Engineering Prototype Report for EP–31 Multiple Output 180 W AC-DC Power Supply using TOP249Y (TOPSwitch®-GX) and TNY266P (TinySwitch®-II) and Title Specification Application 110 VAC Doubled or 230 VAC Input, +5 V, +3.3 V, +12 V, –12 V & +5 V Stdby Outputs ATX 12 V PC Main Supply with Passive PFC in a Micro-ATX Enclosure Author Power Integrations Application Department Document Number EPR–31 Date 01-Feb-05 Revision 1.1 Summary and Features • • • • • • Highly integrated IC realizes a significant reduction in component count Main transformer resets with a 700 V MOSFET and no reset winding Input power < 1 W (with standby loaded to 0.5 W and the main supply off) Meets Blue Angel 5 W requirement (measures 4.1 W, at specified conditions) Passes EN55022 B conducted EMI limits, with more than 10 dB of margin Simple voltage mode control provides good transient response & regulation The products and applications illustrated herein (including circuits external to the products and transformer construction) may be covered by one or more U.S. and foreign patents or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations’ patents may be found at www.powerint.com. Power Integrations 5245 Hellyer Avenue, San Jose, CA 95138 USA. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com EPR-31 – Multi Output, 180 W, PC Main Power Supply 01-Feb-05 Table Of Contents 1 2 3 4 5 Introduction.................................................................................................... 3 Power Supply Specification ........................................................................... 4 Schematic...................................................................................................... 5 Circuit Description ......................................................................................... 8 PCB Layout ................................................................................................. 10 5.1 Assembly Diagram ............................................................................... 10 5.2 Top View .............................................................................................. 12 6 Bill Of Materials ........................................................................................... 14 6.1 Main Board Bill of Materials.................................................................. 14 6.2 Control Board Bill of Materials .............................................................. 16 7 Transformer Specification............................................................................ 17 7.1 180 W Forward Transformer ................................................................ 17 7.1.1 Electrical Diagram ......................................................................... 17 7.1.2 Electrical Specifications................................................................. 17 7.1.3 Materials........................................................................................ 17 7.1.4 Transformer Build Diagram ........................................................... 18 7.1.5 Transformer Construction.............................................................. 18 7.2 10 W PC Standby Transformer ............................................................ 20 7.2.1 Electrical Diagram ......................................................................... 20 7.2.2 Electrical Specifications................................................................. 20 7.2.3 Materials........................................................................................ 20 7.2.4 Transformer Build Diagram ........................................................... 