ELPIDA EBE82AF4A1RA

PRELIMINARY DATA SHEET
8GB Registered DDR2 SDRAM DIMM
EBE82AF4A1RA (1024M words × 72 bits, 4 Ranks)
Specifications
Features
• Density: 8GB
• Organization
⎯ 1024M words × 72 bits, 4 ranks
• Mounting 36 pieces of 2G bits DDR2 SDRAM with
DDP (FBGA)
⎯ DDP: 2 pieces of 1Gb chips sealed in one package
• Package: 240-pin socket type dual in line memory
module (DIMM)
⎯ PCB height: 30.0mm
⎯ Lead pitch: 1.0mm
⎯ Lead-free (RoHS compliant)
• Power supply: VDD = 1.8V ± 0.1V
• Data rate: 667Mbps/533Mbps (max.)
• Eight internal banks for concurrent operation
(components)
• Interface: SSTL_18
• Burst lengths (BL): 4, 8
• /CAS Latency (CL): 3, 4, 5
• Precharge: auto precharge option for each burst
access
• Refresh: auto-refresh, self-refresh
• Refresh cycles: 8192 cycles/64ms
⎯ Average refresh period
7.8μs at 0°C ≤ TC ≤ +85°C
3.9μs at +85°C < TC ≤ +95°C
• Operating case temperature range
⎯ TC = 0°C to +95°C
• Double-data-rate architecture; two data transfers per
clock cycle
• The high-speed data transfer is realized by the 4 bits
prefetch pipelined architecture
• Bi-directional differential data strobe (DQS and /DQS)
is transmitted/received with data for capturing data at
the receiver
• DQS is edge-aligned with data for READs; centeraligned with data for WRITEs
• Differential clock inputs (CK and /CK)
• DLL aligns DQ and DQS transitions with CK
transitions
• Commands entered on each positive CK edge; data
referenced to both edges of DQS
• Posted /CAS by programmable additive latency for
better command and data bus efficiency
• Off-Chip-Driver Impedance Adjustment and On-DieTermination for better signal quality
• /DQS can be disabled for single-ended Data Strobe
operation
• 1 piece of PLL clock driver, 2 pieces of register driver
and 1 piece of serial EEPROM (2K bits EEPROM) for
Presence Detect (PD)
Document No. E1166E10 (Ver. 1.0)
Date Published March 2008 (K) Japan
Printed in Japan
URL: http://www.elpida.com
©Elpida Memory, Inc. 2008
EBE82AF4A1RA
Ordering Information
Part number
Data rate
Mbps (max.)
Component
1
JEDEC speed bin*
(CL-tRCD-tRP)
EBE82AF4A1RA-6E-E
667
DDR2-667 (5-5-5)
EBE82AF4A1RA-5C-E
533
DDR2-533 (4-4-4)
Package
240-pin DIMM
(lead-free)
Contact
pad
Mounted devices
Gold
2G bits DDR2 SDRAM*
2
Notes: 1. Module /CAS latency = component CL + 1.
2. Please refer to 1Gb DDR2 datasheet (E0975E) for electrical characteristics.
Pin Configurations
Front side
1 pin
121 pin
64 pin 65 pin
120 pin
184 pin 185 pin
240 pin
Back side
Pin No.
Pin name
Pin No.
Pin name
Pin No.
Pin name
Pin No.
Pin name
1
VREF
61
A4
121
VSS
181
VDD
2
VSS
62
VDD
122
DQ4
182
A3
3
DQ0
63
A2
123
DQ5
183
A1
4
DQ1
64
VDD
124
VSS
184
VDD
5
VSS
65
VSS
125
DQS9
185
CK0
6
/DQS0
66
VSS
126
/DQS9
186
/CK0
7
DQS0
67
VDD
127
VSS
187
VDD
8
VSS
68
Par_In
128
DQ6
188
A0
9
DQ2
69
VDD
129
DQ7
189
VDD
10
DQ3
70
A10
130
VSS
190
BA1
11
VSS
71
BA0
131
DQ12
191
VDD
12
DQ8
72
VDD
132
DQ13
192
/RAS
13
DQ9
73
/WE
133
VSS
193
/CS0
14
VSS
74
/CAS
134
DQS10
194
VDD
15
/DQS1
75
VDD
135
/DQS10
195
ODT0
16
DQS1
76
/CS1
136
VSS
196
A13
17
VSS
77
ODT1
137
NC
197
VDD
18
/RESET
78
VDD
138
NC
198
VSS
19
NC
79
VSS
139
VSS
199
DQ36
20
VSS
80
DQ32
140
DQ14
200
DQ37
21
DQ10
81
DQ33
141
DQ15
201
VSS
22
DQ11
82
VSS
142
VSS
202
DQS13
23
VSS
83
/DQS4
143
DQ20
203
/DQS13
24
DQ16
84
DQS4
144
DQ21
204
VSS
25
DQ17
85
VSS
145
VSS
205
DQ38
26
VSS
86
DQ34
146
DQS11
206
DQ39
27
/DQS2
87
DQ35
147
/DQS11
207
VSS
Preliminary Data Sheet E1166E10 (Ver. 1.0)
2
EBE82AF4A1RA
Pin No.
Pin name
Pin No.
Pin name
Pin No.
Pin name
Pin No.
Pin name
28
DQS2
88
VSS
148
VSS
208
DQ44
29
VSS
89
DQ40
149
DQ22
209
DQ45
30
DQ18
90
DQ41
150
DQ23
210
VSS
31
DQ19
91
VSS
151
VSS
211
DQS14
32
VSS
92
/DQS5
152
DQ28
212
/DQS14
33
DQ24
93
DQS5
153
DQ29
213
VSS
34
DQ25
94
VSS
154
VSS
214
DQ46
35
VSS
95
DQ42
155
DQS12
215
DQ47
36
/DQS3
96
DQ43
156
/DQS12
216
VSS
37
DQS3
97
VSS
157
VSS
217
DQ52
38
VSS
98
DQ48
158
DQ30
218
DQ53
39
DQ26
99
DQ49
159
DQ31
219
VSS
40
DQ27
100
VSS
160
VSS
220
/CS2
41
VSS
101
SA2
161
CB4
221
/CS3
42
CB0
102
NC
162
CB5
222
VSS
43
CB1
103
VSS
163
VSS
223
DQS15
44
VSS
104
/DQS6
164
DQS17
224
/DQS15
45
/DQS8
105
DQS6
165
/DQS17
225
VSS
46
DQS8
106
VSS
166
VSS
226
DQ54
47
VSS
107
DQ50
167
CB6
227
DQ55
48
CB2
108
DQ51
168
CB7
228
VSS
49
CB3
109
VSS
169
VSS
229
DQ60
50
VSS
110
DQ56
170
VDD
230
DQ61
51
VDD
111
DQ57
171
CKE1
231
VSS
52
CKE0
112
VSS
172
VDD
232
DQS16
53
VDD
113
/DQS7
173
NC
233
/DQS16
54
BA2
114
DQS7
174
NC
234
VSS
55
/Err_Out
115
VSS
175
VDD
235
DQ62
56
VDD
116
DQ58
176
A12
236
DQ63
57
A11
117
DQ59
177
A9
237
VSS
58
A7
118
VSS
178
VDD
238
VDDSPD
59
VDD
119
SDA
179
A8
239
SA0
60
A5
120
SCL
180
A6
240
SA1
Preliminary Data Sheet E1166E10 (Ver. 1.0)
3
EBE82AF4A1RA
Pin Description
Pin name
Function
A0 to A13
Address input
Row address
Column address
A0 to A13
A0 to A9, A11
A10 (AP)
Auto precharge
BA0, BA1, BA2
Bank select address
DQ0 to DQ63
Data input/output
CB0 to CB7
Check bit (Data input/output)
/RAS
Row address strobe command
/CAS
Column address strobe command
/WE
Write enable
/CS0 to /CS3
Chip select
CKE0, CKE1
Clock enable
CK0
Clock input
/CK0
Differential clock input
DQS0 to DQS17, /DQS0 to /DQS17
Input and output data strobe
SCL
Clock input for serial PD
SDA
Data input/output for serial PD
SA0 to SA2
Serial address input
VDD
Power for internal circuit
VDDSPD
Power for serial EEPROM
VREF
Input reference voltage
VSS
Ground
ODT0, ODT1
ODT control
/RESET
Reset pin (forces register and PLL inputs low) *
Par_In*
2
/Err_Out*
1
Parity bit for the address and control bus
2
NC
Parity error found on the address and control bus
No connection
Notes: 1. Reset pin is connected to both OE of PLL and reset to register.
2. /Err_Out (Pin No. 55) and Par_In (Pin No. 68) are for optional function to check address and command
parity.
Preliminary Data Sheet E1166E10 (Ver. 1.0)
4
EBE82AF4A1RA
Serial PD Matrix
Byte No. Function described
0
1
Number of bytes utilized by module
manufacturer
Total number of bytes in serial PD
device
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
Hex value
Comments
1
0
0
0
0
0
0
0
80H
128 bytes
0
0
0
0
1
0
0
0
08H
256 bytes
2
Memory type
0
0
0
0
1
0
0
0
08H
DDR2 SDRAM
3
Number of row address
0
0
0
0
1
1
1
0
0EH
14
4
Number of column address
0
0
0
0
1
0
1
1
0BH
11
5
Number of DIMM ranks
0
1
1
1
0
0
1
1
73H
DDP/4 ranks
6
Module data width
0
1
0
0
1
0
0
0
48H
72
7
Module data width continuation
0
0
0
0
0
0
0
0
00H
0
8
Voltage interface level of this assembly 0
0
0
0
0
1
0
1
05H
SSTL 1.8V
9
DDR SDRAM cycle time, CL = 5
-6E
0
0
1
1
0
0
0
0
30H
3.0ns*
0
0
1
1
1
1
0
1
3DH
3.75ns*
1
0
1
0
0
0
1
0
1
45H
0.45ns*
1
0
1
0
1
0
0
0
0
50H
0.5ns*
0
0
0
0
0
1
1
0
06H
ECC, Address/
command Parity
-5C
10
SDRAM access from clock (tAC)
-6E
-5C
11
DIMM configuration type
12
Refresh rate/type
1
0
0
0
0
0
1
0
82H
7.8μs
13
Primary SDRAM width
0
0
0
0
0
1
0
0
04H
×4
14
Error checking SDRAM width
0
0
0
0
0
1
0
0
04H
×4
Reserved
0
0
0
0
0
0
0
0
00H
0
0
0
0
0
1
1
0
0
0CH
4,8
0
0
0
0
1
0
0
0
08H
8
0
0
1
1
1
0
0
0
38H
3, 4, 5
15
16
17
18
SDRAM device attributes:
Burst length supported
SDRAM device attributes: Number of
banks on SDRAM device
SDRAM device attributes:
/CAS latency
1
1
19
DIMM Mechanical Characteristics
0
0
0
0
0
0
1
0
02H
6.00mm max.
