INFINEON PEF22554HT

Addendum
DS1, 2003-07-02
QuadFALC®
Quad E1/T1/J1 Framer and Line Interface Component
for Long- and Short-Haul Applications
PEF 22554 HT/E, Version 2.1
Abstract
This document is an Addendum to the PEF 22554 HT/E, QuadFALC®, Version 2.1 Data
Sheet DS1, release date 2002-09. It describes data that has to be changed or added.
1
Referenced Standards
Page 5, Related Documentation
In addition to the standards listed in the Data Sheet, the device complies also with:
•
•
•
ITU-T G.705
ITU-T G.733
ITU-JT G.733
Revision History: Previous Version:
-/-
Major Changes:
-/-
Addendum
1
DS1, 2003-07-02
QuadFALC® V2.1
PEF 22554 HT/E
Logic Symbol for BGA Package
2
Logic Symbol for BGA Package
Page 23, Chapter 1.2, Logic Symbol
VSSP
VDDP(2:1)
RCLK(4:1)
MCLK
SYNC
SEC/FSC
Due to the slight difference (number of power supply and ground connections) between
the TQFP package and the BGA package, a separate drawing is provided for the BGA.
Receive
System
Interface
SCLKX(4:1)
XDI(4:1)
XPA(4:1)
XPB(4:1)
XPC(4:1)
XPD(4:1)
Transmit
System
Interface
QuadFALC®
PEF 22554 V2.1
P-TQFP-144
CS
WR/RW
RD/DS
BHE/BLE
ALE
DBW
IM
RES
INT
VDDX(4:1)
VSSX(4:1)
XL1/XDOP/XIOD(4:1)
XL2/XDON/XFM(4:1)
VSEL
VDDC(2:1)
VDD(5:1)
VSS(6:1)
Transmit
Line
Interface
TDI
TMS
TCK
TRS
TDO
A(9:0)
Boundary
Scan
Interface
D(15:0)
Receive
Line
Interface
VDDR(4:1)
VSSR(4:1)
RL1/RDIP/ROID(4:1)
RL2/RDIN/RCLK(4:1)
SCLKR(4:1)
RDO(4:1)
RPA(4:1)
RPB(4:1)
RPC(4:1)
RPD(4:1)
Microprocessor Interface
F0263_TQFP_22554
Figure 1
Addendum
Logic Symbol (TQFP Package)
2
DS1, 2003-07-02
QuadFALC® V2.1
PEF 22554 HT/E
VSSP
VDDP(2:1)
RCLK(4:1)
MCLK
SYNC
SEC/FSC
Logic Symbol for BGA Package
Receive
System
Interface
SCLKX(4:1)
XDI(4:1)
XPA(4:1)
XPB(4:1)
XPC(4:1)
XPD(4:1)
Transmit
System
Interface
QuadFALC®
PEF 22554 V2.1
P-BGA-160
CS
WR/RW
RD/DS
BHE/BLE
ALE
DBW
IM
RES
INT
VDDX(8:1)
VSSX(8:1)
XL1/XDOP/XIOD(4:1)
XL2/XDON/XFM(4:1)
VSEL
VDDC(2:1)
VDD(9:1)
VSS(10:1)
Transmit
Line
Interface
TDI
TMS
TCK
TRS
TDO
A(9:0)
Boundary
Scan
Interface
D(15:0)
Receive
Line
Interface
VDDR(4:1)
VSSR(4:1)
RL1/RDIP/ROID(4:1)
RL2/RDIN/RCLK(4:1)
SCLKR(4:1)
RDO(4:1)
RPA(4:1)
RPB(4:1)
RPC(4:1)
RPD(4:1)
Microprocessor Interface
F0263_BGA_22554
Figure 1A
Addendum
Logic Symbol (BGA Package)
3
DS1, 2003-07-02
QuadFALC® V2.1
PEF 22554 HT/E
JTAG Ball Names
3
JTAG Ball Names
Page 52, Chapter 2.2, Pin Definitions and Functions
The BGA ball numbers are missing for the JTAG pins. They are as shown below.
Table 5
Pin No.
Pin Definitions - Miscellaneous
Ball No.
Symbol
Input
Output
Supply
Function
Boundary Scan/Joint Test Access Group (JTAG)
131
B6
TRS
I + PU
Test Reset for Boundary Scan
(active low). If not connected, an internal
pullup transistor ensures high input level.
