characteristics plus rapid settling times, high
slew rates, and ample bandwidths. In addition, the AD713 provides
the close matching ac and dc characteristics inherent to amplifiers
sharing the same monolithic die. The single-pole response of
the AD713 provides fast settling: l μs to 0.01%. This feature,
combined with its high dc precision, makes the AD713 suitable
for use as a buffer amplifier for 12- or 14-bit DACs and ADCs.
It is also an excellent choice for use in active filters in 12-, 14and 16-bit data acquisition systems. Furthermore, the AD713
low total harmonic distortion (THD) level of 0.0003% and very
close matching ac characteristics make it an ideal amplifier for
many demanding audio applications. The AD713 is internally
compensated for stable operation at unity gain. The AD713J is
rated over the commercial temperature range of 0°C to 70°C.
The AD713A is rated over the industrial temperature of −40°C
to +85°C.
PRODUCT HIGHLIGHTS
1.
2.
3.
4.
The AD713 is a high speed BiFET op amp that offers
excellent performance at competitive prices. It upgrades
the performance of circuits using op amps such as the
TL074, TL084, LT1058, LF347, and OPA404.
Slew rate is 100% tested for a guaranteed minimum of
16 V/μs (J and A grades).
The combination of Analog Devices, Inc., advanced
processing technology, laser wafer drift trimming, and
well-matched ion-implanted JFETs provides outstanding
dc precision. Input offset voltage, input bias current and
input offset current are specified in the warmed-up
condition and are 100% tested.
Very close matching of ac characteristics between the four
amplifiers makes the AD713 ideal for high quality active
filter applications.
The AD713 is offered in 16-lead SOIC, 14-lead PDIP, and
14-lead CERDIP packages.
Rev. F
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700
www.analog.com
Fax: 781.461.3113 ©2002–2011 Analog Devices, Inc. All rights reserved.
AD713
TABLE OF CONTENTS
Features .............................................................................................. 1
Theory of Operation ...................................................................... 11
Applications....................................................................................... 1
Measuring AD713 Settling Time ............................................. 11
Connection Diagrams...................................................................... 1
Power Supply Bypassing ............................................................ 11
General Description ......................................................................... 1
A High Speed Instrumentation Amplifier Circuit................. 12
Product Highlights ........................................................................... 1
A High Speed 4-Op-Amp Cascaded Amplifier Circuit ........ 12
Revision History ............................................................................... 2
High Speed Op Amp Applications and Techniques .............. 12
Specifications..................................................................................... 3
CMOS DAC Applications ......................................................... 14
Absolute Maximum Ratings............................................................ 5
Filter Applications ...................................................................... 14
Thermal Resistance ...................................................................... 5
GIC and FDNR Filter Applications ......................................... 15
ESD Caution.................................................................................. 5
Outline Dimensions ....................................................................... 17
Typical Performance Characteristics ............................................. 6
Ordering Guide .......................................................................... 18
Test Circuits..................................................................................... 10
REVISION HISTORY
7/11—Rev. E to Rev. F
Changes to Figure 2.......................................................................... 1
6/11—Rev. D to Rev. E
Changed 8 μV/°C Maximum Drift to 8 μV/°C Typical Drift in
Features Section ................................................................................ 1
5/11—Rev. C to Rev. D
Updated Format..................................................................Universal
Changes to Features Section, General Description Section, and
Product Highlights Section ............................................................. 1
Deleted S, K, B, and T Grades Throughout................................... 1
Changes to Table 1............................................................................ 3
Changes to Table 2............................................................................ 5
Added Typical Performance Characteristics Summary .............. 6
Change to Figure 7 ........................................................................... 7
Changes to Figure 15, Figure 17, and Figure 18 ........................... 8
Deleted Figure 9 and Figure 10; Renumbered Sequentially ........9
Changes to Figure 23 Caption and Figure 24 Caption .............. 10
Added Test Circuits Section.......................................................... 11
Moved Figures 26, Figure 27, and Figure 28............................... 11
Changes to Figure 29...................................................................... 12
Changes to DAC Buffers (I-to-V Converters) Section.............. 13
Changes to Figure 37 and Table 5................................................. 14
Changed C1 to CL ........................................................................... 14
Changes to Figure 43 and Figure 44............................................. 15
Updated Outline Dimensions....................................................... 18
Changes to Ordering Guide .......................................................... 19
10/01—Rev. B to Rev. C
Edits to Features.................................................................................1
Edits to Product Description ...........................................................1
Edits to Ordering Guide ...................................................................3
Edits to Metallization Photograph ..................................................3
Rev. F | Page 2 of 20
AD713
SPECIFICATIONS
VS = ±15 V at TA = 25°C, unless otherwise noted.
Table 1.
