TMS320VC5510 Fixed-Point Digital Signal Processor Data Manual Literature Number: SPRS076J June 2000 − Revised July 2004 PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: Products Applications Amplifiers amplifier.ti.com Audio www.ti.com/audio Data Converters dataconverter.ti.com Automotive www.ti.com/automotive DSP dsp.ti.com Broadband www.ti.com/broadband Interface interface.ti.com Digital Control www.ti.com/digitalcontrol Logic logic.ti.com Military www.ti.com/military Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork Microcontrollers microcontroller.ti.com Security www.ti.com/security Telephony www.ti.com/telephony Video & Imaging www.ti.com/video Wireless www.ti.com/wireless Mailing Address: Texas Instruments Post Office Box 655303 Dallas, Texas 75265 Copyright 2004, Texas Instruments Incorporated Revision History REVISION HISTORY This data sheet revision history highlights the technical changes made to the SPRS076I device-specific data sheet to make it an SPRS076J revision. Scope: This document has been reviewed for technical accuracy; the technical content is up-to-date as of the specified release date. PAGE(s) NO. ADDITIONS/CHANGES/DELETIONS Global: − Updated title of SPRU592 to TMS320VC5501/5502/5503/5507/5509/5510 DSP Multichannel Buffered Serial Port (McBSP) Reference Guide − Updated title of SPRU587 to TMS320VC5503/5507/5509/5510 DSP Direct Memory Access (DMA) Controller Reference Guide − Updated title of SPRU595 to TMS320VC5503/5507/5509/5510 DSP Timers Reference Guide 47 Section 4, Documentation Support: − added TMS320VC5510 Hardware Designer’s Resource Guide (literature number SPRAA43) June 2000 − Revised July 2004 SPRS076J 3 Revision History 4 SPRS076J June 2000 − Revised July 2004 Contents Contents Section Page 1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3 Signal Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 12 13 16 3 Functional Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1 Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1.1 On-Chip Dual-Access RAM (DARAM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1.2 On-Chip Single-Access RAM (SARAM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1.3 On-Chip ROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1.4 Instruction Cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1.5 Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1.6 Bootloader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2 Peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.1 System Register (SYSR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.2 Direct Memory Access (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.3 Enhanced Host Port Interface (EHPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.4 General-Purpose Input/Output Port (GPIO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3 CPU Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4 Peripheral Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.5 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.5.1 IFR and IER Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.5.2 Interrupt Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.6 Notices Concerning CLKOUT Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.6.1 CLKOUT Voltage Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.6.2 CLKOUT Value During Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 23 23 23 24 24 25 25 26 27 28 29 31 32 34 44 45 45 46 46 46 4 Documentation Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1 Device and Development-Support Tool Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2 TMS320VC5510 Device Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 48 49 5 Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2 Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3 Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.4 Electrical Characteristics Over Recommended Operating Case Temperature Range . . . . . . . 5.5 Package Thermal Resistance Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.6 Timing Parameter Symbology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.7 Clock Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.7.1 Clock Generation in Bypass Mode (DPLL Disabled) . . . . . . . . . . . . . . . . . . . . . . . . . . 5.7.2 Clock Generation in Lock Mode (DPLL Synthesis Enabled) . . . . . . . . . . . . . . . . . . . 50 50 50 50 51 52 53 54 54 55 June 2000 − Revised July 2004 SPRS076J 5 Contents Section 5.8 Memory Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.8.1 Asynchronous Memory Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.8.2 Synchronous-Burst SRAM (SBSRAM) Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.8.3 Synchronous DRAM (SDRAM) Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . HOLD and HOLDA Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reset Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . External Interrupt Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XF Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . General-Purpose Input/Output (IOx) Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TIN/TOUT Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Multichannel Buffered Serial Port (McBSP) Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.15.1 McBSP Transmit and Receive Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.15.2 McBSP General-Purpose I/O Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.15.3 McBSP as SPI Master or Slave Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Enhanced Host-Port Interface (EHPI) Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 56 59 61 65 66 67 68 69 70 71 71 74 75 80 Mechanical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.1 Ball Grid Array (GGW) Package Mechanical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 86 5.9 5.10 5.11 5.12 5.13 5.14 5.15 5.16 6 6 Page SPRS076J June 2000 − Revised July 2004 Figures List of Figures Figure Page 2−1 TMS320VC5510 GGW MicroStar BGA Package (Bottom View) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3−1 TMS320VC5510 Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3−2 3−3 TMS320VC5510 Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . System Register (SYSR) Bit Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 27 3−4 3−5 EHPI Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I/O Direction Register (IODIR) Bit Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 31 3−6 I/O Data Register (IODATA) Bit Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3−7 3−8 IFR0, IER0, DBIFR0, and DBIER0 Bit Locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IFR1, IER1, DBIFR1, and DBIER1 Bit Locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 45 4−1 Device Nomenclature for the TMS320VC5510 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 5−1 3.3-V Test Load Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 5−2 5−3 Bypass Mode Clock Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . External Multiply-by-N Clock Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 55 5−4 5−5 Asynchronous Memory Read Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Asynchronous Memory Write Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 58 5−6 SBSRAM Read Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 5−7 5−8 SBSRAM Write Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Two SDRAM Read Commands (Active Row) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 62 5−9 5−10 Two SDRAM WRT Commands (Active Row) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SDRAM ACTV Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 63 5−11 SDRAM DCAB Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 5−12 5−13 SDRAM REFR Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SDRAM MRS Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 64 5−14 5−15 HOLD/HOLDA Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 66 5−16 5−17 External Interrupt Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XF Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 68 5−18 General-Purpose Input/Output (IOx) Signal Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 5−19 5−20 TIN/TOUT Timing When Configured as Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TIN/TOUT Timing When Configured as Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 70 5−21 5−22 McBSP Receive Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . McBSP Transmit Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 73 5−23 McBSP General-Purpose I/O Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 5−24 5−25 McBSP Timing as SPI Master or Slave: CLKSTP = 10b, CLKXP = 0 . . . . . . . . . . . . . . . . . . . . . . . . McBSP Timing as SPI Master or Slave: CLKSTP = 11b, CLKXP = 0 . . . . . . . . . . . . . . . . . . . . . . . . 76 77 June 2000 − Revised July 2004 SPRS076J 7 Figures Figure Page 5−26 5−27 5−28 5−29 5−30 5−31 5−32 McBSP Timing as SPI Master or Slave: CLKSTP = 10b, CLKXP = 1 . . . . . . . . . . . . . . . . . . . . . . . . McBSP Timing as SPI Master or Slave: CLKSTP = 11b, CLKXP = 1 . . . . . . . . . . . . . . . . . . . . . . . . EHPI Nonmultiplexed Read/Write Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EHPI Multiplexed Memory (HPID) Access Read/Write Timings Without Autoincrement . . . . . . . . . EHPI Multiplexed Memory (HPID) Access Read Timings With Autoincrement . . . . . . . . . . . . . . . . . EHPI Multiplexed Memory (HPID) Access Write Timings With Autoincrement . . . . . . . . . . . . . . . . . EHPI Multiplexed Register Access Read/Write Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 79 81 82 83 84 85 6−1 TMS320VC5510 240-Ball MicroStar BGA Plastic Ball Grid Array Package . . . . . . . . . . . . . . . . . . . 86 8 SPRS076J June 2000 − Revised July 2004 Tables List of Tables Table Page 2−1 2−2 Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Signal Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 16 3−1 3−2 3−3 3−4 3−5 3−6 3−7 3−8 3−9 3−10 3−11 3−12 3−13 3−14 3−15 3−16 3−17 3−18 3−19 3−20 3−21 DARAM Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SARAM Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Standard On-Chip ROM Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TMS320VC5510 Boot Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . System Register (SYSR) Bit Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DMA Sync Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I/O Direction Register (IODIR) Bit Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I/O Data Register (IODATA) Bit Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CPU Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Peripheral Bus Controller Configuration Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Instruction Cache Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . External Memory Interface Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DMA Configuration Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Clock Generator Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Timer Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Multichannel Serial Port #0 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Multichannel Serial Port #1 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Multichannel Serial Port #2 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GPIO Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Device Revision ID Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Interrupt Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 23 24 26 27 28 31 31 32 34 34 35 36 39 39 40 41 42 43 43 44 5−1 5−2 5−3 5−4 5−5 5−6 5−7 5−8 5−9 5−10 5−11 5−12 5−13 5−14 5−15 5−16 5−17 5−18 5−19 5−20 Thermal Resistance Characteristics (Ambient) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thermal Resistance Characteristics (Case) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CLKIN in Bypass Mode Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CLKOUT in Bypass Mode Switching Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CLKIN in Lock Mode Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CLKOUT in Lock Mode Switching Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Asynchronous Memory Cycles Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Asynchronous Memory Cycles Switching Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Synchronous-Burst SRAM Cycle Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Synchronous-Burst SRAM Cycle Switching Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Synchronous DRAM Cycle Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Synchronous DRAM Cycle Switching Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . HOLD and HOLDA Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . HOLD and HOLDA Switching Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reset Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reset Switching Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . External Interrupt Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XF Switching Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . General-Purpose Input/Output (GPIO) Pins Configured as Inputs Timing Requirements . . . . . . . General-Purpose Input/Output (GPIO) Pins Configured as Inputs Switching Characteristics . . . . 52 52 54 54 55 55 56 56 59 59 61 61 65 65 66 66 67 68 69 69 June 2000 − Revised July 2004 SPRS076J 9 Tables Table 5−21 5−22 5−23 5−24 5−25 5−26 5−27 5−28 5−29 5−30 5−31 5−32 5−33 5−34 5−35 5−36 10 Page TIN/TOUT Pins Configured as Inputs Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TIN/TOUT Pins Configured as Outputs Switching Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . McBSP Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . McBSP Switching Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . McBSP General-Purpose I/O Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . McBSP General-Purpose I/O Switching Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 10b, CLKXP = 0) . . . . . . . . . . McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 10b, CLKXP = 0) . . . . . . McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 11b, CLKXP = 0) . . . . . . . . . . McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 11b, CLKXP = 0) . . . . . . . McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 10b, CLKXP = 1) . . . . . . . . . . McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 10b, CLKXP = 1) . . . . . . McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 11b, CLKXP = 1) . . . . . . . . . . McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 11b, CLKXP = 1) . . . . . . . EHPI Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EHPI Switching Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SPRS076J 70 70 71 72 74 74 75 75 77 77 78 78 79 79 80 80 June 2000 − Revised July 2004 Features 1 Features D High-Performance, Low-Power, D D D D D Fixed-Point TMS320C55x Digital Signal Processor (DSP) − 6.25-/5-ns Instruction Cycle Time − 160-/200-MHz Clock Rate − One/Two Instructions Executed per Cycle − Dual Multipliers (Up to 400 Million Multiply-Accumulates Per Second (MMACS)) − Two Arithmetic/Logic Units − One Internal Program Bus − Three Internal Data/Operand Read Buses − Two Internal Data/Operand Write Buses Instruction Cache (24K Bytes) 160K x 16-Bit On-Chip RAM Composed of: − Eight Blocks of 4K × 16-Bit Dual-Access RAM (DARAM) (64K Bytes) − 32 Blocks of 4K × 16-Bit Single-Access RAM (SARAM) (256K Bytes) 16K × 16-Bit On-Chip ROM (32K Bytes) 8M × 16-Bit Maximum Addressable External Memory Space 32-Bit External Memory Interface (EMIF) With Glueless Interface to: − Asynchronous Static RAM (SRAM) − Asynchronous EPROM − Synchronous DRAM (SDRAM) − Synchronous Burst SRAM (SBSRAM) D Programmable Low-Power Control of Six D D D D D D Device Functional Domains On-Chip Peripherals − Two 20-Bit Timers − Six-Channel Direct Memory Access (DMA) Controller − Three Multichannel Buffered Serial Ports (McBSPs) − 16-Bit Parallel Enhanced Host-Port Interface (EHPI) − Programmable Digital Phase-Locked Loop (DPLL) Clock Generator − Eight General-Purpose I/O (GPIO) Pins and Dedicated General-Purpose Output (XF) On-Chip Scan-Based Emulation Logic IEEE Std 1149.1† (JTAG) Boundary Scan Logic 240-Terminal MicroStar BGA (Ball Grid Array) (GGW Suffix) 3.3-V I/O Supply Voltage 1.6-V Core Supply Voltage TMS320C55x and MicroStar BGA are trademarks of Texas Instruments. Other trademarks are the property of their respective owners. † IEEE Standard 1149.1-1990 Standard-Test-Access Port and Boundary Scan Architecture. June 2000 − Revised July 2004 SPRS076J 11 Introduction 2 Introduction This section describes the main features of the TMS320VC5510 digital signal processor (DSP), lists the pin assignments, and describes the function of each pin. This data manual also provides a detailed description section, electrical specifications, parameter measurement information, and mechanical data about the available packaging. NOTE: This data manual is designed to be used in conjunction with the TMS320C55x DSP Functional Overview (literature number SPRU312). 