If the JTAG boundary scan is not used, this
pin must be connected to RES or VSS.
112
D11
TDI
I + PU
Test Data Input for Boundary Scan
If not connected an internal pullup
transistor ensures high input level.
141
D5
TMS
I + PU
Test Mode Select for Boundary Scan
If not connected an internal pullup
transistor ensures high input level.
140
C4
TCK
I + PU
Test Clock for Boundary Scan
If not connected an internal pullup
transistor ensures high input level.
113
C11
TDO
O
Test Data Output for Boundary Scan
Addendum
4
DS1, 2003-07-02
QuadFALC® V2.1
PEF 22554 HT/E
Boundary Scan
4
Boundary Scan
4.1
JTAG Instructions
Page 63, Chapter 3.4.2, Boundary Scan Interface
The TAP controller instruction codes 01010101B and 01010100B have been added. Both
are reserved for device tests and shall not be used.
4.2
JTAG ID
Page 427, Chapter 11.4.2, JTAG Boundary Scan Interface
The correct Boundary Scan IDCODE field is:
0001 0000 0000 1000 1110 0000 1000 0011 (Version = 1H, Part Number = 008EH)
5
RCLK Clock Multiplexing
Page 65/124, Chapter 4.1/5.1, Receive Path in E1 or T1/J1 Mode
Some details have been added to the figure showing the clock multiplexing options for
RCLK.
recovered clock channel 1
recovered clock channel 2
recovered clock channel 3
recovered clock channel 4
A
A
A: controlled by
CMR1.DRSS(1:0)
B: controlled by
GPC1.R1S(1:0)
A
A
DCO-R channel 1
C
DCO-R channel 2
C
RCLK2
DCO-R channel 3
C
RCLK3
DCO-R channel 4
C
RCLK4
C: controlled by
CMR1.RS(1:0)
Figure 17/46
Addendum
B
RCLK1
F0131_2
Receive Clock Selection (E1/T1/J1)
5
DS1, 2003-07-02
QuadFALC® V2.1
PEF 22554 HT/E
Bipolar Violation Detection
6
Bipolar Violation Detection
Page 68, Chapter 4.1.6, Receive Line Coding in E1 Mode
The HDB3 line code or the AMI coding is provided for the data received from the ternary
or the dual rail interface. All code violations that do not correspond to zero substitution
rules are detected, resulting in an increment of the 16-bit code violation counter. If a bit
error causes a code violation that leads to a valid substitution pattern, this code violation
is neither detected nor counted and the substitution pattern is replaced by the
corresponding zero pattern.
In case of the optical interface a selection between the NRZ code and the CMI Code
(1T2B) with HDB3 or AMI postprocessing is provided. If CMI code is selected the receive
route clock is recovered from the data stream. The CMI decoder does not correct any
errors. In case of NRZ coding data is latched with the falling edge of signal RCLKI. The
HDB3 code is used along with double violation detection or extended code violation
detection (selectable by FMR0.EXZE). In AMI code all code violations are detected. The
detected errors increment the code violation counter (16 bits length).
Page 127, Chapter 5.1.6, Receive Line Coding in T1/J1 Mode
The B8ZS line code or the AMI (ZCS, zero code suppression) coding is provided for the
data received from the ternary or the dual rail interface. All code violations that do not
correspond to zero substitution rules are detected, resulting in an increment of the 16-bit
code violation counter. If a bit error causes a code violation that leads to a valid
substitution pattern, this code violation is neither detected nor counted and the
substitution pattern is replaced by the corresponding zero pattern. The detected errors
increment the code violation counter (16 bits length).
Addendum
6
DS1, 2003-07-02
QuadFALC® V2.1
PEF 22554 HT/E
Signaling Marker Diagrams
7
Signaling Marker Diagrams
Page 180/181, Chapter 5.5.2, Transmit System Interface
The following diagrams have been modified for clarity.
