PRELIMINARY DS4802 Low Voltage, Micro Power, High Performance, Rail-To-Rail Dual Op-Amp www.dalsemi.com FEATURES PACKAGES/PINOUTS Very low operating power: 12 µA typical per amplifier High output sink/source capability Supply Voltage Range 1.8 to 5.5V Rail-to-Rail Output Swing Input offset voltage: 0.95 mV max. AOUT AIN- 1 8 2 7 A AIN+ GND 3 4 ORDERING INFORMATION Part Number Description DS4802 8-pin DIP DS4802S 8-pin SOIC DS4802U 8-pin µ-SOP DS4802X - + B + - 6 5 VDD BOUT BIN- BIN+ 300-mil DIP 150-mil SOIC 118-mil µ-SOP VDD 6 1 4 BOUT AOUT 8-bump Flip-Chip 2 For mechanical dimensions see website. AIN- A - + B + - 7 5 8 BINBIN+ AIN+ 3 GND 8-bump Flip-Chip DESCRIPTION The DS4802 BiCMOS dual operational amplifier combines low input offset voltage, very low power consumption, rail-to-rail output swing, and excellent DC precision. With a maximum input offset voltage of 0.95 mV, a maximum IDD of 25 µA/amplifier, and 10 pA typical input bias current, the DS4802 is ideal for measurement, medical, and industrial applications. The DS4802 is also ideal for portable applications with 1.8 volt to 5.5 volt single supply voltage operation and low power consumption. 1 of 19 081000 DS4802 ABSOLUTE MAXIMUM RATINGS Supply Voltage, VDD (see Note 1) 5.5V Differential Input Voltage (see Note 2) ± VDD Input Voltage Range, VI (see Note 1) -0.3V to VDD Input Current, IDD ± 4 mA Output Current, IO ± 50 mA Total current into VDD ± 50 mA Total current out of GND ± 50 mA Duration of short-circuit current (See Note 3) unlimited Operating Temperature 0oC to 70oC Storage Temperature -55oC to +125oC Soldering Temperature 260oC for 10 seconds Notes: 1. Relative to GND. 2. Non-inverting input relative to inverting input. Excessive current flows when input is brought below GND - 0.3V. 3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded. RECOMMENDED OPERATING CONDITIONS PARAMETER SYMBOL MIN Supply Voltage VDD Input Voltage Range MAX UNITS NOTES 1.8 5.5 V 1 VI GND VDD - 1.0 V 1 Common-Mode Input Voltage VIC GND VDD - 1.0 V Free-Air Operating Temperature TA 0 70 Notes: 1. Voltage referenced to GND. 2 of 19 TYP o C DS4802 ELECTRICAL CHARACTERISTICS PARAMETER Input Offset Voltage (VIC = 0.5V, RS = 50Ω, VOUT = VDD/2) Temperature Coefficient of Input Offset Voltage (VIC = 0.5V, RS = 50Ω, VOUT = VDD/2) Input Offset Current (RS = 50Ω) Input Bias Current (RS = 50Ω) Common-mode Input Voltage Range (|VIO| ≤ 5 mV, RS = 50Ω) High Level Output Voltage (IOH = -50 µA) (IOH = -500 µA) Low Level Output Voltage (IOL = 50 µA) (IOL = 500 µA) Large Signal Differential Voltage Amplification (VIC = 0.5V, 0.4V ≤ VO ≤ 1.4V) RL = 100 kΩ (VIC = 0.5V, 0.4V ≤ VO ≤ 1.4V) RL = 10 kΩ Input Resistance Common Mode Input Capacitance Common Mode Rejection Ratio (0V ≤ VIC ≤ 0.8V, RS = 50Ω, VO = VDD/2) Supply Voltage Rejection Ratio (1.8V ≤ VDD ≤ 3.6V, VIC = VDD/2, no load) Amplifier Supply