2.1 Description The TMS320VC5510 (5510) fixed-point digital signal processor (DSP) is based on the TMS320C55x DSP generation CPU processor core. The C55x DSP architecture achieves high performance and low power through increased parallelism and total focus on reduction in power dissipation. The CPU supports an internal bus structure composed of one program bus, three data read buses, two data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to three data reads and two data writes in a single cycle. In parallel, the DMA controller can perform up to two data transfers per cycle independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit x 17-bit multiplication in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the address unit (AU) and data unit (DU) of the C55x CPU. The C55x DSP generation supports a variable byte width instruction set for improved code density. The instruction unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the program unit (PU). The program unit decodes the instructions, directs tasks to AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The 5510 also includes a 24K-byte instruction cache to minimize external memory accesses, improving data throughput and conserving system power. The 5510 peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM and synchronous burst SRAM. Three full-duplex multichannel buffered serial ports (McBSPs) provide glueless interface to a variety of industry-standard serial devices, and multichannel communication with up to 128 separately enabled channels. The enhanced host-port interface (EHPI) is a 16-bit parallel interface used to provide host processor access to internal memory on the 5510. The EHPI can be configured in either multiplexed or non-multiplexed mode to provide glueless interface to a wider variety of host processors. The DMA controller provides data movement for six independent channel contexts without CPU intervention, providing DMA throughput of up to two 16-bit words per cycle. Two general-purpose timers, eight general-purpose I/O (GPIO) pins, and digital phase-locked loop (DPLL) clock generation are also included. The 5510 is supported by the industry’s leading eXpressDSP software environment including the Code Composer Studio integrated development environment, DSP/BIOS software kernel foundation, the TMS320 DSP Algorithm Standard, and the industry’s largest third-party network. Code Composer Studio features code generation tools including a C-Compiler, Visual Linker, simulator, Real-Time Data Exchange (RTDX), XDS510 emulation device drivers, and Chip Support Libraries (CSL). DSP/BIOS is a scalable real-time software foundation available for no cost to users of Texas Instruments’ DSP products providing a pre-emptive task scheduler and real-time analysis capabilities with very low memory and megahertz overhead. The TMS320 DSP Algorithm Standard is a specification of coding conventions allowing fast integration of algorithms from different teams, sites, or third parties into the application framework. Texas Instruments’ extensive DSP third-party network of over 400 providers brings focused competencies and complete solutions to customers. C55x, eXpressDSP, Code Composer Studio, DSP/BIOS, TMS320, RTDX, and XDS510 are trademarks of Texas Instruments. 12 SPRS076J June 2000 − Revised July 2004 Introduction Texas Instruments (TI) has also developed foundation software available for the 5510. The C55x DSP Library (DSPLIB) features over 50 C-callable software kernels (FIR/IIR filters, Fast Fourier Transforms (FFTs), and various computational functions). The DSP Image/Video Processing Library (IMGLIB) contains over 20 software kernels highly optimized for C55x DSPs and is compiled with the latest revision of the C55x DSP code generation tools. These imaging functions support a wide range of applications that include compression, video processing, machine vision, and medical imaging. The TMS320C55x DSP core was created with an open architecture that allows the addition of application-specific hardware to boost performance on specific algorithms. The hardware extensions on the 5510 strike the perfect balance of fixed function performance with programmable flexibility, while achieving low-power consumption, and cost that traditionally has been difficult to find in the video-processor market. The extensions allow the 5510 to deliver exceptional video codec performance with more than half its bandwidth available for performing additional functions such as color space conversion, user-interface operations, security, TCP/IP, voice recognition, and text-to-speech conversion. As a result, a single 5510 DSP can power most portable digital video applications with processing headroom to spare. For more information, see the TMS320C55x Hardware Extensions for Image/Video Applications Programmer’s Reference (literature number SPRU098). For more information on using the the DSP Image Processing Library, see the TMS320C55x Image/Video Processing Library Programmer’s Reference (literature number SPRU037). 2.2 Pin Assignments Figure 2−1 illustrates the ball locations for the 240-pin ball grid array (BGA) package and is used in conjunction with Table 2−1 to locate signal names and ball grid numbers. U T R P N M L K J H G F E D C B A 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Figure 2−1. TMS320VC5510 GGW MicroStar BGA Package (Bottom View) June 2000 − Revised July 2004 SPRS076J 13 Introduction Table 2−1. Pin Assignments BGA BALL # SIGNAL BGA BALL # SIGNAL BGA BALL # SIGNAL BGA BALL # SIGNAL A1 VSS A2 A9 A3 DVDD A4 A8 A5 CVDD A6 A4 A7 DVDD A8 D2 A9 VSS A10 VSS A11 SDRAS A12 DVDD A13 SDCAS A14 CVDD A15 HD10 A16 VSS A17 VSS B1 VSS B2 XF B3 D9 B4 D7 B5 D5 B6 D3 B7 A2 14 B8 A0 B9 CLKMEM B10 SDA10 B11 HD2 B12 SDWE B13 HD1 B14 HDRY B15 HD3 B16 HD0 B17 HDS1 C1 A10 C2 D13 C3 D10 C4 A6 C5 A7 C6 A5 HD5 C7 A3 C8 D0 C9 HD4 C10 C11 HD6 C12 HD7 C13 HD8 C14 HD9 C15 HR/W C16 HCS C17 TRST D1 DVDD D2 D14 D3 D11 D4 D8 D5 D6 D6 D4 D7 D1 D8 A1 D9 HD15 D10 HD14 D11 HD13 D12 HD12 D13 HD11 D14 HDS2 D15 HA11 D16 HA0 D17 DVDD E1 A11 E2 D15 E3 D12 E4 CE3 E5 BOOTM3 E6 CVDD E7 CVDD E8 NC E9 NC E10 CVDD E11 NC E12 NC E13 RSVD9 E14 HA12 E15 HA10 E16 HA1/HCNTL1 E17 RST_MODE F1 DVDD F2 A13 F3 A12 F4 A16 F5 CVDD F13 RSVD8 F14 HA9 F15 HA2/HAS F16 CLKIN F17 CVDD G1 CE2 G2 A17 G3 A15 G4 A14 G5 NC G13 RSVD7 G14 HA8 G15 HA3 G16 RESET G17 HA13 H1 VSS H2 CE1 H3 A19 H4 A18 H5 NC H13 RSVD6 H14 HA4 H15 CLKOUT H16 HA14 H17 VSS J1 VSS J2 CE0 J3 A21 J4 A20 J5 NC J13 RSVD5 J14 HA5 J15 HA15 J16 HA7 J17 VSS K1 IO7 K2 BE0 K3 BE1 K4 IO0 K5 CVDD K13 RSVD4 K14 TMS K15 HBE0 K16 HA16 K17 HA6 L1 CVDD L2 IO6 L3 BE2 L4 BE3 L5 NC L13 RSVD3 L14 EMU1/OFF L15 TDO L16 TDI L17 TCK M1 IO5 M2 SSWE M3 SSOE M4 IO1/BOOTM0 M5 NC M13 RSVD2 M14 HA18 M15 HA17 M16 HBE1 M17 DVDD N1 DVDD N2 IO4 N3 D16 N4 SSADS N5 NC N6 CVDD N7 NC N8 NC N9 NC N10 CVDD N11 NC N12 NC N13 RSVD1 N14 HINT N15 HCNTL0 N16 HMODE N17 HA19 P1 IO3/BOOTM2 P2 CLKS1 P3 DR1 P4 D19 P5 D22 P6 D23 P7 D24 P8 CLKS2 P9 FSX0 P10 D31 P11 D28 P12 INT4 P13 ARDY P14 HOLDA P15 TIN/TOUT0 P16 CLKMD SPRS076J June 2000 − Revised July 2004 Introduction Table 2−1. Pin Assignments (Continued) BGA BALL # SIGNAL BGA BALL # SIGNAL BGA BALL # SIGNAL BGA BALL # P17 CVDD R1 CVDD R2 FSR1 R3 SIGNAL D18 R4 D20 R5 CLKR2 R6 FSR2 R7 DR2 R8 D26 R9 FSX2 R10 DX0 R11 INT5 R12 INT0 R13 INT2 R14 ARE R15 CLKX1 R16 EMU0 R17 TIN/TOUT1 T1 D17 T2 IO2/BOOTM1 T3 CLKR1 T4 D21 T5 FSR0 T6 DR0 T7 D25 T8 D27 T9 D29 T10 D30 T11 NC T12 NMI T13 AWE T14 INT3 T15 FSX1 T16 DX1 T17 VSS U1 VSS U2 VSS U3 CLKR0 U4 CVDD U5 CLKS0 U6 DVDD U7 CLKX0 U8 CLKX2 U9 VSS U10 VSS U11 DX2 U12 CVDD U13 INT1 U14 DVDD U15 AOE U16 HOLD U17 VSS June 2000 − Revised July 2004 SPRS076J 15 Introduction 2.3 Signal Descriptions Table 2−2 lists each signal, function, and operating mode(s) grouped by function. See Section 2.2 for exact pin locations based on package type. Table 2−2. Signal Descriptions SIGNAL NAME TYPE† OTHER‡ DESCRIPTION EMIF - ADDRESS BUS A[21:0] O/Z E,F External memory address bus (byte address). Address all external memory (program and data). Since A[23:22] are redundant to the CE[3:0] memory space selects in terms of memory addressing capability, A[23:22] are not externally provided. EMIF - CONTROL SIGNALS COMMON TO ALL MEMORY TYPES CE0 CE1 CE2 CE3 O/Z E,F External memory space enables. Select one of four external memory ranges based on the address. BE0 BE1 BE2 BE3 O/Z E,F Byte-enable control. Can be used as chip selects for external memory. These signals respond according to the data width of the memory access. 8-bit accesses cause a single byte enable to respond. 16-bit accesses cause two byte enables to respond. 32-bit accesses cause all four byte enables to respond. CLKMEM O/Z E,F Memory interface clock (for SDRAM / SBSRAM). Clock for synchronizing the external synchronous memories to the C55x external memory interface. EMIF - DATA BUS D[31:0] I/O/Z D,E,F External data bus. Provides data exchange between external memories and the C55x external memory interface. The bus holders on D[31:0] are controlled by the BH bit in the system register (SYSR). EMIF - BUS ARBITRATION HOLD I − Hold request. HOLD is asserted by an external host to request control of the address, data and control signals. HOLDA O/Z F Hold acknowledge. HOLDA is asserted by the DSP to indicate that the DSP is in the HOLD state and that the EMIF address, data and control signals are in a high-impedance state, allowing the external memory interface to be accessed by other devices. EMIF - ASYNCHRONOUS MEMORY CONTROL SIGNALS Asynchronous memory read enable. ARE acts as a strobe during asynchronous memory reads only. ARE AOE O/Z † ‡ 16 Asynchronous memory output enable. AOE indicates whether a memory access is a read (low) or a write (high). Asynchronous memory write enable. AWE acts as a strobe during asynchronous memory writes only. AWE ARDY E,F I Asynchronous memory ready input. ARDY indicates that an external device is ready for a bus transaction to be completed. If the device is not ready (ARDY is low), the processor extends the memory access by one cycle and checks ARDY again. The ARDY signal is sampled at the end of the STROBE period in the memory access. I = Input, O = Output, S = Supply, Z = High impedance Other Pin Characteristics: A − Internal pullup (always enabled) E − Pin is high impedance in HOLD mode (due to HOLD pin). B − Internal pulldown (always enabled) F − Pin is high impedance in OFF mode (due to EMU1/OFF pin). C − Hysteresis input G − Pin can be configured as a general-purpose input. D − Pin has bus holder H − PIn can be configured as a general-purpose output. J − Internal pullup enabled by the HPE bit in the system register (SYSR) K − Internal pulldown enabled by the HPE bit in the system register (SYSR) SPRS076J June 2000 − Revised July 2004 Introduction Table 2−2. Signal Descriptions (Continued) SIGNAL NAME TYPE† OTHER‡ DESCRIPTION EMIF - SYNCHRONOUS BURST SRAM CONTROL SIGNALS SBSRAM address strobe. SSADS is active (low) during the period of the SBSRAM access when the address is made available to the external memory by the DSP. SSADS SSOE O/Z E,F SSWE SBSRAM output enable. SSOE is active (low) during read accesses to SBSRAM. SBSRAM write enable. SSWE is active (low) during write accesses to SBSRAM. EMIF - SYNCHRONOUS DRAM CONTROL SIGNALS SDRAM row address strobe. SDRAS is active (low) during the ACTV, DCAB, REFR, and MRS commands. SDRAS SDCAS O/Z E,F SDRAM address column strobe. SDCAS is active (low) during reads, writes, and the REFR and MRS commands. SDWE SDRAM write enable. SDWE is active (low) during writes, and the DCAB and MRS commands. SDA10 SDRAM A10 address (address/autoprecharge disable). SDA10 is used during reads, writes, and all commands. MULTICHANNEL BUFFERED SERIAL PORT SIGNALS † ‡ CLKR0 CLKR1 CLKR2 I/O/Z C,F,G,H DR0 DR1 DR2 I G FSR0 FSR1 FSR2 I/O/Z F,G,H Frame synchronization signal for the receiver CLKX0 CLKX1 CLKX2 I/O/Z C,F,G,H Serial shift clock reference for the transmitter DX0 DX1 DX2 O/Z F,H FSX0 FSX1 FSX2 I/O/Z F,G,H CLKS0 CLKS1 CLKS2 I G Serial shift clock reference for the receiver Serial receive data input Serial transmit data output Frame synchronization signal for the transmitter External clock source to the sample rate generator I = Input, O = Output, S = Supply, Z = High impedance Other Pin Characteristics: A − Internal pullup (always enabled) E − Pin is high impedance in HOLD mode (due to HOLD pin). B − Internal pulldown (always enabled) F − Pin is high impedance in OFF mode (due to EMU1/OFF pin). C − Hysteresis input G − Pin can be configured as a general-purpose input. D − Pin has bus holder H − PIn can be configured as a general-purpose output. J − Internal pullup enabled by the HPE bit in the system register (SYSR) K − Internal pulldown enabled by the HPE bit in the system register (SYSR) June 2000 − Revised July 2004 SPRS076J 17 Introduction Table 2−2. Signal Descriptions (Continued) SIGNAL NAME TYPE† OTHER‡ DESCRIPTION ENHANCED HOST-PORT INTERFACE (EHPI) Host address bus: In non-multiplexed mode (HMODE pin high): HA[19:0] functions as the host address bus only HA[19:3] HA2/HAS HA1/HCNTL1 HA0 I HD[15:0] I/O/Z D,F HCS I J Host chip select. HCS is the select input for the EHPI and must be driven low during accesses. If the EHPI is not used, HCS must be driven high. HA2/HAS I J Host address strobe. Operates as HAS when HMODE is low (multiplexed mode). Hosts with multiplexed address and data pins may require HAS to latch the address in the HPIA register. HR/W I ËËËËË ËËËËË ËËËËË ËËËËË J Host read or write select. Controls the direction of the EHPI transfer. I J Host data strobes. HDS1 and HDS2 are driven by the host read and write strobes to control data transfers. O/Z F,J Host ready (from DSP to host). HRDY informs the host when the EHPI is ready for the next transfer. J HDS1 HDS2 HRDY K I J Host multiplexed/non-multiplexed mode select. When HMODE is high, the EHPI operates in nonmultiplexed mode. When HMODE is low, the EHPI operates in multiplexed mode. I J Host control selects. HCNTL0 and HCNTL1 select host accesses to EHPI address, data or control registers. HA1/HCNTL operates as HCNTL when HMODE is low (multiplexed mode). O/Z F Host interrupt (from DSP to host). This output is used to interrupt the host. HINT is high following reset. HCNTL0 HINT † ‡ 18 The bus holders on HD[15:0] are controlled by the HBH bit in the system register (SYSR). I HBE1 HA1/HCNTL1 Host data bus. Provides data exchange between the host and C55x EHPI. EHPI byte enables. HBE0 and HBE1 are driven low selectively by the host to indicate whether the transaction involves the lower byte only, the upper byte only, or both. HBE0 HMODE In multiplexed mode (HMODE pin low): HA[19:3] are disabled HA2/HAS functions as HAS (Host Address Strobe). Hosts with multiplexed address and data pins may require HAS to latch the address in the HPIA register. HA1/HCNTL1 functions as HCNTL1 (Host Control Input) and with HCNTL0 determines the type of transaction being performed. As of revision 2.1, the byte-enable function on the EHPI will no longer be supported. These pins must be driven low by an external device, by external pulldown resistors or by the internal pulldown circuit controlled by the HPE bit in the SYSR register. I = Input, O = Output, S = Supply, Z = High impedance Other Pin Characteristics: A − Internal pullup (always enabled) E − Pin is high impedance in HOLD mode (due to HOLD pin). B − Internal pulldown (always enabled) F − Pin is high impedance in OFF mode (due to EMU1/OFF pin). C − Hysteresis input G − Pin can be configured as a general-purpose input. D − Pin has bus holder H − PIn can be configured as a general-purpose output. J − Internal pullup enabled by the HPE bit in the system register (SYSR) K − Internal pulldown enabled by the HPE bit in the system register (SYSR) SPRS076J June 2000 − Revised July 2004 Introduction Table 2−2. Signal Descriptions (Continued) SIGNAL NAME TYPE† OTHER‡ DESCRIPTION INTERRUPT AND RESET SIGNALS RESET I C Device reset. RESET causes the DSP to terminate execution and causes reinitialization of the CPU and peripherals. The response of the DSP after reset is determined by the RST_MODE pin. Device reset mode control. RST_MODE controls how a device reset is handled. RST_MODE As of revision 2.1, the RST_MODE function will no longer be supported. RST_MODE will be driven low internally. After reset, the CPU will branch to the reset vector and begin execution. I The external state of the RST_MODE pin will have no effect on device operation. INT0 INT1 INT2 INT3 INT4 INT5 I C Maskable external interrupts. INT0−INT5 are prioritized and are maskable via the interrupt enable registers (IER0 and IER1) and the Interrupt Mode bit (INTM in ST1_55). INT0−INT5 can be polled and reset via the Interrupt Flag Registers (IFR0 and IFR1). NMI I C Nonmaskable external interrupt. NMI is an external interrupt that cannot be masked by the interrupt enable registers (IER0 and IER1). When NMI is activated, the interrupt is always performed. JTAG EMULATION TCK I A,C IEEE Standard 1149.1 test clock. TCK is normally a free-running clock signal with a 50% duty cycle. The changes on the test access port (TAP) of input signals TDI and TMS are clocked into the TAP controller, instruction register, or selected test data register on the rising edge of TCK. Changes at the TAP output signal TDO occur on the falling edge of TCK. TDI I A IEEE Standard 1149.1 test data input. TDI is clocked into the selected register (instruction or data) on the rising edge of TCK. TDO O − IEEE Standard 1149.1 test data output. The contents of the selected register (instruction or data) are shifted out of TDO on the falling edge of TCK. TDO is in the high-impedance state except when the scanning of data is in progress. TMS I A IEEE Standard 1149.1 test mode select. This serial control input is clocked into the TAP controller on the rising edge of TCK. TRST I B IEEE Standard 1149.1 test reset. TRST, when high, gives the IEEE standard 1149.1 scan system control of the operations of the device. If TRST is not connected, or driven low, the device operates in its functional mode, and