PD - 9.590A IRCZ34 HEXFET® Power MOSFET l l l l l l Dynamic dv/dt Rating Current Sense 175°C Operating Temperature Fast Switching Ease of Paralleling Simple Drive Requirements VDSS = 60V RDS(on) = 0.050Ω ID = 30A Description Third Generation HEXFETs from International Rectifier provide the designer with the best combination of fast switching, ruggedized device, low on-resistance and cost-effectiveness. The HEXSence device provides an accurate fraction of the drain current through the additional two leads to be used for control or protection of the device. These devices exhibit similar electrical and thermal characteristics as their IRF-series equivalent part numbers. The provision of a kelvin source connection effectively eliminates problems of common source inductance when the HEXSence is used as a fast, high-current switch in non current-sensing applications. TO-220 HexSense Absolute Maximum Ratings ID @ TC = 25°C ID @ TC = 100°C IDM PD @TC = 25°C VGS EAS dv/dt TJ TSTG Parameter Max. Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current Power Dissipation Linear Derating Factor Gate-to-Source Voltage Single Pulse Avalanche Energy Peak Diode Recovery dv/dt Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds Mounting Torque, 6-32 or screw 30 21 120 88 0.59 ±20 15 4.5 -55 to + 175 Units A W W/°C V mJ A °C 300 (1.6mm from case) 10 lbf•in (1.1 N•m) Thermal Resistance Parameter RθJC RθCS RθJA Junction-to-Case Case-to-Sink, Flat, Greased Surface Junction-to-Ambient Min. Max. Units — — — — 0.50 — 1.7 — 62 °C/W ** When mounted on FR-4 board using minimum recommended footprint. For recommended footprint and soldering techniques refer to application note #AN-994. C-7 IRCZ34 Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Drain-to-Source Breakdown Voltage ∆V(BR)DSS/∆TJ Breakdown Voltage Temp. Coefficient RDS(ON) Static Drain-to-Source On-Resistance VGS(th) Gate Threshold Voltage gfs Forward Transconductance Qg Qgs Qgd td(on) tr td(off) tf Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Min. 60 ––– ––– 2.0 9.4 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Typ. ––– 0.065 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– 13 100 29 52 LD Internal Drain Inductance ––– 4.5 ––– LC Internal Source Inductance ––– 7.5 ––– Ciss Coss Crss r Coss Input Capacitance Output Capacitance Reverse Transfer Capacitance Current Sensing Ratio Output Capacitance of Sensing Cells ––– ––– ––– 1340 ––– 1300 640 96 ––– 9.0 ––– ––– ––– 1480 ––– V(BR)DSS IDSS IGSS Drain-to-Source Leakage Current Max. Units Conditions ––– V VGS = 0V, ID = 250µA ––– V/°C Reference to 25°C, ID = 1mA 0.050 Ω VGS = 10V, ID = 18A 4.0 V VDS = VGS, ID = 250µA ––– S VDS = 25V, ID = 18A 25 VDS = 60V, VGS = 0V 250 VDS = 48V, VGS = 0V, TJ = 150°C 100 VGS = 20V -100 VGS = -20V 46 ID = 30A 11 nC VDS = 48V 22 VGS = 10V, See Fig. 6 and 13 ––– VDD = 30V ––– ID = 30A ––– RG = 12Ω ––– RD = 1.0Ω, See Fig. 10 nH pF ––– pF Between lead, 6 mm (0.25 in.) from package and center of die contact VGS = 0V VDS = 25V ƒ = 1.0MHz, See Fig. 5 ID = 30A, VGS = 10V VGS = 0V, VDS = 25V, ƒ = 1.0MHz Source-Drain Ratings and Characteristics IS I SM V SD trr Qrr ton Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Forward Turn-On Time Min. Typ. Max. Units ––– ––– 30 ––– ––– 120 ––– ––– ––– 120 ––– 0.70 1.6 230 1.4 A V ns nC Conditions MOSFET symbol showing the G integral reverse p-n junction diode. TJ = 25°C, IS = 30A, VGS = 0V TJ = 25°C, IF = 30A di/dt = 100A/µs max. junction temperature. ( See fig. 11 ) VDD = 25V, starting TJ = 25°C, L = 0.019mH RG = 25Ω, IAS = 30A. (See Figure 12) C-8 S Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) Notes: Repetitive rating; pulse width limited by D ISD ≤ 30A, di/dt ≤ 200A/µs, VDD ≤ V(BR)DSS, TJ ≤ 175°C Pulse width ≤ 300µs; duty cycle ≤ 2%. ID, Drain Current (Amps) ID, Drain Current (Amps) IRCZ34 VDS, Drain-to-Source Voltage (Volts) Fig. 1 Typical Output Characteristics, TC=25°C Fig. 2 Typical Output Characteristics, TC=175°C ID, Drain Current (Amps) RDS(on), Drain to Source On-Resistance (Normalized) VDS, Drain-to-Source Voltage (Volts) VDS, Gate-to-Source Voltage (Volts) TJ, Junction Temperature (°C) Fig. 3 Typical Transfer Characteristics Fig. 4 Normalized On-Resistance vs. Temperature C-9 Capacitance (pF) VGS, Gate-to-Source Voltage (Volts) IRCZ34 QG, Total Gate Charge (nC) Fig. 5 Typical Capacitance vs. Drain-toSource Voltage Fig. 6 Typical Gate Charge vs. Gate-toSource Voltage ID Drain Current (Amps) ISD, Reverse Drain Current (Amps) VDS, Drain-to-Source Voltage (Volts) VSD, Source-to-Drain Voltage (Volts) VDS, Drain-to-Source Voltage (Volts) Fig. 7 Typical Source-Drain Diode Forward Voltage Fig. 8 Maximum Safe Operating Area C-10 ID, Drain Current (Amps) ID, Drain Current (Amps) IRCZ34 Starting TJ, Junction Temperature (°C) Fig. 9 Maximum Drain Current vs. Case Temperature Fig. 12c Maximum Avalanche Energy vs. Drain Current Thermal Repsonse (ZΘJC) TC, Case Temperature (°C) t1, Rectiangular Pulse Duration (seconds) Fig. 11 Maximum Effective Transient Thermal Impedance, Junction-to-Case C-11 Sense Ratio (r) Sense Ratio (r) IRCZ34 ID, Drain Current (Amps) Fig. 15 Typical HEXSense Ratio vs. Junction Temperature Fig. 16 Typical HEXSense Ratio vs. Drain Current Sense Ratio (r) TJ, Junction Temperature (°C) Fig. 18 HEXSense Ratio Test Circuit VGS, Gate-to-Source Voltage (Volts) Fig. 17 Typical HEXSense Ratio vs. Gate Voltage Mechanical drawings, Appendix A Part marking information, Appendix B Test Circuit diagrams, Appendix C C-12 Fig. 19 HEXSense Sensing Cell Output Capacitance Test Circuit