Current (per channel) (VO = VDD/2, no load) Slew Rate at Unity Gain (RL = 100 kΩ, CL = 100 pF tied to VDD/2) (TA: 0°C – 70°C. VDD = 1.8V) SYMBOL TYP MAX UNITS VIO 0.1 0.95 mV αVIO 2 IIO 5 500 pA IIB 10 500 pA VICR MIN 0 to 1 VOH 1.5 VOL -0.3 to 1.2 V 1.785 1.65 V 10 100 mV 200 75 65 dB RIN >1012 Ω ci(c) 24.0 pF AVD 65 55 µV/°C CMRR 60 75 dB kSVR 70 85 dB 12 IDD SR 3 of 19 10 15 25 µA V/ms NOTES DS4802 PARAMETER Equivalent Input Noise Voltage (f = 10 Hz) (f = 1 kHz) Unity Gain Bandwidth Product (RL = 100 kΩ, CL = 100 pF tied to VDD/2) Phase Margin at Unity Gain (RL = 100 kΩ, CL = 100 pF tied to VDD/2) Gain Margin (RL = 100 kΩ, CL = 100 pF tied to VDD/2) SYMBOL MIN Input Offset Voltage (VIC = 1.5V, RS = 50Ω, VOUT = VDD/2) Temperature Coefficient of Input Offset Voltage (VIC = 1.5V, RS = 50Ω, VOUT = VDD/2) Input Offset Current (RS = 50Ω) Input Bias Current (RS = 50Ω) Common-mode Input Voltage Range (|VIO| ≤ 5 mV, RS = 50Ω) High Level Output Voltage (IOH = -200 µA) (IOH = -2 mA) Low Level Output Voltage (VIC = 1.5V, IOL = 200 µA) (VIC = 1.5V, IOL = 2 mA) Large Signal Differential Voltage Amplification (VIC = 1.5V, 0.5V ≤ VO ≤ 2.5V) RL = 100 kΩ (VIC = 1.5V, 0.5V ≤ VO ≤ 2.5V) RL = 10kΩ Input Resistance Common Mode Input Capacitance Common Mode Rejection Ratio MAX UNITS VN 120 60 nV/√Hz UGBW 31 kHz φM 60 Degree 17 dB ELECTRICAL CHARACTERISTICS cont. PARAMETER TYP SYMBOL (TA: 0°C – 70°C. VDD = 3.0V) TYP MAX UNITS VIO 0.1 0.95 mV αVIO 2 IIO 5 500 pA IIB 10 500 pA VICR MIN 0 to 2 VOH 2.4 VOL -0.3 to 2.2 V 2.97 2.7 V 24 240 mV 500 dB RIN >1012 Ω cI(c) CMRR 24.0 80 pF dB 4 of 19 70 60 µV/°C 80 70 AVD NOTES 65 NOTES DS4802 PARAMETER (0V ≤ VIC ≤ 2V, RS = 50Ω, VO = VDD/2) Supply Voltage Rejection Ratio (1.8V ≤ VDD ≤ 3.6V, VIC = VDD/2, no load) Amplifier Supply Current (per channel) (VO = VDD/2, no load) Slew Rate at Unity Gain (RL = 100 kΩ, CL = 100 pF tied to VDD/2) Equivalent Input Noise Voltage (f = 10 Hz) (f = 1 kHz) Unity Gain Bandwidth Product (RL = 100 kΩ, CL = 100 pF tied to VDD/2) Phase Margin at Unity Gain (RL = 100 kΩ, CL = 100 pF tied to VDD/2) Gain Margin (RL = 100 kΩ, CL = 100 pF tied to VDD/2) SYMBOL MIN TYP kSVR 70 85 IDD SR 12 UNITS dB 25 µA 15 V/ms VN 120 60 nV/√Hz UGBW 35 kHz φM 60 Degree 17 dB 5 of 19 10 MAX NOTES DS4802 DISTRIBUTION OF DS4802 INPUT OFFSET VOLTAGE Percentage of Amplifiers - % 35 V DD = 1.8 V 30 RL = 10K TA = 25oC 25 20 15 10 5 0 -1000 -800 -600 -400 -200 0 200 400 600 800 1000 VIO - Input Offset Voltage - uV Figure 1.0 DISTRIBUTION OF DS4802 INPUT OFFSET VOLTAGE Percentage of Amplifiers - % 35 VDD = 3.0 V 30 RL = 10K TA = 25oC 25 20 15 10 5 0 -1000 -800 -600 -400 -200 0 200 400 VIO - Input Offset Voltage - uV Figure 2.0 6 of 19 600 800 1000 DS4802 INPUT OFFSET VOLTAGE vs COMMON-MODE INPUT VOLTAGE VIO - Input Offset Voltage - mV 2 V DD = 1.8 V TA = 25oC 1 0 -1 -0.5 0 0.5 1 1.5 2 VIC - Common-Mode