the IEEE standard 1149.1 signals are ignored. This pin has an on-chip pulldown circuit to provide control of the pin when it is not externally connected. An external pullup resistor should not be connected to this pin. † ‡ I = Input, O = Output, S = Supply, Z = High impedance Other Pin Characteristics: A − Internal pullup (always enabled) E − Pin is high impedance in HOLD mode (due to HOLD pin). B − Internal pulldown (always enabled) F − Pin is high impedance in OFF mode (due to EMU1/OFF pin). C − Hysteresis input G − Pin can be configured as a general-purpose input. D − Pin has bus holder H − PIn can be configured as a general-purpose output. J − Internal pullup enabled by the HPE bit in the system register (SYSR) K − Internal pulldown enabled by the HPE bit in the system register (SYSR) June 2000 − Revised July 2004 SPRS076J 19 Introduction Table 2−2. Signal Descriptions (Continued) SIGNAL NAME TYPE† OTHER‡ DESCRIPTION JTAG EMULATION (CONTINUED) EMU0 EMU1/OFF I/O/Z I/O/Z A A Emulation pin 0. When TRST is driven low, EMU0 must be high for activation of the OFF condition. When TRST is driven high, EMU0 is used as an interrupt to or from the emulator system and is defined as input/output by way of the IEEE standard 1449.1 scan system. Emulation pin 1 / disable all outputs. When TRST is driven high, EMU1/OFF is used as an interrupt to or from the emulator system and is defined as input/output by way of the IEEE standard 1149.1 scan system. When TRST is driven low, EMU1/OFF is configured as OFF. The EMU1/OFF signal, when active low, puts all output drivers into the high-impedance state. Note that OFF is used exclusively for testing and emulation purposes (not for multiprocessing applications). Therefore, for the OFF feature, the following apply: TRST = low EMU0 = high EMU1/OFF = low RSVD[1:9] I/O Reserved. Reserved for future emulation purposes. These pins should be left unconnected. CLOCK SIGNALS CLKIN I C Clock input CLKOUT O/Z F Clock output. CLKOUT can represent the internal CPU clock or can be divided down to generate a slower clock by programming the CLKDIV field in the system register (SYSR). C Clock mode select. CLKMD selects the mode of the clock generator after reset. When CLKMD is low after reset, the clock generator will run at the same frequency as CLKIN. If CLKMD is high after reset, the clock generator will run at one-half of the frequency of CLKIN. The clock generator can later be reprogrammed in software. CLKMD I TIMERS TIN/TOUT0 F,H Timer 0 input/output. When configured as an output, TIN/TOUT0 generates a pulse or toggles when on-chip Timer 0 counts down to zero. When configured as an input, TIN/TOUT0 is used as a clock reference for Timer 0. The operation of this pin is configured in the timer control register (TCR0). F,H Timer 1 input/output. When configured as an output, TIN/TOUT1 generates a pulse or toggles when on-chip Timer 1 counts down to zero. When configured as an input, TIN/TOUT1 is used as a clock reference for Timer 1. The operation of this pin is configured in the timer control register (TCR1). I/O/Z TIN/TOUT1 GENERAL-PURPOSE I/O SIGNALS IO7 IO6 IO5 IO4 IO3/BOOTM2 IO2/BOOTM1 IO1/BOOTM0 IO0 I/O/Z BOOTM3 I A XF O/Z F,H F,G,H General-purpose configurable inputs/outputs. IO[7:0] can be individually configured as inputs or outputs via the GPIO direction register (IODIR). Data can be read from inputs or data written to outputs via the GPIO Data Register (IODATA). In addition, the bootloader uses IO4 as an output during the boot process. For detailed information on the operation of the bootloader, see the Using the TMS320VC5510 Bootloader application report (literature number SPRA763). Boot Mode Selection signals. BOOTM[2:0] are sampled following reset to configure the boot mode for the DSP. These signals are shared with IO[3:1]. After boot is complete, these signals can be used as general-purpose inputs/outputs. Boot Mode Selection signal. BOOTM3 is sampled during the operation of the on-chip bootloader in conjunction with BOOTM[2:0] to configure the boot mode. BOOTM3 is not present on TMX320VC5510 revision 1.x. External flag output † I = Input, O = Output, S = Supply, Z = High impedance ‡ Other Pin Characteristics: A − Internal pullup (always enabled) E − Pin is high impedance in HOLD mode (due to HOLD pin). B − Internal pulldown (always enabled) F − Pin is high impedance in OFF mode (due to EMU1/OFF pin). C − Hysteresis input G − Pin can be configured as a general-purpose input. D − Pin has bus holder H − PIn can be configured as a general-purpose output. J − Internal pullup enabled by the HPE bit in the system register (SYSR) K − Internal pulldown enabled by the HPE bit in the system register (SYSR) 20 SPRS076J June 2000 − Revised July 2004 Introduction Table 2−2. Signal Descriptions (Continued) SIGNAL NAME TYPE† OTHER‡ DESCRIPTION SUPPLY VOLTAGE PINS CVDD S Dedicated power supply for the internal logic (CPU and peripherals) DVDD S Dedicated power supply for the I/O pins VSS S Ground MISCELLANEOUS PINS NC † ‡ No connection − do not connect I = Input, O = Output, S = Supply, Z = High impedance Other Pin Characteristics: A − Internal pullup (always enabled) E − Pin is high impedance in HOLD mode (due to HOLD pin). B − Internal pulldown (always enabled) F − Pin is high impedance in OFF mode (due to EMU1/OFF pin). C − Hysteresis input G − Pin can be configured as a general-purpose input. D − Pin has bus holder H − PIn can be configured as a general-purpose output. J − Internal pullup enabled by the HPE bit in the system register (SYSR) K − Internal pulldown enabled by the HPE bit in the system register (SYSR) June 2000 − Revised July 2004 SPRS076J 21 Functional Overview 3 Functional Overview The following functional overview is based on the block diagram in Figure 3−1. A[21:0] D[31:0] CE[3:0] BE[3:0] HOLD HOLDA EMIF ARE AOE AWE ARDY SSADS SSOE SSWE CLKMEM SDRAS SDCAS SDWE SDA10 HBE[1:0] HDS[2:1] HCS HR/W HAS HINT TRST EMU1/OFF RESET NMI INT[5:0] Figure 3−1. TMS320VC5510 Functional Block Diagram 22 SPRS076J June 2000 − Revised July 2004 Functional Overview 3.1 Memory The 5510 supports a unified memory map (program and data accesses are made to the same physical space). The total on-chip memory is 352K bytes (176K 16-bit words). 3.1.1 On-Chip Dual-Access RAM (DARAM) The DARAM is located in the byte address range 000000h−00FFFFh and is composed of eight blocks of 8K-bytes each (see Table 3−1). Each DARAM block can perform two accesses per cycle (two reads, two writes, or a read and a write). DARAM can be accessed by the internal program, data, or DMA buses. Table 3−1. DARAM Blocks BYTE ADDRESS RANGE MEMORY BLOCK 000000h − 001FFFh DARAM 0 002000h − 003FFFh DARAM 1 004000h − 005FFFh DARAM 2 006000h − 007FFFh DARAM 3 008000h − 009FFFh DARAM 4 00A000h − 00BFFFh DARAM 5 00C000h − 00DFFFh DARAM 6 00E000h − 00FFFFh DARAM 7 3.1.2 On-Chip Single-Access RAM (SARAM) The SARAM is located at the byte address range 010000h−04FFFFh and is composed of 32 blocks of 8K-bytes each (see Table 3−2). Each SARAM block can perform one access per cycle (one read or one write). SARAM can be accessed by the internal program, data, or DMA buses. Table 3−2. SARAM Blocks BYTE ADDRESS RANGE MEMORY BLOCK BYTE ADDRESS RANGE MEMORY BLOCK 010000h − 011FFFh SARAM 0 030000h − 031FFFh SARAM 16 012000h − 013FFFh SARAM 1 032000h − 033FFFh SARAM 17 014000h − 015FFFh SARAM 2 034000h − 035FFFh SARAM 18 016000h − 017FFFh SARAM 3 036000h − 037FFFh SARAM 19 018000h − 019FFFh SARAM 4 038000h − 039FFFh SARAM 20 01A000h − 01BFFFh SARAM 5 03A000h − 03BFFFh SARAM 21 01C000h − 01DFFFh SARAM 6 03C000h − 03DFFFh SARAM 22 01E000h − 01FFFFh SARAM 7 03E000h − 03FFFFh SARAM 23 020000h − 021FFFh SARAM 8 040000h − 041FFFh SARAM 24 022000h − 023FFFh SARAM 9 042000h − 043FFFh SARAM 25 024000h − 025FFFh SARAM 10 044000h − 045FFFh SARAM 26 026000h − 027FFFh SARAM 11 046000h − 047FFFh SARAM 27 028000h − 029FFFh SARAM 12 048000h − 049FFFh SARAM 28 02A000h − 02BFFFh SARAM 13 04A000h − 04BFFFh SARAM 29 02C000h − 02DFFFh SARAM 14 04C000h − 04DFFFh SARAM 30 02E000h − 02FFFFh SARAM 15 04E000h − 04FFFFh SARAM 31 June 2000 − Revised July 2004 SPRS076J 23 Functional Overview 3.1.3 On-Chip ROM The ROM is located at the byte address range FF8000h−FFFFFFh when MPNMC = 0 at reset. The ROM is composed of a single block of 32K bytes. When MPNMC = 1 at reset, the on-chip ROM is disabled and not present in the memory map, and byte address range FF8000h−FFFFFFh is directed to external memory space. MPNMC is a bit located in the ST3 status register, and its status is determined by the logic level on the BOOTM[2:0] pins when sampled at reset. If BOOTM[2:0] are all logic 0 at reset, the MPNMC bit is set to 1 and the on-chip ROM is disabled; otherwise, the MPNMC bit is cleared to 0 and the on-chip ROM is enabled. These pins are not sampled again until the next hardware reset. The software reset instruction does not affect the MPNMC bit. Software can also be used to set or clear the MPNMC bit. ROM can be accessed by the program, data, or DMA buses. The first 16-bit word access to ROM requires three cycles. Subsequent accesses require two cycles per 16-bit word. The standard on-chip ROM contains a bootloader which provides a variety of methods to load application code automatically after power up or a hardware reset. For more information, see Section 3.1.5 of this document. The vector table associated with the bootloader is also contained in the ROM. A sine look-up table is provided containing 256 values (crossing 360 degrees) expressed in Q15 format. The remaining components are used during factory testing purposes. Table 3−3. Standard On-Chip ROM Contents BYTE ADDRESS RANGE DESCRIPTION FF8000h − FF8FFFh Bootloader FF9000h − FFF9FFh Reserved FFFA00h − FFFBFFh Sine look-up table FFFC00h − FFFEFFh Factory Test Code FFFF00h − FFFFFBh Vector Table FFFFFCh − FFFFFFh ID Code 3.1.4 Instruction Cache The 24K-byte instruction cache provides three configurations: • • • One 2-way cache block only One 2-way cache block plus one RAMSET block One 2-way cache block plus two RAMSET blocks The 2-way cache uses 2-way set associative mapping and holds up to 16K bytes. It is organized as 512 sets of two cache lines per set. Each cache line contains 16 bytes. Each tag has two corresponding cache lines, providing two opportunities for a hit on a given tag. The 2-way cache is updated based on a least-recently-used algorithm. Each RAMSET block provides a 4K-byte bank of memory to hold a continuous image of code. Each RAMSET is composed of 256 lines with 16 bytes per line. Each RAMSET uses a single tag to define a continuous memory image in the RAMSET. The tag defines the start address of the RAMSET. Once the TAG is loaded, the RAMSET is filled. The RAMSET contents remain constant until the tag is changed. The RAMSETs provide an efficient method to cache frequently used functions. Control bits in CPU status register ST3_55 provide the ability to enable, freeze, and flush the cache. For more information on the instruction cache, see the TMS320VC5510 DSP Instruction Cache Reference Guide (literature number SPRU576). 24 SPRS076J June 2000 − Revised July 2004 Functional Overview 3.1.5 Memory Map Byte Address† (Hex) 000000 010000 Memory Blocks Block Length DARAM‡ (8 Blocks) 65,536 Bytes SARAM§ (32 Blocks) 262,144 Bytes 050000 External¶ − CE0 3,866,624 Bytes External¶ − CE1 4,194,304 Bytes External¶ − CE2 4,194,304 Bytes External¶ − CE3 4,161,536 Bytes 400000 800000 C00000 FF8000 FFFFFF ROM# if MPNMC=0 (1 Block) External¶ − CE3 32,768 Bytes if MPNMC=1 † Address shown represents the first byte address in each block. Dual-access RAM (DARAM): two accesses per cycle per block, 8 blocks of 8K bytes. § Single-access RAM (SARAM): one access per cycle per block, 32 blocks of 8K bytes. ¶ External memory spaces are selected by the chip-enable signal shown (CE[0:3]). Supported memory types include: asynchronous, synchronous DRAM (SDRAM), and synchronous burst SRAM (SBSRAM). # Read-only memory (ROM): one access every two cycles, one block of 32K bytes. ‡ Figure 3−2. TMS320VC5510 Memory Map 3.1.6 Bootloader The on-chip bootloader provides a method to transfer application code and tables from an external source to the on-chip RAM at power up. The 5510 provides several options to download the code to accommodate varying system requirements. These options include: • • • • Enhanced Host-Port Interface (EHPI) boot External memory boot from 8-/16-/32-bit-wide asynchronous memory Serial slave boot from McBSP0 with 8- or 16-bit element length Serial EEPROM boot from McBSP0 in 8-bit SPI format External pins BOOTM3, BOOTM2, BOOTM1, and BOOTM0 select the boot configuration. The values of BOOTM[2:0] are latched with the rising edge of the RESET input. BOOTM[0] is shared with general-purpose IO1. BOOTM[1] is shared with general-purpose IO2. BOOTM[2] is shared with general-purpose IO3. The boot configurations available are summarized in Table 3−4. For detailed information on the bootloader functions, refer to the Using the TMS320VC5510 Bootloader Application Report (literature number SPRA763). June 2000 − Revised July 2004 SPRS076J 25 Functional Overview Table 3−4. TMS320VC5510 Boot Configurations BOOTM[3:0] 3.2 BOOT PROCESS EXECUTION START BYTE ADDRESS AFTER BOOT IS COMPLETE 0000 No boot FFFF00h (reset vector) 0001 Serial SPI EEPROM boot from McBSP0 supporting 24-bit address Destination specified in the boot table 0010 Reserved − 0011 Reserved − 0100 Reserved − 0101 Reserved − 0110 Reserved − 0111 Reserved − 1000 No boot FFFF00h (reset vector) 1001 Serial SPI EEPROM boot from McBSP0 supporting 16-bit address Destination specified in the boot table 1010 Parallel EMIF boot from 8-bit asynchronous memory Destination specified in the boot table 1011 Parallel EMIF boot from 16-bit asynchronous memory Destination specified in the boot table 1100 Parallel EMIF boot from 32-bit asynchronous memory Destination specified in the boot table 1101 EHPI boot 010000h (on-chip SARAM) 1110 Standard serial boot from McBSP0, 16-bit element length Destination specified in the boot table 1111 Standard serial boot from McBSP0, 8-bit element length Destination specified in the boot table Peripherals The 5510 supports the following peripherals: • • • • • • • An external memory interface (EMIF) A six-channel direct memory access (DMA) controller 16-bit parallel Enhanced Host-Port Interface (EHPI) A digital phase-locked loop (DPLL) clock generator Two timers Three multichannel buffered serial ports (McBSPs) Eight configurable general-purpose I/O pins Peripheral information specific to the 5510 peripherals is included in the following sections. For detailed information on the C55x DSP peripherals, see the following documents: • • • • • • • 26 TMS320C55x DSP Functional Overview (literature number SPRU312) TMS320C55x DSP Peripherals Overview Reference Guide (literature number SPRU317) TMS320VC5510 DSP Instruction Cache Reference Guide (literature number SPRU576) TMS320VC5501/5502/5503/5507/5509/5510 DSP Multichannel Buffered Serial Port (McBSP) Reference Guide (literature number SPRU592) TMS320VC5503/5507/5509/5510 DSP Direct Memory Access (DMA) Controller Reference Guide (literature number SPRU587) TMS320VC5510 DSP Host Port Interface (HPI) Reference Guide (literature number SPRU588) TMS320VC5503/5507/5509/5510 DSP Timers Reference Guide (literature number SPRU595) SPRS076J June 2000 − Revised July 2004 Functional Overview 3.2.1 System Register (SYSR) The 5510 system register (SYSR) provides control over certain device-specific functions. SYSR is located at port address 07FDh. 15 10 9 8 7 6 5 4 3 2 0 Reserved HPE BH HBH BOOTM3 Reserved Reserved Reserved CLKDIV R−000000 R/W−1 R/W−0 R/W−0 R−0 R−0 R/W−0 R/W−0 R/W−000 LEGEND: R = Read, W = Write, n = value after reset Figure 3−3. System Register (SYSR) Bit Layout Table 3−5. System Register (SYSR) Bit Functions BIT NO. BIT NAME RESET VALUE 15−10 Reserved 000000 FUNCTION These bits are reserved and are unaffected by writes. 9 HPE 1 EHPI pullup/pulldown enable. Enables the internal pullups on the EHPI control pins HCS, HAS, HR/W, HMODE, HCNTL0, and HA1/HCNTL1. Enables the internal pulldowns on EHPI control pins HBE0 and HBE1. HPE = 0 Pullups and pulldowns disabled HPE = 1 Pullups and pulldowns enabled. 8 BH 0 EMIF data bus holder enable. Enables internal bus holders on D[31:0]. BH = 0 EMIF data bus holders disabled. BH = 1 EMIF data bus holders enabled. 7 HBH 0 EHPI data bus holder enable. Enables internal bus holders on HD[15:0]. HBH = 0 EHPI data bus holders disabled. HBH = 1 EHPI data bus holders enabled. 6 BOOTM3 0 BOOTM3 status. This read-only bit represents the state of the BOOTM3 pin. 5 Reserved 0 This bit is reserved and is unaffected by writes. 4 Reserved 0 This bit is reserved and must be written as 0. 3 Reserved 0 This bit is reserved and is unaffected by writes. 