20
DIMM type information
0
0
0
0
0
0
0
1
01H
Registered
21
SDRAM module attributes
0
0
0
0
0
0
0
0
00H
Normal
22
SDRAM device attributes: General
0
0
0
0
0
0
1
1
03H
Weak Driver
50Ω ODT
Support
23
Minimum clock cycle time at CL = 4
0
0
1
1
1
1
0
1
3DH
3.75ns*
24
Maximum data access time (tAC) from
clock at CL = 4
0
1
0
1
0
0
0
0
50H
0.5ns*
1
25
Minimum clock cycle time at CL = 3
0
1
0
1
0
0
0
0
50H
5.0ns*
1
26
Maximum data access time (tAC) from
clock at CL = 3
0
1
1
0
0
0
0
0
60H
0.6ns*
1
27
Minimum row precharge time (tRP)
0
0
1
1
1
1
0
0
3CH
15ns
28
Minimum row active to row active delay
0
(tRRD)
0
0
1
1
1
1
0
1EH
7.5ns
29
Minimum /RAS to /CAS delay (tRCD)
0
0
1
1
1
1
0
0
3CH
15ns
30
Minimum active to precharge time
(tRAS)
0
0
1
0
1
1
0
1
2DH
45ns
31
Module rank density
0
0
0
0
0
0
1
0
02H
2GB
Preliminary Data Sheet E1166E10 (Ver. 1.0)
5
1
EBE82AF4A1RA
Byte No. Function described
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
Hex value
Comments
0
0
1
0
0
0
0
0
20H
0.20ns*
1
0
0
1
0
0
1
0
1
25H
0.25ns*
1
0
0
1
0
0
1
1
1
27H
0.27ns*
1
0
0
1
1
0
1
1
1
37H
0.37ns*
1
34
Data input setup time before clock (tDS) 0
0
0
1
0
0
0
0
10H
0.10ns*
1
35
Data input hold time after clock (tDH)
-6E
0
0
0
1
0
1
1
1
17H
0.17ns*
1
0
0
1
0
0
0
1
0
22H
0.22ns*
1
32
Address and command setup time
before clock (tIS)
-6E
-5C
33
Address and command hold time after
clock (tIH)
-6E
-5C
-5C
36
37
38
Write recovery time (tWR)
Internal write to read command delay
(tWTR)
Internal read to precharge command
delay (tRTP)
1
0
0
1
1
1
1
0
0
3CH
15ns*
0
0
0
1
1
1
1
0
1EH
7.5ns*
1
0
0
0
1
1
1
1
0
1EH
7.5ns*
1
TBD
39
Memory analysis probe characteristics
0
0
0
0
0
0
0
0
00H
40
Extension of Byte 41 and 42
0
0
0
0
0
1
1
0
06H
41
Active command period (tRC)
0
0
1
1
1
1
0
0
3CH
60ns*
42
Auto refresh to active/
Auto refresh command cycle (tRFC)
0
1
1
1
1
1
1
1
7FH
127.5ns*
43
SDRAM tCK cycle max. (tCK max.)
1
0
0
0
0
0
0
0
80H
8ns*
44
Dout to DQS skew
-6E
0
0
0
1
1
0
0
0
18H
0.24ns*
1
0
0
0
1
1
1
1
0
1EH
0.30ns*
1
0
0
1
0
0
0
1
0
22H
0.34ns*
1
0
0
1
0
1
0
0
0
28H
0.40ns*
1
0
0
0
0
1
1
1
1
0FH
15μs
0
0
0
0
0
0
0
0
00H
-5C
45
Data hold skew (tQHS)
-6E
-5C
46
PLL relock time
47 to 61
62
SPD Revision
0
0
0
1
0
0
1
0
12H
63
Checksum for bytes 0 to 62
-6E
0
1
0
0
0
1
0
0
44H
1
0
0
0
1
0
0
0
88H
-5C
1
1
1
Rev. 1.2
64 to 65
Manufacturer’s JEDEC ID code
0
1
1
1
1
1
1
1
7FH
Continuation
code
66
Manufacturer’s JEDEC ID code
1
1
1
1
1
1
1
0
FEH
Elpida Memory
67 to 71
Manufacturer’s JEDEC ID code
0
0
0
0
0
0
0
0
00H
72
Manufacturing location
×
×
×
×
×
×
×
×
××
(ASCII-8bit
code)
73
Module part number
0
1
0
0
0
1
0
1
45H
E
74
Module part number
0
1
0
0
0
0
1
0
42H
B
75
Module part number
0
1
0
0
0
1
0
1
45H
E
76
Module part number
0
0
1
1
1
0
0
0
38H
8
77
Module part number
0
0
1
1
0
0
1
0
32H
2
78
Module part number
0
1
0
0
0
0
0
1
41H
A
79
Module part number
0
1
0
0
0
1
1
0
46H
F
80
Module part number
0
0
1
1
0
1
0
0
34H
4
Preliminary Data Sheet E1166E10 (Ver. 1.0)
6
EBE82AF4A1RA
Byte No. Function described
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
Hex value
Comments
81
Module part number
0
1
0
0
0
0
0
1
41H
A
82
Module part number
0
0
1
1
0
0
0
1
31H
1
83
Module part number
0
1
0
1
0
0
1
0
52H
R
84
Module part number
0
1
0
0
0
0
0
1
41H
A
85
Module part number
0
0
1
0
1
1
0
1
2DH
—
86
Module part number
-6E
0
0
1
1
0
1
1
0
36H
6
0
0
1
1
0
1
0
1
35H
5
87
Module part number
-6E
0
1
0
0
0
1
0
1
45H
E
0
1
0
0
0
0
1
1
43H
C
0
0
1
0
1
1
0
1
2DH
—
-5C
-5C
88
Module part number
89
Module part number
0
1
0
0
0
1
0
1
45H
E
90
Module part number
0
0
1
0
0
0
0
0
20H
(Space)
91
Revision code
0
0
1
1
0
0
0
0
30H
Initial
92
Revision code
0
0
1
0
0
0
0
0
20H
(Space)
93
Manufacturing date
×
×
×
×
×
×
×
×
××
94
Manufacturing date
×
×
×
×
×
×
×
×
××
Year code
(BCD)
Week code
(BCD)
95 to 98
Module serial number
99 to 127 Manufacture specific data
Note: 1. These specifications are defined based on component specification, not module.
Preliminary Data Sheet E1166E10 (Ver. 1.0)
7
EBE82AF4A1RA
Block Diagram
/CS0, /CS2*2
/CS1, /CS3*3
BA0 to BA2
A0 to A13
/RAS
/CAS
CKE0
CKE1
/WE
/ODT0
/ODT1
D7
RS
RS
RS
RS
RS
RS
R
E
G
I
S
T
E
R
RS
D43
D25
/RST
D35
ODT
CKE
ODT
ODT
ODT
D65
D66
ODT
/CS
DQS
/DQS
DQ0
to DQ3
DM
CKE
/CS
/CS
DQS
/DQS
DQ0
to DQ3
DM
CKE
/CS
/CS
DQS
/DQS
DQ0
to DQ3
DM
D64
CKE
DQS
/DQS
DQ0
to DQ3
DM
D63
CKE
/CS
ODT
CKE
CKE
ODT
/CS
/CS
ODT
CKE
CKE
/CS
/CS
D30
CKE
DQS
/DQS
DQ0
to DQ3
DM
D53
ODT
D29
DQS
/DQS
DQ0
to DQ3
DM
D71
D52
D34
ODT
ODT
ODT
D68
D69
ODT
DQS
/DQS
DQ0
to DQ3
DM
CKE
/CS
/CS
DQS
/DQS
DQ0
to DQ3
DM
CKE
/CS
/CS
DQS
/DQS
DQ0
to DQ3
DM
D67
CKE
DQS
/DQS
DQ0
to DQ3
DM
CKE
CKE
/CS
DQS
/DQS
DQ0
to DQ3
DM
ODT
D33
/CS
DQS
/DQS
DQ0
to DQ3
DM
CKE
/CS
/CS
D32
CKE
DQS
/DQS
DQ0
to DQ3
DM
ODT
D31
ODT
DQS
/DQS
DQ0
to DQ3
DM
CKE
ODT
ODT
ODT
/CS
CKE
CKE
/CS
/CS
DQS
/DQS
DQ0
to DQ3
DM
D16
D51
ODT
DQS
/DQS
DQ0
to DQ3
DM
/CS
RS
DQS
/DQS
DQ0
to DQ3
DM
D15
D50
CKE
/CS
D14
D49
CKE
RS
4 RS
DQS
/DQS
DQ0
to DQ3
DM
ODT
DQS16
/DQS16
DQ60 to DQ63
RS
DQS
/DQS
DQ0
to DQ3
DM
ODT
RS
4 RS
DQS
/DQS
DQ0
to DQ3
DM
DQS
/DQS
DQ0
to DQ3
DM
D13
ODT
DQS15
/DQS15
DQ52 to DQ55
RS
ODT
/CS
RS
4 RS
CKE
DQS14
/DQS14
DQ44 to DQ47
DQS
/DQS
DQ0
to DQ3
DM
/CS
RS
4 RS
CKE
RS
DQS13
/DQS13
DQ36 to DQ39
D70
Serial PD
SCL
SCL
SDA
SDA
U0
/RCS1 -> /CS: SDRAMs D36 to D53
/RCS3 -> /CS: SDRAMs D54 to D71
WP A0 A1 A2
RBA0 to RBA2 -> BA0 to BA2: SDRAMs D0 to D71
D0 to D71: 1G bits DDR2 SDRAM
U0: 2k bits EEPROM
RS: 22Ω
PLL: CU2A877
Register: SSTUB32868H
SA0 SA1 SA2
RA0 to RA13 -> A0 to A13: SDRAMs D0 to D71
/RRAS -> /RAS: SDRAMs D0 to D71
/RCAS -> /CAS: SDRAMs D0 to D71
VDDSPD
Serial PD
VDD
D0 to D71
VREF
VSS
D0 to D71
RCKE0 -> CKE: SDRAMs D0 to D17, D36 to D53
RCKE1 -> CKE: SDRAMs D18 to D35, D54 to D71
CK0
/CK0
P
L
L
/RESET
OE
PCK0 to PCK6, PCK8, PCK9 -> CK: SDRAMs D0 to D71
/PCK0 to /PCK6, /PCK8, /PCK9 -> /CK: SDRAMs D0 to D71
PCK7 -> CK: register
/PCK7 -> /CK: register
D0 to D71
Signals for Address and Command Parity Function
RODT1 -> ODT: SDRAMs D18 to D35
/PCK7*3
Notes:
1. DQ wiring may be changed within a nibble.
2. /CS0 connects to /DCS0, /CS1 to /DCS1 on register1,
/CS2 connects to /DCS0, /CS3 to /DCS1 on register2.
