BYW99P/PI/W HIGH EFFICIENCY FAST RECOVERY RECTIFIER DIODES FEATURES SUITED FOR SMPS VERY LOW FORWARD LOSSES NEGLIGIBLE SWITCHING LOSSES HIGH SURGE CURRENT CAPABILITY HIGH AVALANCHE ENERGY CAPABILITY INSULATED VERSION TOP3I : Insulating voltage = 2500 V DC Capacitance = 12 pF A1 K A2 isolated TOP3I (Plastic) BYW99PI-200 DESCRIPTION A2 Dual center tap rectifier suited for switchmode power supply and high frequency DC to DC converters. Packaged in SOT93, TOP3I or TO247 this device is intended for use in low voltage, high frequency inverters, free wheeling and polarity protection applications. K A1 SOT93 (Plastic) BYW99P-200 TO247 (Plastic) BYW99W-200 ABSOLUTE MAXIMUM RATINGS Symbol IF(RMS) IF(AV) Parameter Average forward current SOT93 / TO247 δ = 0.5 TOP3I Surge non repetitive forward current Tstg Tj Storage and junction temperature range Symbol October 1999 Unit Per diode 35 A Tc=120°C Per diode 15 A Tc=115°C Per diode 15 tp=10ms sinusoidal Per diode 200 A - 40 to + 150 - 40 to + 150 °C °C Value Unit 200 V RMS forward current IFSM VRRM Value Parameter Repetitive peak reverse voltage Ed : 2A 1/6 BYW99P/PI/W THERMAL RESISTANCES Symbol Rth (j-c) Parameter Junction to case SOT93 / TO247 TOP3I Value Unit Per diode 1.8 °C/W Total 1.0 Per diode 2.0 1.25 Total Rth (c) Coupling SOT93 / TO247 0.2 TOP3I 0.5 °C/W When the diodes 1 and 2 are used simultaneously : Tj-Tc (diode 1) = P(diode 1) x Rth(j-c) (Per diode) + P(diode 2) x Rth(c) STATIC ELECTRICAL CHARACTERISTICS (Per diode) Symbol IR * Test Conditions Tj = 25°C Min. Typ. VR = VRRM Tj = 100°C VF ** Max. Unit 20 µA 1.5 mA V Tj = 125°C IF = 12 A 0.85 Tj = 125°C IF = 25 A 1.05 Tj = 25°C IF = 25 A 1.15 Pulse test : * tp = 5 ms, δ < 2 % ** tp = 380 µs, δ < 2 % To evaluate the conduction losses use the following equation : P = 0.65 x IF(AV) + 0.016 x IF2(RMS) RECOVERY CHARACTERISTICS Symbol trr Test Conditions Tj = 25°C Min. Typ. Max. IF = 0.5A IR = 1A Irr = 0.25A 25 IF = 1A VR = 30V dIF/dt = -50A/µs 40 Unit ns tfr Tj = 25°C IF = 1A VFR = 1.1 x VF tr = 10 ns 15 ns VFP Tj = 25°C IF = 1A tr = 10 ns 2 V 2/6 BYW99P/PI/W Fig.1 : Average forward power dissipation versus average forward current. 20 P F(av)(W) Fig.2 : Peak current versus form factor. 350 =0.2 17.5 =0.5 =1 =0.1 =0.05 IM(A) T 300 15 IM 250 12.5 =tp/T 200 tp 10 150 T 7.5 100 5 2.5 2.5 5 7.5 10 P=20W P=30W 50 I F(av)(A) 0 0 =tp/T 12.5 15 tp 17.5 20 Fig.3 : Forward voltage drop versus forward current (maximum values). 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Fig.4 : Relative variation of thermal impedance junction to case versus pulse duration. 1.0 VFM(V) 1.8 1.6 P=10W K Zth(j-c) (tp. ) K = Rth(j-c) Tj= 125 oC 1.4 =0.5 0.5 1.2 =0.2 1.0 = 0 .1 0.8 0.6 T 0.2 0.4 0.2 Single pulse IFM(A) 0.0 0.1 1 10 100 200 1.0E-03 Fig.5 : Non repetitive surge peak forward current versus overload duration. (SOT93, TO247) IM(A) 160 150 140 130 120 110 100 90 80 70 60 50 40 IM 30 20 10 0 0.001 =tp/T tp(s) 0.1 1.0E-02 1.0E-01 tp 1. 