CA3440 Semiconductor CT ODU ODUCT R P PR TE OLE TITUTE 2 S B O 761 UBS LE S 611, ICL B I S 7 ICL POS January 1999 63kHz, Nanopower, BiMOS Operational Amplifiers Features Description • High Input Resistance . . . . . . . . . . . . . . . . . . . 2TΩ (Typ) The CA3440 is an integrated circuit operational amplifier that combines the advantages of MOS and bipolar transistors on a single monolithic chip. • Standby Power at V+ = 5V . . . . . . . . . . . . . 300nW (Typ) • Supply Current, BW, Slew Rate Programmable Using External Resistor • Input Current . . . . . . . . . . . . . . . . . . . . . . . . . 10pA (Typ) • 5V to 15V Supply • Output Drives Typical Bipolar Type Loads Part Number Information PART NUMBER (BRAND) CA3440M (3440) TEMP. RANGE (oC) -55 to 125 PKG. NO. PACKAGE 8 Ld SOIC M8.15 The CA3440 BiMOS op amp features gate protected PMOS transistors in the input circuit to provide very high input impedance, very low input currents (less than 10pA). This device operates at total supply voltages from 5V to 15V and can be operated over the temperature range from -55oC to 125oC. The virtues are programmability and very low standby power consumption (300nW). This operational amplifier is internally phase compensated to achieve stable operation in the unity gain follower configuration. Terminals are also provided for use in applications requiring input offset voltage nulling. The use of PMOS in the input stage results in common mode input voltage capability down to 0.5V below the negative supply terminals, an important attribute for single supply applications. The output stage uses MOS complementary source follower form which permits moderate load driving capability (10kΩ) at very low standby currents (50nA). The CA3440 has the same 8 lead pinout as the “741” and other industry standard op amps with two exceptions: terminals one and five must be connected to the negative supply or to a potentiometer if nulling is required. Terminal 8 must be programmed through an external resistor returned to the negative supply. Pinout CA3440 (SOIC) TOP VIEW V-/OFFSET NULL 1 INV. INPUT 2 NON-INV. INPUT 3 V- 4 + 8 ISET 7 V+ 6 OUTPUT 5 V-/OFFSET NULL CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper IC Handling Procedures. Copyright © Harris Corporation 1999 3-146 File Number 1318.5 CA3440 Absolute Maximum Ratings Thermal Information Supply Voltage (V+ to V-) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25V Differential Input Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9V DC Input Voltage . . . . . . . . . . . . . . . . . . . . . . (V+ +8V) to (V- -0.5V) Input Current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1mA Output Short Circuit Duration (Note 1) . . . . . . . . . . . . . . . . Indefinite Thermal Resistance (Typical, Note 2) θJA (oC/W) SOIC Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 Maximum Junction Temperature (Die). . . . . . . . . . . . . . . . . . . . 175oC Maximum Junction Temperature (Plastic Package) . . . . . . . . 150oC Maximum Storage Temperature Range . . . . . . . . . .-65oC to 150oC Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . 300oC (SOIC - Lead Tips Only) Operating Conditions Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . -55oC to 125oC CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. NOTES: 1. Short circuit may be applied to ground or to either supply. 