ONSEMI MJE5851G

MJE5850, MJE5851,
MJE5852
MJE5851 and MJE5852 are Preferred Devices
SWITCHMODEt Series
PNP Silicon Power
Transistors
http://onsemi.com
The MJE5850, MJE5851 and the MJE5852 transistors are designed
for high−voltage, high−speed, power switching in inductive circuits
where fall time is critical. They are particularly suited for line operated
SWITCHMODE applications.
8 AMPERE
PCP SILICON
POWER TRANSISTORS
300−350−400 VOLTS
80 WATTS
Features
•
•
•
•
•
•
•
•
•
Switching Regulators
Inverters
Solenoid and Relay Drivers
Motor Controls
Deflection Circuits
Fast Turn−Off Times
♦ 100 ns Inductive Fall Time @ 25_C (Typ)
♦ 125 ns Inductive Crossover Time @ 25°C (Typ)
Operating Temperature Range −65 to +150_C
100_C Performance Specified for:
♦ Reversed Biased SOA with Inductive Loads
♦ Switching Times with Inductive Loads
♦ Saturation Voltages
♦ Leakage Currents
Pb−Free Packages are Available*
MARKING
DIAGRAM
MJE585xG
AY WW
1
2
3
TO−220AB
CASE 221A−09
STYLE 1
MJE585x
G
A
Y
WW
= Device Code
x = 0, 1, or 2
= Pb−Free Package
= Assembly Location
= Year
= Work Week
ORDERING INFORMATION
*For additional information on our Pb−Free strategy and soldering details, please
download the ON Semiconductor Soldering and Mounting Techniques
Reference Manual, SOLDERRM/D.
© Semiconductor Components Industries, LLC, 2006
February, 2006 − Rev. 4
1
See detailed ordering and shipping information in the package
dimensions section on page 2 of this data sheet.
Publication Order Number:
MJE5850/D
MJE5850, MJE5851, MJE5852
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
MAXIMUM RATINGS
Symbol
MJE5850
MJE5851
MJE5852
Unit
Collector−Emitter Voltage
Rating
VCEO(sus)
300
350
400
Vdc
Collector−Emitter Voltage
VCEV
350
400
450
Vdc
Emitter Base Voltage
VEB
6.0
Vdc
Collector Current
− Continuous
− Peak (Note 1)
IC
ICM
8.0
16
Adc
Base Current
− Continuous
− Peak (Note 1)
IB
IBM
4.0
8.0
Adc
PD
80
0.640
W
W/_C
TJ, Tstg
– 65 to 150
_C
Symbol
Max
Unit
RqJC
1.25
_C/W
TL
275
_C
Total Power Dissipation @ TC = 25_C
Derate above 25_C
Operating and Storage Junction Temperature Range
THERMAL CHARACTERISTICS
Rating
Thermal Resistance, Junction−to−Case
Maximum Lead Temperature for Soldering Purposes: 1/8″ from
Case for 5 Seconds
Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit
values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied,
damage may occur and reliability may be affected.