0E+00 Fig.6 : Non repetitive surge peak forward current versus overload duration. (TOP3I) IM(A) Tc=25 oC Tc=75 o C Tc=120 oC t t(s) =0.5 0.01 0.1 1 160 150 140 130 120 110 100 90 80 70 60 50 40 IM 30 20 10 0 0.001 Tc=25 oC Tc=60 o C t Tc=115 o C t(s) =0.5 0.01 0.1 1 3/6 BYW99P/PI/W Fig.7 : Average current temperature. (δ = 0.5) (SOT93, TO247) versus ambient I F(av)(A) 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 Rth(j-a)=15 o C/W T =tp/T 20 tp 40 Tamb(o C) 60 80 100 120 140 160 Fig.9 : Junction capacitance versus reverse voltage applied (Typical values). 2 00 1 90 F=1Mhz Tj=25 oC 1 40 1 30 1 20 11 0 VR(V) 1 00 1 10 100 200 Fig.11 : Peak reverse current versus dIF/dt. ambient 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 Rth(j-a)=Rth(j-c) Rth(j-a)=15 o C/W =0.5 T =tp/T 20 tp 40 Tamb(o C) 60 80 100 120 140 160 Fig.10 : Recovery charges versus dIF/dt. 60 55 90%CONFIDENCE 50 IF=IF(av) 45 40 35 30 25 20 15 10 5 0 1 Tj=100 OC Tj=25 O C dIF/dt(A/us) 10 100 Fig.12 : Dynamic parameters versus junction temperature. QRR;IRM[Tj]/QRR;IRM[Tj=125o C] IRM(A) 1.50 90%CONFIDENCE 2.5 versus QRR(nC) C(pF) 1 80 1 70 1 60 1 50 3.0 current I F(av)(A) Rth(j-a)=Rth(j-c) =0.5 Fig.8 : Average temperature. (δ = 0.5) (TOP3I) IF=IF(av) 1.25 Tj=100 O C 2.0 1.00 1.5 0.75 1.0 0.50 IRM QRR Tj=25 O C 0.5 0.0 1 4/6 0.25 dIF/dt(A/us) 20 10 100 0.00 0 Tj( o C) 25 50 75 100 125 150 BYW99P/PI/W PACKAGE MECHANICAL DATA SOT93 REF. A C D D1 E F F3 F4 G H L L2 L3 L5 L6 O DIMENSIONS Millimeters Inches Min. Max. Min. Max. 4.70 4.90 1.185 0.193 1.90 2.10 0.075 0.083 2.50 typ. 0.098 typ. 2.00 typ. 0.078 typ 0.50 0.78 0.020 0.031 1.10 1.30 0.043 0.051 1.75 typ 0.069 typ 2.10 typ. 0.083 typ. 10.80 11.10 0.425 0.437 14.70 15.20 0.279 0.598 12.20 0.480 16.20 0.638 18.0 typ. 0.709 typ. 3.95 4.15 0.156 0.163 31.00 typ. 1.220 typ. 4.00 4.10 0.157 0.161 Marking : Type number Cooling method : C Weight : 5.3 g Recommended torque value : 0.8m.N Maximum torque value : 1.0m.N PACKAGE MECHANICAL DATA TOP3I (isolated) DIMENSIONS REF. Millimeters Inches A B C D E F G H J K L P R Min. Max. 4.4 4.6 1.45 1.55 14.35 15.60 0.5 0.7 2.7 2.9 15.8 16.5 20.4 21.1 15.1 15.5 5.4 5.65 3.4 3.65 4.08 4.17 1.20 1.40 4.60 typ. Min. Max. 0.173 0.181 0.057 0.061 0.565 0.614 0.020 0.028 0.106 0.114 0.622 0.650 0.815 0.831 0.594 0.610 0.213 0.222 0.134 0.144 0.161 0.164 0.047 0.055 0.181 typ Marking : Type number Cooling method : C Weight : 4.7 g Recommended torque value : 0.8m.N Maximum torque value : 1.0m.N 5/6 BYW99P/PI/W PACKAGE MECHANICAL DATA TO247 V DIMENSIONS Millimeters Inches Min. Typ. Max. Min. Typ. Max. A 4.85 5.15 0.191 0.203 D 2.20 2.60 0.086 0.102 E 0.40 0.80 0.015 0.031 F 1.00 1.40 0.039 0.055 F1 3.00 0.118 F2 2.00 0.078 F3 2.00 2.40 0.078 0.094 F4 3.00 3.40 0.118 0.133 G 10.90 0.429 H 15.45 15.75 0.608 0.620 L 19.85 20.15 0.781 0.793 L1 3.70 4.30 0.145 0.169 L2 18.50 0.728 L3 14.20 14.80 0.559 0.582 L4 34.60 1.362 L5 5.50 0.216 M 2.00 3.00 0.078 0.118 V 5° 5° V2 60° 60° Dia. 3.55 3.65 0.139 0.143 REF. Dia. V A H L5 L L2 L4 F2 F1 L1 F3 V2 F4 D L3 F(x3) M G = E = Marking : Type number Cooling method : C Weight : 4.4 g Recommended torque value : 0.8m.N Maximum torque value : 1.0m.N Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all informationpreviously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics 1999 STMicroelectronics - Printed in Italy - All rights reserved. STMicroelectronics GROUP OF COMPANIES Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A. http://www.st.com 6/6