21 7.2.5 Transformer Construction.............................................................. 21 7.3 Output Coupled Inductor ...................................................................... 22 7.3.1 Toroid Layout ................................................................................ 22 7.3.2 Electrical Diagram ......................................................................... 22 7.3.3 Inductances................................................................................... 22 7.4 Mag Amp Inductor ................................................................................ 23 7.4.1 Core Specifications ....................................................................... 23 7.4.2 Winding Instructions ...................................................................... 23 8 Transformer Spreadsheets .......................................................................... 24 9 Performance Data ....................................................................................... 27 9.1 Efficiency and Regulation ..................................................................... 27 10 Thermal Performance .............................................................................. 28 11 Waveforms............................................................................................... 29 12 Output Ripple Measurements .................................................................. 31 12.1 Ripple Measurement Technique........................................................... 31 12.2 Measurement Results .......................................................................... 32 13 Conducted EMI ........................................................................................ 33 14 Revision History ....................................................................................... 34 Important Note: Although this circuit board has been designed to meet safety isolation requirements, the engineering prototype has not been agency approved. Therefore, all testing should be performed using an isolation transformer to provide the AC input to the prototype board. Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 2 of 36 01-Feb-05 EPR-31 – Multi-Output, 180 W, PC Main Power Supply 1 Introduction This engineering report describes the operation and provides performance data for a 180 W forward converter-based PC mains supply (using TOPSwitch-GX), and a 10 W flyback converter-based PC standby supply (using TinySwitch-II). This design is intended to demonstrate the viability of the TOPSwitch-GX in a PC main application, in a micro-ATX enclosure, with passive PFC. Because many of the functions necessary for a forward converter are integrated into the TOPSwitch-GX family of power conversion ICs, designing around it reduces the PCB area required for the layout of the main converter. A supervisory ASIC was not included. However, a simple circuit (see Figure 5) was implemented to demonstrate the remote ON/OFF and fault latching operation that an ASIC normally performs. The 3.3 V output does not have remote voltage sensing, but using standard techniques this could easily be added. This report contains power supply specifications, bills of material (BOM), circuit diagrams, custom magnetic components documentation (transformers, output inductor and mag-amp inductor), PCB layouts, and pertinent electrical test data. Figure 1 – Photograph of the populated circuit boards of the EP-31 prototype. Page 3 of 36 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com EPR-31 – Multi Output, 180 W, PC Main Power Supply 01-Feb-05 2 Power Supply Specification Description Symbol Min Typ Max Units Comment VIN fLINE 