2−0 CLKDIV 000 June 2000 − Revised July 2004 CLKOUT divide factor. Allows the clock present on the CLKOUT pin to be a divided-down version of the internal CPU clock. This field does not affect the programming of the PLL CLKDIV = 000 CLKOUT represents the CPU clock divided by 1 CLKDIV = 001 CLKOUT represents the CPU clock divided by 2 CLKDIV = 010 CLKOUT represents the CPU clock divided by 4 CLKDIV = 011 CLKOUT represents the CPU clock divided by 6 CLKDIV = 100 CLKOUT represents the CPU clock divided by 8 CLKDIV = 101 CLKOUT represents the CPU clock divided by 10 CLKDIV = 110 CLKOUT represents the CPU clock divided by 12 CLKDIV = 111 CLKOUT represents the CPU clock divided by 14 SPRS076J 27 Functional Overview 3.2.2 Direct Memory Access (DMA) The 5510 DMA provides the following features: • Four standard ports, one for each of the following data resources: DARAM, SARAM, Peripherals, and External Memory • Six channels, which allow the DMA controller to track the context of six independent DMA channels • Programmable low/high priority for each DMA channel • One interrupt for each DMA channel • Event synchronization. DMA transfers in each channel can be dependent on the occurrence of selected events. • Programmable address modification for source and destination addresses • Dedicated Idle Domain allows the DMA controller to be placed in a low-power (idle) state under software control. • DMA controller supports EHPI accesses to internal/external memory The 5510 DMA controller allows transfers to be synchronized to selected events. The 5510 supports 14 separate sync events and each channel can be tied to separate sync events independent of the other channels. Sync events are selected by programming the SYNC field in the channel-specific DMA Channel Control Register (DMA_CCR). The sync events available on the 5510 are shown in Table 3−6. For more information on the 5510 DMA, see the TMS320VC5503/5507/5509/5510 DSP Direct Memory Access (DMA) Controller Reference Guide (literature number SPRU587). Table 3−6. DMA Sync Events SYNC FIELD IN DMA_CCR 00000b No sync event 00001b McBSP0 receive event (REVT0) 00010b McBSP0 transmit event (XEVT0) 00101b McBSP1 receive event (REVT1) 00110b McBSP1 transmit event (XEVT1) 01001b McBSP2 receive event (REVT2) 01010b McBSP2 transmit event (XEVT2) 01101b Timer 0 event 01110b Timer 1 event 01111b External Interrupt 0 10000b External Interrupt 1 10001b External Interrupt 2 10010b External Interrupt 3 10011b External Interrupt 4 10100b External Interrupt 5 Other values 28 SPRS076J SYNC EVENT Reserved (do not use these values) June 2000 − Revised July 2004 Functional Overview 3.2.3 Enhanced Host Port Interface (EHPI) The 5510 EHPI provides a 16-bit parallel interface to a host with the following features: • • • • • • • 20-bit host address bus 16-bit host data bus Multiplexed and non-multiplexed bus modes Host access to on-chip SARAM, on-chip DARAM, and external memory 20-bit address register (in multiplexed mode) with autoincrement capability for faster transfers Multiple address/data strobes provide a glueless interface to a variety of hosts HRDY signal for handshaking with host The 5510 EHPI can access internal DARAM, internal SARAM and a portion of the external memory space. The EHPI cannot directly access the on-chip peripherals and cannot access the memory-mapped registers below word address 000060h in DARAM. Note that all memory accesses made though the EHPI are word-addressed. A map of the memory space accessible by the EHPI is shown in Figure 3−4. The EHPI can access from word address 000060h to 0FFFFFh. The shaded areas of the memory map are not accessible by the EHPI. Word Address 000000h Memory Blocks Memory Mapped Registers (DARAM) 000060h DARAM 008000h SARAM Memory Accessible Through the EHPI 028000h External − CE0 100000h External − CE0 200000h External − CE1 400000h External − CE2 600000h External − CE3 NOTE A: The shaded areas of the memory map are not accessible by the EHPI. Figure 3−4. EHPI Memory Map June 2000 − Revised July 2004 SPRS076J 29 Functional Overview When the EHPI inputs are uncontrolled, noise on the inputs can cause spurious accesses that may corrupt internal memory. If the EHPI is not driven by a host, the HCS pin should be driven high by one of the following methods: • • • An external device External pullup resistor, or The on-chip pullup circuit controlled by the HPE bit in the System Register (SYSR). See Section 3.2.1 for more information on how to configure this control. As of revision 2.1, the byte-enable function of the EHPI is no longer supported. Pins HBE0 and HBE1 must be driven low at all times. For more information on the 5510 EHPI, see the TMS320VC5510 DSP Host Port Interface (HPI) Reference Guide (literature number SPRU588). 30 SPRS076J June 2000 − Revised July 2004 Functional Overview 3.2.4 General-Purpose Input/Output Port (GPIO) The 5510 provides eight dedicated general-purpose input/output pins, IO0−IO7. Each pin can be independently configured as an input or an output using the I/O Direction Register (IODIR). The I/O Data Register (IODATA) is used to monitor the logic state of pins configured as inputs and control the logic state of pins configured as outputs. IODIR and IODATA are accessible to the CPU and to the DMA controller at addresses in I/O space. See Table 3−19 for address information. The description of the IODIR is shown in Figure 3−5 and Table 3−7. The description of IODATA is shown in Figure 3−6 and Table 3−8. To configure a GPIO pin as an input, clear the direction bit that corresponds to the pin in IODIR to 0. To read the logic state of the input pin, read the corresponding bit in IODATA. To configure a GPIO pin as an output, set the direction bit that corresponds to the pin in IODIR to 1. To control the logic state of the output pin, write to the corresponding bit in IODATA. 15 8 7 6 5 4 3 2 1 0 Reserved IO7DIR IO6DIR IO5DIR IO4DIR IO3DIR IO2DIR IO1DIR IO0DIR R−00000000 R/W−0 R/W−0 R/W−0 R/W−0 R/W−0 R/W−0 R/W−0 R/W−0 LEGEND: R = Read, W = Write, n = value after reset Figure 3−5. I/O Direction Register (IODIR) Bit Layout Table 3−7. I/O Direction Register (IODIR) Bit Functions BIT NO. BIT NAME RESET VALUE 15−8 Reserved 0 These bits are reserved and are unaffected by writes. 7−0 IOxDIR 0 IOx Direction Control Bit. Controls whether IOx operates as an input or an output. IOxDIR = 0 IOx is configured as an input. IOxDIR = 1 IOx is configured as an output. 15 8 FUNCTION 7 6 5 4 3 2 1 0 Reserved IO7D IO6D IO5D IO4D IO3D IO2D IO1D IO0D R−00000000 R/W−pin R/W−pin R/W−pin R/W−pin R/W−pin R/W−pin R/W−pin R/W−pin LEGEND: R = Read, W = Write, pin = value present on the pin (IO7−IO0 default to inputs after reset) Figure 3−6. I/O Data Register (IODATA) Bit Layout Table 3−8. I/O Data Register (IODATA) Bit Functions BIT NO. BIT NAME RESET VALUE 15−8 Reserved 0 7−0 IOxD pin† FUNCTION These bits are reserved and are unaffected by writes. IOx Data Bit. If IOx is configured as an input (IOxDIR = 0 in IODIR): IOxD = 0 The signal on the IOx pin is low. IOxD = 1 The signal on the IOx pin is high. If IOx is configured as an output (IOxDIR = 1 in IODIR): IOxD = 0 Drive the signal on the IOx pin low. IOxD = 1 Drive the signal on the IOx pin high. † pin = value present on the pin (IO7−IO0 default to inputs after reset) June 2000 − Revised July 2004 SPRS076J 31 Functional Overview 3.3 CPU Register Description The 5510 CPU registers are shown in Table 3−9. For code compatibility, many TMS320C55x (C55x) CPU registers map to comparable TMS320C54x (C54x) CPU register addresses. The corresponding TMS320C54x (C54x) CPU registers are indicated in these instances. Table 3−9. CPU Registers C54X REGISTER VC5510 REGISTER WORD ADDRESS (HEX) IMR IER0 00 Interrupt Mask Register 0 IFR IFR0 01 Interrupt Flag Register 0 − ST0_55 02 Status Register 0 for C55x − ST1_55 03 Status Register 1 for C55x − ST3_55 04 Status Register 3 for C55x − − 05 Reserved ST0 ST0 06 Status Register ST0 (for 54x compatibility) ST1 ST1 07 Status Register ST1 (for 54x compatibility) AL AC0L 08 AH AC0H 09 AG AC0G 0A BL AC1L 0B DESCRIPTION Accumulator 0 (equivalent to Accumulator A on C54x) BH AC1H 0C BG AC1G 0D TREG T3 0E Temporary Register TRN TRN0 0F Transition Register AR0 AR0 10 Auxiliary Register 0 AR1 AR1 11 Auxiliary Register 1 AR2 AR2 12 Auxiliary Register 2 AR3 AR3 13 Auxiliary Register 3 AR4 AR4 14 Auxiliary Register 4 AR5 AR5 15 Auxiliary Register 5 AR6 AR6 16 Auxiliary Register 6 AR7 AR7 17 Auxiliary Register 7 SP SP 18 Stack Pointer Register BK BK03 19 Circular Buffer Size Register BRC BRC0 1A Block Repeat Counter RSA RSA0L 1B Block Repeat Start Address Accumulator 1 (equivalent to Accumulator A on C54x) REA REA0L 1C Block Repeat End Address PMST PMST 1D Processor Mode Status Register XPC XPC 1E Program Counter Extension Register − − 1F Reserved − T0 20 Temporary Data Register 0 − T1 21 Temporary Data Register 1 − T2 22 Temporary Data Register 2 − T3 23 Temporary Data Register 3 TMS320C54x and C54x are trademarks of Texas Instruments. 32 SPRS076J June 2000 − Revised July 2004 Functional Overview Table 3−9. CPU Registers (Continued) C54X REGISTER VC5510 REGISTER WORD ADDRESS (HEX) − AC2L 24 − AC2H 25 − AC2G 26 − CDP 27 − AC3L 28 − AC3H 29 − AC3G 2A DESCRIPTION Accumulator 2 Coefficient Data Pointer Accumulator 3 − DPH 2B Extended Data Page Pointer − MDP05 2C Reserved − MDP67 2D Reserved − DP 2E Memory Data Page Start Address − PDP 2F Peripheral Data Page Start Address − BK47 30 Circular Buffer Size Register for AR[4−7] − BKC 31 Circular Buffer Size Register for CDP − BSA01 32 Circular Buffer Start Address Register for AR[0−1] − BSA23 33 Circular Buffer Start Address Register for AR[2−3] − BSA45 34 Circular Buffer Start Address Register for AR[4−5] − BSA67 35 Circular Buffer Start Address Register for AR[6−7] − BSAC 36 Circular Buffer Coefficient Start Address Register − BIOS 37 Data Page Pointer Storage Location for 128-word Data Table − TRN1 38 Transition Register 1 − BRC1 39 Block Repeat Counter 1 − BRS1 3A Block Repeat Save 1 − CSR 3B Computed Single Repeat − RSA0H 3C − RSA0L 3D − REA0H 3E − REA0L 3F − RSA1H 40 − RSA1L 41 − REA1H 42 − REA1L 43 − RPTC 44 Repeat Counter − IER1 45 Interrupt Mask Register 1 − IFR1 46 Interrupt Flag Register 1 − DBIER0 47 Debug IER0 − DBIER1 48 Debug IER1 − IVPD 49 Interrupt Vector Pointer DSP − IVPH 4A Interrupt Vector Pointer HOST − ST2_55 4B Status Register 2 for C55x − SSP 4C System Stack Pointer − SP 4D User Stack Pointer − SPH 4E Extended Data Page Pointer for the SP and the SSP − CDPH 4F Main Data Page Pointer for the CDP June 2000 − Revised July 2004 Repeat Start Address 0 Repeat End Address 0 Repeat Start Address 1 Repeat End Address 1 SPRS076J 33 Functional Overview 3.4 Peripheral Register Description Peripheral registers on the 5510 are accessed using the port qualifier. For more information on the use of the port qualifier, see the TMS320C55x Assembly Language Tools User’s Guide (literature number SPRU280). For detailed information on the operation of the peripherals and the functions of each of the peripheral registers, refer to the TMS320C55x DSP Peripherals Overview Reference Guide (literature number SPRU317). NOTE: The CPU access latency to the peripheral memory-mapped registers is 6 CPU cycles. Following peripheral register update(s), the CPU must wait at least 6 CPU cycles before attempting to use that peripheral. When more than one peripheral register is updated in a sequence, the CPU only needs to wait following the final register write. For example, if the EMIF is being reconfigured, the CPU must wait until the very last EMIF register update takes effect before trying to access the external memory. The users should consult the respective peripheral user’s guide to determine if a peripheral requires additional time to initialize itself to the new configuration after the register updates take effect. Table 3−10. Peripheral Bus Controller Configuration Registers PORT ADDRESS REGISTER NAME DESCRIPTION 0x0001 ICR Idle Control Register 0x0002 ISTR Idle Status Register 0x000F BOOT_MOD Boot Mode Register (read only) Table 3−11. Instruction Cache Registers PORT ADDRESS REGISTER NAME DESCRIPTION 0x1400 ICGC I-Cache Global Control Register 0x1401 ICFL0 I-Cache Flush Line Address Register 0 0x1402 ICFL1 I-Cache Flush Line Address Register 1 0x1403 ICWC I-Cache N-Way Control Register 0x1404 ICSTAT I-Cache Status Register 0x1405 ICRC1 I-Cache Ramset 1 Control Register 0x1406 ICRTAG1 I-Cache Ramset 1 Tag Register 0x1407 ICRC2 I-Cache Ramset 2 Control Register 0x1408 ICRTAG2 I-Cache Ramset 2 Tag Register 34 SPRS076J June 2000 − Revised July 2004 Functional Overview Table 3−12. External Memory Interface Registers PORT ADDRESS REGISTER NAME DESCRIPTION 0x0800 EGCR EMIF Global Control Register 0x0801 EMIRST EMIF Global Reset Register 0x0802 EMIBE EMIF Bus Error Status Register 0x0803 CE01 EMIF CE0 Space Control Register 1 0x0804 CE02 EMIF CE0 Space Control Register 2 0x0805 CE03 EMIF CE0 Space Control Register 3 0x0806 CE11 EMIF CE1 Space Control Register 1 0x0807 CE12 EMIF CE1 Space Control Register 2 0x0808 CE13 EMIF CE1 Space Control Register 3 0x0809 CE21 EMIF CE2 Space Control Register 1 0x080A CE22 EMIF CE2 Space Control Register 2 0x080B CE23 EMIF CE2 Space Control Register 3 0x080C CE31 EMIF CE3 Space Control Register 1 0x080D CE32 EMIF CE3 Space Control Register 2 0x080E CE33 EMIF CE3 Space Control Register 3 0x080F SDC1 EMIF SDRAM Control Register 1 0x0810 SDPER EMIF SDRAM Period Register 0x0811 SDCNT EMIF SDRAM Counter Register 0x0812 INIT EMIF SDRAM Init Register 0x0813 SDC2 EMIF SDRAM Control Register 2 June 2000 − Revised July 2004 SPRS076J 35 Functional Overview Table 3−13. DMA Configuration Registers PORT ADDRESS REGISTER NAME DESCRIPTION GLOBAL REGISTER 0x0E00 DMAGCR DMA Global Control Register 0x0E02 DMAGSCR DMA Software Compatibility Register 0x0E03 DMAGTCR DMA Timeout Control Register CHANNEL #0 REGISTERS 0x0C00 DMACSDP0 DMA Channel 0 Source / Destination Parameters Register 0x0C01 DMACCR0 DMA Channel 0 Control Register 0x0C02 DMACICR0 DMA Channel 0 Interrupt Control Register 0x0C03 DMACSR0 DMA Channel 0 Status Register 0x0C04 DMACSSAL0 DMA Channel 0 Source Start Address Register (lower bits) 0x0C05 DMACSSAU0 DMA Channel 0 Source Start Address Register (upper bits) 0x0C06 DMACDSAL0 DMA Channel 0 Source Destination Address Register (lower bits) 0x0C07 DMACDSAU0 DMA Channel 0 Source Destination Address Register (upper bits) 0x0C08 DMACEN0 DMA Channel 0 Element Number Register 0x0C09 DMACFN0 DMA Channel 0 Frame Number Register 0x0C0A DMACFI0/ DMACSFI0† DMA Channel 0 Frame Index Register/ DMA Channel 0 Source Frame Index Register† 0x0C0B DMACEI0/ DMACSEI0‡ DMA Channel 0 Element Index Register/ DMA Channel 0 Source Element Index Register‡ 0x0C0C DMACSAC0 DMA Channel 0 Source Address Counter 0x0C0D DMACDAC0 DMA Channel 0 Destination Address Counter 0x0C0E DMACDEI0 DMA Channel 0 Destination Element Index Register 0x0C0F DMACDFI0 DMA Channel 0 Destination Frame Index Register CHANNEL #1 REGISTERS 0x0C20 DMACSDP1 DMA Channel 1 Source / Destination Parameters Register 0x0C21 DMACCR1 DMA Channel 1 Control Register 0x0C22 DMACICR1 DMA Channel 1 Interrupt Control Register 0x0C23 DMACSR1 DMA Channel 1 Status Register 0x0C24 DMACSSAL1 DMA Channel 1 Source Start Address Register (lower bits) 0x0C25 DMACSSAU1 DMA Channel 1 Source Start Address Register (upper bits) 0x0C26 DMACDSAL1 DMA Channel 1 Source Destination Address Register (lower bits) 0x0C27 DMACDSAU1 DMA Channel 1 Source Destination Address Register (upper bits) 0x0C28 DMACEN1 DMA Channel 1 Element Number Register 0x0C29 DMACFN1 DMA Channel 1 Frame Number Register 0x0C2A DMACFI1/ DMACSFI1† DMA Channel 1 Frame Index Register/ DMA Channel 1 Source Frame Index Register† 0x0C2B DMACEI1/ DMACSEI1‡ DMA Channel 1 Element Index Register/ DMA Channel 1 Source Element Index Register‡ 0x0C2C DMACSAC1 DMA Channel 1 Source Address Counter 0x0C2D DMACDAC1 DMA Channel 1 Destination Address Counter 0x0C2E DMACDEI1 DMA Channel 1 Destination Element Index Register 0x0C2F DMACDFI1 DMA Channel 1 Destination Frame Index Register † On revision 1.x, the channel frame index applies to both source and destination and this register behaves as DMACFIn. On revision 2.0 and later, DMACSFIn and DMACDFIn provide separate source and destination frame indexing. Revisions 2.0 and later can be programmed for software compatibility with revisions 1.x through the Software Compatibility Register (DMAGSCR). ‡ On revision 1.x, the channel element index applies to both source and destination and this register behaves as DMACEIn. On revision 2.0 and later, DMACSEIn and DMACDEIn provide separate source and destination frame indexing. Revisions 2.0 and later can be programmed for software compatibility with revisions 1.x through the Software Compatibility Register (DMAGSCR). 