Parameter
INPUT OFFSET VOLTAGE 1
Initial Offset
Offset
vs. Temp
vs. Supply
Test Conditions/Comments
TMIN to TMAX
78
76
TMIN to TMAX
Long-Term Stability
INPUT BIAS CURRENT 2
INPUT OFFSET CURRENT
Min
VCM = 0 V
VCM = 0 V at TMAX
VCM = ±10 V
VCM = 0 V
VCM = 0 V at TMAX
0.5
0.7
8
10
TMIN to TMAX
FREQUENCY RESPONSE
Small Signal Bandwidth
Full Power Response
Slew Rate
Settling Time to 0.01%
Total Harmonic Distortion
INPUT IMPEDANCE
Differential 3
Common Mode 4
INPUT VOLTAGE RANGE
Differential
Common-Mode Voltage
Common Mode
Rejection Ratio
INPUT VOLTAGE NOISE
INPUT CURRENT NOISE
OPEN-LOOP GAIN
0.3
0.5
5
95
95
15
40
55
10
MATCHING CHARACTERISTICS
Input Offset Voltage
Input Offset Voltage Drift
Input Bias Current
Crosstalk
AD713J/AD713A
Typ
Max
f = 1 kHz
f = 100 kHz
G = −1
VO = 20 V p-p
G = −1
3.0
16
f = 1 kHz; RL ≥ 2 kΩ; VO = 3 V rms
TMIN to TMAX
VCM = ±10 V
TMIN to TMAX
VCM = ±11 V
TMIN to TMAX
0.1 Hz to 10 Hz
f = 10 Hz
f = 100 Hz
f = 1 kHz
f = 10 kHz
f = 1 kHz
VO = ±10 V; RL ≥ 2 kΩ
TMIN to TMAX
−11
78
76
72
70
150
100
Rev. F | Page 3 of 20
4.0
200
20
1.0
0.0003
1.5
2
150
3.4/9.6
200
75
1.7/4.8
1.8
2.3
100
−130
−95
1.2
Unit
mV
mV
μV/°C
dB
dB
μV/Month
pA
nA
pA
pA
pA
mV
mV
μV/°C
pA
dB
dB
MHz
kHz
V/μs
μs
%
3 × 1012||5.5
3 × 1012||5.5
Ω||pF
Ω||pF
±20
+14.5/−11.5
V
V
V
dB
dB
dB
dB
μV p-p
nV/√Hz
nV/√Hz
nV/√Hz
nV/√Hz
pA/√Hz
V/mV
V/mV
+13
88
84
84
80
2
45
22
18
16
0.01
400
AD713
Parameter
OUTPUT CHARACTERISTICS
Voltage
Current
POWER SUPPLY
Rated Performance
Operating Range
Quiescent Current
TRANSISTOR COUNT
Test Conditions/Comments
Min
RL ≥ 2 kΩ
TMIN to TMAX
Short circuit
+13/−12.5
±12
AD713J/AD713A
Typ
Max
Unit
+13.9/−13.3
+13.8/−13.1
25
V
V
mA
±15
±4.5
10.0
120
Number of transistors
1
±18
13.5
V
V
mA
Input offset voltage specifications are guaranteed after 5 minutes of operation at TA = 25°C.
Bias current specifications are guaranteed maximum at either input after 5 minutes of operation at TA = 25°C. For higher temperatures, the current doubles every 10°C.
3
Defined as the voltage between inputs, such that neither exceeds ±10 V from ground.
4
Typically exceeding −14.1 V negative common-mode voltage on either input results in an output phase reversal.
2
Rev. F | Page 4 of 20
AD713
ABSOLUTE MAXIMUM RATINGS
Table 2.
Parameter
Supply Voltage
Input Voltage1
Output Short-Circuit Duration
(For One Amplifier)
Differential Input Voltage
Storage Temperature Range (Q)
Storage Temperature Range (N, R)
Operating Temperature Range
AD713J
AD713A
Lead Temperature Range (Soldering, 60 sec)
1
Rating
±18 V
±18 V
Indefinite
+VS and −VS
−65°C to +150°C
−65°C to +125°C
0°C to 70°C
−40°C to +85°C
300°C
For supply voltages less than ±18 V, the absolute maximum input voltage is
equal to the supply voltage.
Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.
THERMAL RESISTANCE
θJA is specified for the worst-case conditions, that is, a device
soldered in a circuit board for surface-mount packages.
Table 3. Thermal Resistance
Package Type
14-Lead PDIP (N-14)
14-Lead CERDIP (Q-14)
16-Lead SOIC_W (RW-16)
ESD CAUTION
Rev. F | Page 5 of 20
θJA
100
110
100
θJC
30
30
30
Unit
°C/W
°C/W
°C/W
AD713
TYPICAL PERFORMANCE CHARACTERISTICS
VS = ±15 V at TA = 25°C, unless otherwise noted.