125 µs
SYPX
SCLKX
T
TS24
TS1
TS2
TS24
XDI
45 67F01 23456 70123 4567
XSIG
A B CD
A B CD
A B CD
A B CD
ESF
XSIG
ABAB
ABAB
AB AB
ABAB
F12
T
F
ABCD
ABAB
Figure 71
Addendum
01 23456 7F
= Time slot offset (RC0, RC1)
= FS/DL-bit (XDI only)
= ESF signaling bits for time slots 1...24
read only during last frame of a multiframe,
= F12 signaling bits for time slots 1...24
read only during last frame of a multiframe (bit positions 4/5)
F0137
1.544 MHz Transmit Signaling Highway (T1/J1)
7
DS1, 2003-07-02
QuadFALC® V2.1
PEF 22554 HT/E
Signaling Marker Diagrams
Multiframe n (F12 for example)
Frame 1
Frame 6
Frame 12
Frame 1
RDO
XDI
RMFB
XMFB
A: Channel Translation Mode 0
RDO
XDI
24
FS/
DL
1 2 3
4 5 6
7 8 9
19 20 21
22 23 24
FS/
DL
1
FS/
DL
1
RSIGM1)
XSIGM
B: Channel Translation Mode 1
RDO
XDI
FS/
DL
1 2 3 4 5 6
19 20 21 22 23 24
RSIGM1)
XSIGM
Notes:
1) RSIGM and XSIGM are programmed to mark only channel 24 in this example (via
RTR(4:1) and TTR(4:1)).
F0267_1
Figure 72
Addendum
Signaling Marker for CAS/CAS-CC Applications (T1/J1)
8
DS1, 2003-07-02
QuadFALC® V2.1
PEF 22554 HT/E
Clock Mode Selection
8
Clock Mode Selection
Page 194/200, Chapter 6.3 and Chapter 7.3, Device Initialization E1 and T1/J1
The following text has been added:
The clock mode must be programmed according to the selected MCLK frequency before
any XL1/2 output is enabled (while the outputs are not yet activated by selection of the
line coding). Otherwise the output pulse width might not match the pulse mask
requirements.
Page 277, Chapter 9.2 and Page 384, Chapter 10.2, Clock Mode Register
programming for E1 and T1/J1
The following text has been added/corrected (for E1 and T1/J1 operation):
Attention: Write operations to GCM5 and/or GCM6 register initiate a PLL reset (see
below) and must be performed before any port configuration is done. If
this is not possible set LIM01.DRS (if not set) of every channel
separately before writing to these registers and reset LIM01.DRS (if it
was not set before) after these write operations.
9
Device Initialization
Page 192, Table 46, Initial Values after Reset (E1)
The second row shall read:
2.048 8.192 MHz system clocking rate...
Page 194, Table 47, Initialization Parameters (E1)
The row “Framing additions” shall read:
RC0RC1.ASY4, RC0RC1.SWD
10
HDLC Handling
Page 221/321, Chapter 9.2/10.2, Register bit CMDR.RMC
Confirmation from CPU to QuadFALC that the current frame or data block has been
fetched following an RPF or RME interrupt, thus the occupied space in the RFIFO can
be released. While the FIFO is empty, RMC must not be set. If RMC is given while RFIFO
is already cleared, the next incoming data block is cleared instantly, although interrupts
are generated. This might lead to incorrect software behaviour.
Addendum
9
DS1, 2003-07-02
QuadFALC® V2.1
PEF 22554 HT/E
Port RMFB Configuration
11
Port RMFB Configuration
Page 269/375, Chapter 9.2/10.2, Register Description, PC(4:1)
The following text has been added:
RMFB is only valid, if the receive buffer is not bypassed.
12
Port RSIG Configuration
Page 270/376, Chapter 9.2/10.2, Register Description, PC(4:1)
The following text has been added:
RSIG is only valid, if the receive buffer is not bypassed.
13
Port XMFS Configuration
Page 270/376, Chapter 9.2/10.2, Register Description, PC(4:1)
The following text has been added:
The activity level of port XMFS can be selected to be active high or active low by
programming PC5.CXMFS. This bit must not be set, if XMFS is not enabled as an input.
XMFS input selection is done by programming one of the Transmit Multifunction Ports,
using registers PC4(4:1).XPC(3:0).
Note: XMFS must not be used together with SYPX on different Multifunction Ports.
14
Port RFSP Configuration
Page 376, Chapter 10.2, Register Description, PC(4:1) in T1/J1 mode
The description of register bit PC(4:1).RPC(2:0) = 111 in T1/J1 mode shall read as:
“This marker is active low for 488 648 ns with a frequency of 8 kHz.”