/CS1 connects to /CSR on register1 and /DCS on register2.
3. /RESET, PCK7 and /PCK7 connect to all registers.
Other signals connect to one of two registers.
D28
ODT
ODT
ODT
ODT
ODT
D48
RODT0 -> ODT: SDRAMs D0 to D17
RS
D27
RODT1
RCKE1
/RCS3
/RCS2
CKE
CKE
D61
DQS
/DQS
DQ0
to DQ3
DM
ODT
/CS
CKE
CKE
/CS
/CS
CKE
CKE
/CS
/CS
DQS
/DQS
DQ0
to DQ3
DM
D17
DQS
/DQS
DQ0
to DQ3
DM
D47
CKE
ODT
ODT
ODT
/CS
/CS
DQS
/DQS
DQ0
to DQ3
DM
/CS
CKE
ODT
/CS
DQS
/DQS
DQ0
to DQ3
DM
ODT
/CS
/CS
/CS
D60
CKE
D24
CKE
DQS
/DQS
DQ0
to DQ3
DM
ODT
D59
ODT
/CS
ODT
CKE
CKE
ODT
/CS
/CS
DQS
/DQS
DQ0
to DQ3
DM
CKE
D23
/CS
DQS
/DQS
DQ0
to DQ3
DM
D58
DQS
/DQS
DQ0
to DQ3
DM
ODT
DQS
/DQS
DQ0
to DQ3
DM
DQS
/DQS
DQ0
to DQ3
DM
D22
CKE
DQS
/DQS
DQ0
to DQ3
DM
ODT
CKE
ODT
/CS
/CS
ODT
CKE
CKE
ODT
/CS
/CS
DQS
/DQS
DQ0
to DQ3
DM
D42
RS
DQS
/DQS
DQ0
to DQ3
DM
D12
DQS
/DQS
DQ0
to DQ3
DM
D46
/RWE -> /WE: SDRAMs D0 to D71
RS
/RESET*3
PCK7*3
DQS
/DQS
DQ0
to DQ3
DM
D41
DQS
/DQS
DQ0
to DQ3
DM
DQS
/DQS
DQ0
to DQ3
DM
D45
RODT0
RCKE0
/RCS1
/RCS0
/RCS0 -> /CS: SDRAMs D0 to D17
/RCS2 -> /CS: SDRAMs D18 to D35
RS
RS
DQS
/DQS
DQ0
to DQ3
DM
D40
CKE
ODT
ODT
ODT
D6
DQS
/DQS
DQ0
to DQ3
DM
ODT
DQS
/DQS
DQ0
to DQ3
DM
D5
ODT
RS
/CS
RS
4 RS
DQS
/DQS
DQ0
to DQ3
DM
CKE
DQS7
/DQS7
DQ56 to DQ59
RS
/CS
RS
4 RS
DQS
/DQS
DQ0
to DQ3
DM
CKE
DQS6
/DQS6
DQ48 to DQ51
RS
/CS
RS
4 RS
D4
CKE
DQS5
/DQS5
DQ40 to DQ43
DQS
/DQS
DQ0
to DQ3
DM
/CS
RS
4 RS
CKE
RS
DQS4
/DQS4
DQ32 to DQ35
RS
DQS
/DQS
DQ0
to DQ3
DM
D11
/CS
CKE
RODT1
RCKE1
/RCS3
/RCS2
RODT0
RCKE0
/RCS1
/RCS0
DQS
/DQS
DQ0
to DQ3
DM
ODT
RS
4 RS
RS
DQS
/DQS
DQ0
to DQ3
DM
D10
ODT
DQS17
/DQS17
CB4 to CB7
D62
/CS
RS
4 RS
CKE
DQS12
/DQS12
DQ28 to DQ31
/CS
RS
4 RS
DQS
/DQS
DQ0
to DQ3
DM
CKE
DQS11
/DQS11
DQ20 to DQ23
RS
CKE
RS
4 RS
DQS
/DQS
DQ0
to DQ3
DM
D9
CKE
DQS10
/DQS10
DQ12 to DQ15
DQS
/DQS
DQ0
to DQ3
DM
CKE
CKE
ODT
/CS
/CS
ODT
CKE
CKE
ODT
/CS
DQS
/DQS
DQ0
to DQ3
DM
D26
ODT
/CS
/CS
D57
CKE
CKE
D56
DQS
/DQS
DQ0
to DQ3
DM
D21
RS
4 RS
ODT
CKE
ODT
/CS
/CS
CKE
CKE
ODT
/CS
D44
ODT
/CS
DQS
/DQS
DQ0
to DQ3
DM
DQS
/DQS
DQ0
to DQ3
DM
D20
/CS
D39
D55
RS
DQS9
/DQS9
DQ4 to DQ7
D54
DQS
/DQS
DQ0
to DQ3
DM
D19
CKE
DQS
/DQS
DQ0
to DQ3
DM
ODT
D18
ODT
/CS
ODT
CKE
CKE
ODT
/CS
/CS
CKE
ODT
DQS
/DQS
DQ0
to DQ3
DM
D38
CKE
/CS
DQS
/DQS
DQ0
to DQ3
DM
D37
ODT
DQS
/DQS
DQ0
to DQ3
DM
DQS
/DQS
DQ0
to DQ3
DM
DQS
/DQS
DQ0
to DQ3
DM
CKE
D8
DQS
/DQS
DQ0
to DQ3
DM
/CS
D3
DQS
/DQS
DQ0
to DQ3
DM
DQS
/DQS
DQ0
to DQ3
DM
D36
CKE
ODT
ODT
ODT
ODT
D2
DQS
/DQS
DQ0
to DQ3
DM
ODT
DQS
/DQS
DQ0
to DQ3
DM
D1
ODT
RS
/CS
RS
4 RS
DQS
/DQS
DQ0
to DQ3
DM
CKE
DQS8
/DQS8
CB0 to CB3
RS
/CS
RS
4 RS
DQS
/DQS
DQ0
to DQ3
DM
CKE
DQS3
/DQS3
DQ24 to DQ27
RS
/CS
RS
4 RS
DQS
/DQS
DQ0
to DQ3
DM
CKE
DQS2
/DQS2
DQ16 to DQ19
RS
/CS
RS
4 RS
D0
CKE
DQS1
/DQS1
DQ8 to DQ11
DQS
/DQS
DQ0
to DQ3
DM
/CS
RS
4 RS
CKE
RS
DQS0
/DQS0
DQ0 to DQ3
RODT1
RCKE1
/RCS3
/RCS2
RODT0
RCKE0
/RCS1
/RCS0
ODT
RODT1
RCKE1
/RCS3
/RCS2
RODT0
RCKE0
/RCS1
/RCS0
VSS
VSS
Par_In
C1
C2
Register1
PAR_IN1
PAR_IN2
PPO1
PPO2
VDD
VDD
C1
C2
Register2
PAR_IN1 /PTYERR1
PAR_IN2 /PTYERR2
0Ω
100kΩ
Register1 share a part of address/command input signal set.
Register2 share the other part of address/command input signal set.
0Ω resistor on /Err_Out is not populated for non-parity card.
Preliminary Data Sheet E1166E10 (Ver. 1.0)
8
/Err_Out
EBE82AF4A1RA
Differential Clock Net Wiring (CK0, /CK0)
0ns (nominal)
SDRAM
stack
PLL
120Ω
OUT1
SDRAM
stack
120Ω
CK0
IN
Register 1
/CK0
C
C
OUT'N'
120Ω
Feedback in
Feedback out
Register 2
Notes: 1. The clock delay from the input of the PLL clock to the input of any SDRAM or register willl
be set to 0ns (nominal).
2. Input, output and feedback clock lines are terminated from line to line as shown, and not
from line to ground.
3. Only one PLL output is shown per output type. Any additional PLL outputs will be wired
in a similar manner.
4. Termination resistors for the PLL feedback path clocks are located as close to the
input pin of the PLL as possible.
Preliminary Data Sheet E1166E10 (Ver. 1.0)
9
120Ω
EBE82AF4A1RA
Electrical Specifications
• All voltages are referenced to VSS (GND).
Absolute Maximum Ratings
Parameter
Symbol
Value
Unit
Notes
Voltage on any pin relative to VSS
VT
–0.5 to +2.3
V
1
Supply voltage relative to VSS
VDD
–0.5 to +2.3
V
Short circuit output current
IOS
50
mA
Power dissipation
PD
18
W
1
Operating case temperature
TC
0 to +95
°C
1, 2
Storage temperature
Tstg
–55 to +100
°C
1
Notes: 1. DDR2 SDRAM component specification.
2. Supporting 0°C to +85°C and being able to extend to +95°C with doubling auto-refresh commands in
frequency to a 32ms period (tREFI = 3.9μs) and higher temperature self-refresh entry via the control of
EMRS (2) bit A7 is required.
