POWERINT EPR-31

Engineering Prototype Report for EP–31
Multiple Output 180 W AC-DC Power
Supply using TOP249Y (TOPSwitch®-GX)
and TNY266P (TinySwitch®-II) and
Title
Specification
Application
110 VAC Doubled or 230 VAC Input, +5 V,
+3.3 V, +12 V, –12 V & +5 V Stdby Outputs
ATX 12 V PC Main Supply with Passive PFC
in a Micro-ATX Enclosure
Author
Power Integrations Application Department
Document
Number
EPR–31
Date
01-Feb-05
Revision
1.1
Summary and Features
•
•
•
•
•
•
Highly integrated IC realizes a significant reduction in component count
Main transformer resets with a 700 V MOSFET and no reset winding
Input power < 1 W (with standby loaded to 0.5 W and the main supply off)
Meets Blue Angel 5 W requirement (measures 4.1 W, at specified conditions)
Passes EN55022 B conducted EMI limits, with more than 10 dB of margin
Simple voltage mode control provides good transient response & regulation
The products and applications illustrated herein (including circuits external to the products and transformer
construction) may be covered by one or more U.S. and foreign patents or potentially by pending U.S. and
foreign patent applications assigned to Power Integrations. A complete list of Power Integrations’ patents
may be found at www.powerint.com.
Power Integrations
5245 Hellyer Avenue, San Jose, CA 95138 USA.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
EPR-31 – Multi Output, 180 W, PC Main Power Supply
01-Feb-05
Table Of Contents
1
2
3
4
5
Introduction.................................................................................................... 3
Power Supply Specification ........................................................................... 4
Schematic...................................................................................................... 5
Circuit Description ......................................................................................... 8
PCB Layout ................................................................................................. 10
5.1
Assembly Diagram ............................................................................... 10
5.2
Top View .............................................................................................. 12
6 Bill Of Materials ........................................................................................... 14
6.1
Main Board Bill of Materials.................................................................. 14
6.2
Control Board Bill of Materials .............................................................. 16
7 Transformer Specification............................................................................ 17
7.1
180 W Forward Transformer ................................................................ 17
7.1.1
Electrical Diagram ......................................................................... 17
7.1.2
Electrical Specifications................................................................. 17
7.1.3
Materials........................................................................................ 17
7.1.4
Transformer Build Diagram ........................................................... 18
7.1.5
Transformer Construction.............................................................. 18
7.2
10 W PC Standby Transformer ............................................................ 20
7.2.1
Electrical Diagram ......................................................................... 20
7.2.2
Electrical Specifications................................................................. 20
7.2.3
Materials........................................................................................ 20
7.2.4
Transformer Build Diagram ........................................................... 21
7.2.5
Transformer Construction.............................................................. 21
7.3
Output Coupled Inductor ...................................................................... 22
7.3.1
Toroid Layout ................................................................................ 22
7.3.2
Electrical Diagram ......................................................................... 22
7.3.3
Inductances................................................................................... 22
7.4
Mag Amp Inductor ................................................................................ 23
7.4.1
Core Specifications ....................................................................... 23
7.4.2
Winding Instructions ...................................................................... 23
8 Transformer Spreadsheets .......................................................................... 24
9 Performance Data ....................................................................................... 27
9.1
Efficiency and Regulation ..................................................................... 27
10
Thermal Performance .............................................................................. 28
11
Waveforms............................................................................................... 29
12
Output Ripple Measurements .................................................................. 31
12.1 Ripple Measurement Technique........................................................... 31
12.2 Measurement Results .......................................................................... 32
13
Conducted EMI ........................................................................................ 33
14
Revision History ....................................................................................... 34
Important Note:
Although this circuit board has been designed to meet safety isolation requirements, the
engineering prototype has not been agency approved. Therefore, all testing should be
performed using an isolation transformer to provide the AC input to the prototype board.
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 2 of 36
01-Feb-05
EPR-31 – Multi-Output, 180 W, PC Main Power Supply
1 Introduction
This engineering report describes the operation and provides performance data
for a 180 W forward converter-based PC mains supply (using TOPSwitch-GX),
and a 10 W flyback converter-based PC standby supply (using TinySwitch-II).
This design is intended to demonstrate the viability of the TOPSwitch-GX in a PC
main application, in a micro-ATX enclosure, with passive PFC. Because many of
the functions necessary for a forward converter are integrated into the
TOPSwitch-GX family of power conversion ICs, designing around it reduces the
PCB area required for the layout of the main converter.
A supervisory ASIC was not included. However, a simple circuit (see Figure 5)
was implemented to demonstrate the remote ON/OFF and fault latching
operation that an ASIC normally performs. The 3.3 V output does not have
remote voltage sensing, but using standard techniques this could easily be
added.
This report contains power supply specifications, bills of material (BOM), circuit
diagrams, custom magnetic components documentation (transformers, output
inductor and mag-amp inductor), PCB layouts, and pertinent electrical test data.
Figure 1 – Photograph of the populated circuit boards of the EP-31 prototype.
Page 3 of 36
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
EPR-31 – Multi Output, 180 W, PC Main Power Supply
01-Feb-05
2 Power Supply Specification
Description
Symbol
Min
Typ
Max
Units
Comment
VIN
fLINE
90
47
265
63
VAC
Hz
3-Wire (with Protective Earth)
50/60
Blue Angel
4.75
W
Standby Input Power (230 VAC)
0.95
W
With standby output loaded to
2.5 watts
With standby output loaded to
0.5 watts
0
5.25
50
12.0
3.45
50
10.0
12.6
120
13.0
-12.6
120
1.5
5.25
50
2.0
V
mV
A
V
mV
A
V
mV
A
V
mV
A
V
mV
A
68
180
200
75
W
W
%
Input
Voltage
Frequency
Output
Output Voltage 1
Output Ripple Voltage 1
Output Current 1
Output Voltage 2
Output Ripple Voltage 2
Output Current 2
Output Voltage 3
Output Ripple Voltage 3
Output Current 3
Output Voltage 4
Output Ripple Voltage 4
Output Current 4
Output Voltage 5 (Standby)
Output Ripple Voltage 5
Output Current 5
Total Output Power
Continuous Output Power
Peak Output Power
Efficiency
VOUT1
VRIPPLE1
IOUT1
VOUT2
VRIPPLE2
IOUT2
VOUT3
VRIPPLE3
IOUT3
VOUT4
VRIPPLE4
IOUT4
VOUT5
VRIPPLE5
IOUT5
4.75
1.0
3.14
2.0
11.4
2.0
-11.4
4.75
5.00
3.3
12.0
10.0
-12.0
5.0
POUT
POUT_PEAK
η
72
± 5%
20 MHz Bandwidth
± 5%
20 MHz Bandwidth
± 5%
20 MHz Bandwidth
± 5%
20 MHz Bandwidth
± 5%
20 MHz Bandwidth
o
Measured at POUT (43 W), 25 C
Environmental
Conducted EMI
Meets CISPR22B / EN55022B
Designed to meet IEC950, UL1950
Class II
Safety
Surge
3
kV
Surge
3
kV
Ambient Temperature
TAMB
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
50
o
C
1.2/50 µs surge, IEC 1000-4-5,
Series Impedance:
Differential Mode: 2 Ω
Common Mode: 12 Ω
100 kHz ring wave, 500 A short
circuit current, differential and
common mode
Free convection, sea level
Page 4 of 36
01-Feb-05
EPR-31 – Multi-Output, 180 W, PC Main Power Supply
3 Schematic
Figure 2 – EP-31 Main Forward Converter, Primary Side.