90 47 265 63 VAC Hz 3-Wire (with Protective Earth) 50/60 Blue Angel 4.75 W Standby Input Power (230 VAC) 0.95 W With standby output loaded to 2.5 watts With standby output loaded to 0.5 watts 0 5.25 50 12.0 3.45 50 10.0 12.6 120 13.0 -12.6 120 1.5 5.25 50 2.0 V mV A V mV A V mV A V mV A V mV A 68 180 200 75 W W % Input Voltage Frequency Output Output Voltage 1 Output Ripple Voltage 1 Output Current 1 Output Voltage 2 Output Ripple Voltage 2 Output Current 2 Output Voltage 3 Output Ripple Voltage 3 Output Current 3 Output Voltage 4 Output Ripple Voltage 4 Output Current 4 Output Voltage 5 (Standby) Output Ripple Voltage 5 Output Current 5 Total Output Power Continuous Output Power Peak Output Power Efficiency VOUT1 VRIPPLE1 IOUT1 VOUT2 VRIPPLE2 IOUT2 VOUT3 VRIPPLE3 IOUT3 VOUT4 VRIPPLE4 IOUT4 VOUT5 VRIPPLE5 IOUT5 4.75 1.0 3.14 2.0 11.4 2.0 -11.4 4.75 5.00 3.3 12.0 10.0 -12.0 5.0 POUT POUT_PEAK η 72 ± 5% 20 MHz Bandwidth ± 5% 20 MHz Bandwidth ± 5% 20 MHz Bandwidth ± 5% 20 MHz Bandwidth ± 5% 20 MHz Bandwidth o Measured at POUT (43 W), 25 C Environmental Conducted EMI Meets CISPR22B / EN55022B Designed to meet IEC950, UL1950 Class II Safety Surge 3 kV Surge 3 kV Ambient Temperature TAMB Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com 50 o C 1.2/50 µs surge, IEC 1000-4-5, Series Impedance: Differential Mode: 2 Ω Common Mode: 12 Ω 100 kHz ring wave, 500 A short circuit current, differential and common mode Free convection, sea level Page 4 of 36 01-Feb-05 EPR-31 – Multi-Output, 180 W, PC Main Power Supply 3 Schematic Figure 2 – EP-31 Main Forward Converter, Primary Side. Page 5 of 36 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com EPR-31 – Multi Output, 180 W, PC Main Power Supply 01-Feb-05 Figure 3 – EP-31 Main Forward Converter, Secondary Side. Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 6 of 36 01-Feb-05 EPR-31 – Multi-Output, 180 W, PC Main Power Supply Figure 4 – EP-31 Standby Flyback Converter. Figure 5 – EP-31 Remote ON / OFF Interface. Page 7 of 36 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com EPR-31 – Multi Output, 180 W, PC Main Power Supply 01-Feb-05 4 Circuit Description With line feed-forward, duty factor reduction, a programmable primary current limit, line sense for input under-voltage (UV) lockout and overvoltage (OV) shutdown and a soft-start function for reduced stesses during start-up, all integrated onto one monolithic IC, the TOPSwitch-GX family has all of the functions necessary to operate as an off-line, single-ended forward converter. Also, the TOPSwitch-GX family has sufficient power capability to address the PC main application arena. In this design, the Line sense (L) pin (see the TOPSwitch-GX data sheet for a description of the L pin functions and uses) senses the rectified AC input voltage through R3, R5, and R6, and inhibits the start of U1 switching until the minimum input voltage [80 VAC (110 VAC Nom. line), 160 VAC (230 VAC Nom. line)] is reached. When U1 begins switching, bias winding (T1, pin 3) current, delivered through R13, D18, D19, R36 and R8, immediately sets a maximum duty factor limit by injecting current into the L pin (see the TOPSwitch-GX data sheet for a description of maximum duty cycle DCMAX reduction operation). The L pin sums current from two sources: directly from the line (R3, R5 & R6) and from the bias winding (T1 pins 3–4, R13, D18, D19, R36, C22 and R8). The rectified forward pulse from the bias winding develops a DC voltage across C22, which determines the current that flows through R8 into the L pin. The L pin current increases with line voltage and reduces the DCMAX, preventing the possibility of transformer saturation during line or