16
20
10
5
0
0
5
10
SUPPLY VOLTAGE (±V)
15
20
12
8
4
0
0
Figure 3. Input Voltage Swing vs. Supply Voltage
10
SUPPLY VOLTAGE (V)
15
20
Figure 6. Quiescent Current vs. Supply Voltage
20
10–6
RL = 2kΩ
TA = 25°C
10–7
15
INPUT BIAS CURRENT (A)
OUTPUT VOLTAGE SWING (V)
5
00824-006
QUIESCENT CURRENT (mA)
15
00824-003
INPUT VOLTAGE SWING (V)
RL = 2kΩ
TA = 25°C
+VOUT
10
–VOUT
5
10–8
10–9
10–10
0
5
10
SUPPLY VOLTAGE (±V)
15
20
10–12
–60
00824-004
0
Figure 4. Output Voltage Swing vs. Supply Voltage
–20
0
20
40
60
80
TEMPERATURE (°C)
100
120
140
Figure 7. Input Bias Current vs. Temperature
30
100
OUTPUT IMPEDANCE (Ω)
25
20
±15V SUPPLIES
15
10
10
1
0.1
0
10
100
1k
LOAD RESISTANCE (Ω)
10k
0.01
1k
Figure 5. Output Voltage Swing vs. Load Resistance
10k
100k
FREQUENCY (Hz)
1M
Figure 8. Output Impedance vs. Frequency, G = 1
Rev. F | Page 6 of 20
10M
00824-008
5
00824-005
OUTPUT VOLTAGE SWING (V p-p)
–40
00824-007
10–11
AD713
50
100
100
80
80
60
60
40
40
30
20
GAIN
PHASE
2kΩ||100pF LOAD
20
10
0
0
–5
0
5
COMMON-MODE VOLTAGE (V)
10
–20
10
00824-009
0
–10
100
1k
10k
100k
FREQUENCY (Hz)
–20
10M
125
26
RL = 2kΩ
TA = 25°C
+OUTPUT CURRENT
24
120
OPEN-LOOP GAIN (dB)
22
–OUTPUT CURRENT
20
18
16
14
115
110
105
–20
0
20
40
60
80
100
AMBIENT TEMPERATURE (°C)
120
140
95
00824-010
–40
0
5
10
SUPPLY VOLTAGE (V)
15
20
00824-013
100
12
10
–60
Figure 13. Open-Loop Gain vs. Supply Voltage
Figure 10. Short-Circuit Current Limit vs. Temperature
110
5.0
POWER SUPPLY REJECTION (dB)
100
4.5
4.0
3.5
+SUPPLY
80
60
–SUPPLY
40
20
3.0
–60
–40
–20
0
20
40
60
80
TEMPERATURE (°C)
100
120
140
0
10
100
1k
10k
100k
SUPPLY MODULATION FREQUENCY (Hz)
Figure 14. Power Supply Rejection vs. Frequency
Figure 11. Gain Bandwidth vs. Temperature
Rev. F | Page 7 of 20
1M
00824-014
VS = ±15V SUPPLIES WITH
1V p-p SINE WAVE 25°C
00824-011
UNITY GAIN BANDWIDTH (MHz)
1M
Figure 12. Open-Loop Gain and Phase Margin vs. Frequency
Figure 9. Input Bias Current vs. Common Mode Voltage
SHORT CIRCUIT CURRENT LIMIT (mA)
20
00824-012
OPEN-LOOP GAIN (dB)
INPUT BIAS CURRENT (pA)
40
PHASE MARGIN (Degrees)
VS = ±15V
TA = 25°C
AD713
100
70
VS = ±15V
VCM = 1V p-p
TA = 25°C
80
3V RMS
RL = 2kΩ
CL = 100pF
80
THD (dB)
CMR (dB)
90
60
40
100
110
20
1k
10k
FREQUENCY (Hz)
100k
1M
130
100
100k
Figure 18. Total Harmonic Distortion vs. Frequency
1k
25
INPUT NOISE VOLTAGE (nV/ Hz)
RL = 2kΩ
TA = 25°C
VS = ±15V
20
15
10
5
1M
INPUT FREQUENCY (Hz)
10M
10
1
00824-016
0
100k
100
1
10
100
1k
FREQUENCY (Hz)
10k
100k
00824-019
30
Figure 19. Input Noise Voltage Spectral Density
Figure 16. Large Signal Frequency Response
10
25
8
20
6
2
1% 0.1%
SLEW RATE (V/µs)
4
0.01%
0
–2
ERROR
1%
0.1%
0.01%
–4
15
10
5
–6
–8
0.6
0.7
0.8
SETTLING TIME (µs)
0.9
1.0
0
00824-017
–10
0.5
Figure 17. Output Swing and Error vs. Settling Time
0
100
200
300
400
500
600
700
INPUT ERROR SIGNAL (mV)
(AT SUMMING JUNCTION)
Figure 20. Slew Rate vs. Input Error Signal
Rev. F | Page 8 of 20
800
900
00824-020
OUTPUT VOLTAGE (V p-p)
10k
FREQUENCY (Hz)
Figure 15. Common-Mode Rejection vs. Frequency
OUTPUT SWING FROM 0V TO FINAL ±VOLTS
1k
00824-018
100
00824-015
0
10
120
AD713
–70
–80
1
14
2
CROSSTALK (dB)
–90
1
3
13
4
12
4
–100
5
10
2
6
–110
3
100 • • • •
1 TO 4
1 TO 2
1 TO 3
11
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
90
9
7
8
–120
–130
100
1k
FREQUENCY (Hz)
10k
100k
00824-022
–140
10
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
100 • • • •
90
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
0% • • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
1µs
50mV
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
Figure 25. Unity Gain Inverter Pulse Response—Small Signal (see Figure 28)
90
100ns
00824-026
10
50mV
200ns
00824-028
• • • •
00824-024
• • • •
Figure 22. Unity Gain Follower Pulse Response—Large Signal (see Figure 27
for Test Circuit)
0% • • • •
• • • •
10
• • • •
5V
100 • • • •
• • • •
90
10
0% • • • •
1µs
Figure 24. Unity Gain Inverter Pulse Response—Small Signal (see Figure 28)
Figure 21. Crosstalk vs. Frequency (see Figure 26 for Test Circuit)
100 • • • •
5V
00824-027
10
0% • • • •
Figure 23. Unity Gain Follower Pulse Response—Small Signal (see Figure 27)
Rev. F | Page 9 of 20
AD713
TEST CIRCUITS
9kΩ
0.1µF
AD713
INPUT
SIGNAL
OR
GROUND*
1kΩ
OUTPUT
ALL 4 AMPLIFIERS
ARE CONNECTED
AS SHOWN.