Page 5 of 36
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
EPR-31 – Multi Output, 180 W, PC Main Power Supply
01-Feb-05
Figure 3 – EP-31 Main Forward Converter, Secondary Side.
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 6 of 36
01-Feb-05
EPR-31 – Multi-Output, 180 W, PC Main Power Supply
Figure 4 – EP-31 Standby Flyback Converter.
Figure 5 – EP-31 Remote ON / OFF Interface.
Page 7 of 36
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
EPR-31 – Multi Output, 180 W, PC Main Power Supply
01-Feb-05
4 Circuit Description
With line feed-forward, duty factor reduction, a programmable primary current
limit, line sense for input under-voltage (UV) lockout and overvoltage (OV)
shutdown and a soft-start function for reduced stesses during start-up, all
integrated onto one monolithic IC, the TOPSwitch-GX family has all of the
functions necessary to operate as an off-line, single-ended forward converter.
Also, the TOPSwitch-GX family has sufficient power capability to address the PC
main application arena.
In this design, the Line sense (L) pin (see the TOPSwitch-GX data sheet for a
description of the L pin functions and uses) senses the rectified AC input voltage
through R3, R5, and R6, and inhibits the start of U1 switching until the minimum
input voltage [80 VAC (110 VAC Nom. line), 160 VAC (230 VAC Nom. line)] is
reached. When U1 begins switching, bias winding (T1, pin 3) current, delivered
through R13, D18, D19, R36 and R8, immediately sets a maximum duty factor
limit by injecting current into the L pin (see the TOPSwitch-GX data sheet for a
description of maximum duty cycle DCMAX reduction operation). The L pin sums
current from two sources: directly from the line (R3, R5 & R6) and from the bias
winding (T1 pins 3–4, R13, D18, D19, R36, C22 and R8). The rectified forward
pulse from the bias winding develops a DC voltage across C22, which
determines the current that flows through R8 into the L pin. The L pin current
increases with line voltage and reduces the DCMAX, preventing the possibility of
transformer saturation during line or load transients.
A TOP249Y device was selected for this application. Its primary current limit has
been programmed to about 3.5 A (via the X pin), by pull-down resistor R12,
which is connected (through Q7) to primary return (the SOURCE pin of U1) when
the supply is on (the U3 phototransistor is on and Q7 is saturated.). This limits
the peak output power that the load(s) can demand from this design to about
200 W.
When the AC input voltage drops below 75 V, a second UV lockout circuit (R4,
R14, R39 and Q1) activates preventing shutdown glitches. Transistor Q1 is
biased on when VIN drops below 75 VAC. Its collector then pulls up the U1 X pin
(through R39), disabling its MOSFET from switching (see the TOPSwitch-GX
data sheet, Figure 11, for how the X pin can be used to enable/disable output
MOSFET switching).
The Zener clamp portion (D3, D4, and D5) of the primary snubber circuit only
conducts lightly during normal steady-state operation. Capacitor C4 is coupled to
the node of T1 and the DRAIN of U1 through a slow recovery diode (D1). This
very efficient snubber allows the highest possible flyback voltage to develop
during the U1-MOSFET off time, and recycles a significant amount of that energy
back through T1 (to C9 and the output) during the reverse recovery time of D1.
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 8 of 36
01-Feb-05
EPR-31 – Multi-Output, 180 W, PC Main Power Supply
The dissipation in the entire circuit (D1, C4, and D3–D5) measures only about
1.5 W at maximum load.
TOPSwitch-GX uses voltage mode control to regulate the main output voltage.
Output transient load-step waveforms show very good responsiveness (optimal
performance) and the control loop gain and phase margin plots show that the
control loop is stable with adequate margin.
This design uses a very simple remote ON/OFF circuit (see Figure 5). When the
ON line (the green wire in the output cable) is momentarily connected to the
output return (grounded), Q3 turns on, pulling current through the U3-LED, which
turns on Q7, which pulls down R12, enabling U1 to start switching. When the
output comes up into regulation before C19 discharges, Q3 is kept on through
R28, and U1 keeps switching. IC U1 stops switching if output regulation is lost.
Then the ON line must be toggled (ungrounded and then re-grounded) to restart
the supply.
When the ON line is ungrounded, it is internally pulled up (by R33) to the +5 V
standby and U1 remains disabled. The +5 V standby is always operating above
a DC rail voltage of 100 VDC. Grounding the ON line will turn the main supply
on, if the AC line voltage is above the UV threshold and there is not a fault
condition. If a fault condition exists, U1 will stay in its auto-restart mode until C19
discharges. The ON line must be toggled again to attempt another restart.
*Note 1: If the remote ON line is grounded (main power enabled) when AC is first
applied to the supply, the main converter will automatically turn on. However, if
AC is brought up too slowly (i.e. adjusting a variac), the supply will not turn on
and the ON line will have to be toggled to turn on the supply. On the output
interconnect board that is provided with the DAK Kit, the ON line is already
connected to an ON/OFF switch, enabling the supply to be turned ON and
OFF.
Page 9 of 36
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
EPR-31 – Multi Output, 180 W, PC Main Power Supply
01-Feb-05
5 PCB Layout
5.1
Assembly Diagram
Figure 6 – Main Board PCB Silk Screen Artwork (shows component locations).
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 10 of 36
01-Feb-05
EPR-31 – Multi-Output, 180 W, PC Main Power Supply
Figure 7 – Control Board PCB Silk Screen Artwork (shows component locations).
Page 11 of 36
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
EPR-31 – Multi Output, 180 W, PC Main Power Supply
5.2
01-Feb-05
Top View
Figure 8 − Main Board PCB Layout Artwork.