Caution
Exposing the device to stress above those listed in Absolute Maximum Ratings could cause
permanent damage. The device is not meant to be operated under conditions outside the limits
described in the operational section of this specification. Exposure to Absolute Maximum Rating
conditions for extended periods may affect device reliability.
DC Operating Conditions (TC = 0°C to +85°C) (DDR2 SDRAM Component Specification)
Parameter
Symbol
min.
typ.
max.
Unit
Notes
Supply voltage
VDD, VDDQ
1.7
1.8
1.9
V
4
VSS
0
0
0
V
3.6
VDDSPD
1.7
—
Input reference voltage
VREF
0.49 × VDDQ
0.50 × VDDQ 0.51 × VDDQ
V
1, 2
Termination voltage
VTT
VREF − 0.04
VREF
VREF + 0.04
V
3
DC input logic high
VIH (DC)
VREF + 0.125
⎯
VDDQ + 0.3
V
DC input low
VIL (DC)
−0.3
⎯
VREF – 0.125
V
AC input logic high
-6E
VIH (AC)
VREF + 0.200
⎯
⎯
V
VIH (AC)
VREF + 0.250
⎯
⎯
V
VIL (AC)
⎯
⎯
VREF – 0.200
V
VIL (AC)
⎯
⎯
VREF – 0.250
V
-5C
AC input logic low
-6E
-5C
V
Notes: 1. The value of VREF may be selected by the user to provide optimum noise margin in the system. Typically
the value of VREF is expected to be about 0.5 × VDDQ of the transmitting device and VREF are expected
to track variations in VDDQ.
2. Peak to peak AC noise on VREF may not exceed ±2% VREF (DC).
3. VTT of transmitting device must track VREF of receiving device.
4. VDDQ must be equal to VDD.
Preliminary Data Sheet E1166E10 (Ver. 1.0)
10
EBE82AF4A1RA
AC Overshoot/Undershoot Specification (DDR2 SDRAM Component Specification)
Parameter
Pins
Specification
Unit
Maximum peak amplitude allowed for overshoot
Command, Address,
CKE, ODT
0.5
V
Maximum peak amplitude allowed for undershoot
0.5
V
Maximum overshoot area above VDD
DDR2-667
0.8
V-ns
1.0
V-ns
0.8
V-ns
1.0
V-ns
DDR2-533
Maximum undershoot area below VSS
DDR2-667
DDR2-533
Maximum peak amplitude allowed for overshoot
0.5
V
Maximum peak amplitude allowed for undershoot
CK, /CK
0.5
V
Maximum overshoot area above VDD
DDR2-667
0.23
V-ns
0.28
V-ns
0.23
V-ns
0.28
V-ns
0.5
V
0.5
V
0.23
V-ns
0.28
V-ns
0.23
V-ns
0.28
V-ns
DDR2-533
Maximum undershoot area below VSS
DDR2-667
DDR2-533
Maximum peak amplitude allowed for overshoot
Maximum peak amplitude allowed for undershoot
Maximum overshoot area above VDDQ
DDR2-667
DQ, DQS, /DQS,
UDQS, /UDQS,
LDQS, /LDQS,
RDQS, /RDQS,
DM, UDM, LDM
DDR2-533
Maximum undershoot area below VSSQ
DDR2-667
DDR2-533
Maximum amplitude
Overshoot area
Volts (V)
VDD, VDDQ
VSS, VSSQ
Undershoot area
Time (ns)
Overshoot/Undershoot Definition
Preliminary Data Sheet E1166E10 (Ver. 1.0)
11
EBE82AF4A1RA
DC Characteristics 1 (TC = 0°C to +85°C, VDD = 1.8V ± 0.1V, VSS = 0V)
Parameter
Operating current
(ACT-PRE)
Operating current
(ACT-READ-PRE)
Precharge power-down
standby current
Precharge quiet standby
current
Idle standby current
Symbol
Grade
IDD0
IDD1
IDD2P
IDD2Q
max.
TBD
TBD
TBD
TBD
Unit
Test condition
mA
one bank; tCK = tCK (IDD), tRC = tRC (IDD),
tRAS = tRAS min.(IDD);
CKE is H, /CS is H between valid commands;
Address bus inputs are SWITCHING;
Data bus inputs are SWITCHING
mA
one bank; IOUT = 0mA; BL = 4, CL = CL(IDD), AL = 0;
tCK = tCK (IDD), tRC = tRC (IDD),
tRAS = tRAS min.(IDD); tRCD = tRCD (IDD);
CKE is H, /CS is H between valid commands;
Address bus inputs are SWITCHING;
Data pattern is same as IDD4W
mA
all banks idle;
tCK = tCK (IDD);
CKE is L;
Other control and address bus inputs are STABLE;
Data bus inputs are FLOATING
mA
all banks idle;
tCK = tCK (IDD);
CKE is H, /CS is H;
Other control and address bus inputs are STABLE;
Data bus inputs are FLOATING
all banks idle;
tCK = tCK (IDD);
CKE is H, /CS is H;
Other control and address bus inputs are SWITCHING;
Data bus inputs are SWITCHING
IDD2N
TBD
mA
IDD3P-F
TBD
mA
IDD3P-S
TBD
mA
Active power-down
standby current
Active standby current
Operating current
(Burst read operating)
Operating current
(Burst write operating)
IDD3N
IDD4R
IDD4W
TBD
TBD
TBD
all banks open;
tCK = tCK (IDD);
CKE is L;
Other control and address
bus inputs are STABLE;
Data bus inputs are
FLOATING
Fast PDN Exit
MRS(12) = 0
Slow PDN Exit
MRS(12) = 1
mA
all banks open;
tCK = tCK (IDD), tRAS = tRAS max.(IDD),
tRP = tRP (IDD);
CKE is H, /CS is H between valid commands;
Other control and address bus inputs are SWITCHING;
Data bus inputs are SWITCHING
mA
all banks open, continuous burst reads, IOUT = 0mA;
BL = 4, CL = CL(IDD), AL = 0;
tCK = tCK (IDD), tRAS = tRAS max.(IDD),
tRP = tRP (IDD);
CKE is H, /CS is H between valid commands;
Address bus inputs are SWITCHING;
Data pattern is same as IDD4W
mA
all banks open, continuous burst writes;
BL = 4, CL = CL(IDD), AL = 0;
tCK = tCK (IDD), tRAS = tRAS max.(IDD),
tRP = tRP (IDD);
CKE is H, /CS is H between valid commands;
Address bus inputs are SWITCHING;
Data bus inputs are SWITCHING
Preliminary Data Sheet E1166E10 (Ver. 1.0)
12
EBE82AF4A1RA
Parameter
Auto-refresh current
Self-refresh current
Operating current
(Bank interleaving)
Symbol
Grade
IDD5
IDD6
IDD7
max
TBD
TBD
TBD
Unit
Test condition
mA
tCK = tCK (IDD);
Refresh command at every tRFC (IDD) interval;
CKE is H, /CS is H between valid commands;
Other control and address bus inputs are SWITCHING;
Data bus inputs are SWITCHING
mA
Self Refresh Mode;
CK and /CK at 0V;
CKE ≤ 0.2V;
Other control and address bus inputs are FLOATING;
Data bus inputs are FLOATING
mA
all bank interleaving reads, IOUT = 0mA;
BL = 4, CL = CL(IDD), AL = tRCD (IDD) −1 × tCK(IDD);
tCK = tCK (IDD), tRC = tRC (IDD), tRRD = tRRD (IDD),
tFAW = tFAW (IDD), tRCD = 1 × tCK (IDD);
CKE is H, /CS is H between valid commands;
Address bus inputs are STABLE during DESELECTs;
Data pattern is same as IDD4W;
Notes: 1.
2.
3.
4.
IDD specifications are tested after the device is properly initialized.
Input slew rate is specified by AC Input Test Condition.
IDD parameters are specified with ODT disabled.
Data bus consists of DQ, DM, DQS, /DQS, RDQS and /RDQS. IDD values must be met with all
combinations of EMRS bits 10 and 11.
5. Definitions for IDD
L is defined as VIN ≤ VIL (AC) (max.)
H is defined as VIN ≥ VIH (AC) (min.)
STABLE is defined as inputs stable at an H or L level
FLOATING is defined as inputs at VREF = VDDQ/2
SWITCHING is defined as:
inputs changing between H and L every other clock cycle (once per two clocks) for address and control
signals, and inputs changing between H and L every other data transfer (once per clock) for DQ signals
not including masks or strobes.
6. Refer to AC Timing for IDD Test Conditions.
Preliminary Data Sheet E1166E10 (Ver. 1.0)
13
EBE82AF4A1RA
AC Timing for IDD Test Conditions
For purposes of IDD testing, the following parameters are to be utilized.
DDR2-667
DDR2-533
Parameter
5-5-5
4-4-4
Unit
CL (IDD)
5
4
tCK
tRCD (IDD)
15
15
ns
tRC (IDD)
60
60
ns
tRRD (IDD)
7.5
7.5
ns
tFAW (IDD)
37.5
37.5
ns
tCK (IDD)
3
3.75
ns
tRAS (min.)(IDD)
45
45
ns
tRAS (max.)(IDD)
70000
70000
ns
tRP (IDD)
15
15
ns
tRFC (IDD)
127.5
127.5
ns
Preliminary Data Sheet E1166E10 (Ver. 1.0)
14
EBE82AF4A1RA
DC Characteristics 2 (TC = 0°C to +85°C, VDD, VDDQ = 1.8V ± 0.1V)
(DDR2 SDRAM Component Specification)
Parameter
Symbol
Value
Unit
Notes
Input leakage current
⏐ILI⏐
2
μA
VDD ≥ VIN ≥ VSS
Output leakage current
⏐ILO⏐
5
μA
VDDQ ≥ VOUT ≥ VSS
Minimum required output pull-up under AC
VOH
test load
Maximum required output pull-down under
VOL
AC test load
VTT + 0.603
V
5
VTT − 0.603
V
5
Output timing measurement reference level VOTR
0.5 × VDDQ
V
1
Output minimum sink DC current
IOL
+13.4
mA
3, 4, 5
Output minimum source DC current
IOH
−13.4
mA
2, 4, 5
Notes: 1.