load transients. A TOP249Y device was selected for this application. Its primary current limit has been programmed to about 3.5 A (via the X pin), by pull-down resistor R12, which is connected (through Q7) to primary return (the SOURCE pin of U1) when the supply is on (the U3 phototransistor is on and Q7 is saturated.). This limits the peak output power that the load(s) can demand from this design to about 200 W. When the AC input voltage drops below 75 V, a second UV lockout circuit (R4, R14, R39 and Q1) activates preventing shutdown glitches. Transistor Q1 is biased on when VIN drops below 75 VAC. Its collector then pulls up the U1 X pin (through R39), disabling its MOSFET from switching (see the TOPSwitch-GX data sheet, Figure 11, for how the X pin can be used to enable/disable output MOSFET switching). The Zener clamp portion (D3, D4, and D5) of the primary snubber circuit only conducts lightly during normal steady-state operation. Capacitor C4 is coupled to the node of T1 and the DRAIN of U1 through a slow recovery diode (D1). This very efficient snubber allows the highest possible flyback voltage to develop during the U1-MOSFET off time, and recycles a significant amount of that energy back through T1 (to C9 and the output) during the reverse recovery time of D1. Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 8 of 36 01-Feb-05 EPR-31 – Multi-Output, 180 W, PC Main Power Supply The dissipation in the entire circuit (D1, C4, and D3–D5) measures only about 1.5 W at maximum load. TOPSwitch-GX uses voltage mode control to regulate the main output voltage. Output transient load-step waveforms show very good responsiveness (optimal performance) and the control loop gain and phase margin plots show that the control loop is stable with adequate margin. This design uses a very simple remote ON/OFF circuit (see Figure 5). When the ON line (the green wire in the output cable) is momentarily connected to the output return (grounded), Q3 turns on, pulling current through the U3-LED, which turns on Q7, which pulls down R12, enabling U1 to start switching. When the output comes up into regulation before C19 discharges, Q3 is kept on through R28, and U1 keeps switching. IC U1 stops switching if output regulation is lost. Then the ON line must be toggled (ungrounded and then re-grounded) to restart the supply. When the ON line is ungrounded, it is internally pulled up (by R33) to the +5 V standby and U1 remains disabled. The +5 V standby is always operating above a DC rail voltage of 100 VDC. Grounding the ON line will turn the main supply on, if the AC line voltage is above the UV threshold and there is not a fault condition. If a fault condition exists, U1 will stay in its auto-restart mode until C19 discharges. The ON line must be toggled again to attempt another restart. *Note 1: If the remote ON line is grounded (main power enabled) when AC is first applied to the supply, the main converter will automatically turn on. However, if AC is brought up too slowly (i.e. adjusting a variac), the supply will not turn on and the ON line will have to be toggled to turn on the supply. On the output interconnect board that is provided with the DAK Kit, the ON line is already connected to an ON/OFF switch, enabling the supply to be turned ON and OFF. Page 9 of 36 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com EPR-31 – Multi Output, 180 W, PC Main Power Supply 01-Feb-05 5 PCB Layout 5.1 Assembly Diagram Figure 6 – Main Board PCB Silk Screen Artwork (shows component locations). Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 10 of 36 01-Feb-05 EPR-31 – Multi-Output, 180 W, PC Main Power Supply Figure 7 – Control Board PCB Silk Screen Artwork (shows component locations). Page 11 of 36 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com EPR-31 – Multi Output, 180 W, PC Main Power Supply 5.2 01-Feb-05 Top View Figure 8 − Main Board PCB Layout Artwork. Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 12 of 36 01-Feb-05 EPR-31 – Multi-Output, 180 W, PC Main Power Supply Figure 9 – Control Board PCB Layout Artwork. Page 13 of 36 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com EPR-31 – Multi Output, 180 W, PC Main Power Supply 01-Feb-05 6 Bill Of Materials 6.1 Main Board Bill of Materials Item Qty 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 1 1 1 1 2 2 2 2 2 1 2 1 1 1 2 2 2 1 1 1 1 1 1 2 2 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 2 3 1 1 1 1 1 1 1 1 1 1 Reference BR1 CX1 CX2 CY1 CY4, CY3 C3, C2 C4 C5, C25 C6 C7 C8, C23 C9 C10 C11 C13, C12 C14, C15 C20, 27 C22 C24 C16 C108 D1 D3 D4, D5 D6, D18 D19 D8 D7, D9 D20 D105 F1 L1 L5, L2 L3 L4 L7 Q1 Q7 Q4 Q6 RT1 RV1 R1, R2 R3, R4, R6 R7 R5 R8 R9 R10 R11 R39 R12 R13 R14 Description 600 V, 4 A Bridge Rectifier 47 nF, 250 VAC X type Cap 0.33 µF, 250 VAC X type Cap 33 pF, 1 kV Y type Safety Cap 2.2 nF, 1 kV Y type Safety Cap 470 µF, 200 V Electrolytic Cap 2.2 nF, 1 kV 1 µF, 100 V 47 µF, 16 V 0.1 µF, 50 V 33 nF, 50 V 47 nF, 50 V 1 nF, 50 V 1000 µF, 16 V 2200 µF, 6.3 V 1200 µF, 10 V 330 pF, 50 V 100 pF, 50 V 330 µF, 25 V 10 nF, 50 V 10 nF, 500 V 800 V, 3 A diode 200 V, 1.5 W Zener diode 180 V, 1.5 W Zener diode 150 V, 625 mA, Gen Purpose 3.9 V, 0.5 W Zener diode 45 V, 60 A Schottky diode 45 V, 30 A Schottky diode 1 A, Ultra Fast recovery diode 100 V, 300 mA Fast diode 4 A Slow Blow Fuse 13 µH, 15 A Coupled Choke 0.9 µH Mag amp 25 µH 3.3 mH TO-92 Transistor / PNP TO-92 Transistor / NPN TO-92 transistor / NPN 300 V TO-92 transistor / PNP 300 V 10 Ω, 3.2 A Thermistor (Inrush) 275 V, 14 mm dia. MOV 330 kΩ 2.2 MΩ 560 kΩ 180 kΩ 130 kΩ, 1% 47 Ω 560 kΩ, 1/2 W 360 Ω 3.3 kΩ 12 kΩ 10 Ω 75 kΩ Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com P/N KBL06 ECQ-U2A473MV ECQ-U2A334MG 440LQ33 ECK-ATS222ME ECA-2AHG010 ECA-1CHG470 ECU-S1H104MEA ECU-S2A333KBA K473K15X7RF5TL2 ECU-S1H102JCB EEU-FC1C102 EEU-FC0J222 ECA-FC1A122 ECU-S1H331JCA ECU-SIH101JCA EEU-FC1C331L ECU-S1H103KBA 140-500P9-103K 1N5407-T BZY97C-200 BZY97C-180 BAV20 1N5229 MBR6045WT MBR3045WT UF4002 1N4148-T 3721400041 SIL6015 SPE-119-0 SIL6014 5702 ELF-18D650B 2N3906 2N3904 MPSA42 MPSA92 RL3004-6.56-59-S7 ERZ-V14D431 CFR-25JB-330k CFR-25JB-2M2 CFR-25JB-560K CFR-25JB-180K MFR-25FBF-130K CFR-25JB-47R CFR-50JB-560K CFR-25JB-360R CFR-25JB-3K3 CFR-25JB-12K CFR-25JB-10R CFR-25JB-75K Manufacturer General Semiconductor Panasonic Panasonic Vishay/Sprague Vishay/Sprague CapXon Xicon Panasonic Panasonic Panasonic Panasonic BC Components Panasonic Panasonic Panasonic Panasonic Panasonic Panasonic Panasonic Panasonic Xicon Any Vishay Vishay Diodes Inc. Vishay International Rectifier International Rectifier Vishay Diodes Inc. Wickmann HICAL Premier Magnetics DT Magnetics J.W. Miller Panasonic Any Any Any Any Keystone Panasonic Yageo Yageo Yageo Yageo Yageo Yageo Yageo Yageo Yageo Yageo Yageo Yageo Page 14 of 36 01-Feb-05 55 56 57 58 59 60 61 62 63 64 65 1 1 1 1 1 1 2 1 1 1 1 EPR-31 – Multi-Output, 180 W, PC Main Power Supply R30 R36 R37 R38 R15 R41 R106 T1 U7 U1 Page 15 of 36 1 Ω, 1 W 43.2 kΩ, 1% 10 kΩ 5.1 kΩ 3.3 Ω 330 Ω 27 kΩ Main X-former (ERL28 core) –12 V regulator TO-220 Integrated Controller/MOSFET Printed Circuit Board RSF100JB-1R0 MFR-25FBF-43K2 CFR-25JB-10K CFR-25JB-5K1 CFR-25JB-3K3 CFR-25JB-330R CFR-25JB-27K SIL6013 LM320 TOP249Y PCB Yageo Yageo Yageo Yageo Yagep Yageo Yageo HICAL Any Power Integrations Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com