1. Pulse Test: Pulse Width = 5 ms, Duty Cycle ≤ 10%.
ORDERING INFORMATION
Device
MJE5850
MJE5850G
MJE5851
MJE5851G
MJE5852
MJE5852G
Package
Shipping
TO−220
TO−220
(Pb−Free)
TO−220
TO−220
(Pb−Free)
TO−220
TO−220
(Pb−Free)
http://onsemi.com
2
50 Units / Rail
MJE5850, MJE5851, MJE5852
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ELECTRICAL CHARACTERISTICS (TC = 25_C unless otherwise noted)
Characteristic
Symbol
Min
Typ
Max
VCEO(sus)
300
350
400
−
−
−
−
−
−
−
−
0.5
2.5
Unit
OFF CHARACTERISTICS
Collector−Emitter Sustaining Voltage
(IC = 10 mA, IB = 0)
MJE5850
MJE5851
MJE5852
Vdc
Collector Cutoff Current
(VCEV = Rated Value, VBE(off) = 1.5 Vdc)
(VCEV = Rated Value, VBE(off) = 1.5 Vdc, TC = 100_C)
ICEV
mAdc
Collector Cutoff Current
(VCE = Rated VCEV, RBE = 50 W, TC = 100_C)
ICER
−
−
3.0
mAdc
Emitter Cutoff Current
(VEB = 6.0 Vdc, IC = 0)
IEBO
−
−
1.0
mAdc
SECOND BREAKDOWN
Second Breakdown Collector Current with base forward biased
Clamped Inductive SOA with base reverse biased
IS/b
See Figure 12
RBSOA
See Figure 13
ON CHARACTERISTICS (Note 2)
DC Current Gain
(IC = 2.0 Adc, VCE = 5 Vdc)
(IC = 5.0 Adc, VCE = 5 Vdc)
hFE
−
15
5
−
−
−
−
−
−
−
−
−
−
2.0
5.0
2.5
−
−
−
−
1.5
1.5
Cob
−
270
−
pF
(VCC = 250 Vdc, IC = 4.0 A, IB1 = 1.0 A,
tp = 50 ms, Duty Cycle v 2%)
td
−
0.025
0.1
ms
tr
−
0.100
0.5
ms
(VCC = 250 Vdc, IC = 4.0 A, IB1 = 1.0 A,
VBE(off) = 5 Vdc, tp = 50 ms, Duty Cycle v 2%)
ts
−
0.60
2.0
ms
tf
−
0.11
0.5
ms
tsv
−
0.8
3.0
ms
tc
−
0.4
1.5
ms
tfi
−
0.1
−
ms
tsv
−
0.5
−
ms
tc
−
0.125
−
ms
tfi
−
0.1
−
ms
Collector−Emitter Saturation Voltage
(IC = 4.0 Adc, IB = 1.0 Adc)
(IC = 8.0 Adc, IB = 3.0 Adc)
(IC = 4.0 Adc, IB = 1.0 Adc, TC = 100_C)
VCE(sat)
Base−Emitter Saturation Voltage
(IC = 4.0 Adc, IB = 1.0 Adc)
(IC = 4.0 Adc, IB = 1.0 Adc, TC = 100_C)
VBE(sat)
Vdc
Vdc
DYNAMIC CHARACTERISTICS
Output Capacitance
(VCB = 10 Vdc, IE = 0, ftest = 1.0 kHz)
SWITCHING CHARACTERISTICS
Resistive Load (Table 1)
Delay Time
Rise Time
Storage Time
Fall Time
Inductive Load, Clamped (Table 1)
Storage Time
Crossover Time
(ICM = 4 A, VCEM = 250 V, IB1 = 1.0 A,
VBE(off) = 5 Vdc, TC = 100_C)
Fall Time
Storage Time
Crossover Time
(ICM = 4 A, VCEM = 250 V, IB1 = 1.0 A,
VBE(off) = 5 Vdc, TC = 25_C)
Fall Time
2. Pulse Test: PW = 300 ms. Duty Cycle v 2%
http://onsemi.com
3
MJE5850, MJE5851, MJE5852
VCE , COLLECTOR−EMITTER VOLTAGE (VOLTS)
TYPICAL ELECTRICAL CHARACTERISTICS
200
TJ = 150°C
hFE , DC CURRENT GAIN
100
70
50
TJ = 25°C
30
20
VCE = 5 V
10
7.0
5.0
3.0
2.0
0.1
0.2
0.3
0.5 0.7 1.0
2.0 3.0
IC, COLLECTOR CURRENT (AMPS)
5.0 7.0
10
2.0
1.6
IC = 0.25 A
1.2
TJ = 25°C
0.4
0
0.01
0.02
1.6
1.6
V, VOLTAGE (VOLTS)
VCE , COLLECTOR−EMITTER VOLTAGE (VOLTS)
2.0
IC/IB = 4
1.2
TJ = 150°C
0.4
TJ = 25°C
0.5 0.7 1.0
2.0 3.0
5.0 7.0
0.8
10
TJ = 25°C
TJ = 150°C
0.2 0.3
0.5 0.7 1.0
2.0 3.0
5.0 7.0