2.
3.
4.
5.
The VDDQ of the device under test is referenced.
VDDQ = 1.7V; VOUT = 1.42V.
VDDQ = 1.7V; VOUT = 0.28V.
The DC value of VREF applied to the receiving device is expected to be set to VTT.
After OCD calibration to 18Ω at TC = 25°C, VDD = VDDQ = 1.8V.
DC Characteristics 3 (TC = 0°C to +85°C, VDD, VDDQ = 1.8V ± 0.1V)
(DDR2 SDRAM Component Specification)
Parameter
Symbol
min.
max.
Unit
Notes
AC differential input voltage
VID (AC)
0.5
VDDQ + 0.6
V
1, 2
AC differential cross point voltage
VIX (AC)
0.5 × VDDQ − 0.175
0.5 × VDDQ + 0.175
V
2
AC differential cross point voltage
VOX (AC)
0.5 × VDDQ − 0.125
0.5 × VDDQ + 0.125
V
3
Notes: 1. VID (AC) specifies the input differential voltage |VTR -VCP| required for switching, where VTR is the true
input signal (such as CK, DQS, RDQS) and VCP is the complementary input signal (such as /CK, /DQS,
/RDQS). The minimum value is equal to VIH (AC) − VIL (AC).
2. The typical value of VIX(AC) is expected to be about 0.5 × VDDQ of the transmitting device and VIX(AC)
is expected to track variations in VDDQ . VIX(AC) indicates the voltage at which differential input signals
must cross.
3. The typical value of VOX(AC) is expected to be about 0.5 × VDDQ of the transmitting device and
VOX(AC) is expected to track variations in VDDQ . VOX(AC) indicates the voltage at which differential
output signals must cross.
VDDQ
VTR
Crossing point
VID
VIX or VOX
VCP
VSSQ
Differential Signal Levels*1, 2
Preliminary Data Sheet E1166E10 (Ver. 1.0)
15
EBE82AF4A1RA
ODT DC Electrical Characteristics (TC = 0°C to +85°C, VDD, VDDQ = 1.8V ± 0.1V)
(DDR2 SDRAM Component Specification)
Parameter
Symbol
min.
typ.
max.
Unit
Note
Rtt effective impedance value for EMRS (A6, A2) = 0, 1; 75 Ω
Rtt1(eff)
60
75
90
Ω
1
Rtt effective impedance value for EMRS (A6, A2) = 1, 0; 150 Ω
Rtt2(eff)
120
150
180
Ω
1
Rtt effective impedance value for EMRS (A6, A2) = 1, 1; 50 Ω
Rtt3(eff)
40
50
60
Ω
1
Deviation of VM with respect to VDDQ/2
ΔVM
−6
⎯
+6
%
1
Note: 1. Test condition for Rtt measurements.
Measurement Definition for Rtt (eff)
Apply VIH (AC) and VIL (AC) to test pin separately, then measure current I(VIH(AC)) and I(VIL(AC)) respectively.
VIH(AC), and VDDQ values defined in SSTL_18.
Rtt (eff ) =
VIH ( AC ) − VIL( AC )
I (VIH ( AC )) − I (VIL( AC ))
Measurement Definition for ΔVM
Measure voltage (VM) at test pin (midpoint) with no load.
⎛ 2 × VM ⎞
- 1⎟ × 100
ΔVM = ⎜
⎝ VDDQ ⎠
OCD Default Characteristics (TC = 0°C to +85°C, VDD, VDDQ = 1.8V ± 0.1V)
(DDR2 SDRAM Component Specification)
Parameter
min.
typ.
max.
Unit
Notes
Output impedance
12.6
18
23.4
Ω
1, 5
Pull-up and pull-down mismatch
0
⎯
4
Ω
1, 2
Output slew rate
1.5
⎯
5
V/ns
3, 4
Notes: 1. Impedance measurement condition for output source DC current: VDDQ = 1.7V; VOUT = 1420mV;
(VOUT−VDDQ)/IOH must be less than 23.4Ω for values of VOUT between VDDQ and VDDQ−280mV.
Impedance measurement condition for output sink DC current: VDDQ = 1.7V; VOUT = 280mV;
VOUT/IOL must be less than 23.4Ω for values of VOUT between 0V and 280mV.
2. Mismatch is absolute value between pull up and pull down, both are measured at same temperature and
voltage.
3. Slew rate measured from VIL(AC) to VIH(AC).
4. The absolute value of the slew rate as measured from DC to DC is equal to or greater than the slew rate
as measured from AC to AC. This is guaranteed by design and characterization.
5. DRAM I/O specifications for timing, voltage, and slew rate are no longer applicable if OCD is changed
from default settings.
Preliminary Data Sheet E1166E10 (Ver. 1.0)
16
EBE82AF4A1RA
Pin Capacitance (TA = 25°C, VDD = 1.8V ± 0.1V)
Parameter
Symbol
Pins
min.
max.
Unit
Notes
Input capacitance
CI1
Address, /RAS, /CAS, /WE,
/CS, CKE, ODT
2.0
3.5
pF
1
Input capacitance
CI2
CK, /CK
2.0
3.0
pF
2
2.5
3.5
CI/O
DQ, DQS, /DQS, UDQS,
/UDQS, LDQS, /LDQS,
RDQS, /RDQS, DM,
UDM, LDM, CB
pF
3
2.5
4.0
Input/output pin capacitance
-6E
-5C
Notes: 1. Register component specification.
2. PLL component specification.
3. DDR2 SDRAM component specification.
Preliminary Data Sheet E1166E10 (Ver. 1.0)
17
EBE82AF4A1RA
AC Characteristics (TC = 0°C to +85°C, VDD, VDDQ = 1.8V ± 0.1V, VSS, VSSQ = 0V) [DDR2-667]
(DDR2 SDRAM Component Specification)
• New units tCK(avg) and nCK, are introduced in DDR2-800 and DDR2-667
tCK(avg): actual tCK(avg) of the input clock under operation.
nCK: one clock cycle of the input clock, counting the actual clock edges.
-6E
Speed bin
DDR2-667 (5-5-5)
Parameter
Symbol
min.
max.
Unit
Active to read or write command delay
tRCD
15
⎯
ns
Precharge command period
tRP
15
⎯
ns
Active to active/auto-refresh command time
tRC
60
⎯
ns
DQ output access time from CK, /CK
tAC
−450
+450
ps
10
DQS output access time from CK, /CK
tDQSCK
−400
+400
ps
10
CK high-level width
tCH (avg)
0.48
0.52
tCK (avg)
13
CK low-level width
tCL(avg)
0.48
0.52
tCK (avg)
13
CK half period
tHP
Min.
(tCL(abs), tCH(abs))
⎯
ps
6, 13
Clock cycle time
(CL = 6)
tCK (avg)
3000
8000
ps
13
(CL = 5)
tCK (avg)
3000
8000
ps
13
(CL = 4)
tCK (avg)
3750
8000
ps
13
(CL = 3)
tCK (avg)
5000
8000
ps
13
DQ and DM input hold time
tDH (base)
175
⎯
ps
5
DQ and DM input setup time
tDS (base)
100
⎯
ps
4
Control and Address input pulse width for each
input
tIPW
0.6
⎯
tCK (avg)
DQ and DM input pulse width for each input
tDIPW
0.35
⎯
tCK (avg)
Data-out high-impedance time from CK,/CK
tHZ
⎯
tAC max.
ps
10
DQS, /DQS low-impedance time from CK,/CK
tLZ (DQS)
tAC min.
tAC max.
ps
10
DQ low-impedance time from CK,/CK
tLZ (DQ)
2
× tAC min
tAC max.
ps
10
DQS-DQ skew for DQS and associated DQ
signals
tDQSQ
⎯
240
ps
DQ hold skew factor
tQHS
⎯
340
ps
7
DQ/DQS output hold time from DQS
tQH
tHP – tQHS
⎯
ps
8
DQS latching rising transitions to associated clock
tDQSS
edges
−0.25
+0.25
tCK (avg)
DQS input high pulse width
tDQSH
0.35
⎯
tCK (avg)
DQS input low pulse width
tDQSL
0.35
⎯
tCK (avg)
DQS falling edge to CK setup time
tDSS
0.2
⎯
tCK (avg)
DQS falling edge hold time from CK
tDSH
0.2
⎯
tCK (avg)
Mode register set command cycle time
tMRD
2
⎯
nCK
Write postamble
tWPST
0.4
0.6
tCK (avg)
Write preamble
tWPRE
0.35
⎯
tCK (avg)
Address and control input hold time
tIH (base)
275
⎯
ps
Address and control input setup time
tIS (base)
200
⎯
ps
4
Read preamble
tRPRE
0.9
1.1
tCK (avg)
11
Read postamble
tRPST
0.4
0.6
tCK (avg)
12
Preliminary Data Sheet E1166E10 (Ver. 1.0)
18
Notes
5
EBE82AF4A1RA
-6E
Speed bin
DDR2-667 (5-5-5)
Parameter
Symbol
min.
max.
Unit
Active to precharge command
tRAS
45
70000
ns
Active to auto-precharge delay
tRAP
tRCD min.
⎯
ns
Active bank A to active bank B command period
tRRD
7.5
⎯
ns
Four active window period
tFAW
37.5
⎯
ns
/CAS to /CAS command delay
tCCD
2
⎯
nCK
Write recovery time
tWR
15
⎯
ns
Auto precharge write recovery + precharge time
tDAL
WR +
RU (tRP/
tCK (avg))
⎯
nCK
1, 9
Internal write to read command delay
tWTR
7.5
⎯
ns
14
Internal read to precharge command delay
tRTP
7.5
⎯
ns
Exit self-refresh to a non-read command
tXSNR
tRFC + 10
⎯
ns
Exit self-refresh to a read command
tXSRD
200
⎯
nCK
Exit precharge power down to any non-read
command
tXP
2
⎯
nCK
Exit active power down to read command
tXARD
2
⎯
nCK
3
tXARDS
7 − AL
⎯
nCK
2, 3
tCKE
3
⎯
nCK
Output impedance test driver delay
tOIT
0
12
ns
MRS command to ODT update delay
tMOD
0
12
ns
Auto-refresh to active/auto-refresh command time tRFC
127.5
⎯
ns
Average periodic refresh interval
(0°C ≤ TC ≤ +85°C)
tREFI
⎯
7.8
μs
tREFI
⎯
3.9
μs
tDELAY
tIS + tCK(avg) + tIH
⎯
ns
Exit active power down to read command
(slow exit/low power mode)
CKE minimum pulse width (high and low pulse
width)
(+85°C < TC ≤ +95°C)
Minimum time clocks remains ON after CKE
asynchronously drops low
Preliminary Data Sheet E1166E10 (Ver. 1.0)
19
Notes
EBE82AF4A1RA
AC Characteristics [DDR2-533]
-5C
Speed bin
DDR2-533 (4-4-4)
Parameter
Symbol
min.
max.