COM
0.1µF
+
1µF
AD713
PIN 4
+VS
+
1µF
1µF
1/4
AD713
PIN 11
–VS
AD713
SQUARE
WAVE
INPUT
00824-021
* THE SIGNAL INPUT (1kHz SINEWAVE, 2V p-p) IS APPLIED TO ONE
AMPLIFIER AT A TIME. THE OUTPUTS OF THE OTHER THREE
AMPLIFIERS ARE THEN MEASURED FOR CROSSTALK.
Figure 26. Crosstalk Test Circuit for Figure 21
RL
2kΩ
11
VIN
–VS
+
1µF
2kΩ
+VS
+
1µF
2kΩ
1/4
SQUARE
WAVE
INPUT
0.1µF
CL
10pF
VOUT
Figure 27. Unity Gain Follower Circuit for Figure 22 and Figure 23
7.5pF
VIN
0.1µF
4
0.1µF
4
AD713
RL
2kΩ
11
–VS
+
1µF
CL
10pF
VOUT
0.1µF
Figure 28. Unity Gain Inverter Circuit for Figure 24 and Figure 25
Rev. F | Page 10 of 20
00824-025
1/4
+
00824-023
+VS
1kΩ
AD713
THEORY OF OPERATION
MEASURING AD713 SETTLING TIME
Figure 30 and Figure 31 show the dynamic response of the AD713
while operating in the settling time test circuit of Figure 29.
The input of the settling time fixture is driven by a flat-top pulse
generator. The error signal output from the false summing node
of A1, the AD713 under test, is clamped, amplified by Op Amp
A2, and then clamped again.
TO TEKTRONIX 7A26
OSCILLOSCOPE
PREAMP INPUT
SECTION (VIA LESS
THAN 1FT 50Ω
COAXIAL CABLE)
5pF
20pF
5V
100 • • • •
+
A2
2×
HP2835
1MΩ
The error signal is thus clamped twice: once to prevent overloading amplifier A2 and then a second time to avoid overloading
the oscilloscope preamp. A Tektronix oscilloscope preamp
Type 7A26 was carefully chosen because it recovers from the
approximately 0.4 V overload quickly enough to allow accurate
measurement of the AD713 1 μs settling time. Amplifier A2 is a
very high speed FET input op amp; it provides a voltage gain of
10, amplifying the error signal output of the AD713 under test
(providing an overall gain of 5).
VERROR × 5
206Ω
0.47µF
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
90
2×
HP2835
0.47µF
–VS +VS
10kΩ
5mV
4.99kΩ
200Ω
10kΩ
5pF TO 18pF
FLAT-TOP
PULSE
GENERATOR
VIN
1/4
10kΩ
AD713
*
POWER SUPPLY BYPASSING
+
1µF
5kΩ
4
11
0.1µF
1µF
+
10pF
00824-029
+
0.1µF
–VS +VS
Figure 29. Settling Time Test Circuit
5V
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
500ns
Figure 31. Settling Characteristics to –10 V Step,
Upper Trace: Output of AD713 Under Test (5 V/div),
Lower Trace: Amplified Error Voltage (0.01%/div)
*USE VERY
SHORT CABLE
OR TERMINATION
RESISTOR
A1
DATA
DYNAMICS
5109
OR
EQUIVALENT
100 • • • •
0% • • • •
• • • •
90
The power supply connections to the AD713 must maintain a
low impedance to ground over a bandwidth of 4 MHz or more.
This is especially important when driving a significant resistive
or capacitive load because all current delivered to the load
comes from the power supplies. Multiple high quality bypass
capacitors are recommended for each power supply line in any
critical application. As shown in Figure 32, a 0.1 μF ceramic and
a 1 μF electrolytic capacitor placed as close as possible to the
amplifier (with short lead lengths to power supply common)
assures adequate high frequency bypassing in most applications.
A minimum bypass capacitance of 0.1 μF should be used for
any application.
+VS
+
1/4
1µF
0.1µF
1µF
0.1µF
4
AD713
11
10
• • • •
5mV
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
500ns
–VS
+
00824-032
• • • •
00824-030
0% • • • •
00824-031
0.2pF TO 0.8pF
4.99kΩ
10
NOTES
1. USE CIRCUIT BOARD
WITH GROUND PLANE.
