ON Semiconductor BUS98 BUS98A SWITCHMODE Series NPN Silicon Power Transistors The BUS98 and BUS98A transistors are designed for high–voltage, high–speed, power switching in inductive circuits where fall time is critical. They are particularly suited for line–operated SWITCHMODE applications such as: • • • • • • • • 30 AMPERES NPN SILICON POWER TRANSISTORS 400 AND 450 VOLTS (BVCEO) 250 WATTS 850–1000 V (BVCES) Switching Regulators Inverters Solenoid and Relay Drivers Motor Controls Deflection Circuits Fast Turn–Off Times 60 ns Inductive Fall Time –25C (Typ) 120 ns Inductive Crossover Time –25C (Typ) Operating Temperature Range –65 to +200C 100C Performance Specified for: Reverse–Biased SOA with Inductive Loads Switching Times with Inductive Loads Saturation Voltages Leakage Currents (125C) CASE 1–07 TO–204AA ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎ MAXIMUM RATINGS Rating Symbol BUS98 BUS98A Unit Collector–Emitter Voltage VCEO(sus) 400 450 Vdc Collector–Emitter Voltage VCEV 850 1000 Vdc Emitter Base Voltage VEB 7 Vdc Collector Current — Continuous — Peak (1) — Overload IC ICM IoI 30 60 120 Adc Base Current — Continuous — Peak (1) IB IBM 10 30 Adc Total Power Dissipation — TC = 25C — TC = 100C Derate above 25C PD 250 142 1.42 Watts TJ, Tstg –65 to +200 C Symbol Max Unit RθJC 0.7 C/W TL 275 C Operating and Storage Junction Temperature Range W/C THERMAL CHARACTERISTICS Characteristic Thermal Resistance, Junction to Case Maximum Lead Temperature for Soldering Purposes: 1/8″ from Case for 5 Seconds (1) Pulse Test: Pulse Width = 5 ms, Duty Cycle 10%. Designer’s and SWITCHMODE are trademarks of ON Semiconductor, Inc. Semiconductor Components Industries, LLC, 2001 March, 2001 – Rev. 9 1 Publication Order Number: BUS98/D BUS98 BUS98A ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ELECTRICAL CHARACTERISTICS (TC = 25C unless otherwise noted) Characteristic Symbol Min Typ Max 400 450 — — — — — — — — 0.4 4.0 — — — — 1.0 6.0 Unit OFF CHARACTERISTICS (1) Collector–Emitter Sustaining Voltage (Table 1) (IC = 200 mA, IB = 0) L = 25 mH VCEO(sus) BUS98 BUS98A Collector Cutoff Current (VCEV = Rated Value, VBE(off) = 1.5 Vdc) (VCEV = Rated Value, VBE(off) = 1.5 Vdc, TC = 125C) Collector Cutoff Current (VCE = Rated VCEV, RBE = 10 Ω) Vdc ICEV TC = 25 C TC = 125 C mAdc ICER mAdc Emitter Cutoff Current (VEB = 7 Vdc, IC = 0) IEBO — — 0.2 mAdc Emitter–Base Breakdown Voltage (IE = 100 mA – IC = 0) VEBO 7.0 — — Vdc SECOND BREAKDOWN Second Breakdown Collector Current with Base Forward Biased Clamped Inductive SOA with Base Reverse Biased IS/b See Figure 12 RBSOA See Figure 13 ON CHARACTERISTICS (1) DC Current Gain (IC = 20 Adc, VCE = 5 Vdc) (IC = 16 Adc, VCE = 5 V) hFE 8 — — — — — — — — — — — — — — — 1.5 3.5 2.0 1.5 5.0 2.0 — — — — — — — — 1.6 1.6 1.6 1.6 Cob — — 700 pF td — 0.1 0.2 µs tr — 0.4 0.7 ts — 1.55 2.3 tf — 0.2 0.4 tsv — 1.55 — tfi — 0.06 — tsv — 1.8 2.8 tc — 0.3 0.6 tfi — 0.17 0.35 BUS98 BUS98A