36 SPRS076J June 2000 − Revised July 2004 Functional Overview Table 3−13. DMA Configuration Registers (Continued) PORT ADDRESS REGISTER NAME DESCRIPTION CHANNEL #2 REGISTERS 0x0C40 DMACSDP2 DMA Channel 2 Source / Destination Parameters Register 0x0C41 DMACCR2 DMA Channel 2 Control Register 0x0C42 DMACICR2 DMA Channel 2 Interrupt Control Register 0x0C43 DMACSR2 DMA Channel 2 Status Register 0x0C44 DMACSSAL2 DMA Channel 2 Source Start Address Register (lower bits) 0x0C45 DMACSSAU2 DMA Channel 2 Source Start Address Register (upper bits) 0x0C46 DMACDSAL2 DMA Channel 2 Source Destination Address Register (lower bits) 0x0C47 DMACDSAU2 DMA Channel 2 Source Destination Address Register (upper bits) 0x0C48 DMACEN2 DMA Channel 2 Element Number Register 0x0C49 DMACFN2 DMA Channel 2 Frame Number Register 0x0C4A DMACFI2/ DMACSFI2† DMA Channel 2 Frame Index Register/ DMA Channel 2 Source Frame Index Register† 0x0C4B DMACEI2/ DMACSEI2‡ DMA Channel 2 Element Index Register/ DMA Channel 2 Source Element Index Register‡ 0x0C4C DMACSAC2 DMA Channel 2 Source Address Counter 0x0C4D DMACDAC2 DMA Channel 2 Destination Address Counter 0x0C4E DMACDEI2 DMA Channel 2 Destination Element Index Register 0x0C4F DMACDFI2 DMA Channel 2 Destination Frame Index Register CHANNEL #3 REGISTERS 0x0C60 DMACSDP3 DMA Channel 3 Source / Destination Parameters Register 0x0C61 DMACCR3 DMA Channel 3 Control Register 0x0C62 DMACICR3 DMA Channel 3 Interrupt Control Register 0x0C63 DMACSR3 DMA Channel 3 Status Register 0x0C64 DMACSSAL3 DMA Channel 3 Source Start Address Register (lower bits) 0x0C65 DMACSSAU3 DMA Channel 3 Source Start Address Register (upper bits) 0x0C66 DMACDSAL3 DMA Channel 3 Source Destination Address Register (lower bits) 0x0C67 DMACDSAU3 DMA Channel 3 Source Destination Address Register (upper bits) 0x0C68 DMACEN3 DMA Channel 3 Element Number Register 0x0C69 DMACFN3 DMA Channel 3 Frame Number Register 0x0C6A DMACFI3/ DMACSFI3† DMA Channel 3 Frame Index Register/ DMA Channel 3 Source Frame Index Register† 0x0C6B DMACEI3/ DMACSEI3‡ DMA Channel 3 Element Index Register/ DMA Channel 3 Source Element Index Register‡ 0x0C6C DMACSAC3 DMA Channel 3 Source Address Counter 0x0C6D DMACDAC3 DMA Channel 3 Destination Address Counter 0x0C6E DMACDEI3 DMA Channel 3 Destination Element Index Register 0x0C6F DMACDFI3 DMA Channel 3 Destination Frame Index Register † On revision 1.x, the channel frame index applies to both source and destination and this register behaves as DMACFIn. On revision 2.0 and later, DMACSFIn and DMACDFIn provide separate source and destination frame indexing. Revisions 2.0 and later can be programmed for software compatibility with revisions 1.x through the Software Compatibility Register (DMAGSCR). ‡ On revision 1.x, the channel element index applies to both source and destination and this register behaves as DMACEIn. On revision 2.0 and later, DMACSEIn and DMACDEIn provide separate source and destination frame indexing. Revisions 2.0 and later can be programmed for software compatibility with revisions 1.x through the Software Compatibility Register (DMAGSCR). June 2000 − Revised July 2004 SPRS076J 37 Functional Overview Table 3−13. DMA Configuration Registers (Continued) PORT ADDRESS REGISTER NAME DESCRIPTION CHANNEL #4 REGISTERS 0x0C80 DMACSDP4 DMA Channel 4 Source / Destination Parameters Register 0x0C81 DMACCR4 DMA Channel 4 Control Register 0x0C82 DMACICR4 DMA Channel 4 Interrupt Control Register 0x0C83 DMACSR4 DMA Channel 4 Status Register 0x0C84 DMACSSAL4 DMA Channel 4 Source Start Address Register (lower bits) 0x0C85 DMACSSAU4 DMA Channel 4 Source Start Address Register (upper bits) 0x0C86 DMACDSAL4 DMA Channel 4 Source Destination Address Register (lower bits) 0x0C87 DMACDSAU4 DMA Channel 4 Source Destination Address Register (upper bits) 0x0C88 DMACEN4 DMA Channel 4 Element Number Register 0x0C89 DMACFN4 DMA Channel 4 Frame Number Register 0x0C8A DMACFI4/ DMACSFI4† DMA Channel 4 Frame Index Register/ DMA Channel 4 Source Frame Index Register† 0x0C8B DMACEI4/ DMACSEI4‡ DMA Channel 4 Element Index Register/ DMA Channel 4 Source Element Index Register‡ 0x0C8C DMACSAC4 DMA Channel 4 Source Address Counter 0x0C8D DMACDAC4 DMA Channel 4 Destination Address Counter 0x0C8E DMACDEI4 DMA Channel 4 Destination Element Index Register 0x0C8F DMACDFI4 DMA Channel 4 Destination Frame Index Register CHANNEL #5 REGISTERS 0x0CA0 DMACSDP5 DMA Channel 5 Source / Destination Parameters Register 0x0CA1 DMACCR5 DMA Channel 5 Control Register 0x0CA2 DMACICR5 DMA Channel 5 Interrupt Control Register 0x0CA3 DMACSR5 DMA Channel 5 Status Register 0x0CA4 DMACSSAL5 DMA Channel 5 Source Start Address Register (lower bits) 0x0CA5 DMACSSAU5 DMA Channel 5 Source Start Address Register (upper bits) 0x0CA6 DMACDSAL5 DMA Channel 5 Source Destination Address Register (lower bits) 0x0CA7 DMACDSAU5 DMA Channel 5 Source Destination Address Register (upper bits) 0x0CA8 DMACEN5 DMA Channel 5 Element Number Register 0x0CA9 DMACFN5 DMA Channel 5 Frame Number Register 0x0CAA DMACFI5/ DMACSFI5† DMA Channel 5 Frame Index Register/ DMA Channel 5 Source Frame Index Register† 0x0CAB DMACEI5/ DMACSEI5‡ DMA Channel 5 Element Index Register/ DMA Channel 5 Source Element Index Register‡ 0x0CAC DMACSAC5 DMA Channel 5 Source Address Counter 0x0CAD DMACDAC5 DMA Channel 5 Destination Address Counter 0x0CAE DMACDEI5 DMA Channel 5 Destination Element Index Register 0x0CAF DMACDFI5 DMA Channel 5 Destination Frame Index Register † On revision 1.x, the channel frame index applies to both source and destination and this register behaves as DMACFIn. On revision 2.0 and later, DMACSFIn and DMACDFIn provide separate source and destination frame indexing. Revisions 2.0 and later can be programmed for software compatibility with revisions 1.x through the Software Compatibility Register (DMAGSCR). ‡ On revision 1.x, the channel element index applies to both source and destination and this register behaves as DMACEIn. On revision 2.0 and later, DMACSEIn and DMACDEIn provide separate source and destination frame indexing. Revisions 2.0 and later can be programmed for software compatibility with revisions 1.x through the Software Compatibility Register (DMAGSCR). 38 SPRS076J June 2000 − Revised July 2004 Functional Overview Table 3−14. Clock Generator Registers PORT ADDRESS REGISTER NAME 0x1C00 CLKMD DESCRIPTION Clock Mode Register Table 3−15. Timer Registers PORT ADDRESS REGISTER NAME DESCRIPTION 0x1000 TIM0 Timer 0 Count Register 0x1001 PRD0 Timer 0 Period Register 0x1002 TCR0 Timer 0 Timer Control Register 0x1003 PRSC0 Timer 0 Timer Prescaler Register 0x2400 TIM1 Timer 1 Timer Count Register 0x2401 PRD1 Timer 1 Period Register 0x2402 TCR1 Timer 1 Timer Control Register 0x2403 PRSC1 Timer 1 Timer Prescaler Register June 2000 − Revised July 2004 SPRS076J 39 Functional Overview Table 3−16. Multichannel Serial Port #0 Registers PORT ADDRESS REGISTER NAME DESCRIPTION 0x2800 DRR20 McBSP 0 Data Receive Register 2 0x2801 DRR10 McBSP 0 Data Receive Register 1 0x2802 DXR20 McBSP 0 Data Transmit Register 2 0x2803 DXR10 McBSP 0 Data Transmit Register 1 0x2804 SPCR20 McBSP 0 Serial Port Control Register 2 0x2805 SPCR10 McBSP 0 Serial Port Control Register 1 0x2806 RCR20 McBSP 0 Receive Control Register 2 0x2807 RCR10 McBSP 0 Receive Control Register 1 0x2808 XCR20 McBSP 0 Transmit Control Register 2 0x2809 XCR10 McBSP 0 Transmit Control Register 1 0x280A SRGR20 McBSP 0 Sample Rate Generator Register 2 0x280B SRGR10 McBSP 0 Sample Rate Generator Register 1 0x280C MCR20 McBSP 0 Multichannel Control Register 2 0x280D MCR10 McBSP 0 Multichannel Control Register 1 0x280E RCERA0 McBSP 0 Receive Channel Enable Register Partition A 0x280F RCERB0 McBSP 0 Receive Channel Enable Register Partition B 0x2810 XCERA0 McBSP 0 Transmit Channel Enable Register Partition A 0x2811 XCERB0 McBSP 0 Transmit Channel Enable Register Partition B 0x2812 PCR0 McBSP 0 Pin Control Register 0x2813 RCERC0 McBSP 0 Receive Channel Enable Register Partition C 0x2814 RCERD0 McBSP 0 Receive Channel Enable Register Partition D 0x2815 XCERC0 McBSP 0 Transmit Channel Enable Register Partition C 0x2816 XCERD0 McBSP 0 Transmit Channel Enable Register Partition D 0x2817 RCERE0 McBSP 0 Receive Channel Enable Register Partition E 0x2818 RCERF0 McBSP 0 Receive Channel Enable Register Partition F 0x2819 XCERE0 McBSP 0 Transmit Channel Enable Register Partition E 0x281A XCERF0 McBSP 0 Transmit Channel Enable Register Partition F 0x281B RCERG0 McBSP 0 Receive Channel Enable Register Partition G 0x281C RCERH0 McBSP 0 Receive Channel Enable Register Partition H 0x281D XCERG0 McBSP 0 Transmit Channel Enable Register Partition G 0x281E XCERH0 McBSP 0 Transmit Channel Enable Register Partition H 40 SPRS076J June 2000 − Revised July 2004 Functional Overview Table 3−17. Multichannel Serial Port #1 Registers PORT ADDRESS REGISTER NAME DESCRIPTION 0x2C00 DRR21 McBSP 1 Data Receive Register 2 0x2C01 DRR11 McBSP 1 Data Receive Register 1 0x2C02 DXR21 McBSP 1 Data Transmit Register 2 0x2C03 DXR11 McBSP 1 Data Transmit Register 1 0x2C04 SPCR21 McBSP 1 Serial Port Control Register 2 0x2C05 SPCR11 McBSP 1 Serial Port Control Register 1 0x2C06 RCR21 McBSP 1 Receive Control Register 2 0x2C07 RCR11 McBSP 1 Receive Control Register 1 0x2C08 XCR21 McBSP 1 Transmit Control Register 2 0x2C09 XCR11 McBSP 1 Transmit Control Register 1 0x2C0A SRGR21 McBSP 1 Sample Rate Generator Register 2 0x2C0B SRGR11 McBSP 1 Sample Rate Generator Register 1 0x2C0C MCR21 McBSP 1 Multichannel Control Register 2 0x2C0D MCR11 McBSP 1 Multichannel Control Register 1 0x2C0E RCERA1 McBSP 1 Receive Channel Enable Register Partition A 0x2C0F RCERB1 McBSP 1 Receive Channel Enable Register Partition B 0x2C10 XCERA1 McBSP 1 Transmit Channel Enable Register Partition A 0x2C11 XCERB1 McBSP 1 Transmit Channel Enable Register Partition B 0x2C12 PCR1 McBSP 1 Pin Control Register 0x2C13 RCERC1 McBSP 1 Receive Channel Enable Register Partition C 0x2C14 RCERD1 McBSP 1 Receive Channel Enable Register Partition D 0x2C15 XCERC1 McBSP 1 Transmit Channel Enable Register Partition C 0x2C16 XCERD1 McBSP 1 Transmit Channel Enable Register Partition D 0x2C17 RCERE1 McBSP 1 Receive Channel Enable Register Partition E 0x2C18 RCERF1 McBSP 1 Receive Channel Enable Register Partition F 0x2C19 XCERE1 McBSP 1 Transmit Channel Enable Register Partition E 0x2C1A XCERF1 McBSP 1 Transmit Channel Enable Register Partition F 0x2C1B RCERG1 McBSP 1 Receive Channel Enable Register Partition G 0x2C1C RCERH1 McBSP 1 Receive Channel Enable Register Partition H 0x2C1D XCERG1 McBSP 1 Transmit Channel Enable Register Partition G 0x2C1E XCERH1 McBSP 1 Transmit Channel Enable Register Partition H June 2000 − Revised July 2004 SPRS076J 41 Functional Overview Table 3−18. Multichannel Serial Port #2 Registers PORT ADDRESS REGISTER NAME DESCRIPTION 0x3000 DRR22 McBSP 2 Data Receive Register 2 0x3001 DRR12 McBSP 2 Data Receive Register 1 0x3002 DXR22 McBSP 2 Data Transmit Register 2 0x3003 DXR12 McBSP 2 Data Transmit Register 1 0x3004 SPCR22 McBSP 2 Serial Port Control Register 2 0x3005 SPCR12 McBSP 2 Serial Port Control Register 1 0x3006 RCR22 McBSP 2 Receive Control Register 2 0x3007 RCR12 McBSP 2 Receive Control Register 1 0x3008 XCR22 McBSP 2 Transmit Control Register 2 0x3009 XCR12 McBSP 2 Transmit Control Register 1 0x300A SRGR22 McBSP 2 Sample Rate Generator Register 2 0x300B SRGR12 McBSP 2 Sample Rate Generator Register 1 0x300C MCR22 McBSP 2 Multichannel Control Register 2 0x300D MCR12 McBSP 2 Multichannel Control Register 1 0x300E RCERA2 McBSP 2 Receive Channel Enable Register Partition A 0x300F RCERB2 McBSP 2 Receive Channel Enable Register Partition B 0x3010 XCERA2 McBSP 2 Transmit Channel Enable Register Partition A 0x3011 XCERB2 McBSP 2 Transmit Channel Enable Register Partition B 0x3012 PCR2 McBSP 2 Pin Control Register 0x3013 RCERC2 McBSP 2 Receive Channel Enable Register Partition C 0x3014 RCERD2 McBSP 2 Receive Channel Enable Register Partition D 0x3015 XCERC2 McBSP 2 Transmit Channel Enable Register Partition C 0x3016 XCERD2 McBSP 2 Transmit Channel Enable Register Partition D 0x3017 RCERE2 McBSP 2 Receive Channel Enable Register Partition E 0x3018 RCERF2 McBSP 2 Receive Channel Enable Register Partition F 0x3019 XCERE2 McBSP 2 Transmit Channel Enable Register Partition E 0x301A XCERF2 McBSP 2 Transmit Channel Enable Register Partition F 0x301B RCERG2 McBSP 2 Receive Channel Enable Register Partition G 0x301C RCERH2 McBSP 2 Receive Channel Enable Register Partition H 0x301D XCERG2 McBSP 2 Transmit Channel Enable Register Partition G 0x301E XCERH2 McBSP 2 Transmit Channel Enable Register Partition H 42 SPRS076J June 2000 − Revised July 2004 Functional Overview Table 3−19. GPIO Registers WORD ADDRESS REGISTER NAME DESCRIPTION 0x3400 IODIR General-purpose I/O Direction Register 0x3401 IODATA General-purpose I/O Data Register Table 3−20. Device Revision ID Registers PORT ADDRESS 0x3800 − 0x3803 0x3804 † REGISTER NAME DESCRIPTION Identification† DieID[63:0] Factory Die RevID[15:0] Identifies silicon revision Revision 1.x: 0x8050 Revision 2.0: 0x6510 Revision 2.1: 0x6511 Revision 2.2: 0x6512 The Die_ID register contains factory identification information and does not require any intervention from the user. June 2000 − Revised July 2004 SPRS076J 43 Functional Overview 3.5 Interrupts Vector-relative locations and priorities for all internal and external interrupts are shown in Table 3−21. The locations of the interrupt vectors are defined as an offset from the location defined in the interrupt vector pointers (IVPD and IVPH). For more detailed information about the interrupt vector pointers and interrupts, see the TMS320C55x DSP CPU Reference Guide (literature number SPRU371). Table 3−21. Interrupt Table NAME SOFTWARE (TRAP) EQUIVALENT OFFSET LOCATION (HEX BYTES) PRIORITY FUNCTION RESET SINT0 0 0 Reset (hardware and software) NMI SINT1 8 1 Nonmaskable interrupt INT0 SINT2 10 3 External interrupt #0 INT2 SINT3 18 5 External interrupt #2 TINT0 SINT4 20 6 Timer #0 interrupt RINT0 SINT5 28 7 McBSP #0 receive interrupt RINT1 SINT6 30 9 McBSP #1 receive interrupt XINT1 SINT7 38 10 McBSP #1 transmit interrupt − SINT8 40 11 Software interrupt #8 DMAC1 SINT9 48 13 DMA Channel #1 interrupt DSPINT SINT10 50 14 Interrupt from host (EHPI) INT3 SINT11 58 15 External interrupt #3 RINT2 SINT12 60 17 McBSP #2 receive interrupt XINT2 SINT13 68 18 McBSP #2 transmit interrupt DMAC4 SINT14 70 21 DMA Channel #4 interrupt DMAC5 SINT15 78 22 DMA Channel #5 interrupt INT1 SINT16 80 4 External interrupt #1 XINT0 SINT17 88 8 McBSP #0 transmit interrupt DMAC0 SINT18 90 12 DMA Channel #0 interrupt INT4 SINT19 98 16 External interrupt #4 DMAC2 SINT20 A0 19 DMA Channel #2 interrupt DMAC3 SINT21 A8 20 DMA Channel #3 interrupt TINT1 SINT22 B0 23 Timer #1 interrupt INT5 SINT23 B8 24 External interrupt #5 BERR SINT24 C0 2 Bus Error interrupt DLOG SINT25 C8 25 Data Log interrupt RTOS SINT26 D0 26 Real-time Operating System interrupt − SINT27 D8 27 Software interrupt #27 − SINT28 E0 28 Software interrupt #28 − SINT29 E8 29 Software interrupt #29 − SINT30 F0 30 Software interrupt #30 SINT31 F8 31 Software interrupt #31 44 SPRS076J June 2000 − Revised July 2004 Functional Overview 3.5.1 IFR and IER Registers The Interrupt Enable Registers (IER0 and IER1) control which interrupts will be masked or enabled during normal operation. The Interrupt Flag Registers (IFR0 and IFR1) contain flags that indicate interrupts that are currently pending. The Debug Interrupt Enable Registers (DBIER0 and DBIER1) are used only when the CPU is halted in the real-time emulation mode. If the CPU is running in real-time mode, the standard interrupt processing (IER0/1) is used and DBIER0/1 are ignored. A maskable interrupt enabled in a DBIER0/1 is defined as a time-critical interrupt. When the CPU is halted in the real-time mode, the only interrupts that are serviced are time-critical interrupts that are also enabled in an interrupt enable register (IER0 or IER1) Write the DBIER0/1 to enable or disable time-critical interrupts. To enable an interrupt, set its corresponding bit. To disable an interrupt, clear its corresponding bit. Note that DBIER0/1 are not affected by a software reset instruction or by a DSP hardware reset. Initialize these registers before using the real-time emulation mode. The bit layouts of these registers for each interrupt are shown in Figure 3−7. 15 14 13 12 11 10 9 8 DMAC5 DMAC4 XINT2 RINT2 INT3 DSPINT DMAC1 Reserved 7 6 5 4 3 2 XINT1 RINT1 RINT0 TINT0 INT2 INT0 1 0 Reserved Figure 3−7. IFR0, IER0, DBIFR0, and DBIER0 Bit Locations The IFR1 (Interrupt Flag Register 1) and IER1 (Interrupt Enable Register 1) bit layouts are shown in Figure 3−8. 15 11 Reserved 10 9 8 RTOS DLOG BERR 7 6 5 4 3 2 1 0 INT5 TINT1 DMAC3 DMAC2 INT4 DMAC0 XINT0 INT1 Figure 3−8. IFR1, IER1, DBIFR1, and DBIER1 Bit Locations 3.5.2 Interrupt Timing The external interrupts (NMI and INTx) are automatically synchronized to the CPU. The interrupt inputs are sampled on the falling edges of the CPU clock. A sequence on the interrupt pin of 1-0-0-0 on consecutive cycles is required for an interrupt to be detected. Therefore, the minimum low pulse duration on the external interrupts on the 5510 is three CPU clock periods. June 2000 − Revised July 2004 SPRS076J 45 Functional Overview 3.6 Notices Concerning CLKOUT Operation 3.6.1 CLKOUT Voltage Level On the TMS320VC5510, CLKOUT is driven at CVDD supply voltage. This voltage level may be too low to interface to some devices. In that event, buffers may need to be employed to support interfacing CLKOUT. 3.6.2 CLKOUT Value During Reset During reset, the CLKOUT pin is driven to a logic 1. 