1.1kΩ
Figure 32. Recommended Power Supply Bypassing
Figure 30. Settling Characteristics 0 V to 10 V Step,
Upper Trace: Output of AD713 Under Test (5 V/div),
Lower Trace: Amplified Error Voltage (0.01%/div)
Rev. F | Page 11 of 20
AD713
A HIGH SPEED INSTRUMENTATION AMPLIFIER
CIRCUIT
A HIGH SPEED 4-OP-AMP CASCADED AMPLIFIER
CIRCUIT
The instrumentation amplifier circuit shown in Figure 33 can
provide a range of gains from unity up to 1000 and higher using
only a single AD713. The circuit bandwidth is 1.2 MHz at a gain
of 1 and 250 kHz at a gain of 10; settling time for the entire
circuit is less than 5 μs to within 0.01% for a 10 V step, (G = 10).
Other uses for Amplifier A4 include an active data guard and an
active sense input.
Figure 35 shows how the four amplifiers of the AD713 can be
connected in cascade to form a high gain, high bandwidth
amplifier. This gain of 100 amplifier has a −3 dB bandwidth
greater than 600 kHz.
AD713
3
A1
3
5
7
1/4
6
AD713
*1.5pF TO 20pF
(TRIM FOR BEST SETTLING TIME)
1
4
1
2
1kΩ
SENSE
A3
10
AD713
1kΩ
10kΩ**
10kΩ
–VS
8
100kΩ
+VS
OPTIONAL VOS
ADJUSTMENT
1/4
5pF
AD713
OUTPUT
1µF
–VS
+
0.1µF
4-OP-AMP CASCADED AMPLIFIER
GAIN = 100
BANDWIDTH (–3dB) = 632kHz
Figure 35. High Speed 4-Op-Amp Cascaded Amplifier Circuit
TO SPECTRUM ANALYZER
5
13
AD713
12
1/4
AD713
+VS
0.1µF
COM
0.1µF
+
+
ERROR SIGNAL
OUTPUT
(ERROR/11)
TO BUFFERED
VOLTAGE
REFERENCE
OR REMOTE
GROUND SENSE
A4
14
1/4
100kΩ
AD713
PIN 4
1µF
1µF
AD713
PIN 11
–VS
* VOLTRONICS SP20 TRIMMER CAPACITOR
OR EQUIVALENT
** RATIO MATCHED 1% METAL FILM
RESISTORS
NULL
ADJUST
1kΩ
+
1µF
1kΩ
LOW DISTORTION
SINEWAVE INPUT
1/4
AD713
Table 4 provides a performance summary for this circuit. Figure 34
shows the pulse response of this circuit for a gain of 10.
–VS
Settling Time (0.01%)
2 μs
2 μs
2 μs
NC = no connect.
5V
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
100pF
+
1µF
0.1µF
Figure 36. THD Test Circuit
Table 4. Performance Summary for the High Speed
Instrumentation Amplifier Circuit
100 • • • •
0.1µF
4
11
Bandwidth
1.2 MHz
1.0 MHz
0.25 MHz
10kΩ
+VS
Figure 33. High Speed Instrumentation Amplifier Circuit
RG
NC1
20 kΩ
4.04 kΩ
10kΩ
00824-036
7
00824-033
A2
• • • •
HIGH SPEED OP AMP APPLICATIONS AND
TECHNIQUES
DAC Buffers (I-to-V Converters)
The wide input dynamic range of JFET amplifiers makes them
ideal for use in both waveform reconstruction and digital audio
DAC applications. The AD713, in conjunction with a 16-bit
DAC, can achieve 0.0016% THD without requiring the use of a
deglitcher in digital audio applications.
90
Driving the Analog Input of an Analog-to-Digital
Converter
10
An op amp driving the analog input of an analog-to-digital
converter (ADC), such as that shown in Figure 37, must be
capable of maintaining a constant output voltage under dynamically changing load conditions. In successive approximation
converters, the input current is compared to a series of switched
trial currents. The comparison point is diode clamped but may
vary by several hundred millivolts, resulting in high frequency
modulation of the analog-to-digital input current. The output
impedance of a feedback amplifier is made artificially low by its
0% • • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
2µs
• • • •
00824-034
1
11
2.15kΩ
1kΩ
6
Gain
1
2
10
13
1kΩ
9
10kΩ**
7.5pF
14
1/4
22MΩ
10kΩ**
RG
9
12
2.15kΩ
10kΩ**
7.5pF
+IN
1/4
2.15kΩ
2
10kΩ
8
AD713
2.15kΩ
1/4
AD713
10
00824-035
1/4
0.1µF
1µF
INPUT
20,000
+1
RG
CIRCUIT GAIN =
–IN
+VS
Figure 34. Pulse Response of High Speed Instrumentation Amplifier,
Gain = 10
Rev. F | Page 12 of 20
AD713
loop gain. At high frequencies, where the loop gain is low, the
amplifier output impedance can approach its open-loop value.