Collector–Emitter Saturation Voltage (IC = 20 Adc, IB = 4 Adc) (IC = 30 Adc, IB = 8 Adc) (IC = 20 Adc, IB = 4 Adc, TC = 100C) (IC = 16 Adc, IB = 3.2 Adc) (IC = 24 Adc, IB = 5 Adc) (IC = 16 Adc, IB = 3.2 Adc, TC = 100C) VCE(sat) BUS98 BUS98A Base–Emitter Saturation Voltage (IC = 20 Adc, IB = 4 Adc) (IC = 20 Adc, IB = 4 Adc, TC = 100C) (IC = 16 Adc, IB = 3.2 Adc) (IC = 16 Adc, IB = 3.2 Adc, TC = 100C) Vdc VBE(sat) BUS98 BUS98A Vdc DYNAMIC CHARACTERISTICS Output Capacitance (VCB = 10 Vdc, IE = 0, ftest = 100 kHz) SWITCHING CHARACTERISTICS Restive Load (Table 1) Delay Time Rise Time Storage Time Fall Time (VCC = 250 Vdc, Vdc IC = 20 A A, IB1 = 4.0 A, tp = 30 µs, Duty Cycle 2%, VBE(off) = 5 V) (for BUS98A: IC = 16 A, A Ib1 = 3.2 3 2 A) Inductive Load, Clamped (Table 1) Storage Time Fall Time Storage Time Crossover Time Fall Time IC( C(pk) k) = 20 A Ib1 = 4 A VBE(off) = 5 V, VCE(c1) ( ) = 250 V) IC(pk) = 16 A ) lB1 = 3.2 A) ((BUS98)) (TC = 25C) (BUS98A ((TC = 100C)) (1) Pulse Test: PW = 300 µs, Duty Cycle 2%. http://onsemi.com 2 µs BUS98 BUS98A 90% 50 hFE, DC CURRENT GAIN VCE , COLLECTOR-EMITTER VOLTAGE (VOLTS) DC CHARACTERISTICS 30 10% 20 10 5 3 2 VCE = 5 V 3 5 7 10 20 IC, COLLECTOR CURRENT (AMPS) 30 50 10 5 IC = 15 A 3 1 0.5 0.3 0.1 TC = 25°C 0.1 βf = 5 90% 10% 1 0.7 0.3 3 1 10 0.3 0.5 1 IB, BASE CURRENT (AMPS) 2 3 4 Figure 2. Collector Saturation Region VBE, BASE EMITTER VOLTAGE (VOLTS) VCE , COLLECTOR-EMITTER VOLTAGE (VOLTS) Figure 1. DC Current Gain 0.1 IC = 20 A IC = 10 A βf = 5 2 TJ = 25°C 1 0.7 TJ = 100°C 0.5 0.3 0.1 20 0.3 1 3 IC, COLLECTOR CURRENT (AMPS) IC, COLLECTOR CURRENT (AMPS) Figure 3. Collector–Emitter Saturation Voltage Figure 4. Base–Emitter Voltage 104 10 10k 103 102 101 Cib C, CAPACITANCE (pF) IC, COLLECTOR CURRENT (A) µ VCE = 250 V TJ = 150°C 125°C 100°C 75°C 100 REVERSE 1k 100 Cob FORWARD 25°C 10-1 -0.4 -0.2 0 0.2 0.4 10 0.6 TJ = 25°C 1 10 100 VBE, BASE-EMITTER VOLTAGE (VOLTS) VR, REVERSE VOLTAGE (VOLTS) Figure 5. Collector Cutoff Region Figure 6. Capacitance http://onsemi.com 3 1000 BUS98 BUS98A Table 1. Test Conditions for Dynamic Performance VCEO(sus) RBSOA AND INDUCTIVE SWITCHING RESISTIVE SWITCHING -VC1 INPUT CONDITIONS +10 V 1 20 CIRCUIT VALUES 1 0 2 IB1 MJE210 -10 V 2 1 µF Lcoil = 180 µH Rcoil = 0.05 Ω VCC = 20 V TURN–OFF TIME Use inductive switching driver as the input to the resistive test circuit. IC 1N4937 OR EQUIVALENT t1 Lcoil Vclamp VCE 2 VCE or Vclamp 90% IC(pk) trv tfi tti tc VCE 10% VCE(pk) 90% IB1 10% IC pk RESISTIVE TEST CIRCUIT Lcoil (IC(pk)) VCC 1 Lcoil (IC(pk)) 2 TUT RL VCC Vclamp Test Equipment Scope — Tektronix 475 or Equivalent 20 VCE(pk) 2% IC I B2(pk), BASE CURRENT (AMPS) tsv t t2 TIME 90% VCE(pk) t1 t2 VCC IC pk t tf Pulse Width = 10 µs t1 Adjusted to Obtain IC tf Clamped IC(pk) Rcoil SEE ABOVE FOR DETAILED CONDITIONS VCC = 250 V Vclamp = 250 V OUTPUT WAVEFORMS TUT IN PUT IC 50 µF ADJUST VC2 TO OBTAIN DESIRED IB2 Lcoil = 25 mH, VCC = 10 V Rcoil = 