IC, COLLECTOR CURRENT (AMPS)
IC, COLLECTOR CURRENT (AMPS)
Figure 3. Collector−Emitter Saturation Voltage
Figure 4. Base−Emitter Voltage
10
3000
2000
TJ = 25°C
104
C, CAPACITANCE (pF)
IC, COLLECTOR CURRENT (nA)
5.0
1.2
0
0.1
10
105
TJ = 150°C
103
100°C
102
101
REVERSE
FORWARD
VCE = 200 V
+0.2
+0.1
1000
Cib
500
Cob
200
100
50
25°C
100
0.1
0.2
0.5 1.0
2.0
IB, BASE CURRENT (AMPS)
IC/IB = 4
0.4
0.2 0.3
0.05
Figure 2. Collector Saturation Region
2.0
0
0.1
5.0 A
0.8
Figure 1. DC Current Gain
0.8
2.5 A
1.0 A
−0.1
−0.2
−0.3
−0.4
0
VBE, BASE−EMITTER VOLTAGE (VOLTS)
30
0.1 0.2
−0.5
Figure 5. Collector Cutoff Region
0.5 1.0
5.0 10 20 50 100 200 500 1000
VR, REVERSE VOLTAGE (VOLTS)
Figure 6. Capacitance
http://onsemi.com
4
MJE5850, MJE5851, MJE5852
Table 1. Test Conditions for Dynamic Performance
VCEO(sus)
RBSOA AND INDUCTIVE SWITCHING
+V
RESISTIVE SWITCHING
50 mF
+ −
0.0025 mF
−10 V
20
INPUT
CONDITIONS
0.2 mF
1
0.1 mF
INPUT
+V
0
PW Varied to Attain
IC = 100 mA
1/2 W
CIRCUIT
VALUES
Lcoil = 180 mH
Rcoil = 0.05 W
VCC = 20 V
TEST CIRCUITS
INPUT
SEE ABOVE FOR
DETAILED CONDITIONS
1N4937
OR
EQUIVALENT
Vclamp
2
TURN−OFF TIME
Use inductive switching
driver as the input to
the resistive test circuit.
+
50 mF
−V
VCC = 250 V
RL = 62 W
Pulse Width = 10
ms
Vclamp = 250 V
RB adjusted to attain desired IB1
OUTPUT WAVEFORMS
RESISTIVE TEST CIRCUIT
t1 Adjusted to
Obtain IC
IC
TUT
IB1 adjusted to
obtain the forced
hFE desired
1
MJE15028W
0.1 mF
−V adjusted to obtain desired IB1
+ V adjusted to obtain desired VBE(off)
1
IB1
1W2
500 W
−
INDUCTIVE TEST CIRCUIT
2
1N4934
0.2 mF
Lcoil = 80 mH, VCC = 10 V
Rcoil = 0.7 W
1
0.0033 mF
500 W
1/2 W
50 W
2W
TURN−ON TIME
1/2 W
500 W
1/2 W
0
2
0.1 mF
MJE15029
500 W
Rcoil
ICM
tf
Clamped
t
Lcoil
t1
t1 ≈
tf
t2 ≈
VCC
VCE
VCEM
RS =
0.1 W
Vclamp
t
TIM
E
t2
Lcoil (ICM)
TUT
VCC
RL
1
Lcoil (ICM)
2
VCC
VClamp
Test Equipment
Scope — Tektronix
475 or Equivalent
1.0
3.0
IC = 4 A
IC/IB = 4
TJ = 25°C
VCE
10% 2%
ICM ICM
tc
tfi
tsr
trv
tti
IC
90%
ICM
ICM
VCEM
t c , CROSSOVER TIME (μs)
IB
10%
90% IB1 VCEM
0.8
2.7
2.4
2.1
tsv 100°C
0.6
tsv 25°C
1.8
1.5
0.4
1.2
0.9
0.2
0.6
tc 25°C
Vclamp
0.3
0
TIME
0
1
2
3
4
5
6
7
VBE, BASE−EMITTER VOLTAGE (VOLTS)
Figure 7. Inductive Switching Measurements
Figure 8. Inductive Switching Times
http://onsemi.com
5
8
0
t sv, VOLTAGE STORAGE TIME (μs)
tc 100°C
MJE5850, MJE5851, MJE5852
SWITCHING TIMES NOTE
In resistive switching circuits, rise, fall, and storage times
have been defined and apply to both current and voltage
waveforms since they are in phase. However, for inductive
loads which are common to SWITCHMODE power
supplies and hammer drivers, current and voltage
waveforms are not in phase. Therefore, separate
measurements must be made on each waveform to
determine the total switching time. For this reason, the
following new terms have been defined.