46 SPRS076J June 2000 − Revised July 2004 Documentation Support 4 Documentation Support Extensive documentation supports all TMS320 DSP family of devices from product announcement through applications development. The following types of documentation are available to support the design and use of the TMS320C5000 platform of DSPs: • • • • • • • • • • • • • • • • • • • TMS320C55x DSP Functional Overview (literature number SPRU312) TMS320C55x DSP Peripherals Overview Reference Guide (literature number SPRU317) TMS320C55x DSP CPU Reference Guide (literature number SPRU371) TMS320C55x DSP CPU Programmer’s Reference Supplement (literature number SPRU652) TMS320C55x Assembly Language Tools User’s Guide (literature number SPRU280) TMS320C55x Hardware Extensions for Image/Video Applications Programmer’s Reference (literature number SPRU098) TMS320C55x Image/Video Processing Library Programmer’s Reference (literature number SPRU037) TMS320VC5510 DSP Instruction Cache Reference Guide (literature number SPRU576) TMS320VC5501/5502/5503/5507/5509/5510 DSP Multichannel Buffered Serial Port (McBSP) Reference Guide (literature number SPRU592) TMS320VC5503/5507/5509/5510 DSP Direct Memory Access (DMA) Controller Reference Guide (literature number SPRU587) TMS320VC5510 DSP Host Port Interface (HPI) Reference Guide (literature number SPRU588) TMS320VC5503/5507/5509/5510 DSP Timers Reference Guide (literature number SPRU595) Using the TMS320VC5510 Bootloader application report (literature number SPRA763) TMS320VC5510 Hardware Designer’s Resource Guide (literature number SPRAA43) TMS320VC5510 Digital Signal Processor Silicon Errata (literature number SPRZ008) Device-specific data sheets Complete user’s guides Development support tools Hardware and software application reports The reference set describes in detail the TMS320C55x DSP products currently available and the hardware and software applications, including algorithms, for fixed-point TMS320 DSP family of devices. A series of DSP textbooks is published by Prentice-Hall and John Wiley & Sons to support digital signal processing research and education. The TMS320 DSP newsletter, Details on Signal Processing, is published quarterly and distributed to update TMS320 DSP customers on product information. Information regarding Texas Instruments (TI) DSP products is also available on the Worldwide Web at http://www.ti.com uniform resource locator (URL). TMS320C5000 is a trademark of Texas Instruments. June 2000 − Revised July 2004 SPRS076J 47 Documentation Support 4.1 Device and Development-Support Tool Nomenclature To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all TMS320 DSP devices and support tools. Each TMS320 DSP commercial family member has one of three prefixes: TMX, TMP, or TMS (e.g., TMS320VC5510). Texas Instruments recommends two of three possible prefix designators for its support tools: TMDX and TMDS. These prefixes represent evolutionary stages of product development from engineering prototypes (TMX / TMDX) through fully qualified production devices/tools (TMS / TMDS). Device development evolutionary flow: TMX Experimental device that is not necessarily representative of the final device’s electrical specifications TMP Final silicon die that conforms to the device’s electrical specifications but has not completed quality and reliability verification TMS Fully qualified production device Support tool development evolutionary flow: TMDX Development-support product that has not yet completed Texas Instruments internal qualification testing. TMDS Fully qualified development-support product TMX and TMP devices and TMDX development-support tools are shipped against the following disclaimer: “Developmental product is intended for internal evaluation purposes.” TMS devices and TMDS development-support tools have been characterized fully, and the quality and reliability of the device have been demonstrated fully. TI’s standard warranty applies. Predictions show that prototype devices ( TMX or TMP) have a greater failure rate than the standard production devices. Texas Instruments recommends that these devices not be used in any production system because their expected end-use failure rate still is undefined. Only qualified production devices are to be used. TMS320 is a trademark of Texas Instruments. 48 SPRS076J June 2000 − Revised July 2004 Documentation Support 4.2 TMS320VC5510 Device Nomenclature TMS 320 VC 5510 (A) PREFIX TMX = TMP = TMS = SMJ = SM = GGW (A) 2 DEVICE SPEED RANGE 1 = 160 MHz 2 = 200 MHz Experimental device Prototype device Qualified device MIL-STD-883C High Rel (non-883C) DEVICE FAMILY 320 = TMS320 family DEVICE TEMP. RANGE (no suffix) = 0° to 85°C A = −40° to 85°C PACKAGE TYPE† GGW = 240-pin plastic BGA TECHNOLOGY VC = Dual-Supply CMOS DEVICE REVISION (no suffix) = Revision 2.1 A = Revision 2.2 DEVICE 55x DSP: 5510 † BGA = Ball Grid Array Figure 4−1. Device Nomenclature for the TMS320VC5510 June 2000 − Revised July 2004 SPRS076J 49 Electrical Specifications 5 Electrical Specifications This section provides the absolute maximum ratings and the recommended operating conditions for the TMS320VC5510 DSP. All electrical and switching characteristics in this data manual are valid over the recommended operating conditions unless otherwise specified. 5.1 Absolute Maximum Ratings The list of absolute maximum ratings are specified over operating case temperature. Stresses beyond those listed under “absolute maximum ratings” (Section 5.2) may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” (Section 5.3) is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All supply voltage values (core and I/O) are with respect to VSS. Figure 5−1 provides the test load circuit values for a 3.3-V device. Measured timing information contained in this data manual is based on the test load setup and conditions shown in Figure 5−1. 5.2 Electrical Specifications This section provides the absolute maximum ratings for the TMS320VC5510 DSP. Supply voltage I/O range, DVDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . − 0.3 V to 4.0 V Supply voltage core range, CVDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . − 0.3 V to 2.0 V Input voltage range, VI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . − 0.3 V to 4.5 V Output voltage range, VO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . − 0.3 V to 4.5 V Operating case temperature range, TC: (Commercial) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 85°C (Extended) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . − 40_C to 85°C Storage temperature range Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . − 55_C to 150_C 5.3 DVDD Recommended Operating Conditions Device supply voltage, I/O CVDD Device supply voltage, core VSS Supply voltage, GND Prototype revisions 2.1 and 2.2 and production silicon† High-level input voltage, I/O DVDD = 3.3 ± 0.3 V All other inputs Hysteresis inputs VIL Low-level input voltage, I/O DVDD = 3.3 ± 0.3 V All other inputs MAX 3.3 3.6 V 1.55 1.6 1.65 V 2.4 UNIT V DVDD + 0.3 2.0 DVDD + 0.3 −0.3 0.8 −0.3 0.8 V V IOH High-level output current All outputs −8 mA IOL Low-level output current All outputs 8 mA Operating case temperature Prototype (TMX) and Commercial Temperature Range Production Devices TC Extended Temperature Range Production (TMS) devices † NOM 3.0 0 Hysteresis inputs VIH MIN 0 85 °C C −40 85 See the TMS320VC5510 Digital Signal Processor Silicon Errata (literature number SPRZ008) for further clarification and distinguishing markings. 50 SPRS076J June 2000 − Revised July 2004 Electrical Specifications 5.4 Electrical Characteristics Over Recommended Operating Case Temperature Range (Unless Otherwise Noted) PARAMETER VOH VOL IIZ II High-level output voltage Input current MIN All output except CLKOUT 2.4 CLKOUT CVDD = 1.6 ± 0.05 V, IOH = MAX 1.24 Low-level output voltage Input current for outputs in high impedance TEST CONDITIONS DVDD = 3.3 ± 0.3 V, IOH = MAX TYP MAX UNIT V IOL = MAX 0.4 Output-only or input/output pins with bus holders Bus holders enabled CVDD = MAX, VO = VSS to VDD − 275 All other output-only or input/output pins Bus holders disabled CVDD = MAX, VO = VSS to VDD −5 5 Input pins with internal pulldown CVDD = MAX, VI = VSS to VDD −5 300 Input pins with internal pullup Pullup enabled CVDD = MAX, VI = VSS to VDD − 300 5 All other input-only pins or input-only pins with pullup/pulldown disabled CVDD = MAX, VI = VSS to VDD −5 5 V 275 µA A µA IDDC CVDD supply current, CPU + internal memory access † CVDD = 1.6 V, CPU clock = 200 MHz TC = 25°C 112 mA IDDP DVDD supply current, pins active ‡ DVDD = 3.3 V CPU clock = 100 MHz TC = 25°C 8 mA IDDC CVDD supply current, standby Only CLKGEN domain enabled, PLL enabled. CVDD = 1.6 V 10-MHz clock input, DPLL mode = x 20 TC = 25°C 32 mA CVDD = 1.6 V input clock stopped, TC = 25°C 69 µA CVDD = 1.6 V input clock stopped, TC = 55°C 374 µA CVDD = 1.6 V input clock stopped, TC = 85°C 976 µA DVDD = 3.3 V no pin activity, TC = 25°C 10 µA DVDD = 3.3 V no pin activity, TC = 55°C 10 µA DVDD = 3.3 V no pin activity, TC = 85°C 10 µA IDDC IDDP CVDD supply current, standby All domains idled. DVDD supply current, standby All domains idled. Ci Input capacitance 3 pF Co Output capacitance 3 pF † Test Condition: CPU executing 75% Dual-MAC / 25% ADD with moderate data bus activity (table of sine values). CPU and CLKGEN domains are active. All other domains are idled. The DPLL is enabled. ‡ Test Condition: One word of a table of 16-bit sine values is written to the EMIF each microsecond (16 Mbps). Each EMIF output pin is connected to a 10-pF load capacitance. June 2000 − Revised July 2004 SPRS076J 51 Electrical Specifications IOL-test 50 Ω Tester Pin Electronics VLoad CT Output Under Test IOH-test Where: IOL-test IOH-test VLoad CT = = = = +2 mA (all outputs) −2 mA (all outputs) 50% of DVdd 15 pF typical load circuit capacitance. Figure 5−1. 3.3-V Test Load Circuit 5.5 Package Thermal Resistance Characteristics Table 5−1 provides the thermal resistance characteristics for the recommended package types used on the TMS320VC5510 DSP. Table 5−1. Thermal Resistance Characteristics (Ambient) † RΘJA (°C / W) BOARD TYPE† AIRFLOW (LFM) 26 High-K 0 22 High-K 150 20 High-K 250 50 Low-K 0 35 Low-K 150 29 Low-K 250 Board types are as defined by JEDEC. Reference JEDEC Standard JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements. Table 5−2. Thermal Resistance Characteristics (Case) † RΘJC (°C / W) BOARD TYPE† 6 2s JEDEC Test Card Board types are as defined by JEDEC. Reference JEDEC Standard JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements. 52 SPRS076J June 2000 − Revised July 2004 Electrical Specifications 5.6 Timing Parameter Symbology Timing parameter symbols used in the timing requirements and switching characteristics tables are created in accordance with JEDEC Standard 100. To shorten the symbols, some of the pin names and other related terminology have been abbreviated as follows: Lowercase subscripts and their meanings: Letters and symbols and their meanings: a access time H High c cycle time (period) L Low d delay time V Valid dis disable time Z High impedance en enable time f fall time h hold time r rise time su setup time t transition time v valid time w pulse duration (width) X Unknown, changing, or don’t care level June 2000 − Revised July 2004 SPRS076J 53 Electrical Specifications 5.7 Clock Options This section provides the timing requirements and switching characteristics for the various clock options available on the 5510. 5.7.1 Clock Generation in Bypass Mode (DPLL Disabled) The frequency of the reference clock provided at the CLKIN pin can be divided by a factor of one, two, or four to generate the internal CPU clock cycle. The divide factor (D) is set in the BYPASS_DIV field of the clock mode register. The contents of this field only affect clock generation while the device is in bypass mode. In this mode, the digital phase-locked loop (DPLL) clock synthesis is disabled. Table 5−3 and Table 5−4 assume testing over recommended operating conditions and H = 0.5tc(CO) (see Figure 5−2). Table 5−3. CLKIN in Bypass Mode Timing Requirements VC5510-160 NO. † VC5510-200 MIN MAX MIN MAX 20 † 20 UNIT C7 tc(CI) Cycle time, CLKIN † ns C8 tf(CI) Fall time, CLKIN 6 6 ns C9 tr(CI) Rise time, CLKIN 6 6 ns C10 tw(CIL) Pulse duration, CLKIN low 4 4 ns C11 tw(CIH) Pulse duration, CLKIN high 4 4 ns This device utilizes a fully static design and therefore can operate with tc(CI) approaching ∞. The device is characterized at frequencies approaching 0 Hz. Table 5−4. CLKOUT in Bypass Mode Switching Characteristics VC5510-160 NO. ‡ PARAMETER MIN TYP 20 tc(CI)/N‡ 1 7 VC5510-200 MAX MIN TYP 20 tc(CI)/N‡ 1 7 MAX UNIT C1 tc(CO) Cycle time, CLKOUT C2 td(CI-CO) Delay time, CLKIN high/low to CLKOUT high/low C3 tf(CO) Fall time, CLKOUT C4 tr(CO) Rise time, CLKOUT C5 tw(COL) Pulse duration, CLKOUT low H−1 H+1 H−1 H+1 ns C6 tw(COH) Pulse duration, CLKOUT high H−1 H+1 H−1 H+1 ns 14 1 ns 14 1 1 ns ns 1 ns N = Clock frequency synthesis factor C11 C9 C8 C10 C7 CLKIN C1 C2 C6 C3 C4 C5 CLKOUT NOTE A: The relationship of CLKIN to CLKOUT depends on the divide factor chosen. The waveform relationship shown in Figure 5−2 is intended to illustrate the timing parameters only and may differ based on configuration. Figure 5−2. Bypass Mode Clock Timing 54 SPRS076J June 2000 − Revised July 2004 Electrical Specifications 5.7.2 Clock Generation in Lock Mode (DPLL Synthesis Enabled) The frequency of the reference clock provided at the CLKIN pin can be multiplied by a synthesis factor of N to generate the internal CPU clock cycle. The synthesis factor is determined by: N+ M DL where: M = the multiply factor set in the PLL_MULT field of the clock mode register, DL = the divide factor set in the PLL_DIV field of the clock mode register Valid values for M are (multiply by) 2 to 31. Valid values for DL are (divide by) 1, 2, 3, and 4. For detailed information on clock generation configuration, see the TMS320C55x DSP Peripherals Overview Reference Guide (literature number SPRU317). Table 5−5 and Table 5−6 assume testing over recommended operating conditions and H = 0.5tc(CO) (see Figure 5−3). Table 5−5. CLKIN in Lock Mode Timing Requirements VC5510-160 NO. † VC5510-200 UNIT MIN MAX MIN MAX 20† 400 20† 400 ns C7 tc(CI) Cycle time, CLKIN DPLL synthesis enabled C8 tf(CI) Fall time, CLKIN 6 6 ns C9 tr(CI) Rise time, CLKIN 6 6 ns C10 tw(CIL) Pulse duration, CLKIN low 4 4 ns C11 tw(CIH) Pulse duration, CLKIN high 4 4 ns The clock frequency synthesis factor and minimum CLKIN cycle time should be chosen such that the resulting CLKOUT cycle time is within the specified range (tc(CO)). Table 5−6. CLKOUT in Lock Mode Switching Characteristics VC5510-160 NO. ‡ PARAMETER MIN TYP 6.25 tc(CI)/N‡ 1 7 VC5510-200 MAX MIN TYP 5 tc(CI)/N‡ 1 7 MAX UNIT C1 tc(CO) Cycle time, CLKOUT C2 td(CI-CO) Delay time, CLKIN high/low to CLKOUT high/low C3 tf(CO) Fall time, CLKOUT 1 1 C4 tr(CO) Rise time, CLKOUT 1 1 C5 tw(COL) Pulse duration, CLKOUT low H−1 H+1 H−1 H+1 ns C6 tw(COH) Pulse duration, CLKOUT high H−1 H+1 H−1 H+1 ns 14 ns 14 ns ns ns N = Clock frequency synthesis factor C8 C10 C9 C11 C7 CLKIN C2 C1 CLKOUT C5 C3 C6 C4 Bypass Mode NOTE A: The waveform relationship of CLKIN to CLKOUT depends on the multiply and divide factors chosen. The waveform relationship shown in Figure 5−3 is intended to illustrate the timing parameters only and may differ based on configuration. Figure 5−3. External Multiply-by-N Clock Timing June 2000 − Revised July 2004 SPRS076J 55 Electrical Specifications 5.8 Memory Timing 5.8.1 Asynchronous Memory Timing Table 5−7 and Table 5−8 assume testing over recommended operating conditions (see Figure 5−4 and Figure 5−5). Note that the asynchronous memory interface is read-only when configured as 8-bit mode. Asynchronous writes in 8-bit mode are not supported. Table 5−7. Asynchronous Memory Cycles Timing Requirements VC5510-160 VC5510-200 NO. MIN † UNIT MAX A6 tsu(DV-COH) Setup time, read data valid before CLKOUT high† 6 ns A7 th(COH-DV) Hold time, read data valid after CLKOUT high 0 ns A10 tsu(ARDY-COH) Setup time, ARDY valid before CLKOUT high 7 ns A11 th(COH-ARDY) Hold time, ARDY valid after CLKOUT high 0 ns To ensure data setup time, simply program the strobe width wide enough. ARDY is internally synchronized. If ARDY does meet setup or hold time, it may be recognized in the current cycle or the next cycle. Thus, ARDY can be an asynchronous input. Table 5−8. Asynchronous Memory Cycles Switching Characteristics‡§ NO. ‡ § PARAMETER VC5510-160 VC5510-200 UNIT MIN MAX −2 4 ns 4 ns A1 td(COH-CEV) Delay time, CLKOUT high to CEx transition A2 td(COH-BEV) Delay time, CLKOUT high to BEx valid A3 td(COH-BEIV) Delay time, CLKOUT high to BEx invalid A4 td(COH-AV) Delay time, CLKOUT high to address valid A5 td(COH-AIV) Delay time, CLKOUT high to address invalid −2 A8 td(COH-AOEV) Delay time, CLKOUT high to AOE valid −2 4 ns A9 td(COH-AREV) Delay time, CLKOUT high to ARE valid −2 4 ns A12 td(COH-DV) Delay time, CLKOUT high to data valid (write) 4 ns A13 td(COH-DIV) Delay time, CLKOUT high to data invalid (write) −2 A14 td(COH-AWEV) Delay time, CLKOUT high to AWE valid −2 −2 ns 4 ns ns ns 4 ns The minimum delay is also the minimum output hold after CLKOUT high. All timings referenced to CLKOUT assume CLKOUT represents the internal CPU clock (divide-by-1 mode). 