Unit
Active to read or write command delay
tRCD
15
⎯
ns
Precharge command period
tRP
15
⎯
ns
Active to active/auto-refresh command time
tRC
60
⎯
ns
DQ output access time from CK, /CK
tAC
−500
+500
ps
Notes
DQS output access time from CK, /CK
tDQSCK
−450
+450
ps
CK high-level width
tCH
0.45
0.55
tCK
CK low-level width
tCL
0.45
0.55
tCK
CK half period
tHP
Min.
(tCL, tCH)
⎯
ps
Clock cycle time
(CL = 6)
tCK
3750
8000
ps
(CL = 5)
tCK
3750
8000
ps
(CL = 4)
tCK
3750
8000
ps
(CL = 3)
tCK
5000
8000
ps
tDH (base)
225
⎯
ps
tDH1 (base)
–25
⎯
ps
tDS (base)
100
⎯
ps
tDS1 (base)
–25
⎯
ps
tIPW
0.6
⎯
tCK
DQ and DM input pulse width for each input
tDIPW
0.35
⎯
tCK
Data-out high-impedance time from CK,/CK
tHZ
⎯
tAC max.
ps
Data-out low-impedance time from CK,/CK
tLZ
tAC min.
tAC max.
ps
DQS-DQ skew for DQS and associated DQ
signals
tDQSQ
⎯
300
ps
DQ hold skew factor
tQHS
⎯
400
ps
DQ/DQS output hold time from DQS
tQH
tHP – tQHS
⎯
ps
DQS latching rising transitions to associated clock
tDQSS
edges
−0.25
+0.25
tCK
DQS input high pulse width
tDQSH
0.35
⎯
tCK
DQS input low pulse width
tDQSL
0.35
⎯
tCK
DQS falling edge to CK setup time
tDSS
0.2
⎯
tCK
DQS falling edge hold time from CK
tDSH
0.2
⎯
tCK
Mode register set command cycle time
tMRD
2
⎯
tCK
Write postamble
tWPST
0.4
0.6
tCK
Write preamble
tWPRE
0.35
⎯
tCK
Address and control input hold time
tIH (base)
375
⎯
ps
5
Address and control input setup time
tIS (base)
250
⎯
ps
4
Read preamble
tRPRE
0.9
1.1
tCK
Read postamble
tRPST
0.4
0.6
tCK
Active to precharge command
tRAS
45
70000
ns
DQ and DM input hold time
(differential strobe)
DQ and DM input hold time
(single-ended strobe)
DQ and DM input setup time
(differential strobe)
DQ and DM input setup time
(single-ended strobe)
Control and Address input pulse width for each
input
Preliminary Data Sheet E1166E10 (Ver. 1.0)
20
5
4
EBE82AF4A1RA
-5C
Speed bin
DDR2-533 (4-4-4)
Parameter
Symbol
min.
max.
Unit
Notes
Active to auto-precharge delay
tRAP
tRCD min.
⎯
ns
Active bank A to active bank B command period
tRRD
7.5
⎯
ns
Four active window period
tFAW
37.5
⎯
ns
/CAS to /CAS command delay
tCCD
2
⎯
tCK
Write recovery time
tWR
15
⎯
ns
Auto precharge write recovery + precharge time
tDAL
WR +
RU(tRP/tCK)
⎯
tCK
1, 9
Internal write to read command delay
tWTR
7.5
⎯
ns
14
Internal read to precharge command delay
tRTP
7.5
⎯
ns
Exit self-refresh to a non-read command
tXSNR
tRFC + 10
⎯
ns
Exit self-refresh to a read command
tXSRD
200
⎯
tCK
Exit precharge power-down to any non-read
command
tXP
2
⎯
tCK
Exit active power-down to read command
tXARD
2
⎯
tCK
3
tXARDS
6 − AL
⎯
tCK
2, 3
tCKE
3
⎯
tCK
Output impedance test driver delay
tOIT
0
12
ns
MRS command to ODT update delay
tMOD
Exit active power-down to read command
(slow exit/low power mode)
CKE minimum pulse width (high and low pulse
width)
0
12
ns
Auto-refresh to active/auto-refresh command time tRFC
127.5
⎯
ns
Average periodic refresh interval
(0°C ≤ TC ≤ +85°C)
tREFI
⎯
7.8
μs
tREFI
⎯
3.9
μs
tDELAY
tIS + tCK + tIH
⎯
ns
(+85°C < TC ≤ +95°C)
Minimum time clocks remains ON after CKE
asynchronously drops low
Notes: 1.
2.
3.
4.
For each of the terms above, if not already an integer, round to the next higher integer.
AL: Additive Latency.
MRS A12 bit defines which active power down exit timing to be applied.
The figures of Input Waveform Timing 1 and 2 are referenced from the input signal crossing at the
VIH(AC) level for a rising signal and VIL(AC) for a falling signal applied to the device under test.
5. The figures of Input Waveform Timing 1 and 2 are referenced from the input signal crossing at the
VIL(DC) level for a rising signal and VIH(DC) for a falling signal applied to the device under test.
DQS
CK
/DQS
/CK
tIS
tDS
tDH
tDS
tIH
tIS
tIH
tDH
VDDQ
VIH (AC)(min.)
VIH (DC)(min.)
VREF
VIL (DC)(max.)
VIL (AC)(max.)
VSS
VDDQ
VIH (AC)(min.)
VIH (DC)(min.)
VREF
VIL (DC)(max.)
VIL (AC)(max.)
VSS
Input Waveform Timing 1 (tDS, tDH)
Input Waveform Timing 2 (tIS, tIH)
Preliminary Data Sheet E1166E10 (Ver. 1.0)
21
EBE82AF4A1RA
6. tHP is the minimum of the absolute half period of the actual input clock. tHP is an input parameter but not
an input specification parameter. It is used in conjunction with tQHS to derive the DRAM output timing
tQH.
The value to be used for tQH calculation is determined by the following equation;
tHP = min ( tCH(abs), tCL(abs) ),
where,
tCH(abs) is the minimum of the actual instantaneous clock high time;
tCL(abs) is the minimum of the actual instantaneous clock low time;
7. tQHS accounts for:
a. The pulse duration distortion of on-chip clock circuits, which represents how well the actual tHP at the
input is transferred to the output; and
b. The worst case push-out of DQS on one transition followed by the worst case pull-in of DQ on the
next transition, both of which are independent of each other, due to data pin skew, output pattern effects,
and p-channel to n-channel variation of the output drivers.
8. tQH = tHP – tQHS, where:
tHP is the minimum of the absolute half period of the actual input clock; and tQHS is the specification
value under the max column.
{The less half-pulse width distortion present, the larger the tQH value is; and the larger the valid data eye
will be.}
Examples:
a. If the system provides tHP of 1315ps into a DDR2-667 SDRAM, the DRAM provides tQH of 975ps
(min.)
b. If the system provides tHP of 1420ps into a DDR2-667 SDRAM, the DRAM provides tQH of 1080ps
(min.)
9. RU stands for round up. WR refers to the tWR parameter stored in the MRS.
10. When the device is operated with input clock jitter, this parameter needs to be derated by the actual
tERR(6-10per) of the input clock. (output deratings are relative to the SDRAM input clock.)
For example, if the measured jitter into a DDR2-667 SDRAM has tERR(6-10per) min. = −272ps and
tERR(6-10per) max. = +293ps, then tDQSCK min.(derated) = tDQSCK min. − tERR(6-10per) max. =
−400ps − 293ps = −693ps and tDQSCK max.(derated) = tDQSCK max. − tERR(6-10per) min. = 400ps +
272ps = +672ps. Similarly, tLZ(DQ) for DDR2-667 derates to tLZ(DQ) min.(derated) = −900ps − 293ps =
−1193ps and tLZ(DQ) max.(derated)= 450ps + 272ps = +722ps.
11. When the device is operated with input clock jitter, this parameter needs to be derated by the actual
tJIT(per) of the input clock. (output deratings are relative to the SDRAM input clock.)
For example, if the measured jitter into a DDR2-667 SDRAM has tJIT(per) min. = −72ps and
tJIT(per) max. = +93ps, then tRPRE min.(derated) = tRPRE min. + tJIT(per) min. = 0.9 × tCK(avg) − 72ps
= +2178ps and tRPRE max.(derated) = tRPRE max. + tJIT(per) max. = 1.1 × tCK(avg) + 93ps = +2843ps.
12. When the device is operated with input clock jitter, this parameter needs to be derated by the actual
tJIT(duty) of the input clock. (output deratings are relative to the SDRAM input clock.)
For example, if the measured jitter into a DDR2-667 SDRAM has tJIT(duty) min. = −72ps and
tJIT(duty) max. = +93ps, then tRPST min.(derated) = tRPST min. + tJIT(duty) min. = 0.4 × tCK(avg) −
72ps = +928ps and tRPST max.(derated) = tRPST max. + tJIT(duty) max. = 0.6 × tCK(avg) + 93ps =
+1592ps.
13. Refer to the Clock Jitter table.
14. tWTR is at least two clocks (2 × tCK or 2 × nCK) independent of operation frequency.
Preliminary Data Sheet E1166E10 (Ver. 1.0)
22
EBE82AF4A1RA
ODT AC Electrical Characteristics (DDR2 SDRAM Component Specification)
Parameter
Symbol
min.
max.