tsv = Voltage Storage Time, 90% IB1 to 10% VCEM
trv = Voltage Rise Time, 10−90% VCEM
tfi = Current Fall Time, 90−10% ICM
tti = Current Tail, 10−2% ICM
tc = Crossover Time,10% VCEM to 10% ICM
An enlarged portion of the inductive switching waveform
is shown in Figure 7 to aid on the visual identity of these
terms.
1.0
0.7
0.5
10
VCC = 250 V
IC/IB = 4
TJ = 25°C
0.3
0.7
ts
0.2
t, TIME (s)
μ
t, TIME (s)
μ
For the designer, there is minimal switching loss during
storage time and the predominant switching power losses
occur during the crossover interval and can be obtained
using the standard equation from AN−222A:
PSWT = 1/2 VCCIC(tc)f
In general, t rv + t fi ] t c. However, at lower test currents
this relationship may not be valid.
As is common with most switching transistors, resistive
switching is specified at 25°C and has become a benchmark
for designers. However, for designers of high frequency
converter circuits, the user oriented specifications which
make this a “SWITCHMODE” transistor are the inductive
switching speeds (t c and tsv) which are guaranteed at 100_C.
tr
0.1
0.07
0.05
0.4
VCC = 250 V
IC/IB = 4
VBE(off) = 5 V
TJ = 25°C
0.3
0.2
0.03
td
0.02
r(t), TRANSIENT THERMAL RESISTANCE
(NORMALIZED)
0.01
0.1
1
0.7
0.5
0.3
0.2
tf
0.2
0.3
0.5 0.7 1.0
2.0
3.0
5.0 7.0
0.1
10
0.1
2.0
4.0
7.0 10
Figure 9. Turn−On Switching Times
Figure 10. Turn−Off Switching Time
D = 0.5
0.2
0.1
ZqJC(t) = r(t) RqJC
RqJC = 1.25°C/W MAX
D CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME AT t1
TJ(pk) − TC = P(pk) ZqJC(t)
0.05
0.02
0.03
0.02
0.01
0.01
0.5 0.7 1.0
IC, COLLECTOR CURRENT (AMPS)
0.1
0.07
0.05
0.3
IC, COLLECTOR CURRENT (AMPS)
0.01
SINGLE PULSE
0.02
0.05
0.1
0.2
0.5
1
2
5
t, TIME (ms)
10
20
Figure 11. Typical Thermal Response [ZqJC(t)]
http://onsemi.com
6
50
P(pk)
t1
t2
DUTY CYCLE, D = t1/t2
100
200
500
1k
MJE5850, MJE5851, MJE5852
The Safe Operating Area figures shown in Figures 12 and 13 are
specified for these devices under the test conditions shown.
SAFE OPERATING AREA INFORMATION
FORWARD BIAS
20
IC, COLLECTOR CURRENT (AMPS)
There are two limitations on the power handling ability of
a transistor average junction temperature and second
breakdown. Safe operating area curves indicate IC − VCE
limits of the transistor that must be observed for reliable
operation, i.e., the transistor must not be subjected to greater
dissipation than the curves indicate.
The data of Figure 12 is based on TC = 25_C; T J(pk) is
variable depending on power level. Second breakdown
pulse limits are valid for duty cycles to 10% but must be
derated when TC ≥ 25_C. Second breakdown limitations do
not derate the same as thermal limitations. Allowable
current at the voltages shown on Figure 12 may be found at
any case temperature by using the appropriate curve on
Figure 15.
T J(pk) may be calculated from the data in Figure 11. At
high case temperatures, thermal limitations will reduce the
power that can be handled to values less than the limitations
imposed by second breakdown.