Input Voltage - V Figure 3.0 INPUT OFFSET VOLTAGE vs COMMON-MODE INPUT VOLTAGE VIO - Input Offset Voltage - mV 2 V DD = 3.0 V TA = 25oC 1 0 -1 -0.5 0 0.5 1 1.5 VIC - Common-Mode Input Voltage - V Figure 4.0 7 of 19 2 2.5 DS4802 DISTRIBUTION OF DS4802 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT 25% VDD = 1.8 V RL = 10K 20% o TA = 25 C 15% 10% 5% 0% -20 -15 -10 -5 0 5 10 15 20 αVIO - Temperature Coefficient - uV/oC Figure 5.0 DISTRIBUTION OF DS4802 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT 18% VDD = 3.0 V RL = 10K 16% 14% o TA = 25 C 12% 10% 8% 6% 4% 2% 0% -20 -15 -10 -5 0 5 αVIO - Temperature Coefficient - uV/oC Figure 6.0 8 of 19 10 15 20 DS4802 HIGH-LEVEL OUTPUT VOLTAGE vs HIGH-LEVEL OUTPUT CURRENT VOH - High-Level Output Voltage - V 2 VDD = 1.8 V 1.8 1.6 o -40 C 1.4 1.2 o 0C 1 0.8 o 85 C o 25 C 0.6 0.4 o 125 C 0.2 0 0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 IOH - High-Level Output Current - mA Figure 7.0 HIGH-LEVEL OUTPUT VOLTAGE vs HIGH-LEVEL OUTPUT CURRENT VOH - High-Level Output Voltage - V 3.5 VDD = 3.0 V 3 o 2.5 -40 C 2 o 0C 1.5 o o 85 C 25 C 1 o 125 C 0.5 0 0.00 1.00 2.00 3.00 4.00 5.00 IOH - High-Level Output Current - mA Figure 8.0 9 of 19 6.00 7.00 8.00 DS4802 LOW-LEVEL OUTPUT VOLTAGE vs LOW-LEVEL OUTPUT CURRENT 1.8 VOL - Low-Level Output Voltage - V VDD = 1.8 V 1.6 o 125 C 1.4 o 85 C 1.2 o 25 C 1.0 0.8 o 0C 0.6 0.4 o -40 C 0.2 0.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 IOL - Low-Level Output Current - mA Figure 9.0 LOW-LEVEL OUTPUT VOLTAGE vs LOW-LEVEL OUTPUT CURRENT VOL - Low-Level Output Voltage - V 3.0 o 125 C VDD = 3.0 V o 25 C 2.5 o 85 C 2.0 1.5 o 0C 1.0 o -40 C 0.5 0.0 0 2 4 6 8 IOL - Low-Level Output Current - mA Figure 10.0 10 of 19 10 12 DS4802 SHORT-CIRCUIT OUTPUT CURRENT vs FREE-AIR TEMPERATURE IOS - Short-Circuit Output Current - mA 3 2 IOSL 1 VDD = 1.8 V 0 -1 IOSH -2 -50 -25 0 25 50 75 100 125 75 100 125 o TA - Free-Air Temperature - C Figure 11.0 SHORT-CIRCUIT OUTPUT CURRENT vs FREE-AIR TEMPERATURE IOS - Short-Circuit Output Current - mA 12 8 IOSL 4 VDD = 3.0 V 0 IOSH -4 -8 -50 -25 0 25 50 o TA - Free-Air Temperature - C Figure 12.0 11 of 19 DS4802 LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE MARGIN vs FREQUENCY 90 40 V DD = 1.8 V TA = 25oC 20 45 RL = 100K CL = 100pF AVD 0 0 -20 -45 -40 -90 1K 10K 100K Phase Margin - degrees AVD - Gain Margin - dB Phase 1M f - Frequency - Hz Figure 13.0 LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE MARGIN vs FREQUENCY 90 40 VDD = 3.0 V TA = 25oC 20 45 RL = 100K CL = 100pF AVD 0 0 -20 -45 -40 -90 1K 10K 100K f - Frequency - Hz Figure 14.0 12 of 19 1M Phase Margin - degrees AVD - Gain Margin - dB Phase DS4802 COMMON-MODE REJECTION RATIO vs FREQUENCY 100 V DD = 3.0 V CMRR - Common-Mode Rejection Ratio - dB 80 60 VDD = 1.8 V 40 20 0 10 100 1K 10K 100K f - Frequency - Hz Figure 15.0 SUPPLY-VOLTAGE