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 12 of 36
01-Feb-05
EPR-31 – Multi-Output, 180 W, PC Main Power Supply
Figure 9 – Control Board PCB Layout Artwork.
Page 13 of 36
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
EPR-31 – Multi Output, 180 W, PC Main Power Supply
01-Feb-05
6 Bill Of Materials
6.1
Main Board Bill of Materials
Item
Qty
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
1
1
1
1
2
2
2
2
2
1
2
1
1
1
2
2
2
1
1
1
1
1
1
2
2
1
1
2
1
1
1
1
2
1
1
1
1
1
1
1
1
1
2
3
1
1
1
1
1
1
1
1
1
1
Reference
BR1
CX1
CX2
CY1
CY4, CY3
C3, C2
C4
C5, C25
C6
C7
C8, C23
C9
C10
C11
C13, C12
C14, C15
C20, 27
C22
C24
C16
C108
D1
D3
D4, D5
D6, D18
D19
D8
D7, D9
D20
D105
F1
L1
L5, L2
L3
L4
L7
Q1
Q7
Q4
Q6
RT1
RV1
R1, R2
R3, R4, R6
R7
R5
R8
R9
R10
R11
R39
R12
R13
R14
Description
600 V, 4 A Bridge Rectifier
47 nF, 250 VAC X type Cap
0.33 µF, 250 VAC X type Cap
33 pF, 1 kV Y type Safety Cap
2.2 nF, 1 kV Y type Safety Cap
470 µF, 200 V Electrolytic Cap
2.2 nF, 1 kV
1 µF, 100 V
47 µF, 16 V
0.1 µF, 50 V
33 nF, 50 V
47 nF, 50 V
1 nF, 50 V
1000 µF, 16 V
2200 µF, 6.3 V
1200 µF, 10 V
330 pF, 50 V
100 pF, 50 V
330 µF, 25 V
10 nF, 50 V
10 nF, 500 V
800 V, 3 A diode
200 V, 1.5 W Zener diode
180 V, 1.5 W Zener diode
150 V, 625 mA, Gen Purpose
3.9 V, 0.5 W Zener diode
45 V, 60 A Schottky diode
45 V, 30 A Schottky diode
1 A, Ultra Fast recovery diode
100 V, 300 mA Fast diode
4 A Slow Blow Fuse
13 µH, 15 A Coupled Choke
0.9 µH
Mag amp
25 µH
3.3 mH
TO-92 Transistor / PNP
TO-92 Transistor / NPN
TO-92 transistor / NPN 300 V
TO-92 transistor / PNP 300 V
10 Ω, 3.2 A Thermistor (Inrush)
275 V, 14 mm dia. MOV
330 kΩ
2.2 MΩ
560 kΩ
180 kΩ
130 kΩ, 1%
47 Ω
560 kΩ, 1/2 W
360 Ω
3.3 kΩ
12 kΩ
10 Ω
75 kΩ
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
P/N
KBL06
ECQ-U2A473MV
ECQ-U2A334MG
440LQ33
ECK-ATS222ME
ECA-2AHG010
ECA-1CHG470
ECU-S1H104MEA
ECU-S2A333KBA
K473K15X7RF5TL2
ECU-S1H102JCB
EEU-FC1C102
EEU-FC0J222
ECA-FC1A122
ECU-S1H331JCA
ECU-SIH101JCA
EEU-FC1C331L
ECU-S1H103KBA
140-500P9-103K
1N5407-T
BZY97C-200
BZY97C-180
BAV20
1N5229
MBR6045WT
MBR3045WT
UF4002
1N4148-T
3721400041
SIL6015
SPE-119-0
SIL6014
5702
ELF-18D650B
2N3906
2N3904
MPSA42
MPSA92
RL3004-6.56-59-S7
ERZ-V14D431
CFR-25JB-330k
CFR-25JB-2M2
CFR-25JB-560K
CFR-25JB-180K
MFR-25FBF-130K
CFR-25JB-47R
CFR-50JB-560K
CFR-25JB-360R
CFR-25JB-3K3
CFR-25JB-12K
CFR-25JB-10R
CFR-25JB-75K
Manufacturer
General Semiconductor
Panasonic
Panasonic
Vishay/Sprague
Vishay/Sprague
CapXon
Xicon
Panasonic
Panasonic
Panasonic
Panasonic
BC Components
Panasonic
Panasonic
Panasonic
Panasonic
Panasonic
Panasonic
Panasonic
Panasonic
Xicon
Any
Vishay
Vishay
Diodes Inc.
Vishay
International Rectifier
International Rectifier
Vishay
Diodes Inc.
Wickmann
HICAL
Premier Magnetics
DT Magnetics
J.W. Miller
Panasonic
Any
Any
Any
Any
Keystone
Panasonic
Yageo
Yageo
Yageo
Yageo
Yageo
Yageo
Yageo
Yageo
Yageo
Yageo
Yageo
Yageo
Page 14 of 36
01-Feb-05
55
56
57
58
59
60
61
62
63
64
65
1
1
1
1
1
1
2
1
1
1
1
EPR-31 – Multi-Output, 180 W, PC Main Power Supply
R30
R36
R37
R38
R15
R41
R106
T1
U7
U1
Page 15 of 36
1 Ω, 1 W
43.2 kΩ, 1%
10 kΩ
5.1 kΩ
3.3 Ω
330 Ω
27 kΩ
Main X-former (ERL28 core)
–12 V regulator TO-220
Integrated Controller/MOSFET
Printed Circuit Board
RSF100JB-1R0
MFR-25FBF-43K2
CFR-25JB-10K
CFR-25JB-5K1
CFR-25JB-3K3
CFR-25JB-330R
CFR-25JB-27K
SIL6013
LM320
TOP249Y
PCB
Yageo
Yageo
Yageo
Yageo
Yagep
Yageo
Yageo
HICAL
Any
Power Integrations
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
EPR-31 – Multi Output, 180 W, PC Main Power Supply
6.2
01-Feb-05
Control Board Bill of Materials
Item
Qty
1
2
3
1
1
4
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
2
1
1
2
1
2
1
1
2
1
1
1
1
1
1
1
3
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
1
1
1
1
45
46
47
48
49
1
2
3
1
1
Reference
Description
C102
C19
C18, C103,
C107, C108
C16, C17
C21
C101
C104, C105
C106
D11, D10
D12
D103
D13, D104
D101
D102
L101
Q2
Q3
R15
R106
R23, R35, R107
R16
R17
R109
R108
R31
R18
R19
R20
R21
R22
R24
R25
R26
R27
R28
R31
R33
R29
R34, R101
R103, R102
R104
R105
R32
T101
2.2 nF, 1000 V, Y5P, 10%
22 µF, 16 V
0.1 µF, 50 V
U2
U102, U3
U6, U7, U5
U101
P/N
Manufacturer
ECA-A1CN220U
ECU-S1H104MEA
Xicon
Panasonic
Panasonic
0.1 µF, 50 V
1.0 µF, 50 V
10 nF, 500 V, Y5P, 10%
1000 µF, 10 V
470 µF, 10 V
1 A, Ultra Fast recovery diode