Addendum
10
DS1, 2003-07-02
QuadFALC® V2.1
PEF 22554 HT/E
Absolute Maximum Ratings
15
Absolute Maximum Ratings
Page 420, Chapter 11.1, Absolute Maximum Ratings
The allowed voltage range has been increased. The following values and the text below
the table have changed:
Parameter
Symbol
Limit Values
IC supply voltage (pads, digital)
VDD
VDDC
VDDP
VDDR
VDDX
VPAD
VRL1/RL2
– 0.3 0.5 to 3.6 4.5 V
IC supply voltage (core, digital)
IC supply voltage PLL (analog)
IC supply voltage receive (analog)
IC supply voltage transmit (analog)
Voltage on any pin with respect to ground1)
Voltage on RL1/RL2 with respect to ground
1)
– 0.3 to 2.4
Unit
V
– 0.3 0.5 to 3.6 4.5 V
– 0.3 0.5 to 3.6 4.5 V
– 0.3 0.5 to 3.6 4.5 V
– 0.3 0.5 to 3.6 4.5 V
– 0.8 to 4.5
V
except VDDC and VRL1/RL2
Attention: Absolute Maximum Ratings are stress ratings only, and functional
operation and reliability under conditions beyond those defined in the
normal operating conditions is not guaranteed. Stresses above the
maximum ratings are likely to cause permanent damage to the device
while extended exposure to conditions outside the operating range
may have an impact on component life time.
Addendum
11
DS1, 2003-07-02
QuadFALC® V2.1
PEF 22554 HT/E
DC Characteristics
16
DC Characteristics
Page 422/423, Chapter 11.3, DC Characteristics
The transmitter output maximum leakage value and receiver maximum input voltage
have been changed.
Parameter
Symbol
Limit Values
Min.
Transmitter leakage
current
ITL
Receiver peak voltage of a VR12
mark (at RL1 or RL2)
Receiver differential peak
voltage of a mark
(between RL1 and RL2)
-0.45
-0.751)
VR
Unit
Notes
15.0
30.0
µA
XL1/2 = VDDX;
XPM2.XLT = 1
15.0
30.0
µA
XL1/2 = VSSX;
XPM2.XLT = 1
3.8
4.11)
V
RL1, RL2;
RZ signals only2)
VDDR
+0.3
4.00
4.631)
V
RL1, RL2;
RZ signals only2)
Max.
1)
Limit values must only be applied during T1 pulse over-/undershoot according to ANSI T1.403-1999.
2)
RZ = return to zero
Addendum
12
DS1, 2003-07-02
QuadFALC® V2.1
PEF 22554 HT/E
System Interface Marker Timing (Receive)
17
System Interface Marker Timing (Receive)
Page 437, Chapter 11.4.6, AC Characteristics, System Interface
The timing figure has been modified for clarity. The timing values have been corrected.
positive edge timing 1)
positive edge timing 1)
negative edge timing 1)
negative edge timing 1)
SCLKR
1(A)
RDO
RSIG
RSIGM
DLR
RFM
RMFB
FREEZE
2(A)
data valid
1(A)
2(A)
data valid
1)
active edge can be programmed to be positive or negative
F0011
possible negative delay values are not explicitely drawn
Figure 99
System Interface Marker Timing (Receive)
Table 79
System Interface Marker Timing Parameter Values
No.
Parameter
Limit Values
Min.
Typ.
Unit
Max.
SCLKR Input Mode
1
RDO delay
0
35
ns
2
RSIGM, RMFB, DLR, RFM1), FREEZE, RSIG
marker delay
0
45
ns
SCLKR Output Mode
1A
RDO delay
-55
0
9
-20
20
ns
2A
RSIGM, RMFB, DLR, RFM1), FREEZE, RSIG
marker delay
-55
0
9
-20
20
ns
SCLKR can be input or output.
1)
Timing for RMF is valid only for active high polarity selection.
Addendum
13
DS1, 2003-07-02
QuadFALC® V2.1
PEF 22554 HT/E
SYPR/SYPX Timing
18
SYPR/SYPX Timing
Page 438/439, Chapter 11.4.6, AC Characteristics, System Interface
The output timing has been corrected as shown in the table below.