REJECTION RATIO vs FREQUENCY 100 kSVR - Supply-Voltage Rejection Ratio - dB 80 kSVR + 60 40 kSVR 20 0 -20 100 1K 10K f - Frequency - Hz Figure 16.0 13 of 19 100K DS4802 VOLTAGE-FOLLOWER SMALL-SIGNAL PULSE RESPONSE 0.600 VDD = 1.8 V VO - Output Voltage - V 0.580 AV = +1 0.560 RL = 100K 0.540 CL = 100pF 0.520 TA = 25oC 0.500 0.480 0.460 0.440 0.420 0.400 0 200 400 600 800 1000 t - Time - us Figure 17.0 VOLTAGE-FOLLOWER SMALL-SIGNAL PULSE RESPONSE 1.100 VDD = 3.0 V VO - Output Voltage - V AV = +1 RL = 100K 1.050 CL = 100pF TA = 25oC 1.000 0.950 0.900 0 200 400 600 t - Time - us Figure 18.0 14 of 19 800 1000 DS4802 VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE 1.000 VDD = 1.8 V VO - Output Voltage - V 0.900 AV = +1 0.800 RL = 100K 0.700 CL = 100pF 0.600 TA = 25oC 0.500 0.400 0.300 0.200 0.100 0.000 0 200 400 600 800 1000 800 1000 t - Time - us Figure 19.0 VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE 2.000 V DD = 3.0 V VO - Output Voltage - V 1.750 A V = +1 RL = 100K 1.500 CL = 100pF TA = 25oC 1.250 1.000 0.750 0.500 0.250 0 200 400 600 t - Time - us Figure 20.0 15 of 19 DS4802 INVERTING SMALL-SIGNAL PULSE RESPONSE 0.600 VDD = 1.8 V VO - Output Voltage - V 0.580 AV = -1 0.560 RL = 100K 0.540 CL = 100pF TA = 25oC 0.520 0.500 0.480 0.460 0.440 0.420 0.400 0 200 400 600 800 1000 t - Time - us Figure 21.0 INVERTING SMALL-SIGNAL PULSE RESPONSE 1.100 VDD = 3.0 V VO - Output Voltage - V AV = -1 RL = 100K 1.050 CL = 100pF TA = 25oC 1.000 0.950 0.900 0 200 400 600 t - Time - us Figure 22.0 16 of 19 800 1000 DS4802 INVERTING LARGE-SIGNAL PULSE RESPONSE 1.000 V DD = 1.8 V VO - Output Voltage - V 0.900 A V = -1 0.800 RL = 100K CL = 100pF 0.700 TA = 25oC 0.600 0.500 0.400 0.300 0.200 0.100 0.000 0 200 400 600 800 1000 t - Time - us Figure 23.0 INVERTING LARGE-SIGNAL PULSE RESPONSE 2.000 VDD = 3.0 V VO - Output Voltage - V 1.750 AV = -1 RL = 100K 1.500 CL = 100pF TA = 25oC 1.250 1.000 0.750 0.500 0.250 0 200 400 600 t - Time - us Figure 24.0 17 of 19 800 1000 DS4802 SUPPLY CURRENT vs SUPPLY VOLTAGE 40 o IDD - Supply Current - uA V IC = 30% V DD o 125 C 85 C 30 20 o 0C o -40 C 10 o 25 C 0 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 VDD - Suplly Voltage - V Figure 25.0 UNITY-GAIN BANDWIDTH vs LOAD CAPACITANCE 40 VDD = 3.0 V RL = 100K 35 o TA = 25 C 30 25 20 15 10 5 0 10 100 1K CL - Load Capacitance - pF Figure 26.0 18 of 19 10K DS4802 PHASE MARGIN vs LOAD CAPACITANCE Phase Margin - degrees 70 Rnull = 10K 60 Rnull = 4.7K VDD = 3.0 V RL = 100K 50 TA = 25oC 40 +VDD/2 30 AC + 20 10 Rnull = 2.2K RNULL - RLOAD CLOAD Rnull = 0 -VDD/2 0 10 100 1K CL - Load Capacitance - pF Figure 27.0 GAIN MARGIN vs LOAD CAPACITANCE 25 V DD = 3.0 V Rnull = 10K RL = 100K Gain Margin - dB 20 Rnull = 4.7K TA = 25oC 15 Rnull = 2.2K +VDD/2 10 Rnull = 0 AC + - 5 RNULL RLOAD CLOAD -VDD/2 0 10 100 CL - Load Capacitance - pF Figure 28.0 19 of 19 1K