3.9 V, 0.5 W Zener diode
40 V, 3 A Schottky diode
100 V, 300 mA Fast diode
800 V, 1 A Glass Passivated
200 V, 1.5 W Zener diode
10 µH, 2 A Inductor
100 V 3 A PNP, in a TO-220 pkg
Gen purpose NPN, SOT 23 pkg
1.8 kΩ (1206 pkg)
100 Ω
1 kΩ
1 kΩ (0805 pkg)
15 kΩ (0805 pkg)
4.75 kΩ, 1%
4.99 kΩ, 1%
15 kΩ (1206 pkg)
4.75 kΩ, 1% (0805 pkg)
4.12 kΩ, 1%
270 kΩ (0805 pkg)
270 Ω (0805 pkg)
3Ω
3.57 kΩ, 1%
2.2 kΩ
10 kΩ
390 Ω
4.7 kΩ (1206 pkg)
15 kΩ
4.7 kΩ
100 kΩ
33 Ω
1 MΩ, 1%
430 Ω
5.1 kΩ
27 kΩ (0805 pkg)
PC Standby X-former (EE16)
C0805C104M5RACTU
ECA-2AHG2R2
ECA-A1CN220U
EEU-FC1A102L
EEU-FC1A471
UF4002
1N5228-D7
1N5822
1N4148-T
1N4006-T
BZY97-C200
R622LY-100K
TIP32C
MMTB3904-7
LED-PhotoXistor Opto-Coupler
LED-PhotoXistor Opto-Coupler
Precision Adj Shunt Regulator
Integrated Controller / MOSFET
Printed Circuit Board
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Kemet
Panasonic
Xicon
Panasonic
Panasonic
Fagor
General Semiconductor
General Semiconductor
Diodes Inc.
Diodes Inc.
Philips
TOKO
CFR-25JB-100R
CFR-25JB-1K0
Yageo
CFR-25JB-4K75
CFR-25JB-4K99
Yageo
Yageo
CFR-25JB-4K12
Yageo
CFR-25JB-3R0
CFR-25JB-2K2
CFR-25JB-10K
CFR-25JB-390R
Yageo
Yageo
Yageo
Yageo
Yageo
CFR-25JB-10K
CFR-25JB-4K7
CFR-25JB-100K
CFR-25JB-33R
CFR-25JB-4M0
CFR-25JB-430R
CFR-25JB-5k1
Yageo
Yageo
Yageo
Yageo
Yageo
Yageo
Yageo
SIL6012
HICAL
SFH615A-2
LTV817
TL431
TNY266P
PCB
Sharp
Power Integrations
Page 16 of 36
01-Feb-05
EPR-31 – Multi-Output, 180 W, PC Main Power Supply
7 Transformer Specification
7.1
180 W Forward Transformer
7.1.1 Electrical Diagram
12 V
2
14
4T
2 x #20
40T
#26
1
3
13
8, 9, 10
5V
3T
Ribbon
6T
3 x #30
4
11, 12
RTN
Figure 10 – 180 W Forward Transformer Electrical Diagram.
7.1.2 Electrical Specifications
Electrical Strength
Primary Inductance
Resonant Frequency
Primary Leakage Inductance
1 minute, 60 Hz, from Pins 1-7 to Pins 10-14
All windings open
All windings open
Across pins 1–2, with Pins 8,9,10–11,12 3–4, and
13–14 shorted, measured at 100 kHz, 0.4 VRMS
3000 VAC
3.0 mH or Higher
0.2 MHz (Min.)
8 µH (Max.)
7.1.3 Materials
Item
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
Description
Core: PC40 EER28L–Z (TOK)
Jinn Bo Bobbins: #JB-0039
Magnet Wire: #26 AWG Heavy Nyleze
Magnet Wire: #30 AWG Heavy Nyleze
Magnet Wire: #20 AWG Heavy Nyleze
Copper ribbon (foil) 0.670” wide x 0.008” thick
Tape: 3M 1298 Polyester Film (white) 21.8 mm wide by 2.2 mils thick
Tape: 3M 1298 Polyester Film (white) 15.8 mm wide by 2.2 mils thick
Tape: 3M 44 Margin tape (cream) 3.0 mm wide by 5.5 mils thick
Page 17 of 36
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
EPR-31 – Multi Output, 180 W, PC Main Power Supply
01-Feb-05
7.1.4 Transformer Build Diagram
14
13
Secondary
8, 9/B
10, 11, 12/A
3
Bias
4
2
Primary
1
Margin Tape
Figure 11 – 180 W Forward Transformer Build Diagram.
7.1.5 Transformer Construction
Margin Taping
Primary Winding
Basic Insulation
Margin Taping
Bias Winding
Reinforced Insulation
Copper Foil Winding
(5 V)
Reinforced Insulation
Margin Taping
12 V Winding
Outer Insulation
Pins Clipped off
Use item [9] for the right and left margins.
Start at pin 1. Wind 40 turns of item [3] from left to right. Wind
uniformly in a single layer across entire width of bobbin. End at
pin 2.
1 Layer of tape [8] for basic insulation.
Use item [9] for the right and left margins.
Start at pin 4. Wind trifilar 6 turns of item [4] from left to right.
Wind uniformly in a single layer across entire width of bobbin.
End at pin 3.
3 Layer of tape [7] for insulation.
Prepare copper ribbon [6] as shown in Figure 3. Match pin A of
the foil to pin 10, 11, or 12 of the bobbin. Wind 3 turns of item
[6]. Then, finish by matching pin B of the foil to pin 8 or 9 of the
bobbin.
3 Layers of tape [7] for insulation.
Use item [9] for the right and left margins.
Start at pin 13. Wind bifilar 4 turns of item [5] from left to right.
Wires are populated in middle of bobbin. Finish at pin 14.
Add 3 Layers of tape [7] for insulation.
Pins 6 and 7.
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 18 of 36
01-Feb-05
EPR-31 – Multi-Output, 180 W, PC Main Power Supply
A
Tape
B
30.00
5.00
5.00
140
Figure 12 – 180 W Forward Transformer +5 V “Foil” Winding Preparation, Top View (in mm).
Tape
Copper
Figure 13 – 180 W Forward Transformer +5 V “Foil” Winding Preparation, End View.