1(A)
active edge
SCLKR
SCLKX
2(A)
3(A)
SYPR
SYPX
inactive
4(A)
active low
5(A)
6(A)
XMFS
inactive
7(A)
active low
F0012
Figure 100
SYPR/SYPX Marker Timing
Table 80
SYPR/SYPX Timing Parameter Values
No.
Parameter
Limit Values
Min.
Typ.
Unit
Max.
SCLKR Input Mode
1
SCLKR period (t1)
61
2
SYPR/SYPX inactive setup time
1 x t1
ns
3
SYPR/SYPX setup time
5
ns
4
SYPR/SYPX hold time
15
ns
5
XMFS inactive setup time
1 x t1
ns
6
XMFS setup time
5
ns
7
XMFS hold time
15
ns
648
ns
SCLKR Output Mode
1A
SCLKR period (t1)
61
2A
SYPR/SYPX inactive setup time
1 x t1
Addendum
14
648
ns
ns
DS1, 2003-07-02
QuadFALC® V2.1
PEF 22554 HT/E
SYPR/SYPX Timing
Table 80
No.
SYPR/SYPX Timing Parameter Values (cont’d)
Parameter
Limit Values
Min.
Typ.
Unit
Max.
SCLKR Output Mode
3A
SYPR/SYPX setup time
10
0
ns
4A
SYPR/SYPX hold time
0
10
ns
5A
XMFS inactive setup time
1 x t1
ns
6A
XMFS setup time
10
0
ns
7A
XMFS hold time
0
10
ns
Addendum
15
DS1, 2003-07-02
QuadFALC® V2.1
PEF 22554 HT/E
Marker Output Timing Parameters
19
Marker Output Timing Parameters
Page 440, Chapter 11.4.6, AC Characteristics, System Interface
The output timing has been corrected as shown in the table below.
active edge1)
SCLKR
SCLKX
1(A)
XMFB
DLX
XSIGM
1)
active edge can be programmed to be positive or negative
Figure 101
System Interface Marker Timing
Table 81
System Interface Marker Timing Parameter Values
No.
Parameter
F0013
Limit Values
Min.
Typ.
Unit
Max.
SCLKR Input Mode
1
XMFB, DLX, XSIGM delay
100
ns
-20
20
ns
SCLKR Output Mode
1A
XMFB, DLX, XSIGM delay
Addendum
0
16
9
DS1, 2003-07-02
QuadFALC® V2.1
PEF 22554 HT/E
XDI/XSIG Timing Parameters
20
XDI/XSIG Timing Parameters
Page 441, Chapter 11.4.6, AC Characteristics, System Interface
The timing has been corrected as shown in the table below.
active edge1)
SCLKR
SCLKX
1(A)
2(A)
3(A)
4(A)
XDI
XSIG
1)
active edge can be programmed to be positive or negative
F0014
Figure 101
XDI/XSIG Marker Timing
Table 81
XDI/XSIG Timing Parameter Values
No.
Parameter
Limit Values
Min.
Typ.
Unit
Max.
SCLKR Input Mode
1
XDI setup time
5
ns
2
XDI hold time
15
ns
3
XSIG setup time
5
ns
4
XSIG hold time
15
ns
SCLKR Output Mode
1A
XDI setup time
10
0
ns
2A
XDI hold time
20
10
ns
Addendum
17
DS1, 2003-07-02
QuadFALC® V2.1
PEF 22554 HT/E
SYNC Input Timing Parameters
Table 81
No.
XDI/XSIG Timing Parameter Values (cont’d)
Parameter
Limit Values
Min.
Typ.
Unit
Max.
3A
XSIG setup time
10
0
ns
4A
XSIG hold time
20
10
ns
21
SYNC Input Timing Parameters
Page 446, Chapter 11.4.6, AC Characteristics, System Interface
The input timing has been relaxed as shown in the table below.
1
2
SYNC
F0125
Figure 107
SYNC Timing
Table 87
SYNC Timing Parameter Values
No.
Parameter
Limit Values
Min.
Typ.
Unit
Max.
1
SYNC high time
30
122
%
ns
2
SYNC low time
30
122
%
ns
22
Typographical Errata
Page 57, Table 7: “BHE” should read “BHE”
Page 57, Table 8: “BLE” should read “BLE”
Page 256/361, FLLB = 1:
The line loopback code is transmitted in unframed mode. LLB code does not overwrite
the FS/DL-bits.
Addendum
18
DS1, 2003-07-02