GAIN ADJUST
+15V
0.1µF
R2 100Ω
R1 100Ω
4
±10V
ANALOG
INPUT
11
OFFSET ADJUST
2
12/8
3
CS
DB10 26
4
AO
DB9 25
5
R/C
DB8 24
6
DB7 23
7
CE
VCC
8
REF OUT
DB5 21
9
AC
DB4 20
REF IN
11 VEE
DB3 19
(MSB) DB11
DB2 18
13
BIP OFF
DB1 17
10V IN
(LSB) DB0 16
14
20V IN
DC 15
00824-039
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
200ns
The circuit of Figure 40 uses a 100 Ω isolation resistor that
enables the amplifier to drive capacitive loads exceeding
1500 pF; the resistor effectively isolates the high frequency
feedback from the load and stabilizes the circuit. Low frequency
feedback is returned to the amplifier summing junction via the
low-pass filter formed by the 100 Ω series resistor and the load
capacitance, CL. Figure 41 shows a typical transient response for
this connection.
4.99kΩ
30pF
+VS
• • • •
INPUT
RL
2kΩ
10kΩ
20kΩ
90
0.1µF
4.99kΩ
TYPICAL CAPACITANCE
LIMIT FOR VARIOUS
LOAD RESISTORS
• • • •
–5V ADC IN
Driving A Large Capacitive Load
AD713 BUFF
• • • •
• • • •
Figure 39. Buffer Recovery Time Sink Current = 1 mA
Most IC amplifiers exhibit a minimum open-loop output impedance of 25 Ω, due to current limiting resistors. A few hundred
microamps reflected from the change in converter loading can
introduce errors in instantaneous input voltage. If the analogto-digital conversion speed is not excessive and the bandwidth
of the amplifier is sufficient, the amplifier output returns to
the nominal value before the converter makes its comparison.
However, many amplifiers have relatively narrow bandwidths,
yielding slow recovery from output transients. The AD713 is
ideally suited as a driver for ADCs because it offers both a wide
bandwidth and a high open-loop gain.
• • • •
• • • •
500mV
Figure 37. AD713 as an ADC Buffer
• • • •
• • • •
LOW
BITS
–15V
• • • •
• • • •
10
0% • • • •
AD713
100 • • • •
• • • •
MIDDLE
BITS
ANALOG COM
1mV
• • • •
HIGH
BITS
0.1µF
1/4
• • • •
90
27
DB6 22
10
12
100 • • • •
STS 28
00824-041
TOP VIEW
(Not to Scale)
VLOGIC
AD713 BUFF
4
1/4
11
CL UP TO
1500pF
1500pF
1000pF
OUTPUT
100Ω
AD713
CL
0.1µF
RL
00824-042
AD574A
1
1mV
–VS
Figure 40. Circuit for Driving a Large Capacitance Load
5V
100 • • • •
10
1µs
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
90
• • • •
• • • •
• • • •
• • • •
500mV
• • • •
• • • •
• • • •
10V ADC IN
• • • •
• • • •
200ns
00824-040
0% • • • •
Figure 38. Buffer Recovery Time Source Current = 2 mA
10
00824-043
0% • • • •
Figure 41. Transient Response, RL = 2 kΩ, CL = 500 pF
Rev. F | Page 13 of 20
AD713
GAIN
ADJUST
VIN
GAIN
ADJUST
VIN
R1*
19
20
VDD
RFB
VREF
AD7545
AD713
AGND 2
11
ANALOG
COMMON –15V
For the state variable or universal filter configuration of Figure 44
to function properly, DAC A1 and DAC B1 must control the
gain and Q of the filter characteristic, and DAC A2 and DAC B2
must accurately track for the simple expression of fC to be true.
This is readily accomplished using two AD7528 DACs and one
AD713 quad op amp. Capacitor C3 compensates for the effects
of op amp gain bandwidth limitations.
This filter provides low-pass, high-pass, and band-pass outputs
and is ideally suited for applications where microprocessor
control of filter parameters is required. The programmable
range for component values shown is fC = 0 kHz to 15 kHz and
Q = 0.3 to 4.5.
1/4
R4
20kΩ
1%
+15V
0.1µF
4
AD713
R5
20kΩ
1%
R3
10kΩ
1%
1/4
AD713
11
3
VOUT
0.1µF
ANALOG
COMMON
*REFER TO TABLE 5.
Figure 43. Bipolar Operation
Rev. F | Page 14 of 20
–15V
00824-045
12
DATA INPUT
DB11 TO DB0
VOUT
0.1µF
A Programmable State Variable Filter
AGND 2
DGND
4
FILTER APPLICATIONS
C1
33pF
OUT1 1
1/4
Figure 42. Unipolar Binary Operation
R2*
18
OUT1 1
AD7545
DB11 TO DB0
GLN/GCQ
20 Ω
6.8 Ω
VDD
RFB
*REFER TO TABLE 5.
Table 5. Recommended Trim Resistor Values vs. Grades for
AD7545 for VD = 5 V
LN/CQ
100 Ω
33 Ω
VDD
VREF
3
Figure 42 and Figure 43 show the AD713 and a 12-bit CMOS
DAC, the AD7545, configured for either a unipolar binary (twoquadrant multiplication) or bipolar (four-quadrant multiplication)
operation. Capacitor C1 provides phase compensation, which
reduces overshoot and ringing.
KN/BQ
200 Ω
68 Ω
20
DGND
For example, the output resistance of the AD7545 modulates
between 11 kΩ and 33 kΩ. Therefore, with the DAC’s internal
feedback resistance of 11 kΩ, the noise gain varies from 2 to
4/3. This changing noise gain modulates the effect of the input
offset voltage of the amplifier, resulting in nonlinear DAC
amplifier performance. The AD713, with its guaranteed 1.5 mV
input offset voltage, minimizes this effect, achieving 12-bit
performance.