EPR-31 – Multi Output, 180 W, PC Main Power Supply 6.2 01-Feb-05 Control Board Bill of Materials Item Qty 1 2 3 1 1 4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 2 1 1 2 1 2 1 1 2 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 45 46 47 48 49 1 2 3 1 1 Reference Description C102 C19 C18, C103, C107, C108 C16, C17 C21 C101 C104, C105 C106 D11, D10 D12 D103 D13, D104 D101 D102 L101 Q2 Q3 R15 R106 R23, R35, R107 R16 R17 R109 R108 R31 R18 R19 R20 R21 R22 R24 R25 R26 R27 R28 R31 R33 R29 R34, R101 R103, R102 R104 R105 R32 T101 2.2 nF, 1000 V, Y5P, 10% 22 µF, 16 V 0.1 µF, 50 V U2 U102, U3 U6, U7, U5 U101 P/N Manufacturer ECA-A1CN220U ECU-S1H104MEA Xicon Panasonic Panasonic 0.1 µF, 50 V 1.0 µF, 50 V 10 nF, 500 V, Y5P, 10% 1000 µF, 10 V 470 µF, 10 V 1 A, Ultra Fast recovery diode 3.9 V, 0.5 W Zener diode 40 V, 3 A Schottky diode 100 V, 300 mA Fast diode 800 V, 1 A Glass Passivated 200 V, 1.5 W Zener diode 10 µH, 2 A Inductor 100 V 3 A PNP, in a TO-220 pkg Gen purpose NPN, SOT 23 pkg 1.8 kΩ (1206 pkg) 100 Ω 1 kΩ 1 kΩ (0805 pkg) 15 kΩ (0805 pkg) 4.75 kΩ, 1% 4.99 kΩ, 1% 15 kΩ (1206 pkg) 4.75 kΩ, 1% (0805 pkg) 4.12 kΩ, 1% 270 kΩ (0805 pkg) 270 Ω (0805 pkg) 3Ω 3.57 kΩ, 1% 2.2 kΩ 10 kΩ 390 Ω 4.7 kΩ (1206 pkg) 15 kΩ 4.7 kΩ 100 kΩ 33 Ω 1 MΩ, 1% 430 Ω 5.1 kΩ 27 kΩ (0805 pkg) PC Standby X-former (EE16) C0805C104M5RACTU ECA-2AHG2R2 ECA-A1CN220U EEU-FC1A102L EEU-FC1A471 UF4002 1N5228-D7 1N5822 1N4148-T 1N4006-T BZY97-C200 R622LY-100K TIP32C MMTB3904-7 LED-PhotoXistor Opto-Coupler LED-PhotoXistor Opto-Coupler Precision Adj Shunt Regulator Integrated Controller / MOSFET Printed Circuit Board Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Kemet Panasonic Xicon Panasonic Panasonic Fagor General Semiconductor General Semiconductor Diodes Inc. Diodes Inc. Philips TOKO CFR-25JB-100R CFR-25JB-1K0 Yageo CFR-25JB-4K75 CFR-25JB-4K99 Yageo Yageo CFR-25JB-4K12 Yageo CFR-25JB-3R0 CFR-25JB-2K2 CFR-25JB-10K CFR-25JB-390R Yageo Yageo Yageo Yageo Yageo CFR-25JB-10K CFR-25JB-4K7 CFR-25JB-100K CFR-25JB-33R CFR-25JB-4M0 CFR-25JB-430R CFR-25JB-5k1 Yageo Yageo Yageo Yageo Yageo Yageo Yageo SIL6012 HICAL SFH615A-2 LTV817 TL431 TNY266P PCB Sharp Power Integrations Page 16 of 36 01-Feb-05 EPR-31 – Multi-Output, 180 W, PC Main Power Supply 7 Transformer Specification 7.1 180 W Forward Transformer 7.1.1 Electrical Diagram 12 V 2 14 4T 2 x #20 40T #26 1 3 13 8, 9, 10 5V 3T Ribbon 6T 3 x #30 4 11, 12 RTN Figure 10 – 180 W Forward Transformer Electrical Diagram. 7.1.2 Electrical Specifications Electrical Strength Primary Inductance Resonant Frequency Primary Leakage Inductance 1 minute, 60 Hz, from Pins 1-7 to Pins 10-14 All windings open All windings open Across pins 1–2, with Pins 8,9,10–11,12 3–4, and 13–14 shorted, measured at 100 kHz, 0.4 VRMS 3000 VAC 3.0 mH or Higher 0.2 MHz (Min.) 8 µH (Max.) 7.1.3 Materials Item [1] [2] [3] [4] [5] [6] [7] [8] [9] Description Core: PC40 EER28L–Z (TOK) Jinn Bo Bobbins: #JB-0039 Magnet Wire: #26 AWG Heavy Nyleze Magnet Wire: #30 AWG Heavy Nyleze Magnet Wire: #20 AWG Heavy Nyleze Copper ribbon (foil) 0.670” wide x 0.008” thick Tape: 3M 1298 Polyester Film (white) 21.8 mm wide by 2.2 mils thick Tape: 3M 1298 Polyester Film (white) 15.8 mm wide by 2.2 mils thick Tape: 3M 44 Margin tape (cream) 3.0 mm wide by 5.5 mils thick Page 17 of 36 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com EPR-31 – Multi Output, 180 W, PC Main Power Supply 01-Feb-05 7.1.4 Transformer Build Diagram 14 13 Secondary 8, 9/B 10, 11, 12/A 3 Bias 4 2 Primary 1 Margin Tape Figure 11 – 180 W Forward Transformer Build Diagram. 