Unit
ODT turn-on delay
tAOND
2
2
tCK
ODT turn-on
-6E
tAON
tAC(min)
tAC(max) + 700
ps
1, 3
1
-5C
ODT turn-on (power down mode)
tAON
tAC(min)
tAC(max) + 1000
ps
tAONPD
tAC(min) + 2000
2tCK + tAC(max) + 1000
ps
Notes
ODT turn-off delay
tAOFD
2.5
2.5
tCK
5, 6
ODT turn-off
tAOF
tAC(min)
tAC(max) + 600
ps
2, 4, 5, 6
ODT turn-off (power down mode)
tAOFPD
tAC(min) + 2000
2.5tCK + tAC(max) + 1000
ps
ODT to power down entry latency
tANPD
3
3
tCK
ODT power down exit latency
tAXPD
8
8
tCK
Notes: 1. ODT turn on time min is when the device leaves high impedance and ODT resistance begins to turn on.
ODT turn on time max is when the ODT resistance is fully on. Both are measured from tAOND.
2. ODT turn off time min is when the device starts to turn off ODT resistance.
ODT turn off time max is when the bus is in high impedance. Both are measured from tAOFD.
3. When the device is operated with input clock jitter, this parameter needs to be derated by the actual
tERR(6-10per) of the input clock. (output deratings are relative to the SDRAM input clock.)
4. When the device is operated with input clock jitter, this parameter needs to be derated by
{−tJIT(duty) max. − tERR(6-10per) max. } and { −tJIT(duty) min. − tERR(6-10per) min. } of the actual input
clock.(output deratings are relative to the SDRAM input clock.)
For example, if the measured jitter into a DDR2-667 SDRAM has tERR(6-10per) min. = −272ps,
tERR(6-10per) max. = +293ps, tJIT(duty) min. = −106ps and tJIT(duty) max. = +94ps, then
tAOF min.(derated) = tAOF min. + { −tJIT(duty) max. − tERR(6-10per) max. } = −450ps + { −94ps − 293ps}
= −837ps and tAOF max.(derated) = tAOF max. + { −tJIT(duty) min. − tERR(6-10per) min. } = 1050ps +
{ 106ps + 272ps} = +1428ps.
5. For tAOFD of DDR2-533, the 1/2 clock of tCK in the 2.5 × tCK assumes a tCH, input clock high pulse
width of 0.5 relative to tCK. tAOF min. and tAOF max. should each be derated by the same amount as
the actual amount of tCH offset present at the DRAM input with respect to 0.5. For example, if an input
clock has a worst case tCH of 0.45, the tAOF min. should be derated by subtracting 0.05 × tCK from it,
whereas if an input clock has a worst case tCH of 0.55, the tAOF max. should be derated by adding 0.05
× tCK to it. Therefore, we have;
tAOF min.(derated) = tAC min. − [0.5 − Min.(0.5, tCH min.)] × tCK
tAOF max.(derated) = tAC max. + 0.6 + [Max.(0.5, tCH max.) − 0.5] × tCK
or
tAOF min.(derated) = Min.(tAC min., tAC min. − [0.5 − tCH min.] × tCK)
tAOF max.(derated) = 0.6 + Max.(tAC max., tAC max. + [tCH max. − 0.5] × tCK)
where tCH min. and tCH max. are the minimum and maximum of tCH actually measured at the DRAM
input balls.
6. For tAOFD of DDR2-667, the 1/2 clock of nCK in the 2.5 × nCK assumes a tCH(avg), average input clock
high pulse width of 0.5 relative to tCK(avg). tAOF min. and tAOF max. should each be derated by the
same amount as the actual amount of tCH(avg) offset present at the DRAM input with respect to 0.5. For
example, if an input clock has a worst case tCH(avg) of 0.48, the tAOF min. should be derated by
subtracting 0.02 × tCK(avg) from it, whereas if an input clock has a worst case tCH(avg) of 0.52,
the tAOF max. should be derated by adding 0.02 × tCK(avg) to it. Therefore, we have;
tAOF min.(derated) = tAC min. − [0.5 − Min.(0.5, tCH(avg) min.)] × tCK(avg)
tAOF max.(derated) = tAC max. + 0.6 + [Max.(0.5, tCH(avg) max.) − 0.5] × tCK(avg)
or
tAOF min.(derated) = Min.(tAC min., tAC min. − [0.5 − tCH(avg) min.] × tCK(avg))
tAOF max.(derated) = 0.6 + Max.(tAC max., tAC max. + [tCH(avg) max. − 0.5] × tCK(avg))
where tCH(avg) min. and tCH(avg) max. are the minimum and maximum of tCH(avg) actually measured
at the DRAM input balls.
Preliminary Data Sheet E1166E10 (Ver. 1.0)
23
EBE82AF4A1RA
AC Input Test Conditions (DDR2 SDRAM Component Specification)
Parameter
Symbol
Value
Unit
Notes
Input reference voltage
VREF
0.5 × VDDQ
V
1
Input signal maximum peak to peak swing
VSWING(max.)
1.0
V
1
Input signal minimum slew rate
SLEW
1.0
V/ns
2, 3
Notes: 1. Input waveform timing is referenced to the input signal crossing through the VIH/IL (AC) level applied to
the device under test.
2. The input signal minimum slew rate is to be maintained over the range from VREF to VIH(AC) (min.) for
rising edges and the range from VREF to VIL(AC) (max.) for falling edges as shown in the below figure.
3. AC timings are referenced with input waveforms switching from VIL(AC) to VIH(AC) on the positive
transitions and VIH(AC) to VIL(AC) on the negative transitions.
VDDQ
VIH (AC)(min.)
VIH (DC)(min.)
VSWING(max.)
VREF
VIL (DC)(max.)
VIL (AC)(max.)
Falling slew =
VREF
VSS
ΔTR
ΔTF
− VIL (AC)(max.)
Rising slew =
ΔTF
AC Input Test Signal Wave forms
Measurement point
DQ
VTT
RT =25 Ω
Output Load
Preliminary Data Sheet E1166E10 (Ver. 1.0)
24
VIH (AC) min. − VREF
ΔTR
EBE82AF4A1RA
Clock Jitter [DDR2-667]
-6E
Frequency (Mbps)
667
Parameter
Symbol
min.
max.
Unit
Notes
Average clock period
tCK (avg)
3000
8000
ps
1
Clock period jitter
tJIT (per)
−125
125
ps
5
Clock period jitter during
DLL locking period
tJIT
(per, lck)
−100
100
ps
5
Cycle to cycle period jitter
tJIT (cc)
⎯
250
ps
6
Cycle to cycle clock period jitter during DLL
locking period
tJIT (cc, lck)
⎯
200
ps
6
Cumulative error across 2 cycles
tERR (2per)
−175
175
ps
7
Cumulative error across 3 cycles
tERR (3per)
−225
225
ps
7
Cumulative error across 4 cycles
tERR (4per)
−250
250
ps
7
Cumulative error across 5 cycles
tERR (5per)
−250
250
ps
7
Cumulative error across
n=6,7,8,9,10 cycles
Cumulative error across
n=11, 12,…49,50 cycles
tERR
(6-10per)
tERR
(11-50per)
−350
350
ps
7
−450
450
ps
7
Average high pulse width
tCH (avg)
0.48
0.52
tCK (avg)
2
Average low pulse width
tCL (avg)
0.48
0.52
tCK (avg)
3
Duty cycle jitter
tJIT (duty)
−125
125
ps
4
Notes: 1. tCK (avg) is calculated as the average clock period across any consecutive 200cycle window.
⎧N
⎫
tCK (avg ) = ⎨∑ tCKj ⎬ N
⎩ j =1
⎭
N = 200
2. tCH (avg) is defined as the average high pulse width, as calculated across any consecutive 200 high
pulses.
⎧N
⎫
tCH (avg ) = ⎨∑ tCHj ⎬ (N × tCK (avg ))
⎩ j =1
⎭
N = 200
3. tCL (avg) is defined as the average low pulse width, as calculated across any consecutive 200 low pulses.
⎧N
⎫
tCL(avg ) = ⎨∑ tCLj ⎬ (N × tCK (avg ))
⎩ j =1
⎭
N = 200
4. tJIT (duty) is defined as the cumulative set of tCH jitter and tCL jitter. tCH jitter is the largest deviation of
any single tCH from tCH (avg). tCL jitter is the largest deviation of any single tCL from tCL (avg).
tJIT (duty) is not subject to production test.
tJIT (duty) = Min./Max. of {tJIT (CH), tJIT (CL)}, where:
tJIT (CH) = {tCHj- tCH (avg) where j = 1 to 200}
tJIT (CL) = {tCLj − tCL (avg) where j = 1 to 200}
5. tJIT (per) is defined as the largest deviation of any single tCK from tCK (avg).
tJIT (per) = Min./Max. of { tCKj − tCK (avg) where j = 1 to 200}
tJIT (per) defines the single period jitter when the DLL is already locked. tJIT (per, lck) uses the same
definition for single period jitter, during the DLL locking period only. tJIT (per) and tJIT (per, lck) are not
subject to production test.
Preliminary Data Sheet E1166E10 (Ver. 1.0)
25
EBE82AF4A1RA
6. tJIT (cc) is defined as the absolute difference in clock period between two consecutive clock cycles:
tJIT (cc) = Max. of |tCKj+1 − tCKj|
tJIT (cc) is defines the cycle to cycle jitter when the DLL is already locked. tJIT (cc, lck) uses the same
definition for cycle to cycle jitter, during the DLL locking period only. tJIT (cc) and tJIT (cc, lck) are not
subject to production test.
7. tERR (nper) is defined as the cumulative error across multiple consecutive cycles from tCK (avg).
tERR (nper) is not subject to production test.
⎧n
⎫
tERR(nper ) = ⎨∑ tCKj ⎬ − n × tCK(avg ))
⎩ j =1
⎭
2 ≤ n ≤ 50 for tERR (nper)
8. These parameters are specified per their average values, however it is understood that the following
relationship between the average timing and the absolute instantaneous timing hold at all times.
(minimum and maximum of spec values are to be used for calculations in the table below.)
Parameter
Symbol
min.
max.