0.7 Ω 1 IB1 adjusted to obtain the forced hFE desired BUV20 INDUCTIVE TEST CIRCUIT TEST CIRCUITS 50 µF +10 V PW Varied to Attain IC = 100 mA IB 0.1 µF BUV20 TURN–ON TIME ADJUST VC1 TO OBTAIN DESIRED IB1 MJE200 12 8 4 0 TIME βf = 5 IC = 20 A 16 0 Figure 7. Inductive Switching Measurements 1 2 3 4 5 VBE(off), BASE-EMITTER VOLTAGE (VOLTS) Figure 8. Peak–Reverse Current http://onsemi.com 4 6 BUS98 BUS98A SWITCHING TIMES NOTE In resistive switching circuits, rise, fall, and storage times have been defined and apply to both current and voltage waveforms since they are in phase. However, for inductive loads which are common to SWITCHMODE power supplies and hammer drivers, current and voltage waveforms are not in phase. Therefore, separate measurements must be made on each waveform to determine the total switching time. For this reason, the following new terms have been defined. tsv = Voltage Storage Time, 90% IB1 to 10% Vclamp trv = Voltage Rise Time, 10–90% Vclamp tfi = Current Fall Time, 90–10% IC tti = Current Tail, 10–2% IC tc = Crossover Time, 10% Vclamp to 10% IC An enlarged portion of the inductive switching waveforms is shown in Figure 7 to aid in the visual identity of these terms. For the designer, there is minimal switching loss during storage time and the predominant switching power losses occur during the crossover interval and can be obtained using the standard equation from AN–222: PSWT = 1/2 VCCIC(tc) f In general, trv + tfi tc. However, at lower test currents this relationship may not be valid. As is common with most switching transistors, resistive switching is specified at 25C and has become a benchmark for designers. However, for designers of high frequency converter circuits, the user oriented specifications which make this a “SWITCHMODE” transistor are the inductive switching speeds (tc and tsv) which are guaranteed at 100C.INDUCTIVE SWITCHING 4 3 0.8 0.6 1 0.7 TC = 100°C 0.4 TC = 100°C t, TIME (s) µ t, TIME (s) µ 2 TC = 25°C 0.5 0.2 TC = 100°C TC = 25°C 0.1 TC = 25°C tc tfi βf = 5 βf = 5 2 4 6 8 10 20 IC, COLLECTOR CURRENT (AMPS) 30 2 Figure 9. Storage Time, tsv 3 2 3 2 0.5 0.3 tc 0.2 tfi 0.1 0.05 0.03 TC = 25°C IC = 20 A βf = 5 tsv 1 t, TIME (s) µ t, TIME (s) µ 1 30 Figure 10. Crossover and Fall Times TC = 25°C IC = 20 A VBE(off) = 5 V tsv 4 6 8 10 20 IC, COLLECTOR CURRENT (AMPS) 0.5 0.3 0.2 tc 0.1 tfi 0.05 2 4 6 8 0.03 10 1 2 3 4 5 βf, FORCED GAIN Ib2/Ib1 Figure 11. Turn–Off Times versus Forced Gain Figure 12. Turn–Off TM Times versus Ib2/Ib1 http://onsemi.com 5 BUS98 BUS98A The Safe Operating Area figures shown in Figures 12 and 13 are specified for these devices under the test conditions shown. SAFE OPERATING AREA INFORMATION IC, COLLECTOR CURRENT (AMPS) FORWARD BIAS 30 20 10 DC There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate IC – VCE limits of the transistor that must be observed for reliable operation, i.e., the transistor must not be subjected to greater