7.1.5 Transformer Construction Margin Taping Primary Winding Basic Insulation Margin Taping Bias Winding Reinforced Insulation Copper Foil Winding (5 V) Reinforced Insulation Margin Taping 12 V Winding Outer Insulation Pins Clipped off Use item [9] for the right and left margins. Start at pin 1. Wind 40 turns of item [3] from left to right. Wind uniformly in a single layer across entire width of bobbin. End at pin 2. 1 Layer of tape [8] for basic insulation. Use item [9] for the right and left margins. Start at pin 4. Wind trifilar 6 turns of item [4] from left to right. Wind uniformly in a single layer across entire width of bobbin. End at pin 3. 3 Layer of tape [7] for insulation. Prepare copper ribbon [6] as shown in Figure 3. Match pin A of the foil to pin 10, 11, or 12 of the bobbin. Wind 3 turns of item [6]. Then, finish by matching pin B of the foil to pin 8 or 9 of the bobbin. 3 Layers of tape [7] for insulation. Use item [9] for the right and left margins. Start at pin 13. Wind bifilar 4 turns of item [5] from left to right. Wires are populated in middle of bobbin. Finish at pin 14. Add 3 Layers of tape [7] for insulation. Pins 6 and 7. Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 18 of 36 01-Feb-05 EPR-31 – Multi-Output, 180 W, PC Main Power Supply A Tape B 30.00 5.00 5.00 140 Figure 12 – 180 W Forward Transformer +5 V “Foil” Winding Preparation, Top View (in mm). Tape Copper Figure 13 – 180 W Forward Transformer +5 V “Foil” Winding Preparation, End View. Page 19 of 36 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com EPR-31 – Multi Output, 180 W, PC Main Power Supply 7.2 01-Feb-05 10 W PC Standby Transformer 7.2.1 Electrical Diagram 7 1 158T #35 7T 2 x #26 5 2 10 17T #30 8 Figure 14 – 10 W PC Standby Transformer Electrical Diagram. 7.2.2 Electrical Specifications Electrical Strength Primary Inductance Resonant Frequency Primary Leakage Inductance 1 minute, 60 Hz, from Pins 1-4 to Pins 5-10 All windings open All windings open Across pins 5–7, with Pins 8–10 and 1–2 shorted, measured at 100 kHz, 0.4 VRMS 3000 VAC 2.3 mH 800 kHz (Min.) 130 µH (Max.) 7.2.3 Materials Item [1] [2] [3] [4] [5] [6] [7] Description Core: EE16 Yih Hwa: #YW-193 Magnet Wire: #35 AWG Heavy Nyleze Triple Insulated Wire: #26 AWG Magnet wire #30 AWG Heavy Nyleze Tape: 3M 1298 Polyester Film (white) 9.0 mm wide by 2.2 mils thick Varnish (dipped only; NOT vacuum impregnated!) Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 20 of 36 01-Feb-05 EPR-31 – Multi-Output, 180 W, PC Main Power Supply 7.2.4 Transformer Build Diagram 2 1 8 Secondary 10 5 Primary 7 Figure 15 – 10 W PC Standby Transformer Build Diagram. 7.2.5 Transformer Construction Primary Layer Basic Insulation Bias Winding Basic Insulation Secondary Winding Outer Insulation Final Assembly Page 21 of 36 Start at Pin 7. Wind 158 turns of item [3] from left to right, then from right to left until done. It takes about 3¼ layers. Apply 1 layer of tape, item [5], between each winding layer for basic insulation. Finish the wiring on Pin 5. 1 layer of tape [6] for insulation. Start at pin 10. Wind 17 turns of item [5] from left to right. Finish on pin 8. 1 Layer of tape [6] for insulation. Start at Pin 1. Wind 7 bifilar turns of item [4] from left to right. Wind uniformly in a single layer across entire width of bobbin. Finish on Pin 2. 3 Layers of tape [6] for insulation. Assemble and secure core halves. Dip varnish uniformly [7]. Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com EPR-31 – Multi Output, 180 W, PC Main Power Supply 7.3 01-Feb-05 Output Coupled Inductor 7.3.1 Toroid Layout 0.85 8 7 1.25 6 5 0.55 0.70 3 1 2 4 0.15 0.06 1 2 4 3 1.00 0.20 Figure 16 – Assembly Side View. 0.60 Figure 17 – Base Plate, Top View. 7.3.2 Electrical Diagram 5 6 35 turns 16 turns 4 3 7 8 12 turns 12 turns 2 1 Figure 18 – Output Coupled Inductor Electrical Diagram. 