56 SPRS076J June 2000 − Revised July 2004 Electrical Specifications Setup = 1† Strobe = 5† Not ready = 2 Hold = 1† Extended Hold = 2†‡ CLKOUT§ A1 A1 A2 A3 A4 A5 CEx¶ BE[3:0] A[21:0] A6 A7 D[31:0] A8 A8 AOE A9 A9 ARE AWE A11 A10 A11 A10 ARDY# † Setup, Strobe, Hold, and Extended Hold are programmable in the EMIF. The programmable Hold period is not associated with the activity of the HOLD and HOLDA signals. ‡ The extended hold time is programmable in the EMIF and is only present when consecutive memory accesses are made to different CEx spaces, or are of different types (read/write). § All timings referenced to CLKOUT assume CLKOUT is the same frequency as the internal CPU clock (divide-by-1 mode). ¶ The chip enable that becomes active depends on the address. # ARDY is synchronized internally. If the setup time shown is not met, ARDY will be recognized on the next clock cycle. Figure 5−4. Asynchronous Memory Read Timing June 2000 − Revised July 2004 SPRS076J 57 Electrical Specifications Setup = 1† Strobe = 5† Not ready = 2 Hold = 1† Extended Hold = 2†‡ CLKOUT§ A1 A1 A2 A3 A4 A5 CEx¶ BE[3:0] A[21:0] A12 A13 D[31:0] AOE ARE A14 A14 AWE A11 A10 A11 A10 ARDY# † Setup, Strobe, Hold, and Extended Hold are programmable in the EMIF. The programmable Hold period is not associated with the activity of the HOLD and HOLDA signals. ‡ The extended hold time is programmable in the EMIF and is only present when consecutive memory accesses are made to different CEx spaces, or are of different types (read/write). § All timings referenced to CLKOUT assume CLKOUT is the same frequency as the internal CPU clock (divide-by-1 mode). ¶ The chip enable that becomes active depends on the address. # ARDY is synchronized internally. If the setup time shown is not met, ARDY will be recognized on the next clock cycle. Figure 5−5. Asynchronous Memory Write Timing 58 SPRS076J June 2000 − Revised July 2004 Electrical Specifications 5.8.2 Synchronous-Burst SRAM (SBSRAM) Timing Table 5−9 and Table 5−10 assume testing over recommended operating conditions (see Figure 5−6 and Figure 5−7). Table 5−9. Synchronous-Burst SRAM Cycle Timing Requirements VC5510-160 VC5510-200 NO. MIN UNIT MAX SB7 tsu(DV-CLKMEMH) Setup time, read data valid before CLKMEM high 5 ns SB8 th(CLKMEMH-DV) Hold time, read data valid after CLKMEM high 2 ns Table 5−10. Synchronous-Burst SRAM Cycle Switching Characteristics NO. PARAMETER VC5510-160 VC5510-200 UNIT MIN MAX SB1 td(CLKMEMH-CEL) Delay time, CLKMEM high to CEx low 3 6 ns SB2 td(CLKMEMH-CEH) Delay time, CLKMEM high to CEx high 3 6 ns SB3 td(CLKMEMH-BEV) Delay time, CLKMEM high to BEx valid 3 6 ns SB4 td(CLKMEMH-BEIV) Delay time, CLKMEM high to BEx invalid 3 6 ns SB5 td(CLKMEMH-AV) Delay time, CLKMEM high to address valid 3 6 ns SB6 td(CLKMEMH-AIV) Delay time, CLKMEM high to address invalid 3 6 ns SB9 td(CLKMEMH-ADSL) Delay time, CLKMEM high to SSADS low 3 6 ns SB10 td(CLKMEMH-ADSH) Delay time, CLKMEM high to SSADS high 3 6 ns SB11 td(CLKMEMH-OEL) Delay time, CLKMEM high to SSOE low 3 6 ns SB12 td(CLKMEMH-OEH) Delay time, CLKMEM high to SSOE high 3 6 ns SB13 td(CLKMEMH-DV) Delay time, CLKMEM high to data valid 3 6 ns SB14 td(CLKMEMH-DIV) Delay time, CLKMEM high to data invalid 3 6 ns SB15 td(CLKMEMH-WEL) Delay time, CLKMEM high to SSWE low 3 6 ns SB16 td(CLKMEMH-WEH) Delay time, CLKMEM high to SSWE high 3 6 ns June 2000 − Revised July 2004 SPRS076J 59 Electrical Specifications CLKMEM SB1 SB2 CEx† SB3 BE[3:0] BE1 SB4 BE2 BE3 BE4 A3 A4 SB5 A[21:0] A1 SB6 A2 SB7 SB8 Q2 Q2 Q1 D[31:0] Q3 Q3 Q4 Q4 SB9 SB10 SSADS SB11 SB12 SSOE SSWE † The chip enable that becomes active depends on the address. Figure 5−6. SBSRAM Read Timing CLKMEM SB1 SB2 SB3 SB4 CEx† BE[3:0] BE1 BE2 BE3 BE4 SB5 A[21:0] A1 SB6 A2 A3 A4 D2 D3 D4 SB13 D[31:0] D1 SB14 SB9 SB10 SB15 SB16 SSADS SSOE SSWE † The chip enable that becomes active depends on the address. Figure 5−7. SBSRAM Write Timing 60 SPRS076J June 2000 − Revised July 2004 Electrical Specifications 5.8.3 Synchronous DRAM (SDRAM) Timing Table 5−11 and Table 5−12 assume testing over recommended operating conditions (see Figure 5−8 through Figure 5−13). Table 5−11. Synchronous DRAM Cycle Timing Requirements VC5510-160 VC5510-200 NO. MIN UNIT MAX SD7 tsu(DV-CLKMEMH) Setup time, read data valid before CLKMEM high 5 ns SD8 th(CLKMEMH-DV) Hold time, read data valid after CLKMEM high 2 ns Table 5−12. Synchronous DRAM Cycle Switching Characteristics NO. PARAMETER VC5510-160 VC5510-200 MIN MAX UNIT SD1 td(CLKMEMH-CEL) Delay time, CLKMEM high to CEx low 3 6 ns SD2 td(CLKMEMH-CEH) Delay time, CLKMEM high to CEx high 3 6 ns SD3 td(CLKMEMH-BEV) Delay time, CLKMEM high to BEx valid 3 6 ns SD4 td(CLKMEMH-BEIV) Delay time, CLKMEM high to BEx invalid 3 6 ns SD5 td(CLKMEMH-AV) Delay time, CLKMEM high to address valid 3 6 ns SD6 td(CLKMEMH-AIV) Delay time, CLKMEM high to address invalid 3 6 ns SD9 td(CLKMEMH-SDCASL) Delay time, CLKMEM high to SDCAS low 3 5 ns SD10 td(CLKMEMH-SDCASH) Delay time, CLKMEM high to SDCAS high 3 5 ns SD11 td(CLKMEMH-DV) Delay time, CLKMEM high to data valid 3 5 ns SD12 td(CLKMEMH-DIV) Delay time, CLKMEM high to data invalid 3 5 ns SD13 td(CLKMEMH-SDWEL) Delay time, CLKMEM high to SDWE low 3 5 ns SD14 td(CLKMEMH-SDWEH) Delay time, CLKMEM high to SDWE high 3 5 ns SD15 td(CLKMEMH-SDA10V) Delay time, CLKMEM high to SDA10 valid 3 5 ns SD16 td(CLKMEMH-SDA10IV) Delay time, CLKMEM high to SDA10 invalid 3 5 ns SD17 td(CLKMEMH-SDRASL) Delay time, CLKMEM high to SDRAS low 3 5 ns SD18 td(CLKMEMH-SDRASH) Delay time, CLKMEM high to SDRAS high 3 5 ns June 2000 − Revised July 2004 SPRS076J 61 Electrical Specifications READ READ CLKMEM SD1 SD2 CEx† SD3 BE[3:0]‡ SD5 A[15:2]§ CA1 SD6 CA2 SD7 D1 D[31:0] SD15 SD8 D2 SD16 SDA10 SDRAS SD9 SD10 SDCAS SDWE † The chip enable that becomes active depends on the address. ‡ All BE[3:0] signals are driven low (active) during reads. Byte manipulation of the read data is performed inside the EMIF. These signals remain active until the next access that is not an SDRAM read occurs. § The number of address signals used depends on the SDRAM size and width. Figure 5−8. Two SDRAM Read Commands (Active Row) WRITE WRITE CLKMEM SD1 SD2 CEx† SD3 BE[3:0] BE1 SD5 A[15:2]‡ CA1 SD11 D1 D[31:0] SD4 BE2 SD6 CA2 SD12 D2 SD15 SD16 SD9 SD10 SD13 SD14 SDA10 SDRAS SDCAS SDWE † The chip enable that becomes active depends on the address. ‡ The number of address signals used depends on the SDRAM size and width. Figure 5−9. Two SDRAM WRT Commands (Active Row) 62 SPRS076J June 2000 − Revised July 2004 Electrical Specifications ACTV CLKMEM SD1 SD2 CEx† BE[3:0] SD5 A[15:2]‡ Bank Activate/Row Address D[31:0] SD15 Row Address SDA10 SD17 SD18 SDRAS SDCAS SDWE † The chip enable that becomes active depends on the address. ‡ The number of address signals used depends on the SDRAM size and width. Figure 5−10. SDRAM ACTV Command DCAB CLKMEM SD1 SD2 SD15 SD16 SD17 SD18 SD13 SD14 CEx† BE[3:0] A[15:2]‡ D[31:0] SDA10 SDRAS SDCAS SDWE † ‡ The chip enable that becomes active depends on the address. The number of address signals used depends on the SDRAM size and width. Figure 5−11. SDRAM DCAB Command June 2000 − Revised July 2004 SPRS076J 63 Electrical Specifications REFR CLKMEM SD1 SD2 SD15 SD16 SD17 SD18 SD9 SD10 CEx† BE[3:0] A[15:2]‡ D[31:0] SDA10 SDRAS SDCAS SDWE † ‡ The chip enable that becomes active depends on the address. The number of address signals used depends on the SDRAM size and width. Figure 5−12. SDRAM REFR Command MRS CLKMEM SD1 SD2 SD5 SD6 CEx† BE[3:0] A[15:2]‡ MRS Value 0x30 D[31:0] SD15 SD16 SD17 SD18 SD9 SD10 SD13 SD14 SDA10 SDRAS SDCAS SDWE † ‡ The chip enable that becomes active depends on the address. The number of address signals used depends on the SDRAM size and width. Figure 5−13. SDRAM MRS Command 64 SPRS076J June 2000 − Revised July 2004 Electrical Specifications 5.9 HOLD and HOLDA Timings Table 5−13 and Table 5−14 assume testing over recommended operating conditions (see Figure 5−14). Table 5−13. HOLD and HOLDA Timing Requirements VC5510-160 VC5510-200 NO. MIN H1 † Setup time, HOLD high before CLKOUT high† tsu(HOLDH-COH) UNIT MAX 7 ns HOLD is synchronized internally. If the setup time shown is not met, HOLD will be recognized on the next clock cycle. Table 5−14. HOLD and HOLDA Switching Characteristics‡ NO. VC5510-160 VC5510-200 PARAMETER MIN MAX 4P § UNIT H2 tR(COH-BHZ) Response time, CLKOUT high to EMIF Bus high impedance (HZ)¶ H3 tR(COH-HOLDAL) Response time, CLKOUT high to HOLDA low 5P−1 H4 tR(COH-HOLDAH) Response time, CLKOUT high to HOLDA high 4P−1 4P+5 ns 4P−1 4P+5 ns H5 tR(COH-BLZ) Response time, CLKOUT high to EMIF Bus low impedance (LZ) (active)¶ ns ns ‡ P = 1/CPU clock frequency in ns. For example, when running parts at 200 MHz, use P = 5 ns. § All pending EMIF transactions are allowed to complete before HOLDA is asserted. If no bus transactions are occurring, then the minimum delay time can be achieved. Also, bus hold can be indefinitely delayed by setting NOHOLD = 1. ¶ EMIF Bus consists of CE[3:0], BE[3:0], D[31:0], A[21:0], ARE, AOE, AWE, SSADS, SSOE, SSWE, CLKMEM, SDA10, SDRAS, SDCAS, and SDWE. CLKOUT H1 H1 HOLD H3 H4 HOLDA H2 EMIF † H5 BUS† EMIF Bus consists of CE[3:0], BE[3:0], D[31:0], A[21:0], ARE, AOE, AWE, SSADS, SSOE, SSWE, SDA10, SDRAS, SDCAS, SDWE, and CLKMEM. Figure 5−14. HOLD/HOLDA Timing June 2000 − Revised July 2004 SPRS076J 65 Electrical Specifications 5.10 Reset Timings Table 5−15 and Table 5−16 assume testing over recommended operating conditions (see Figure 5−15). Table 5−15. Reset Timing Requirements† VC5510-160 VC5510-200 NO. MIN R1 † tw(RSL) Pulse width, reset low UNIT MAX 2P + 5 ns P = 1/CPU clock frequency in ns. For example, when running parts at 200 MHz, use P = 5 ns. Table 5−16. Reset Switching Characteristics† NO. VC5510-160 VC5510-200 PARAMETER MIN R3 td(RSL-EMIFHZ) Delay time, reset low to EMIF group high impedance‡ 19 ns valid‡ 38P + 19 ns 17 ns 38P + 17 ns 9 ns 38P + 9 ns 18 ns 39P + 18 ns R4 td(RSL-EMIFV) Delay time, reset low to EMIF group R5 td(RSL-LOWIV) Delay time, reset low to low group invalid§ valid§ R6 td(RSL-LOWV) Delay time, reset low to low group R7 td(RSL-HIGHIV) Delay time, reset low to high group invalid§ R8 td(RSL-HIGHV) Delay time, reset low to high group UNIT MAX valid§ impedance¶ R9 td(RSL-ZHZ) Delay time, reset low to Z group high R10 td(RSL-ZV) Delay time, reset low to Z group valid¶ † P = 1/CPU clock frequency in ns. For example, when running parts at 200 MHz, use P = 5 ns. EMIF group: CE[0:3], BE[0:3], CLKMEM, ARE, AOE, AWE, SSADS, SSOE, SSWE, SDRAS, SDCAS, SDWE, and SDA10 § High group: HINT Low group: HOLDA ¶ Z group: A[21:0], D[31:0], CLKR[2:0], CLKX[2:0], FSR[2:0], FSX[2:0], DX[2:0], IO[7:0], XF, and TIN/TOUT[1:0] ‡ R1 RESET R3 R4 EMIF Group† R5 R6 R7 R8 R9 R10 Low Group‡ High Group‡ Z Group§ † EMIF group: CE[0:3], BE[0:3], CLKMEM, ARE, AOE, AWE, SSADS, SSOE, SSWE, SDRAS, SDCAS, SDWE, and SDA10 High group: HINT Low group: HOLDA § Z group: A[21:0], D[31:0], CLKR[2:0], CLKX[2:0], FSR[2:0], FSX[2:0], DX[2:0], IO[7:0], XF, and TIN/TOUT[1:0] ‡ Figure 5−15. Reset Timing 66 SPRS076J June 2000 − Revised July 2004 Electrical Specifications 5.11 External Interrupt Timings Table 5−17 assumes testing over recommended operating conditions (see Figure 5−16). Table 5−17. External Interrupt Timing Requirements† VC5510-160 VC5510-200 NO. MIN † UNIT MAX I1 tw(INTL)A Pulse width, interrupt low, CPU active 3P ns I2 tw(INTH)A Pulse width, interrupt high, CPU active 2P ns P = 1/CPU clock frequency in ns. For example, when running parts at 200 MHz, use P = 5 ns. I1 INTn, NMI I2 Figure 5−16. External Interrupt Timing June 2000 − Revised July 2004 SPRS076J 67 Electrical Specifications 5.12 XF Timings Table 5−18 assumes testing over recommended operating conditions (see Figure 5−17). Table 5−18. XF Switching Characteristics NO. X1 VC5510-160 VC5510-200 PARAMETER td(XF) UNIT MIN MAX Delay time, CLKOUT high to XF high 0 4 Delay time, CLKOUT high to XF low 0 4 ns CLKOUT X1 XF Figure 5−17. XF Timing 68 SPRS076J June 2000 − Revised July 2004 Electrical Specifications 5.13 General-Purpose Input/Output (IOx) Timings Table 5−19 and Table 5−20 assume testing over recommended operating conditions (see Figure 5−18). Table 5−19. General-Purpose Input/Output (GPIO) Pins Configured as Inputs Timing Requirements VC5510-160 VC5510-200 NO. MIN UNIT MAX G2 tsu(GPIO-COH) Setup time, IOx input valid before CLKOUT high 8 ns G3 th(COH-GPIO) Hold time, IOx input valid after CLKOUT high 0 ns Table 5−20. General-Purpose Input/Output (GPIO) Pins Configured as Inputs Switching Characteristics NO. G1 VC5510-160 VC5510-200 PARAMETER td(COH-GPIO) Delay time, CLKOUT high to IOx output change UNIT MIN MAX 0 6 ns CLKOUT G2 G3 IOx Input Mode G1 IOx Output Mode Figure 5−18. General-Purpose Input/Output (IOx) Signal Timings June 2000 − Revised July 2004 SPRS076J 69 Electrical Specifications 5.14 TIN/TOUT Timings Table 5−21 and Table 5−22 assume testing over recommended operating conditions (see Figure 5−19 and Figure 5−20). Table 5−21. TIN/TOUT Pins Configured as Inputs Timing Requirements† VC5510-160 VC5510-200 NO. MIN † UNIT MAX T4 tw(TIN/TOUTL) Pulse width, TIN/TOUT low 2P + 1 ns T5 tw(TIN/TOUTH) Pulse width, TIN/TOUT high 2P + 1 ns P = 1/CPU clock frequency in ns. For example, when running parts at 200 MHz, use P = 5 ns. Table 5−22. TIN/TOUT Pins Configured as Outputs Switching Characteristics†‡ NO. VC5510-160 VC5510-200 PARAMETER UNIT MIN MAX 0 2 ns 2 ns T1 td(COH-TIN/TOUTH) Delay time, CLKOUT high to TIN/TOUT high T2 td(COH-TIN/TOUTL) Delay time, CLKOUT high to TIN/TOUT low 0 T3 tw(TIN/TOUT) Pulse duration, TIN/TOUT (output) P ns † P = 1/CPU clock frequency in ns. For example, when running parts at 200 MHz, use P = 5 ns. ‡ For proper operation of the TIN/TOUT pin configured as an output, the timer period must be configured for at least 4 cycles. T5 T4 TIN/TOUT as Input Figure 5−19. TIN/TOUT Timing When Configured as Inputs CLKOUT T1 T2 T3 TIN/TOUT as Output Figure 5−20. TIN/TOUT Timing When Configured as Outputs 70 SPRS076J June 2000 − Revised July 2004 Electrical Specifications 5.15 Multichannel Buffered Serial Port (McBSP) Timings 5.15.1 McBSP Transmit and Receive Timings Table 5−23 and Table 5−24 assume testing over recommended operating conditions (see Figure 5−21 and Figure 5−22). Table 5−23. McBSP Timing Requirements†‡ VC5510-160 VC5510-200 NO. MIN UNIT MAX M11 tc(CKRX) Cycle time, CLKR/X CLKR/X ext 2P M12 tw(CKRX) Pulse duration, CLKR/X high or CLKR/X low CLKR/X ext P−1 M13 tr(CKRX) Rise time, CLKR/X CLKR/X ext 5 ns M14 tf(CKRX) Fall time, CLKR/X CLKR/X ext 5 ns M15 tsu(FRH-CKRL) Setup time, external FSR high before CLKR low M16 th(CKRL-FRH) Hold time, external FSR high after CLKR low M17 tsu(DRV-CKRL) Setup time, DR valid before CLKR low M18 th(CKRL-DRV) Hold time, DR valid after CLKR low M19 tsu(FXH-CKXL) Setup time, external FSX high before CLKX low M20 th(CKXL-FXH) Hold time, external FSX high after CLKX low CLKR int 5 CLKR ext 1 CLKR int 0 CLKR ext 2 CLKR int 4 CLKR ext 1 CLKR int 0 CLKR ext 2 CLKX int 5 CLKX ext 1 CLKX int 0 CLKX ext 2 ns ns ns ns ns ns ns ns † Polarity bits CLKRP = CLKXP = FSRP = FSXP = 0. If the polarity of any of the signals is inverted, then the timing references of that signal are also inverted. ‡ P = 1/CPU clock frequency in ns. For example, when running parts at 200 MHz, use P = 5 ns. June 2000 − Revised July 2004 SPRS076J 71 Electrical Specifications Table 5−24. McBSP Switching Characteristics†‡ NO. VC5510-160 VC5510-200 PARAMETER MIN UNIT MAX M1 tc(CKRX) Cycle time, CLKR/X CLKR/X int 2P M2 tw(CKRXH) Pulse duration, CLKR/X high CLKR/X int D−1§ D+1§ ns M3 tw(CKRXL) Pulse duration, CLKR/X low CLKR/X int C−1§ C+1§ ns CLKR int −2 2 ns M4 td(CKRH-FRV) Delay time, CLKR high to internal FSR valid CLKR ext 3 7 ns CLKX int −2 2 M5 td(CKXH-FXV) Delay time, CLKX high to internal FSX valid CLKX ext 3 7 0 2 tdis(CKXH-DXHZ) Disable time, CLKX high to DX high impedance following last data bit CLKX int M6 CLKX ext 1 11 Delay time, CLKX high to DX valid. This applies to all bits except the first bit transmitted. M7 td(CKXH-DXV) Delay time, CLKX high to DX valid¶ DXENA = 0 Only applies to first bit transmitted when in Data DXENA = 1 Delay 1 or 2 (XDATDLY=01b or 10b) modes Enable time, CLKX high to DX driven¶ M8 DXENA = 0 ten(CKXH-DX) Only applies to first bit transmitted when in Data DXENA = 1 Delay 1 or 2 (XDATDLY=01b or 10b) modes CLKX int 6 CLKX ext 9 CLKX int 6 CLKX ext 9 CLKX int 2P+6 CLKX ext 2P+9 CLKX int 0 CLKX ext 6 CLKX int P CLKX ext P+6 FSX int Delay time, FSX high to DX valid¶ M9 DXENA = 0 td(FXH-DXV) Only applies to first bit transmitted when in Data DXENA = 1 Delay 0 (XDATDLY=00b) mode. Enable time, FSX high to DX driven¶ M10 ten(FXH-DX) DXENA = 0 ns ns ns ns ns 5 FSX ext 9 FSX int 2P+5 FSX ext 2P+9 FSX int 0 FSX ext 6 FSX int P ns ns Only applies to first bit transmitted when in Data DXENA = 1 FSX ext P+6 Delay 0 (XDATDLY=00b) mode † Polarity bits CLKRP = CLKXP = FSRP = FSXP = 0. If the polarity of any of the signals is inverted, then the timing references of that signal are also inverted. ‡ P = 1/CPU clock frequency in ns. For example, when running parts at 200 MHz, use P = 5 ns. § T=CLKRX period = (1 + CLKGDV) * P C=CLKRX low pulse width = T/2 when CLKGDV is odd or zero and = (CLKGDV/2) * P when CLKGDV is even D=CLKRX high pulse width = T/2 when CLKGDV is odd or zero and = (CLKGDV/2 + 1) * P when CLKGDV is even ¶ See the TMS320VC5501/5502/5503/5507/5509/5510 DSP Multichannel Buffered Serial Port (McBSP) Reference Guide (literature number SPRU592) for a description of the DX enable (DXENA) and data delay features of the McBSP. 