Page 19 of 36
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
EPR-31 – Multi Output, 180 W, PC Main Power Supply
7.2
01-Feb-05
10 W PC Standby Transformer
7.2.1 Electrical Diagram
7
1
158T
#35
7T
2 x #26
5
2
10
17T
#30
8
Figure 14 – 10 W PC Standby Transformer Electrical Diagram.
7.2.2 Electrical Specifications
Electrical Strength
Primary Inductance
Resonant Frequency
Primary Leakage Inductance
1 minute, 60 Hz, from Pins 1-4 to Pins 5-10
All windings open
All windings open
Across pins 5–7, with Pins 8–10 and 1–2 shorted,
measured at 100 kHz, 0.4 VRMS
3000 VAC
2.3 mH
800 kHz (Min.)
130 µH (Max.)
7.2.3 Materials
Item
[1]
[2]
[3]
[4]
[5]
[6]
[7]
Description
Core: EE16
Yih Hwa: #YW-193
Magnet Wire: #35 AWG Heavy Nyleze
Triple Insulated Wire: #26 AWG
Magnet wire #30 AWG Heavy Nyleze
Tape: 3M 1298 Polyester Film (white) 9.0 mm wide by 2.2 mils thick
Varnish (dipped only; NOT vacuum impregnated!)
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 20 of 36
01-Feb-05
EPR-31 – Multi-Output, 180 W, PC Main Power Supply
7.2.4 Transformer Build Diagram
2
1
8
Secondary
10
5
Primary
7
Figure 15 – 10 W PC Standby Transformer Build Diagram.
7.2.5 Transformer Construction
Primary Layer
Basic Insulation
Bias Winding
Basic Insulation
Secondary Winding
Outer Insulation
Final Assembly
Page 21 of 36
Start at Pin 7. Wind 158 turns of item [3] from left to right, then
from right to left until done. It takes about 3¼ layers. Apply 1
layer of tape, item [5], between each winding layer for basic
insulation. Finish the wiring on Pin 5.
1 layer of tape [6] for insulation.
Start at pin 10. Wind 17 turns of item [5] from left to right.
Finish on pin 8.
1 Layer of tape [6] for insulation.
Start at Pin 1. Wind 7 bifilar turns of item [4] from left to right.
Wind uniformly in a single layer across entire width of bobbin.
Finish on Pin 2.
3 Layers of tape [6] for insulation.
Assemble and secure core halves. Dip varnish uniformly [7].
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
EPR-31 – Multi Output, 180 W, PC Main Power Supply
7.3
01-Feb-05
Output Coupled Inductor
7.3.1 Toroid Layout
0.85
8 7
1.25
6
5
0.55
0.70
3
1 2
4
0.15
0.06
1 2
4
3
1.00
0.20
Figure 16 – Assembly Side View.
0.60
Figure 17 – Base Plate, Top View.
7.3.2 Electrical Diagram
5
6
35 turns
16 turns
4
3
7
8
12 turns
12 turns
2
1
Figure 18 – Output Coupled Inductor Electrical Diagram.
7.3.3 Inductances
Pin #
8-1
7-2
6-3
5-4
AWG #
18
18
28
18
Color
Red
Red
Red
Natural
# of Turns
12
12
35
16
Inductance (µH)
13 ± 20%
13 ± 20%
110 ± 20%
23 ± 20%
Note:
1. All dimensions are ±0.02”
2. Core = T 106 – 26
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 22 of 36
01-Feb-05
7.4
EPR-31 – Multi-Output, 180 W, PC Main Power Supply
Mag Amp Inductor
7.4.1 Core Specifications
ID
OD
HT
Figure 19 – Core Measurements.
Core Number
MP1305P-4AS
OD (mm)
14.4
Figure 20 – Turns on the Core.
ID (mm)
7.9
HT (mm)
6.6
7.4.2 Winding Instructions
Use number 18 AWG wire gage heavy Nyleze wire to wind 7 turns around the
core as shown on Figure 17. Leave the wire legs about one inch long.
Page 23 of 36
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
EPR-31 – Multi Output, 180 W, PC Main Power Supply
01-Feb-05
8 Transformer Spreadsheets
ACDC_TOPGXForward_Rev_1.06_061003
Copyright Power Integrations Inc. 2003
OUTPUT VOLTAGE AND CURRENT
VMAIN
IMAIN
VMAINMA
IMAINMA
VAUX1
IAUX1
VIND1
IND1
PO
ENTER APPLICATION VARIABLES
INPUT
INFO
5
12
3.3
12
12
7
VACMIN
90
VACMAX
VMIN
VMAX
132
CIN
fL
tc
235
50
3.0
th
16.0
EFF
0.75
VHOLDUP
VDROPOUT
DMAX GOAL
VDSOP
132
0.7
KDI
REF AUX1
ENTER TOPSWITCH VARIABLES
TOPSwitch
Chosen Device
ILIMIT
fS
KI
1
OUTPUT
UNIT
Volts
Amps
Volts
Amps
Volts
Amps
Volts
Amps
183.6 Watts
Minimum AC input voltage. Input voltage doubler
circuit is assumed.
Maximum AC input voltage. Input voltage doubler
AC volts circuit is assumed.
198 Volts
Minimum DC Bus voltage at low line input
373 Volts
Maximum DC Bus voltage at high line input
Equivalent bulk input capacitance. Input voltage
uFarads doubler circuit is assumed.