JN/AQ
500 Ω
150 Ω
19
R1*
C1 +15V
0.1µF
33pF
18
00824-044
The AD713 is an excellent output amplifier for CMOS DACs. It
can be used to perform both two- and four-quadrant operation.
The output impedance of a DAC using an inverted R-2R ladder
approaches R for codes containing many 1s, 3R for codes
containing a single 1, and infinity for codes containing all 0s.
Trim Resistor
R1
R2
R2*
VDD
CMOS DAC APPLICATIONS
AD713
R5
30kΩ
1µF
R4
30kΩ
+
2
R3
10kΩ
4
A1
3
1
6
A2
1/4
5
AD713
9
HIGH
PASS
OUTPUT
7
A3
1/4
2
17
VIN
20
19
VDD
18
AD7528
A4
8
12
1/4
2
18
7
DB0 TO
DB7
DATA 1
DAC B1
RF
15
CS
16
5
6
14
7
DB0 TO
DB7
WR DAC A/
DACB
DAC B2
R2
AD7528
15
DATA 2
fC =
1
2π R1 C1
Q=
R3
RF
×
R4
RFBB1
AO = –
RF
RS
5
16
CS
1/4
AD713
BAND PASS
OUTPUT
1
DAC A2
R1
14
–VS
20
17
DAC A1
RS
14
11
LOW PASS
OUTPUT
+
1µF
1
4
C1 = C2, R1 = R2, R4 = R5
AD713
4
CIRCUIT EQUATIONS
13
10
AD713
VDD
C2
1000pF
C1
1000pF
C3
33pF
6
DAC EQUIVALENT RESISTANCE EQUALS
256 × (DAC LADDER RESISTANCE)
DAC DIGITAL CODE
WR DAC A/
DAC B
00824-046
+VS
Figure 44. A Programmable State Variable Filter Circuit
The closely matched and uniform ac characteristics of the AD713
make it ideal for use in generalized impedance converter (GIC)/
gyrator and frequency dependent negative resistor (FDNR)
filter applications. Figure 47 and Figure 48 show the AD713
used in two typical active filters. The first shows a single AD713
simulating two coupled inductors configured as a one-third
octave band-pass filter. A single section of this filter meets
ANSI Class II specifications and handles a 7.07 V rms signal
with <0.002% THD (20 Hz to 20 kHz).
OUTPUT AMPLITUDE (dBm)
0
GIC AND FDNR FILTER APPLICATIONS
OUTPUT AMPLITUDE (dBm)
–10
–20
–30
–40
0
–1
–2
–3
–4
–5
16 18 20 22 24
FREQUENCY (MHz)
–50
–70
30
40
50
60
70
FREQUENCY (MHz)
80
90
100
dB
–10
1
0
–20
–1
–30
18
–50
–60
200
500
1k
2k
5k
10k 20k
GROUP DELAY
19
µs
–40
OUTPUT AMPLITUDE
2
20
21
22
200
500
1k
2k
5k
10k 20k
–70
–80
–90
–100
–110
–120
10k
100k
FREQUENCY (MHz)
1M
Figure 46. Relative Output Amplitude vs. Frequency of Antialiasing Filter
Rev. F | Page 15 of 20
00824-049
If this is not practical, add small lead capacitances (10 pF to
20 pF) across R5 and R6. Figure 45 and Figure 46 show the
output amplitude vs. frequency of these filters.
20
3
0
RELATIVE OUTPUT AMPLITUDE (dB)
where all resistors and capacitors scale equally. Resistors R3 to
R8 should not be greater than 2 kΩ in value to prevent parasitic
oscillations caused by the amplifier’s input capacitance.
10
Figure 45. Output Amplitude vs. Frequency of 1/3 Octave Filter
The filter of Figure 47 can be scaled for any center frequency by
using the following formula:
1.11
fC =
2πRC
0
00824-048
–60
Figure 48 shows a seven-pole antialiasing filter for a 2× oversampling (88.2 kHz) digital audio application. This filter has
<0.05 dB pass-band ripple and 19.8 μs ± 0.3 μs delay, at dc to
20 kHz, and handles a 5 V rms signal (VS = ±15 V) with no
overload at any internal nodes.