72 SPRS076J June 2000 − Revised July 2004 Electrical Specifications M1, M11 M2, M12 M13 M3, M12 CLKR M4 M4 M14 FSR (int) M15 M16 FSR (ext) M18 M17 DR (RDATDLY=00b) Bit (n−1) (n−2) (n−3) M17 (n−4) M18 DR (RDATDLY=01b) Bit (n−1) (n−2) M17 (n−3) M18 DR (RDATDLY=10b) Bit (n−1) (n−2) Figure 5−21. McBSP Receive Timings M1, M11 M2, M12 M13 M3, M12 M14 CLKX M5 M5 FSX (int) M19 M20 FSX (ext) M9 M7 M10 DX (XDATDLY=00b) Bit 0 Bit (n−1) (n−2) (n−3) (n−4) (n−2) (n−3) M7 M8 DX (XDATDLY=01b) Bit 0 Bit (n−1) M7 M6 DX (XDATDLY=10b) M8 Bit 0 Bit (n−1) (n−2) Figure 5−22. McBSP Transmit Timings June 2000 − Revised July 2004 SPRS076J 73 Electrical Specifications 5.15.2 McBSP General-Purpose I/O Timing Table 5−25 and Table 5−26 assume testing over recommended operating conditions (see Figure 5−23). Table 5−25. McBSP General-Purpose I/O Timing Requirements VC5510-160 VC5510-200 NO. MIN † UNIT MAX M22 tsu(MGPIO-COH) Setup time, MGPIOx input mode before CLKOUT high† 7 ns M23 th(COH-MGPIO) Hold time, MGPIOx input mode after CLKOUT high† 0 ns MGPIOx refers to CLKRx, FSRx, DRx, CLKXx, or FSXx when configured as a general-purpose input. Table 5−26. McBSP General-Purpose I/O Switching Characteristics NO. M21 ‡ VC5510-160 VC5510-200 PARAMETER td(COH-MGPIO) Delay time, CLKOUT high to MGPIOx output mode‡ MIN MAX 0 3 UNIT ns MGPIOx refers to CLKRx, FSRx, CLKXx, FSXx, or DXx when configured as a general-purpose output. M22 M21 CLKOUT M23 MGPIOx Input Mode† MGPIOx Output Mode‡ † ‡ MGPIOx refers to CLKRx, FSRx, DRx, CLKXx, or FSXx when configured as a general-purpose input. MGPIOx refers to CLKRx, FSRx, CLKXx, FSXx, or DXx when configured as a general-purpose output. Figure 5−23. McBSP General-Purpose I/O Timings 74 SPRS076J June 2000 − Revised July 2004 Electrical Specifications 5.15.3 McBSP as SPI Master or Slave Timing Table 5−27 to Table 5−34 assume testing over recommended operating conditions (see Figure 5−24 through Figure 5−27). Table 5−27. McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 10b, CLKXP = 0)†‡ VC5510-160 VC5510-200 NO. MASTER MIN † ‡ UNIT SLAVE MAX MIN MAX M30 tsu(DRV-CKXL) Setup time, DR valid before CLKX low 4 3 − 6P ns M31 th(CKXL-DRV) Hold time, DR valid after CLKX low 1 1 + 6P ns M32 tsu(BFXL-CKXH) Setup time, FSX low before CLKX high 10 ns M33 tc(CKX) Cycle time, CLKX 2P 16P ns For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1. P = 1/CPU clock frequency in ns. For example, when running parts at 200 MHz, use P = 5 ns. Table 5−28. McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 10b, CLKXP = 0)†‡ VC5510-160 VC5510-200 NO. M24 PARAMETER td(CKXL-FXL) MASTER§ Delay time, FSX low to CLKX low¶ high# UNIT SLAVE MIN MAX T−1 T+3 C−2 C+2 −2 4 C−2 C MIN MAX ns M25 td(FXL-CKXH) Delay time, FSX low to CLKX M26 td(CKXH-DXV) Delay time, CLKX high to DX valid ns M27 tdis(CKXL-DXHZ) Disable time, DX high impedance following last data bit from CLKX low M28 tdis(FXH-DXHZ) Disable time, DX high impedance following last data bit from FSX high 3P + 8 3P + 20 ns M29 td(FXL-DXV) Delay time, FSX low to DX valid 3P − 3 3P + 20 ns 3P + 2 5P+ 8 ns ns † For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1. P = 1/CPU clock frequency in ns. For example, when running parts at 200 MHz, use P = 5 ns. § T = CLKX period = (1 + CLKGDV) * P C = CLKX low pulse width = T/2 when CLKGDV is odd or zero and = (CLKGDV/2) * P when CLKGDV is even ¶ FSRP = FSXP = 1. As a SPI master, FSX is inverted to provide active-low slave-enable output. As a slave, the active-low signal input on FSX and FSR is inverted before being used internally. CLKXM = FSXM = 1, CLKRM = FSRM = 0 for master McBSP CLKXM = CLKRM = FSXM = FSRM = 0 for slave McBSP # FSX should be low before the rising edge of clock to enable slave devices and then begin a SPI transfer at the rising edge of the master clock (CLKX). ‡ June 2000 − Revised July 2004 SPRS076J 75 Electrical Specifications LSB M33 MSB M32 CLKX M24 M25 FSX M28 M29 M26 M27 DX Bit 0 Bit(n-1) M30 DR Bit 0 (n-2) (n-3) (n-4) M31 Bit(n-1) (n-2) (n-3) (n-4) Figure 5−24. McBSP Timing as SPI Master or Slave: CLKSTP = 10b, CLKXP = 0 76 SPRS076J June 2000 − Revised July 2004 Electrical Specifications Table 5−29. McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 11b, CLKXP = 0)†‡ VC5510-160 VC5510-200 NO. MASTER MIN † ‡ UNIT SLAVE MAX MIN MAX M39 tsu(DRV-CKXH) Setup time, DR valid before CLKX high 4 3 − 6P ns M40 th(CKXH-DRV) Hold time, DR valid after CLKX high 1 1 +6P ns M41 tsu(FXL-CKXH) Setup time, FSX low before CLKX high 10 ns M42 tc(CKX) Cycle time, CLKX 2P 16P ns For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1. P = 1/CPU clock frequency in ns. For example, when running parts at 200 MHz, use P = 5 ns. Table 5−30. McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 11b, CLKXP = 0)†‡ VC5510-160 VC5510-200 NO. PARAMETER M34 MASTER§ Delay time, FSX low to CLKX low¶ td(CKXL-FXL) high# UNIT SLAVE MIN MAX C−1 C+3 MIN MAX ns M35 td(FXL-CKXH) Delay time, FSX low to CLKX T−2 T+2 M36 td(CKXL-DXV) Delay time, CLKX low to DX valid −2 4 3P + 2 5P + 8 ns ns M37 tdis(CKXL-DXHZ) Disable time, DX high impedance following last data bit from CLKX low −2 0 3P + 8 3P + 21 ns M38 td(FXL-DXV) Delay time, FSX low to DX valid D−2 D +10 3P − 3 3P + 21 ns † For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1. ‡ P = 1/CPU clock frequency in ns. For example, when running parts at 200 MHz, use P = 5 ns. § T = CLKX period = (1 + CLKGDV) * P C = CLKX low pulse width = T/2 when CLKGDV is odd or zero and = (CLKGDV/2) * P when CLKGDV is even D = CLKX high pulse width = T/2 when CLKGDV is odd or zero and = (CLKGDV/2 + 1) * P when CLKGDV is even ¶ FSRP = FSXP = 1. As a SPI master, FSX is inverted to provide active-low slave-enable output. As a slave, the active-low signal input on FSX and FSR is inverted before being used internally. CLKXM = FSXM = 1, CLKRM = FSRM = 0 for master McBSP CLKXM = CLKRM = FSXM = FSRM = 0 for slave McBSP # FSX should be low before the rising edge of clock to enable slave devices and then begin a SPI transfer at the rising edge of the master clock (CLKX). LSB M42 MSB M41 CLKX M34 M35 FSX M37 DX M36 M38 Bit 0 Bit(n-1) M39 DR Bit 0 (n-2) (n-3) (n-4) M40 Bit(n-1) (n-2) (n-3) (n-4) Figure 5−25. McBSP Timing as SPI Master or Slave: CLKSTP = 11b, CLKXP = 0 June 2000 − Revised July 2004 SPRS076J 77 Electrical Specifications Table 5−31. McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 10b, CLKXP = 1)†‡ VC5510-160 VC5510-200 NO. MASTER MIN † ‡ UNIT SLAVE MAX MIN MAX M49 tsu(DRV-CKXH) Setup time, DR valid before CLKX high 4 3 − 6P ns M50 th(CKXH-DRV) Hold time, DR valid after CLKX high 1 1 + 6P ns M51 tsu(FXL-CKXL) Setup time, FSX low before CLKX low 10 ns M52 tc(CKX) Cycle time, CLKX 2P 16P ns For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1. P = 1/CPU clock frequency in ns. For example, when running parts at 200 MHz, use P = 5 ns. Table 5−32. McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 10b, CLKXP = 1)†‡ VC5510-160 VC5510-200 NO. M43 PARAMETER td(CKXH-FXL) MASTER§ Delay time, FSX low to CLKX high¶ low# UNIT SLAVE MIN MAX T−1 T+3 D−2 D+2 −2 4 D−2 D MIN MAX ns M44 td(FXL-CKXL) Delay time, FSX low to CLKX M45 td(CKXL-DXV) Delay time, CLKX low to DX valid ns M46 tdis(CKXH-DXHZ) Disable time, DX high impedance following last data bit from CLKX high M47 tdis(FXH-DXHZ) Disable time, DX high impedance following last data bit from FSX high 3P + 8 3P + 20 ns M48 td(FXL-DXV) Delay time, FSX low to DX valid 3P − 3 3P + 20 ns 3P + 2 5P + 8 ns ns † For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1. ‡ P = 1/CPU clock frequency in ns. For example, when running parts at 200 MHz, use P = 5 ns. § T = CLKX period = (1 + CLKGDV) * P D = CLKX high pulse width = T/2 when CLKGDV is odd or zero and = (CLKGDV/2 + 1) * P when CLKGDV is even ¶ FSRP = FSXP = 1. As a SPI master, FSX is inverted to provide active-low slave-enable output. As a slave, the active-low signal input on FSX and FSR is inverted before being used internally. CLKXM = FSXM = 1, CLKRM = FSRM = 0 for master McBSP CLKXM = CLKRM = FSXM = FSRM = 0 for slave McBSP # FSX should be low before the rising edge of clock to enable slave devices and then begin a SPI transfer at the rising edge of the master clock (CLKX). M51 LSB M52 MSB CLKX M43 M44 FSX M47 M48 M45 M46 DX Bit 0 Bit(n-1) M49 DR Bit 0 (n-2) (n-3) (n-4) M50 Bit(n-1) (n-2) (n-3) (n-4) Figure 5−26. McBSP Timing as SPI Master or Slave: CLKSTP = 10b, CLKXP = 1 78 SPRS076J June 2000 − Revised July 2004 Electrical Specifications Table 5−33. McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 11b, CLKXP = 1)†‡ VC5510-160 VC5510-200 NO. MASTER MIN † ‡ UNIT SLAVE MAX MIN MAX M58 tsu(DRV-CKXL) Setup time, DR valid before CLKX low 4 3 − 6P ns M59 th(CKXL-DRV) Hold time, DR valid after CLKX low 1 1 + 6P ns M60 tsu(FXL-CKXL) Setup time, FSX low before CLKX low 10 ns M61 tc(CKX) Cycle time, CLKX 2P 16P ns For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1. P = 1/CPU clock frequency in ns. For example, when running parts at 200 MHz, use P = 5 ns. Table 5−34. McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 11b, CLKXP = 1)†‡ VC5510-160 VC5510-200 NO. PARAMETER MASTER§ high¶ UNIT SLAVE MIN MAX MIN MAX M53 td(CKXH-FXL) Delay time, FSX low to CLKX D−1 D+3 M54 td(FXL-CKXL) Delay time, FSX low to CLKX low# T−2 T+2 ns M55 td(CKXH-DXV) Delay time, CLKX high to DX valid −2 4 3P + 2 5P + 8 ns M56 tdis(CKXH-DXHZ) Disable time, DX high impedance following last data bit from CLKX high −2 0 3P + 8 3P + 21 ns M57 td(FXL-DXV) Delay time, FSX low to DX valid C−2 C +10 3P − 3 3P + 21 ns ns † For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1. P = 1/CPU clock frequency in ns. For example, when running parts at 200 MHz, use P = 5 ns. § T = CLKX period = (1 + CLKGDV) * P C = CLKX low pulse width = T/2 when CLKGDV is odd or zero and = (CLKGDV/2) * P when CLKGDV is even D = CLKX high pulse width = T/2 when CLKGDV is odd or zero and = (CLKGDV/2 + 1) * P when CLKGDV is even ¶ FSRP = FSXP = 1. As a SPI master, FSX is inverted to provide active-low slave-enable output. As a slave, the active-low signal input on FSX and FSR is inverted before being used internally. CLKXM = FSXM = 1, CLKRM = FSRM = 0 for master McBSP CLKXM = CLKRM = FSXM = FSRM = 0 for slave McBSP # FSX should be low before the rising edge of clock to enable slave devices and then begin a SPI transfer at the rising edge of the master clock (CLKX). ‡ M60 LSB M61 MSB CLKX M53 M54 M54 FSX M56 DX M55 M57 Bit 0 Bit(n-1) M58 DR Bit 0 (n-2) (n-3) (n-4) M59 Bit(n-1) (n-2) (n-3) (n-4) Figure 5−27. McBSP Timing as SPI Master or Slave: CLKSTP = 11b, CLKXP = 1 June 2000 − Revised July 2004 SPRS076J 79 Electrical Specifications 5.16 Enhanced Host-Port Interface (EHPI) Timing Table 5−35 and Table 5−36 assume testing over recommended operating conditions (see Figure 5−28 through Figure 5−32). Table 5−35. EHPI Timing Requirements VC5510-160 VC5510-200 NO. MIN † UNIT MAX E11 tsu(HASL-HDSL) Setup time, HAS low before HDS low 4 ns E12 th(HDSL-HASL) Hold time, HAS low after HDS low 3 ns E13 tsu(HCNTLV-HDSL) Setup time, (HR/W, HA[19:0], HCNTL[1:0]) valid before HDS low 4 ns E14 th(HDSL-HCNTLIV) Hold time, (HR/W, HA[19:0], HCNTL[1:0]) invalid after HDS low 4 ns ns E15 tw(HDSL) Pulse duration, HDS low 4P† E16 tw(HDSH) Pulse duration, HDS high 4P† ns E17 tsu(HDV-HDSH) Setup time, HD bus write data valid before HDS high 5 ns E18 th(HDSH-HDIV) Hold time, HD bus write data invalid after HDS high 3 ns E19 tsu(HCNTLV-HASL) Setup time, (HR/W, HCNTL[1:0]) valid before HAS low 5 ns E20 th(HASL-HCNTLIV) Hold time, (HR/W, HCNTL[1:0]) valid after HAS low 3 ns P = 1/CPU clock frequency in ns. For example, when running parts at 200 MHz, use P = 5 ns. Table 5−36. EHPI Switching Characteristics NO. † ‡ PARAMETER E1 td(HDSL-HDD)M Delay time, HDS low to HD bus read data driven (memory access) E2 td(HDSL-HDV1)M Delay time, HDS low to HD bus read data valid (memory access) E4 td(HDSL-HDD)R Delay time, HDS low to HD bus read data driven (register access) E5 td(HDSL-HDV)R Delay time, HDS low to HD bus read data valid (register access) E6 tdis(HDSH-HDIV) Disable time, HDS high to HD bus read data invalid E7 td(HDSL-HRDYL) Delay time, HDS low to HRDY low (during reads) E8 td(HDV-HRDYH) Delay time, HD bus valid to HRDY high (during reads) E9 td(HDSH-HRDYL) Delay time, HDS high to HRDY low (during writes) E10 td(HDSH-HRDYH) Delay time, HDS high to HRDY high (during writes) VC5510-160 VC5510-200 UNIT MIN MAX 6 16 14P+10†‡ 6 6 ns 16 ns 16 ns 16 ns P+10† ns 2 ns 16 14P+10† ns ns ns P = 1/CPU clock frequency in ns. For example, when running parts at 200 MHz, use P = 5 ns. EHPI latency is dependent on the number of DMA channels active, their priorities and their source/destination ports. The latency shown assumes no competing CPU or DMA activity to the memory resource being accessed by the EHPI. 80 SPRS076J June 2000 − Revised July 2004 Electrical Specifications Read Write HCS E16 E15 E15 HDS E13 E13 E14 E14 HR/W HCNTL[1:0] Valid Valid HA[19:0] Valid Valid E2 E1 E6 HD[15:0] (read) Read Data E17 E18 HD[15:0] (write) Write Data E10 E7 E8 E9 HRDY NOTES: A. As of revision 2.1, the byte-enable function on the EHPI (as controlled by pins HBE0 and HBE1) is no longer supported. These pins must always be driven low either by an external device, by external pulldown resistors or by using the on-chip pulldown circuitry controlled by the HPE bit in the System Register (SYSR). B. The falling edge of HCS must occur concurrent with or before the falling edge of HDS. The rising edge of HCS must occur concurrent with or after the rising edge of HDS. If HDS1 and/or HDS2 are tied low and HCS is used as a strobe, the timing requirements shown for HDS apply to HCS . Operation with HCS as a strobe is not recommended because HCS gates output of HRDY (when HCS is high HRDY is not driven). Figure 5−28. EHPI Nonmultiplexed Read/Write Timings June 2000 − Revised July 2004 SPRS076J 81 Electrical Specifications Read Write HCS E12 E12 E11 E11 HAS E16 E15 HDS E19 E15 E19 E20 E20 E14 E13 E13 E14 HR/W HCNTL[1:0] Valid (11) Valid (11) E5 E6 E4 HD[15:0] (read) Read Data E17 E18 HD[15:0] (write) Write Data E10 E7 E8 E9 HRDY NOTES: A. As of revision 2.1, the byte-enable function on the EHPI (as controlled by pins HBE0 and HBE1) is no longer supported. These pins must always be driven low either by an external device, by external pulldown resistors or by using the on-chip pulldown circuitry controlled by the HPE bit in the System Register (SYSR). B. The falling edge of HCS must occur concurrent with or before the falling edge of HDS. The rising edge of HCS must occur concurrent with or after the rising edge of HDS. If HDS1 and/or HDS2 are tied low and HCS is used as a strobe, the timing requirements shown for HDS apply to HCS . Operation with HCS as a strobe is not recommended because HCS gates output of HRDY (when HCS is high HRDY is not driven). Figure 5−29. EHPI Multiplexed Memory (HPID) Access Read/Write Timings Without Autoincrement 82 SPRS076J June 2000 − Revised July 2004 Electrical Specifications HCS E11 E12 HAS E16 E15 HDS E19 E20 E14 E13 HR/W HCNTL[1:0] Valid (01) Valid (01) E2 E2 E6 E1 HD[15:0] (read) E6 E1 Read Data Read Data E7 E7 E8 E8 HRDY HPIA contents n n+1 n+2 NOTES: A. As of revision 2.1, the byte-enable function on the EHPI (as controlled by pins HBE0 and HBE1) is no longer supported. These pins must always be driven low either by an external device, by external pulldown resistors or by using the on-chip pulldown circuitry controlled by the HPE bit in the System Register (SYSR). B. During autoincrement mode, although the EHPI internally increments the memory address, reads of the HPIA register by the host will always indicate the base address. C. The falling edge of HCS must occur concurrent with or before the falling edge of HDS. The rising edge of HCS must occur concurrent with or after the rising edge of HDS. If HDS1 and/or HDS2 are tied low and HCS is used as a strobe, the timing requirements shown for HDS apply to HCS . Operation with HCS as a strobe is not recommended because HCS gates output of HRDY (when HCS is high HRDY is not driven). Figure 5−30. EHPI Multiplexed Memory (HPID) Access Read Timings With Autoincrement June 2000 − Revised July 2004 SPRS076J 83 Electrical Specifications HCS E12 E11 HAS E15 E16 HDS E19 E20 E14 E13 HR/W HCNTL[1:0] Valid (01) Valid (01) E17 HD[15:0] (write) E18 Write Data Write Data E10 E10 E9 E9 HRDY HPIA contents n n+1 NOTES: A. As of revision 2.1, the byte-enable function on the EHPI (as controlled by pins HBE0 and HBE1) is no longer supported. These pins must always be driven low either by an external device, by external pulldown resistors or by using the on-chip pulldown circuitry controlled by the HPE bit in the System Register (SYSR). B. During autoincrement mode, although the EHPI internally increments the memory address, reads of the HPIA register by the host will always indicate the base address. C. The falling edge of HCS must occur concurrent with or before the falling edge of HDS. The rising edge of HCS must occur concurrent with or after the rising edge of HDS. If HDS1 and/or HDS2 are tied low and HCS is used as a strobe, the timing requirements shown for HDS apply to HCS . Operation with HCS as a strobe is not recommended because HCS gates output of HRDY (when HCS is high HRDY is not driven). Figure 5−31. EHPI Multiplexed Memory (HPID) Access Write Timings With Autoincrement 84 SPRS076J June 2000 − Revised July 2004 Electrical Specifications Read Write HCS E12 E12 E11 E11 HAS E16 E15 E15 HDS E19 E19 E20 E20 E14 E14 E13 E13 HR/W HCNTL[1:0] Valid (10 or 00) Valid (10 or 00) E5 E6 E4 HD[15:0] (read) Read Data E17 E18 HD[15:0] (write) Write Data HRDY NOTES: A. As of revision 2.1, the byte-enable function on the EHPI (as controlled by pins HBE0 and HBE1) is no longer supported. These pins must always be driven low either by an external device, by external pulldown resistors or by using the on-chip pulldown circuitry controlled by the HPE bit in the System Register (SYSR). B. During auto-increment mode, although the EHPI internally increments the memory address, reads of the HPIA register by the host will always indicate the base address. C. The falling edge of HCS must occur concurrent with or before the falling edge of HDS. The rising edge of HCS must occur concurrent with or after the rising edge of HDS. If HDS1 and/or HDS2 are tied low and HCS is used as a strobe, the timing requirements shown for HDS apply to HCS . Operation with HCS as a strobe is not recommended because HCS gates output of HRDY (when HCS is high HRDY is not driven). Figure 5−32. EHPI Multiplexed Register Access Read/Write Timings June 2000 − Revised July 2004 SPRS076J 85 Mechanical Data 6 Mechanical Data 6.1 Ball Grid Array (GGW) Package Mechanical Data GGW (S-PBGA-N240) PLASTIC BALL GRID ARRAY 15,10 SQ 14,90 12,80 TYP 0,80 U T R P N M L K J H G F E D C B A 0,80 1 A1 Corner 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Bottom View 0,95 0,85 1,40 MAX Seating Plane 0,55 0,45 0,08 M 0,45 0,35 0,12 4145255−5/E 07/03 NOTES: A. All linear dimensions are in millimeters. B. This drawing is subject to change without notice. C. MicroStar BGA configuration Figure 6−1. TMS320VC5510 240-Ball MicroStar BGA Plastic Ball Grid Array Package MicroStar BGA is a trademark of Texas Instruments. 86 SPRS076J June 2000 − Revised July 2004