2. θJA is measured with the component mounted on an evaluation PC board in free air. Electrical Specifications Typical Values Intended Only for Design Guidance, VSUPPLY = ±5V, RSET = 10MΩ, TA = 25oC PARAMETER SYMBOL TEST CONDITIONS CA3440 UNITS Input Resistance RI 2 TΩ Input Capacitance CI 3.5 pF Output Resistance RO Equivalent Input eN f = 1kHz Noise Voltage RS = 100Ω f = 10kHz 450 Ω 110 nV/√Hz 110 nV/√Hz mA Short-Circuit Current Source IOM+ 15 To Opposite Supply Sink IOM- 4.5 mA Gain Bandwidth Product fT 63 kHz Slew Rate SR 0.03 V/µs tR 5.6 µs OS 10 % Transient Response Rise Time RL = 10kΩ, CL = 100pF Overshoot Electrical Specifications For Equipment Design, At VSUPPLY = ±5V; RSET = 10MΩ, TA = 25oC, Unless Otherwise Specified PARAMETER SYMBOL Input Offset Voltage |VIO| TEST CONDITIONS CA3440 MIN TYP MAX UNITS - 5 10 mV Input Offset Current | IIO | - 2.5 30 pA Input Current | II | - 10 50 pA Large Signal Voltage Gain AOL Common Mode Rejection Ratio Common Mode Input Voltage Range Power Supply Rejection Ratio Max Output Voltage RL = 10kΩ 10 100 - kV/V 80 100 - dB - 100 320 µV/V 70 80 - dB VlCR+ +3.5 +3.7 - V VlCR- -5.0 -5.3 - V CMRR PSRR - 32 320 µV/V 70 90 - dB VOM+ +3 +3.2 - V VOM- -3 -3.2 - V Supply Current I+ - 10 17 µA Device Dissipation PD - 100 170 µW ∆VlO/∆T - 4 - µV/oC Input Offset Voltage Temperature Drift 3-147 CA3440 Schematic Diagram 7 V+ QP1 QP2 QP5 QP6 QP3 Q1 QP4 ISET 8 D5 QN10 QN9 Q2 QP11 D1 D2 D3 R2 30Ω R1 200Ω 6 OUTPUT D4 QP12 INVERTING 2 INPUT QP7 QP8 30pF Q7 NON-INVERTING 3 D6 Q5 Q3 Q6 Q4 5 R3 30Ω 1 4 V- Application Information FET/ BIPOLAR OUTPUT FET INPUT +5V + - 3 + CA3440 BIAS ISET 7 2 RSET 1 5 4 6 8 ISET RSET STAGE 1 STAGE 2 HIGH GAIN 100dB BUFFER LOW Z OUTPUT FIGURE 1. NANOPOWER OP AMP (SUPPLY CURRENT PROGRAMMABLE USING RSET), 1pA TYPICAL INPUT BIAS CURRENT, 4.0V TO 15V SUPPLY As RSET is increased, ISET and the standby power decrease while the BW/SR also decrease. Operating at a +5V single supply, the CA3440 exhibits the following characteristics: RSET STANDBY POWER BW FIGURE 2. NANOPOWER OP AMP (USABLE STANDBY POWER vs PROGRAMMING RESISTOR RSET) The CA3440 is pin compatible with the 741 except that pins 1 and 5 (typical negative nulling pins) must be connected either directly to pin 4 or to a negative nulling potentiometer. In addition, pin 8, the ISET terminal, must be returned to either ground or -V via RSET. SR 1MΩ 250µW 164kHz 0.17V/µs 10MΩ 25µW 27kHz 0.017V/µs 100MΩ 2.5µW 2.6kHz 0.0017V/µs 1GΩ 250nW 78kHz 0.00017V/µs 3-148 CA3440 Typical Applications +9V 12MΩ 22MΩ 22MΩ 1.2MΩ 8 +5V 7 4.7MΩ 2 2.2MΩ 7 2 CA3440 3 INPUT + 500pF 2µF 1 5 4 6 OUTPUT 1.2MΩ 8 10MΩ CA3440 9, 11 3 + 6, 8 1 5 6 2.35V AT 200µA 4 + 10 4.7MΩ 7 4, 5 DIODES FROM CA3086 1, 2 RIN >20MΩ Standby Power = 90µW Gain = 20dB BW: 20Hz to 3kHz SR = 0.016V/µs 3 13 FIGURE 3. HIGH INPUT IMPEDANCE AMPLIFIER FIGURE 4. MICROPOWER BANDGAP REFERENCE 1000 2.0 VO- 1.6 TA = 25oC RL = 100kΩ 1.2 0.8 SET CURRENT (nA) INPUT AND OUTPUT VOLTAGE EXCURSIONS FROM THE POSITIVE AND NEGATIVE SUPPLY VOLTAGE (V) Typical Performance Curves 0.4 0 = (V+ OR V-) 0 -0.4 VICR- -0.8 TA = 25oC VS = ±5V 100 10 VICR+ -1.2 -1.6 VO+ -2.0 0 5 10 SUPPLY VOLTAGE (V) 15 FIGURE 5. OUTPUT VOLTAGE SWING AND COMMON MODE INPUT VOLTAGE RANGE vs SUPPLY VOLTAGE 1 10 100 1000 SUPPLY CURRENT (nA) FIGURE 6. SET CURRENT vs SUPPLY CURRENT 3-149 10,000 CA3440 Typical Performance Curves TA = 25oC VS = ±5V ISET = 1µA 10 -5V 10MΩ +5V 1 1kΩ 8 2 - 8 7 3 + 4 1kHz 0.1 µF 6 100 kΩ CA3440 6 OUTPUT VOLTAGE FROM V+ RAIL (V) 0 12 TOTAL HARMONIC DISTORTION (%) (Continued) 5 4 0.1µF -5V 2 0 0 2 4 6 8 10 12 14 16 18 TA = 25oC V- = 0V RSET = 1GΩ -2 -4 V+ = 5V -6 V+ = 10V -8 -10 0.01 ∞ LOAD RESISTANCE (kΩ) TA = 25oC V+ = 0V RSET = 1GΩ V- = -12V 8 V- = -10V 6 4 V- = -5V 2 0 0.01 0.1 1 LOAD SINKING CURRENT (mA) 10 100 104 TA = 25oC RSET = 10MΩ 103 VS = ±2.5V VS = ±5V VS = ±10V 102 101 101 102 103 104 FREQUENCY (Hz) FIGURE 9. OUTPUT VOLTAGE vs SINKING LOAD CURRENT FIGURE 10. INPUT NOISE VOLTAGE vs FREQUENCY 106 106 SLEW RATE (µV/µs) 105 BANDWIDTH (Hz) 10 FIGURE 8. OUTPUT VOLTAGE vs SOURCING LOAD CURRENT EQUIVALENT INPUT NOISE VOLTAGE (nV√Hz) OUTPUT VOLTAGE FROM V- RAIL (V) 10 1 LOAD SOURCING CURRENT (mA) FIGURE 7. TOTAL HARMONIC DISTORTION vs LOAD RESISTANCE 12 V+ = 12V 0.1 104 103 102 101 1 101 102 103 104 105 SET CURRENT (nA) FIGURE 11. BANDWIDTH vs SET CURRENT 105 104 103 102 1 101 102 103 SET CURRENT (nA) 104 FIGURE 12. SLEW RATE vs SET CURRENT 3-150 105