AD713
R1
6.19kΩ
INPUT
R3
1300Ω
R4
1300Ω
5
R5
1300Ω
6
R7
1300Ω
AD713
1.11
2πRC
R6
1300Ω
7
3
8
9
1/4
C1 = C2 = C3 = C4 = C
10
R9
1300Ω
C4
6800pF
R10
1300Ω
R11
5.62kΩ
R1 = R2 = 4.76Ω
+VS
R11 = 4.32Ω
0.1µF
COM
R3 = R4 = R5 = R6 = R7 = R8 = R9 = R10 = R
0.1µF
14
R8
1300Ω
AD713
C3
6800pF
1/4
AD713
13
+
+
AD713
PIN 4
1µF
1µF
00824-047
fC =
12
1/4
AD713
2
1/4
1
OUTPUT
R2
6.19kΩ
C2
6800pF
C2
6800pF
AD713
PIN 11
–VS
Figure 47. A 1/3 Octave Filter Circuit
95.3kΩ
1/4
2
A1
INPUT
412Ω
1
1.74kΩ
1.74kΩ
4700pF
3
36Ω
120Ω
4700pF
1kΩ
5
1/4
AD713
10
A3
1kΩ
1/4
AD713
1.2kΩ
4700pF
1kΩ
8
14
A4
12
1/4
AD713
3
B1
1kΩ
1kΩ
1
1/4
AD713
1.87kΩ
4700pF
7
B2
5
1/4
AD713
B3
1kΩ
8
1/4
AD713
1.1kΩ
+VS
0.1µF
4700pF
0.1µF
–VS
Rev. F | Page 16 of 20
OUTPUT
1kΩ
COM
Figure 48. An Antialiasing Filter
14
10
9
6
B4
13
1kΩ
4700pF
2
13
4700pF
130Ω
4700pF
9
6
A2
12
100kΩ
10kΩ
7
AD713
330Ω
+
+
1µF
AD713
PIN 4
1µF
AD713
PIN 11
00824-050
1/4
AD713
AD713
OUTLINE DIMENSIONS
0.775 (19.69)
0.750 (19.05)
0.735 (18.67)
14
8
1
7
0.280 (7.11)
0.250 (6.35)
0.240 (6.10)
0.325 (8.26)
0.310 (7.87)
0.300 (7.62)
0.100 (2.54)
BSC
0.060 (1.52)
MAX
0.210 (5.33)
MAX
0.015
(0.38)
MIN
0.150 (3.81)
0.130 (3.30)
0.110 (2.79)
SEATING
PLANE
0.015 (0.38)
GAUGE
PLANE
0.430 (10.92)
MAX
0.005 (0.13)
MIN
0.014 (0.36)
0.010 (0.25)
0.008 (0.20)
0.070 (1.78)
0.050 (1.27)
0.045 (1.14)
COMPLIANT TO JEDEC STANDARDS MS-001
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.
CORNER LEADS MAY BE CONFIGURED AS WHOLE OR HALF LEADS.
Figure 49. 14-Lead Plastic Dual In-Line Package [PDIP]
Narrow Body
(N-14)
Dimensions shown in inches and (millimeters)
0.005 (0.13) MIN
14
1
PIN 1
0.098 (2.49) MAX
8
7
0.310 (7.87)
0.220 (5.59)
0.100 (2.54) BSC
0.785 (19.94) MAX
0.200 (5.08)
MAX
0.200 (5.08)
0.125 (3.18)
0.023 (0.58)
0.014 (0.36)
0.320 (8.13)
0.290 (7.37)
0.060 (1.52)
0.015 (0.38)
0.150
(3.81)
MIN
SEATING
0.070 (1.78) PLANE
0.030 (0.76)
15°
0°
0.015 (0.38)
0.008 (0.20)
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.
Figure 50. 14-Lead Ceramic Dual In-Line Package [CERDIP]
(Q-14)
Dimensions shown in inches and (millimeters)
Rev. F | Page 17 of 20
070606-A
0.022 (0.56)
0.018 (0.46)
0.014 (0.36)
0.195 (4.95)
0.130 (3.30)
0.115 (2.92)
AD713
10.50 (0.4134)
10.10 (0.3976)
9
16
7.60 (0.2992)
7.40 (0.2913)
8
1.27 (0.0500)
BSC
0.30 (0.0118)
0.10 (0.0039)
COPLANARITY
0.10
0.51 (0.0201)
0.31 (0.0122)
10.65 (0.4193)
10.00 (0.3937)
0.75 (0.0295)
45°
0.25 (0.0098)
2.65 (0.1043)
2.35 (0.0925)
SEATING
PLANE
8°
0°
0.33 (0.0130)
0.20 (0.0079)
COMPLIANT TO JEDEC STANDARDS MS-013-AA
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.
1.27 (0.0500)
0.40 (0.0157)
03-27-2007-B
1
Figure 51. 16-Lead Standard Small Outline Package [SOIC_W]
Wide Body
(RW-16)
Dimensions shown in millimeters and (inches)
ORDERING GUIDE
Model 1
AD713AQ
AD713JNZ
AD713JR-16
AD713JR-16-REEL
AD713JR-16-REEL7
AD713JRZ-16
AD713JRZ-16-REEL
AD713JRZ-16-REEL7
1
Temperature Range
−40°C to +85°C
0°C to 70°C
0°C to 70°C
0°C to 70°C
0°C to 70°C
0°C to 70°C
0°C to 70°C
0°C to 70°C
Package Description
14-Lead CERDIP
14-Lead PDIP
16-Lead SOIC_W
16-Lead SOIC_W
16-Lead SOIC_W
16-Lead SOIC_W
16-Lead SOIC_W
16-Lead SOIC_W
Z = RoHS Compliant Part.
Rev. F | Page 18 of 20
Package Option
Q-14
N-14
RW-16
RW-16
RW-16
RW-16
RW-16
RW-16
AD713
NOTES
Rev. F | Page 19 of 20
AD713
NOTES
©2002–2011 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D00824-0-7/11(F)
Rev. F | Page 20 of 20