Hz
Input AC line frequency
mSeconds Estimate input bridge diode conduction time
Minimum required hold-up time from VDROPOUT
mSeconds to VHOLDUP
Efficiency estimate to determine minimum DC Bus
voltage
DC Bus voltage at start of hold-up time (default
198 Volts
VMIN)
132 Volts
DC Bus Voltage at end of hold-up time
0.70
Maximum duty cycle at DC dropout voltage
580 Volts
Maximum operating drain voltage
Maximum output current ripple factor at maximum
0.15
DC Bus voltage
Enter one ('1') for DC stacked , zero ('0')
DC Stack
Independent winding
AC volts
top249
TOP249
Power Out
Amps
5.022 5.778
Hertz
124000 132000
0.82
RX
ILIMITEXT
7.61 kOhm
4.118 Amps
VDS
DIODE Vf SELECTION
8.2 Volts
VDMAIN
0.5 Volts
VDMAINMA
0.5 Volts
VDAUX1
0.7 Volts
VDIND1
VDB
0 Volts
0.7 Volts
BRIDGE RECTIFIER DIODE SELECTION
VPIVAC
IDAVBR
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
ACDC_TOPGXFwd_061003_r106.xls:
TOPSwitch-GX Forward Transformer Design
Spreadsheet
EP31 PC Main power supply
Main output voltage
Main output current
Magamp output voltage
Magamp output current
Auxiliary output voltage
Auxiliary output current
Independant output voltage
Independent output current
Total output power
467 Volts
0.962 Amps
Doubled 115V/230V
250
From TOPSwitch-GX datasheet
From TOPSwitch-GX+H76 datasheet
Ilimit reduction (KI=1.0 for default ILIMIT, KI <1.0
for lower ILIMIT)
Maximum current limit resistance to ensure KI >=
0.82 setting
External current limit
TOPSwitch-GX average on-state Drain to Source
Voltage
Main output rectifiers forward voltage drop
(Schottky)
Magamp output rectifiers forward voltage drop
(Schottky)
Auxiliary output rectifiers forward voltage drop
(Ultrafast)
Independent output rectifiers forward voltage drop
(Schottky)
Bias output rectifier conduction drop
Maximum voltage across Bridge rectifier diode
Average Bridge Rectifier Current
Page 24 of 36
01-Feb-05
TRANSFORMER CORE SELECTION
Core Type
Core
Bobbin
AE
LE
AL
BW
LG MAX
R FACTOR
M
L
NMAIN
TRANSFORMER DESIGN PARAMETERS
NP
EPR-31 – Multi-Output, 180 W, PC Main Power Supply
eer28l
P/N:
EER28L
EER28L_BOBBIN P/N:
0.814 cm^2
7.55 cm
2520 nH/T^2
21.8 mm
0.02 mm
9%
3.0
0.80
9% %
mm
3
45
45
NB
6
NAUX1
4
VAUX1 ACTUAL
NIND1
11.63 Volts
0
VIND1 ACTUAL
0.00 Volts
BM
BP
LP MIN
IMAG
OD_P
AWG_P
CURRENT WAVESHAPE PARAMETERS
PC40EER28L-Z
BEER-28L-1112CPH
Core Effective Cross Sectional Area
Core Effective Path Length
Ungapped Core Effective Inductance
Bobbin Physical Winding Width
Maximum actual gap when zero gap specified
Percentage of total PS losses lost in transformer
windings; default 10%
Transformer margin
Transformer primary layers
Main rounded turns
Primary rounded turns
Bias turns to maintain 8V minimum input voltage,
light load
Auxiliary rounded turns (DC stacked on Main
winding)
Approx. Aux output voltage with NAUX1 = 4 Turns
and DC stack
Independent rounded turns (separate winding)
Approximate Independent output voltage with
NIND1 = 0 turns
Maximum operating flux density at minimum
switching frequency
Maximum peak flux density at minimum switching
2922 Gauss
frequency
Minimum primary magnetizing inductance
3.419 mHenries (assumes LGMAX=20um)
Peak magnetizing current at minimum input
0.188 Amps
voltage
0.33 mm
Primary wire outer diameter
Primary Wire Gauge (rounded to maximum AWG
28 AWG
value)
1816 Gauss
IP
3.079 Amps
IPRMS
INDUCTOR OUTPUT PARAMETERS
1.727 Amps
Maximum peak primary current at maximum DC
Bus voltage
Maximum primary RMS current at minimum DC
Bus voltage
KDIMAIN
Main / Auxiliary coupled output inductance
7.6 uHenries (referred to Main winding)
Main / Auxiliary coupled output inductor full-load
3034 uJoules stored energy
Current ripple factor of combined Main and Aux1
0.150
outputs
LMAINMA
WLMAINMA
KDIMAINMA
LIND1
12.3 uHenries
888 uJoules
0.150
0.0 uHenries
WLIND1
KDIIND1
0.0 uJoules
0.000
LMAIN
WLMAIN
Magamp output inductance
Magamp output inductor full-load stored energy
Current ripple factor for Magamp output
Independent output inductance
Independent output inductor full-load stored
energy
Current ripple factor for Independent output
SECONDARY OUTPUT PARAMETERS
ISMAINRMSLL
17.36 Amps
ISAUX1RMSLL
ISIND1RMSDLL
4.23 Amps
0.00 Amps
IDAVMAIN
14.6 Amps
Page 25 of 36
Maximum transformer secondary RMS current (DC
Stack)
Maximum transformer secondary RMS current (DC
Stack)
Maximum transformer secondary RMS current
Maximum average current, Main rectifier (single
device rating)
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
EPR-31 – Multi Output, 180 W, PC Main Power Supply
IDAVMAINMA
9.3 Amps
IDAVAUX1
5.4 Amps
IDAVIND1
IRMSMAIN
IRMSMAINMA
IRMSAUX1
0.0 Amps
0.52 Amps
0.52 Amps
0.30 Amps
IRMSIND1
DIODE PIV
VPIVMAIN
VPIVMAINMA
VPIVAUX1
VPIVIND1
VPIVB
0.00 Amps
28.8 Volts
28.8 Volts
34.0 Volts
0.0 Volts
100.7 Volts
VCEO OPTO
VACUVL
VACUV
VACUVX
RUVA
RUVB
RUVC
49.8 Volts
68 AC volts
78 AC volts
68.04
2.23 MOhm
658.78 kOhm
75.91 kOhm
VACUVL ACTUAL
67.5 AC volts
VACUVX ACTUAL
DUTY CYCLE LIMIT CIRCUIT PARAMETERS
VZ
70.36 AC volts
6.80 Volts
380 Volts
2.20 MOhm
2.20 MOhm
37.90 kOhm
137.30 kOhm
85.80 pF
VOV
RA
RB
RC
RD
CVS
DUTY CYCLE PARAMETERS (see graph)
DMAX ACTUAL
0.694
DMAX RESET
0.79
DXDO MIN
0.70
DXDO MAX
DLL ACTUAL
Caution
0.80
0.45
DXLL MIN
0.54
DXLL MAX
DLL RESET
0.65
0.67
DHL ACTUAL
0.23
DXHL MIN
0.24
DXHL MAX
0.35
DHL RESET
0.36
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
01-Feb-05
Maximum average current, Magamp rectifier
(single device rating)
Maximum average current, Auxiliary rectifier
(single device rating)
Maximum average current, Independent rectifier
(single device rating)
Maximum RMS current, Main output capacitor
Maximum RMS current, Magamp output capacitor
Maximum RMS current, Auxiliary output capacitor
Maximum RMS current, Independent output
capacitor
No derating
Main output rectifiers peak-inverse voltage
Magamp output rectifiers peak-inverse voltage
Auxiliary output rectifiers peak-inverse voltage
Independent output rectifiers peak-inverse voltage
Bias output rectifier peak-inverse voltage
Optocoupler
Maximum optocoupler collector-emitter voltage
AC undervoltage lockout voltage; On-Off transition
AC undervoltage lockout voltage; Off-On transition
Resistor RUVA value
Resistor RUVB value
Resistor RUVC value
Actual AC undervoltage lockout voltage; On-Off
transition
Actual AC undervoltage lockout voltage; Off-On
transition
Zener voltage used within DLIM circuit
Approximate frequency reduction voltage
(determines CVS value)
Resistor RA value
Resistor RB value
Resistor RC value
Resistor RD value
Capacitor CVS value
Dropout Duty-Cycle Parameters
Operating Duty cycle at DC Bus dropout voltage
Transformer Reset Minimum duty cycle at DC Bus
dropout voltage
Device Min Duty cycle limit at DC Bus dropout
voltage
!!! >DMAXRESET from VMIN to VDROPOUT.