dissipation than the curves indicate. The data of Figure 13 is based on TC = 25C; TJ(pk) is variable depending on power level. Second breakdown pulse limits are valid for duty cycles to 10% but must be derated when TC 25C. Second breakdown limitations do not derate the same as thermal limitations. Allowable current at the voltages shown on Figure 13 may be found at any case temperature by using the appropriate curve on Figure 15. TJ(pk) may be calculated from the data in Figure 11. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown. 1 ms 5 LIMIT ONLY FOR TURN ON 2 1 0.5 0.2 TC = 25°C 0.1 tr = 0.7 µs BUS98 BUS98A 0.05 0.02 2 5 10 20 50 100 200 500 1000 VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS) Figure 13. Forward Bias Safe Operating Area 100 IC, COLLECTOR CURRENT (AMPS) REVERSE BIAS For inductive loads, high voltage and high current must be sustained simultaneously during turn–off, in most cases, with the base to emitter junction reverse biased. Under these conditions the collector voltage must be held to a safe level at or below a specific value of collector current. This can be accomplished by several means such as active clamping, RC snubbing, load line shaping, etc. The safe level for these devices is specified as Reverse Bias Safe Operating Area and represents the voltage–current conditions during reverse biased turn–off. This rating is verified under clamped conditions so that the device is never subjected to an avalanche mode. Figure 14 gives RBSOA characteristics. 80 60 BUS98 BUS98A 40 VBE(off) = 5 V TC = 100°C IC/IB1 ≥ 5 20 0 200 400 600 1000 800 VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS) Figure 14. Reverse Bias Safe Operating Area POWER DERATING FACTOR (%) 100 SECOND BREAKDOWN DERATING 80 60 THERMAL DERATING 40 20 0 0 40 80 120 160 200 TC, CASE TEMPERATURE (°C) Figure 15. Power Derating http://onsemi.com 6 BUS98 BUS98A r(t), TRANSIENT THERMAL RESISTANCE (NORMALIZED) 1.0 0.5 0.2 0.1 D = 0.5 0.2 0.1 RθJC(t) = r(t) RθJC RθJC = 0.7°C/W MAX D CURVES APPLY FOR POWER PULSE TRAIN SHOWN READ TIME AT t1 TJ(pk) - TC = P(pk) RθJC(t) 0.05 SINGLE PULSE 0.01 0.1 1.0 10 P(pk) t1 t2 DUTY CYCLE, D = t1/t2 100 1000 10000 t, TIME (ms) Figure 16. Thermal Response OVERLOAD CHARACTERISTICS IC, COLLECTOR CURRENT (AMPS) 200 OLSOA TC = 25°C OLSOA applies when maximum collector current is limited and known. A good example Is a circuit where an inductor is inserted between the transistor and the bus, which limits the rate of rise of collector current to a known value. If the transistor is then turned off within a specified amount of time, the magnitude of collector current is also known. Maximum allowable collector–emitter voltage versus collector current is plotted for several pulse widths. (Pulse width is defined as the time lag between the fault condition and the removal of base drive.) Storage time of the transistor has been factored into the curve. Therefore, with bus voltage