Absolute clock period
tCK (abs)
tCK (avg) min. + tJIT (per) min.
tCK (avg) max. + tJIT (per) max. ps
tCH (avg) min. × tCK (avg) min. +
tJIT (duty) min.
tCL (avg) min. × tCK (avg) min. +
tJIT (duty) min.
tCH (avg) max. × tCK (avg) max.
ps
+ tJIT (duty) max.
tCL (avg) max. × tCK (avg) max.
ps
+ tJIT (duty) max.
Absolute clock high pulse
width
Absolute clock low pulse
width
tCH (abs)
tCL (abs)
Example: For DDR2-667, tCH(abs) min. = ( 0.48 × 3000 ps ) - 125ps = 1315ps
Preliminary Data Sheet E1166E10 (Ver. 1.0)
26
Unit
EBE82AF4A1RA
Pin Functions
CK, /CK (input pin)
The CK and the /CK are the master clock inputs. All inputs except DMs, DQSs and DQs are referred to the cross
point of the CK rising edge and the VREF level. When a read operation, DQSs and DQs are referred to the cross
point of the CK and the /CK. When a write operation, DQs are referred to the cross point of the DQS and the VREF
level. DQSs for write operation are referred to the cross point of the CK and the /CK.
/CS (input pin)
When /CS is low, commands and data can be input. When /CS is high, all inputs are ignored. However, internal
operations (bank active, burst operations, etc.) are held.
/RAS, /CAS, and /WE (input pins)
These pins define operating commands (read, write, etc.) depending on the combinations of their voltage levels.
See “Command operation”.
A0 to A13 (input pins)
Row address (AX0 to AX13) is determined by the A0 to the A13 level at the cross point of the CK rising edge and the
VREF level in a bank active command cycle. Column address (AY0 to AY9, AY11) is loaded via the A0 to the A9
and A11 at the cross point of the CK rising edge and the VREF level in a read or a write command cycle. This
column address becomes the starting address of a burst operation.
A10 (AP) (input pin)
A10 defines the precharge mode when a precharge command, a read command or a write command is issued. If
A10 = high when a precharge command is issued, all banks are precharged. If A10 = low when a precharge
command is issued, only the bank that is selected by BA1, BA0 is precharged. If A10 = high when read or write
command, auto-precharge function is enabled. While A10 = low, auto-precharge function is disabled.
BA0, BA1, BA2 (input pin)
BA0, BA1 and BA2 are bank select signals (BA). The memory array is divided into 8 banks: bank 0 to bank 7. (See
Bank Select Signal Table)
[Bank Select Signal Table]
BA0
BA1
BA2
Bank 0
L
L
L
Bank 1
H
L
L
Bank 2
L
H
L
Bank 3
H
H
L
Bank 4
L
L
H
Bank 5
H
L
H
Bank 6
L
H
H
Bank 7
H
H
H
Remark: H: VIH. L: VIL.
Preliminary Data Sheet E1166E10 (Ver. 1.0)
27
EBE82AF4A1RA
CKE (input pin)
CKE controls power down and self-refresh. The power down and the self-refresh commands are entered when the
CKE is driven low and exited when it resumes to high.
The CKE level must be kept for 1 CK cycle at least, that is, if CKE changes at the cross point of the CK rising edge
and the VREF level with proper setup time tIS, at the next CK rising edge CKE level must be kept with proper hold
time tIH.
DQ, CB (input and output pins)
Data are input to and output from these pins.
DQS (input and output pin)
DQS and /DQS provide the read data strobes (as output) and the write data strobes (as input).
VDD (power supply pins)
1.8V is applied. (VDD is for the internal circuit.)
VDDSPD (power supply pin)
1.8V is applied (For serial EEPROM).
VSS (power supply pin)
Ground is connected.
/RESET(input pin)
LVCMOS reset input. When /RESET is Low, all registers are reset.
Par_IN (Parity input pin)
Parity bit for the address and control bus.
/Err_Out (Error output pin)
Parity error found on the address and control bus.
Detailed Operation Part and Timing Waveforms
Refer to the EDE1104ACSE, EDE1108ACSE, EDE1116ACSE datasheet (E0975E). DM pins of component device
fixed to VSS level on the module board. DIMM /CAS latency = component CL + 1 for registered type.
Preliminary Data Sheet E1166E10 (Ver. 1.0)
28
EBE82AF4A1RA
Physical Outline
Unit: mm
4.00 max
0.5 min
4.00 min
(DATUM -A-)
Component area
(Front)
1
120
B
A
63.00
1.27 ± 0.10
55.00
4.00
Component area
(Back)
FULL R
30.00
240
17.80
121
10.00
133.35
3.00
Detail B
(DATUM -A-)
1.00
4.00
0.20 ± 0.15
2.50 ± 0.20
Detail A
2.50
FULL R
0.80 ± 0.05
3.80
5.00
1.50 ± 0.10
ECA-TS2-0093-01
Preliminary Data Sheet E1166E10 (Ver. 1.0)
29
EBE82AF4A1RA
CAUTION FOR HANDLING MEMORY MODULES
When handling or inserting memory modules, be sure not to touch any components on the modules, such as
the memory ICs, chip capacitors and chip resistors. It is necessary to avoid undue mechanical stress on
these components to prevent damaging them.
In particular, do not push module cover or drop the modules in order to protect from mechanical defects,
which would be electrical defects.
When re-packing memory modules, be sure the modules are not touching each other.
Modules in contact with other modules may cause excessive mechanical stress, which may damage the
modules.
MDE0202
NOTES FOR CMOS DEVICES
1
PRECAUTION AGAINST ESD FOR MOS DEVICES
Exposing the MOS devices to a strong electric field can cause destruction of the gate
oxide and ultimately degrade the MOS devices operation. Steps must be taken to stop
generation of static electricity as much as possible, and quickly dissipate it, when once
it has occurred. Environmental control must be adequate. When it is dry, humidifier
should be used. It is recommended to avoid using insulators that easily build static
electricity. MOS devices must be stored and transported in an anti-static container,
static shielding bag or conductive material. All test and measurement tools including
work bench and floor should be grounded. The operator should be grounded using
wrist strap. MOS devices must not be touched with bare hands. Similar precautions
need to be taken for PW boards with semiconductor MOS devices on it.
2
HANDLING OF UNUSED INPUT PINS FOR CMOS DEVICES
No connection for CMOS devices input pins can be a cause of malfunction. If no
connection is provided to the input pins, it is possible that an internal input level may be
generated due to noise, etc., hence causing malfunction. CMOS devices behave
differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed
high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected
to VDD or GND with a resistor, if it is considered to have a possibility of being an output
pin. The unused pins must be handled in accordance with the related specifications.
3
STATUS BEFORE INITIALIZATION OF MOS DEVICES
Power-on does not necessarily define initial status of MOS devices. Production process
of MOS does not define the initial operation status of the device. Immediately after the
power source is turned ON, the MOS devices with reset function have not yet been
initialized. Hence, power-on does not guarantee output pin levels, I/O settings or
contents of registers. MOS devices are not initialized until the reset signal is received.
Reset operation must be executed immediately after power-on for MOS devices having
reset function.
CME0107
Preliminary Data Sheet E1166E10 (Ver. 1.0)
30
EBE82AF4A1RA
The information in this document is subject to change without notice. Before using this document, confirm that this is the latest version.
No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of Elpida Memory, Inc.
Elpida Memory, Inc. does not assume any liability for infringement of any intellectual property rights
(including but not limited to patents, copyrights, and circuit layout licenses) of Elpida Memory, Inc. or
third parties by or arising from the use of the products or information listed in this document. No license,
express, implied or otherwise, is granted under any patents, copyrights or other intellectual property
rights of Elpida Memory, Inc. or others.
Descriptions of circuits, software and other related information in this document are provided for
illustrative purposes in semiconductor product operation and application examples. The incorporation of
these circuits, software and information in the design of the customer's equipment shall be done under
the full responsibility of the customer. Elpida Memory, Inc. assumes no responsibility for any losses
incurred by customers or third parties arising from the use of these circuits, software and information.
[Product applications]
Be aware that this product is for use in typical electronic equipment for general-purpose applications.
Elpida Memory, Inc. makes every attempt to ensure that its products are of high quality and reliability.
However, users are instructed to contact Elpida Memory's sales office before using the product in
aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment,
medical equipment for life support, or other such application in which especially high quality and
reliability is demanded or where its failure or malfunction may directly threaten human life or cause risk
of bodily injury.
[Product usage]
Design your application so that the product is used within the ranges and conditions guaranteed by
Elpida Memory, Inc., including the maximum ratings, operating supply voltage range, heat radiation
characteristics, installation conditions and other related characteristics. Elpida Memory, Inc. bears no
responsibility for failure or damage when the product is used beyond the guaranteed ranges and
conditions. Even within the guaranteed ranges and conditions, consider normally foreseeable failure
rates or failure modes in semiconductor devices and employ systemic measures such as fail-safes, so
that the equipment incorporating Elpida Memory, Inc. products does not cause bodily injury, fire or other
consequential damage due to the operation of the Elpida Memory, Inc. product.
[Usage environment]
Usage in environments with special characteristics as listed below was not considered in the design.
Accordingly, our company assumes no responsibility for loss of a customer or a third party when used in
environments with the special characteristics listed below.
Example:
1) Usage in liquids, including water, oils, chemicals and organic solvents.
2) Usage in exposure to direct sunlight or the outdoors, or in dusty places.
3) Usage involving exposure to significant amounts of corrosive gas, including sea air, CL 2 , H 2 S, NH 3 ,
SO 2 , and NO x .
4) Usage in environments with static electricity, or strong electromagnetic waves or radiation.
5) Usage in places where dew forms.
6) Usage in environments with mechanical vibration, impact, or stress.
7) Usage near heating elements, igniters, or flammable items.
If you export the products or technology described in this document that are controlled by the Foreign
Exchange and Foreign Trade Law of Japan, you must follow the necessary procedures in accordance
with the relevant laws and regulations of Japan. Also, if you export products/technology controlled by
U.S. export control regulations, or another country's export control laws or regulations, you must follow
the necessary procedures in accordance with such laws or regulations.
If these products/technology are sold, leased, or transferred to a third party, or a third party is granted
license to use these products, that third party must be made aware that they are responsible for
compliance with the relevant laws and regulations.
M01E0706
Preliminary Data Sheet E1166E10 (Ver. 1.0)
31