100 ms
10
5.0
5 ms
2.0
TC =
25°C
1.0
1 ms
dc
0.5
BONDING WIRE LIMIT
THERMAL LIMIT
(SINGLE PULSE)
SECOND BREAKDOWN LIMITMJE5850
MJE5851
MJE5852
200 300 400 500
7.0 10
20
40
70 100
VCE, COLLECTOR−EMITTER VOLTAGE (VOLTS)
0.2
0.1
0.05
0.02
Figure 12. Maximum Forward Bias
Safe Operating Area
IC, COLLECTOR CURRENT (AMPS)
8.0
REVERSE BIAS
7.0
IC/IB = 4
VBE(off) = 2 V to 8 V
TJ = 100°C
6.0
5.0
For inductive loads, high voltage and high current must be
sustained simultaneously during turn−off, in most cases,
with the base to emitter junction reverse biased. Under these
conditions the collector voltage must be held to a safe level
at or below a specific value of collector current. This can be
accomplished by several means such as active clamping, RC
snubbing, load line shaping, etc. The safe level for these
devices is specified as Reverse Bias Safe Operating Area
and represents the voltage−current condition allowable
during reverse biased turn−off. This rating is verified under
clamped conditions so that the device is never subjected to
an avalanche mode. Figure 13 gives the RBSOA
characteristics.
4.0
MJE5850
MJE5851
MJE5852
3.0
2.0
1.0
0
100
200
300
400
500
VCE, COLLECTOR−EMITTER VOLTAGE (VOLTS)
Figure 13. RBSOA, Maximum Reverse Bias
Safe Operating Area
3.5
1
IB2(pk) (AMPS)
POWER DERATING FACTOR
IC = 4 A
IB1 = 1 A
TJ = 25°C
3.0
2.5
2.0
1.5
1.0
0
2
4
6
0.6
THERMAL
DERATING
0.4
0.2
0
8
SECOND BREAKDOWN
DERATING
0.8
20
40
60
80
100
120
140
VBE(off), BASE−EMITTER VOLTAGE (VOLTS)
TC, CASE TEMPERATURE (°C)
Figure 14. Peak Reverse Base Current
Figure 15. Forward Bias Power Derating
http://onsemi.com
7
160
MJE5850, MJE5851, MJE5852
PACKAGE DIMENSIONS
TO−220AB
CASE 221A−09
ISSUE AA
SEATING
PLANE
−T−
B
C
F
T
S
4
DIM
A
B
C
D
F
G
H
J
K
L
N
Q
R
S
T
U
V
Z
A
Q
1 2 3
U
H
K
Z
L
R
V
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION Z DEFINES A ZONE WHERE ALL
BODY AND LEAD IRREGULARITIES ARE
ALLOWED.
J
G
D
N
INCHES
MIN
MAX
0.570
0.620
0.380
0.405
0.160
0.190
0.025
0.035
0.142
0.147
0.095
0.105
0.110
0.155
0.018
0.025
0.500
0.562
0.045
0.060
0.190
0.210
0.100
0.120
0.080
0.110
0.045
0.055
0.235
0.255
0.000
0.050
0.045
−−−
−−− 0.080
STYLE 1:
PIN 1.
2.
3.
4.
MILLIMETERS
MIN
MAX
14.48
15.75
9.66
10.28
4.07
4.82
0.64
0.88
3.61
3.73
2.42
2.66
2.80
3.93
0.46
0.64
12.70
14.27
1.15
1.52
4.83
5.33
2.54
3.04
2.04
2.79
1.15
1.39
5.97
6.47
0.00
1.27
1.15
−−−
−−−
2.04
BASE
COLLECTOR
EMITTER
COLLECTOR
SWITCHMODE is a trademark of Semiconductor Components Industries, LLC.
ON Semiconductor and
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
N. American Technical Support: 800−282−9855 Toll Free
Literature Distribution Center for ON Semiconductor
USA/Canada
P.O. Box 61312, Phoenix, Arizona 85082−1312 USA
Phone: 480−829−7710 or 800−344−3860 Toll Free USA/Canada Japan: ON Semiconductor, Japan Customer Focus Center
2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051
Fax: 480−829−7709 or 800−344−3867 Toll Free USA/Canada
Phone: 81−3−5773−3850
Email: [email protected]
http://onsemi.com
8
ON Semiconductor Website: http://onsemi.com
Order Literature: http://www.onsemi.com/litorder
For additional information, please contact your
local Sales Representative.
MJE5850/D