and maximum collector current known, Figure 17 defines the maximum time which can be allowed for fault detection and shutdown of base drive. OLSOA is measured in a common–base circuit (Figure 19) which allows precise definition of collector–emitter voltage and collector current. This is the same circuit that is used to measure forward–bias safe operating area. 160 120 tp = 10 µs 80 BUS98A BUS98 40 0 400 450 100 200 300 VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS) 500 Figure 17. Rated Overload Safe Operating Area (OLSOA) 10 IC, (AMP) 8 6 RBE = 50 Ω 500 µF 500 V RBE = 5 Ω 4 RBE = 1.1 Ω 2 Notes: • VCE = VCC + VBE • Adjust pulsed current source for desired IC, tp RBE = 0 0 2 4 6 dV/dt (KV/µs) 8 10 Figure 18. Figure 17. IC = f (dV/dt) VCC VEE Figure 19. Overload SOA Test Circuit http://onsemi.com 7 BUS98 BUS98A PACKAGE DIMENSIONS TO–204AA (TO–3) CASE 1–07 ISSUE Z NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. ALL RULES AND NOTES ASSOCIATED WITH REFERENCED TO-204AA OUTLINE SHALL APPLY. A N C –T– E D K 2 PL 0.13 (0.005) U T Q M M Y DIM A B C D E G H K L N Q U V M –Y– L V SEATING PLANE 2 H G B M T Y 1 –Q– 0.13 (0.005) INCHES MIN MAX 1.550 REF --1.050 0.250 0.335 0.038 0.043 0.055 0.070 0.430 BSC 0.215 BSC 0.440 0.480 0.665 BSC --0.830 0.151 0.165 1.187 BSC 0.131 0.188 MILLIMETERS MIN MAX 39.37 REF --26.67 6.35 8.51 0.97 1.09 1.40 1.77 10.92 BSC 5.46 BSC 11.18 12.19 16.89 BSC --21.08 3.84 4.19 30.15 BSC 3.33 4.77 M SWITCHMODE is a trademark of Semiconductor Components Industries, LLC. ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. PUBLICATION ORDERING INFORMATION NORTH AMERICA Literature Fulfillment: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: [email protected] Fax Response Line: 303–675–2167 or 800–344–3810 Toll Free USA/Canada N. American Technical Support: 800–282–9855 Toll Free USA/Canada EUROPE: LDC for ON Semiconductor – European Support German Phone: (+1) 303–308–7140 (Mon–Fri 2:30pm to 7:00pm CET) Email: ONlit–[email protected] French Phone: (+1) 303–308–7141 (Mon–Fri 2:00pm to 7:00pm CET) Email: ONlit–[email protected] English Phone: (+1) 303–308–7142 (Mon–Fri 12:00pm to 5:00pm GMT) Email: [email protected] CENTRAL/SOUTH AMERICA: Spanish Phone: 303–308–7143 (Mon–Fri 8:00am to 5:00pm MST) Email: ONlit–[email protected] Toll–Free from Mexico: Dial 01–800–288–2872 for Access – then Dial 866–297–9322 ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support Phone: 1–303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time) Toll Free from Hong Kong & Singapore: 001–800–4422–3781 Email: ONlit–[email protected] JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031 Phone: 81–3–5740–2700 Email: [email protected] ON Semiconductor Website: http://onsemi.com EUROPEAN TOLL–FREE ACCESS*: 00–800–4422–3781 *Available from Germany, France, Italy, UK, Ireland For additional information, please contact your local Sales Representative. http://onsemi.com 8 BUS98/D