NOT hazardous
Duty cycle at minimum DC Bus voltage
Duty cycle minimum limit at minimum DC Bus
voltage
Duty cycle maximum limit at minimum DC Bus
voltage
Minimum duty cycle to reset transformer at low line
High Line Duty-Cycle Parameters
Duty cycle at minimum DC Bus voltage
Duty cycle minimum limit at maximum DC Bus
voltage
Duty cycle maximum limit at maximum DC Bus
voltage
Minimum duty cycle to reset transformer at high
line
Page 26 of 36
01-Feb-05
EPR-31 – Multi-Output, 180 W, PC Main Power Supply
9 Performance Data
9.1
Efficiency and Regulation
Output Current
Input
VAC
Output Voltage
P OUT
P IN
Eff
(V)
(W)
(W)
%
4.91
-12.00
108.61
153
70.99
4.88
-12.00
107.5
140
76.79
+5 V
+12 V
+3.3 V
+5 VSB
-12 V
+5 V
+12 V
+3.3 V
+5 VSB
-12 V
(A)
(A)
(A)
(A)
(A)
(V)
(V)
(V)
(V)
115
2
3
16.7
1.5
0
5.09
12.02
3.38
115
12
3
0.5
2
0
5.04
12.26
3.38
115
2
10
0.5
0
0.3
5.15
11.79
3.38
4.88
-12.04
145.35
169
86.01
115
2
10
12
2
0.3
5.07
11.72
3.27
5.08
-11.98
180
245
73.47
90
2
3
16.7
1.5
0
5.13
12.15
3.26
4.87
-12.00
108.6
156
69.62
90
12
3
0.5
2
0
5.04
12.27
3.3
4.88
-12.00
107.5
145
74.14
90
2
10
0.5
0
0.3
5.07
11.79
3.38
4.88
-12.02
145.35
173
84.02
90
2
10
12
2
0.3
5.07
11.72
3.24
5.08
-12.04
180
253
71.15
0.5
0
2.5
3.4
73.53
1.5
0
14.85
25.2
58.93
230
115
0.4
0.2000
0.5
5.02
<1 watt input power spec (+5 V standby loaded to 0.5 W and main supply off at
115 VAC input). Input power is 0.86 W.
If interconnect board is used, subtract 0.07 W (standby LED consumption) from
input power measurement.
Blue Angel (240 VAC input, Main convert inhibited, +5 V standby loaded to
2.5 A). Input power is 4.1 W.
Page 27 of 36
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
EPR-31 – Multi Output, 180 W, PC Main Power Supply
01-Feb-05
10 Thermal Performance
Thermal test taken at 90 VAC (worst case condition).
Ambient Temperature is 50 °C.
Output loads: +5 V/8 A, +3.3 V/8 A, +12 V/9 A, +5 V standby/1.5 A.
Device
Temp (°C)
U1 (TOP249)
91
L1 (Output Choke)
83
Passive PFC Choke
78
D8 (+5 V Output Diode)
88
T1 (Main Transformer)
71
L7 (Input Ballun)
68
BR1 (Input Bridge)
62
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 28 of 36
01-Feb-05
EPR-31 – Multi-Output, 180 W, PC Main Power Supply
11 Waveforms
+5 V Output
3.3 V Output
Figure 21 − Primary Drain Current at Start-up,
Activated from Remote ON/OFF
at 120 VAC Input.
+5 V / 8 A, +12 V / 9 A, +3.3 V / 8 A,
+5 V Standby /1.5 A (0.5 A / division)
Figure 22 − +5 V and +3.3 V Rise at Turn-on from
Remote ON/OFF, 120 VAC Input.
+5 V / 8 A, +3.3 V / 8 A, +12 V / 9 A,
+5 V Standby / 1.5 A
5 V Stdanby
5 V Standby
5 V Main
5 V Main
Figure 23 − +5 V Main and +5 V Standby Start-up
(120 VAC). Max Load on all Outputs.
Page 29 of 36
Figure 24 − +5 V and +5 V Standby Dropout After
AC OFF. Max Load on 5 V Standby,
Min Load on all Other Outputs.
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
EPR-31 – Multi Output, 180 W, PC Main Power Supply
01-Feb-05
Figure 25 − TOP249 Drain Switching Waveform,
+5 V at 8 A, +3.3 V at 8 A, +12 V at
9 A, 110 VAC Input.
Figure 26 − 110 VAC Applied Line Terminated
with Following Loads: +5 V at 13 A,
+3.3 V at 6 A, +12 V at 8 A.
Figure 27 – Drain Switching Voltage of TNY266
(PC Standby). 230 VAC Input, +5 V
Standby Output Loaded to 1.5 A.
Figure 28 – +5 V (Main) Step Load (2 A to 8 A),
Max Continuous Load on Other
Outputs.
Figure 29 − +3.3 V Step Load 6 A to 12 A.
Figure 30 − +5 V Standby Step Load
0.3 A to 1.5 A.
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 30 of 36
01-Feb-05
EPR-31 – Multi-Output, 180 W, PC Main Power Supply
12 Output Ripple Measurements
12.1 Ripple Measurement Technique
For DC output ripple measurements, a modified oscilloscope test probe must be
utilized in order to reduce spurious signals due to pickup. Details of the probe
modification are provided in Figure 31 and Figure 32.
The 5125BA probe adapter is affixed with two capacitors tied in parallel across
the probe tip. The capacitors include one (1) 0.1 µF/50 V ceramic type and one
(1) 1.0 µF/50 V aluminum electrolytic. The aluminum electrolytic type
capacitor is polarized, so proper polarity across DC outputs must be
maintained (see below).
Probe Ground
Probe Tip
Figure 31 − Oscilloscope Probe Prepared for Ripple Measurement
(End Cap and Ground Lead Removed).
Figure 32 − Oscilloscope Probe with Probe Master 5125BA BNC Adapter
(Modified for ripple measurement: wires for probe tip and
ground with two decoupling capacitors connected in parallel).
Page 31 of 36
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
EPR-31 – Multi Output, 180 W, PC Main Power Supply
01-Feb-05
12.2 Measurement Results
Figure 33 − +12 V Output Ripple,
Load: +12 V / 8 A, +5 V / 8 A, +3.3 V /
8 A, +5 V Standby / 1.5 A, –12 V /
0.2 A (2 µs and 20 mV / division).
Figure 34 − +5 V Output Ripple,
Load: +12 V / 8 A, +5 V / 8 A, +3.3 V /
8 A, +5 V Standby / 1.5 A, –12 V /
0.2 A (2 µs and 20 mV / division).
Figure 35 − +3.3 V Output Ripple,
Load: +12 V / 8 A, +5 V / 8 A, +3.3 V /
8 A, +5 V Standby / 1.5 A, –12 V /
0.2 A (5 µs and 50 mV / division).
Figure 36 − +5 V Standby Output Ripple,
Load: +12 V / 8 A, +5 V / 8 A, +3.3 V /
8 A, +5 V Standby / 1.5 A, –12 V /
0.2 A (200 µs and 50 mV / division).
Figure 37 − –12 V Output Ripple,
Load: +12 V / 8 A, +5 V / 8 A, +3.3 V /
8 A, +5 V Standby / 1.5 A, -12 V /
0.2 A (2 µs and 50 mV / division).
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 32 of 36
01-Feb-05
EPR-31 – Multi-Output, 180 W, PC Main Power Supply
13 Conducted EMI
Figure 38 − Conducted EMI, Maximum Steady State Load, 115 VAC,
60 Hz, and EN55022 B Limits.
Figure 39 − Conducted EMI, Maximum Steady State Load, 230 VAC,
60 Hz, and EN55022 B Limits.
Page 33 of 36
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
EPR-31 – Multi Output, 180 W, PC Main Power Supply
01-Feb-05
14 Revision History
Date
14-Sep-02
15-May-03
20-Jun-03
28-Jul-03
01-Oct-03
18-Dec-03
01-Feb-05
Author
AO
AO
AO
IM
JJ
IM
AO
Revision
0.1
0.3
0.3
0.4
0.5
1.0
1.1
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Description & changes
First Draft
Second Draft
Third Draft
Formatting for first release
Editing Content for first release
Release of the first edition
Corrected item 44 description on
page 16 and inserted missing
Figure 14
Page 34 of 36
01-Feb-05
EPR-31 – Multi-Output, 180 W, PC Main Power Supply
Notes
Page 35 of 36
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
EPR-31 – Multi Output, 180 W, PC Main Power Supply
01-Feb-05
For the latest updates, visit our website: www.powerint.com
Power Integrations may make changes to its products at any time. Power Integrations has no liability arising from your use of any
information, device or circuit described herein nor does it convey any license under its patent rights or the rights of others. POWER
INTEGRATIONS MAKES NO WARRANTIES HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES
INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.
PATENT INFORMATION
The products and applications illustrated herein (including circuits external to the products and transformer construction) may be
covered by one or more U.S. and foreign patents or potentially by pending U.S. and foreign patent applications assigned to Power
Integrations. A complete list of Power Integrations’ patents may be found at www.powerint.com.
The PI Logo, TOPSwitch, TinySwitch, LinkSwitch, DPA-Switch and EcoSmart are registered trademarks of
Power Integrations. PI Expert and PI FACTS are trademarks of Power Integrations. © Copyright 2005 Power Integrations.
Power Integrations Worldwide Sales Support Locations
WORLD HEADQUARTERS
5245 Hellyer Avenue,
San Jose, CA 95138, USA
Main:
+1-408-414-9200
Customer Service:
Phone:
+1-408-414-9665
Fax:
+1-408-414-9765
e-mail: [email protected]
GERMANY
Rueckertstrasse 3,
D-80336, Munich, Germany
Phone:
+49-895-527-3910
Fax:
+49-895-527-3920
e-mail: [email protected]
JAPAN
Keihin-Tatemono 1st Bldg.
12-20 Shin-Yokohama,
2-Chome,
Kohoku-ku, Yokohama-shi,
Kanagawa 222-0033, Japan
Phone:
+81-45-471-1021
Fax:
+81-45-471-3717
e-mail:
[email protected]
TAIWAN
5F-1, No. 316, Nei Hu Rd., Sec. 1
Nei Hu Dist.
Taipei, Taiwan 114, R.O.C.
Phone:
+886-2-2659-4570
Fax:
+886-2-2659-4550
e-mail:
[email protected]
CHINA (SHANGHAI)
Rm 807-808A, Pacheer,
Commercial Centre,
555 Nanjing West Road,
Shanghai, 200041, China
Phone:
+86-21-6215-5548
Fax:
+86-21-6215-2468
e-mail: [email protected]
INDIA (TECHNICAL SUPPORT)
261/A, Ground Floor
7th Main, 17th Cross,
Sadashivanagar
Bangalore 560080
Phone:
+91-80-5113-8020
Fax:
+91-80-5113-8023
e-mail: [email protected]
KOREA
RM 602, 6FL
Korea City Air Terminal B/D,
159-6,
Samsung-Dong, Kangnam-Gu,
Seoul, Korea
Phone:
+82-2-2016-6610
Fax:
+82-2-2016-6630
e-mail:
[email protected]
UK (EUROPE & AFRICA
HEADQUARTERS)
1st Floor, St. James’s House
East Street
Farnham, Surrey GU9 7TJ
United Kingdom
Phone:
+44 (0) 1252-730-140
Fax:
+44 (0) 1252-727-689
e-mail: [email protected]
CHINA (SHENZHEN)
Room 2206-2207, Block A,
Electronics Science & Technology
Bldg.,
2070 Shennan Zhong Road,
Shenzhen, Guangdong,
China, 518031
Phone:
+86-755-8379-3243
Fax:
+86-755-8379-5828
e-mail: [email protected]
ITALY
Via Vittorio Veneto 12,
Bresso
Milano, 20091, Italy
Phone: +39-028-928-6001
Fax: +39-028-928-6009
e-mail: [email protected]
SINGAPORE
51 Newton Road,
#15-08/10 Goldhill Plaza,
Singapore, 308900
Phone:
+65-6358-2160
Fax:
+65-6358-2015
e-mail:
[email protected]
APPLICATIONS HOTLINE
World Wide +1-408-414-9660
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
APPLICATIONS FAX
World Wide +1-408-414-9760
Page 36 of 36