7.3.3 Inductances Pin # 8-1 7-2 6-3 5-4 AWG # 18 18 28 18 Color Red Red Red Natural # of Turns 12 12 35 16 Inductance (µH) 13 ± 20% 13 ± 20% 110 ± 20% 23 ± 20% Note: 1. All dimensions are ±0.02” 2. Core = T 106 – 26 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 22 of 36 01-Feb-05 7.4 EPR-31 – Multi-Output, 180 W, PC Main Power Supply Mag Amp Inductor 7.4.1 Core Specifications ID OD HT Figure 19 – Core Measurements. Core Number MP1305P-4AS OD (mm) 14.4 Figure 20 – Turns on the Core. ID (mm) 7.9 HT (mm) 6.6 7.4.2 Winding Instructions Use number 18 AWG wire gage heavy Nyleze wire to wind 7 turns around the core as shown on Figure 17. Leave the wire legs about one inch long. Page 23 of 36 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com EPR-31 – Multi Output, 180 W, PC Main Power Supply 01-Feb-05 8 Transformer Spreadsheets ACDC_TOPGXForward_Rev_1.06_061003 Copyright Power Integrations Inc. 2003 OUTPUT VOLTAGE AND CURRENT VMAIN IMAIN VMAINMA IMAINMA VAUX1 IAUX1 VIND1 IND1 PO ENTER APPLICATION VARIABLES INPUT INFO 5 12 3.3 12 12 7 VACMIN 90 VACMAX VMIN VMAX 132 CIN fL tc 235 50 3.0 th 16.0 EFF 0.75 VHOLDUP VDROPOUT DMAX GOAL VDSOP 132 0.7 KDI REF AUX1 ENTER TOPSWITCH VARIABLES TOPSwitch Chosen Device ILIMIT fS KI 1 OUTPUT UNIT Volts Amps Volts Amps Volts Amps Volts Amps 183.6 Watts Minimum AC input voltage. Input voltage doubler circuit is assumed. Maximum AC input voltage. Input voltage doubler AC volts circuit is assumed. 198 Volts Minimum DC Bus voltage at low line input 373 Volts Maximum DC Bus voltage at high line input Equivalent bulk input capacitance. Input voltage uFarads doubler circuit is assumed. Hz Input AC line frequency mSeconds Estimate input bridge diode conduction time Minimum required hold-up time from VDROPOUT mSeconds to VHOLDUP Efficiency estimate to determine minimum DC Bus voltage DC Bus voltage at start of hold-up time (default 198 Volts VMIN) 132 Volts DC Bus Voltage at end of hold-up time 0.70 Maximum duty cycle at DC dropout voltage 580 Volts Maximum operating drain voltage Maximum output current ripple factor at maximum 0.15 DC Bus voltage Enter one ('1') for DC stacked , zero ('0') DC Stack Independent winding AC volts top249 TOP249 Power Out Amps 5.022 5.778 Hertz 124000 132000 0.82 RX ILIMITEXT 7.61 kOhm 4.118 Amps VDS DIODE Vf SELECTION 8.2 Volts VDMAIN 0.5 Volts VDMAINMA 0.5 Volts VDAUX1 0.7 Volts VDIND1 VDB 0 Volts 0.7 Volts BRIDGE RECTIFIER DIODE SELECTION VPIVAC IDAVBR Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com ACDC_TOPGXFwd_061003_r106.xls: TOPSwitch-GX Forward Transformer Design Spreadsheet EP31 PC Main power supply Main output voltage Main output current Magamp output voltage Magamp output current Auxiliary output voltage Auxiliary output current Independant output voltage Independent output current Total output power 467 Volts 0.962 Amps Doubled 115V/230V 250 From TOPSwitch-GX datasheet From TOPSwitch-GX+H76 datasheet Ilimit reduction (KI=1.0 for default ILIMIT, KI <1.0 for lower ILIMIT) Maximum current limit resistance to ensure KI >= 0.82 setting External current limit TOPSwitch-GX average on-state Drain to Source Voltage Main output rectifiers forward voltage drop (Schottky) Magamp output rectifiers forward voltage drop (Schottky) Auxiliary output rectifiers forward voltage drop (Ultrafast) Independent output rectifiers forward voltage drop (Schottky) Bias output rectifier conduction drop Maximum voltage across Bridge rectifier diode Average Bridge Rectifier Current Page 24 of 36 01-Feb-05 TRANSFORMER CORE SELECTION Core Type Core Bobbin AE LE AL BW LG MAX R FACTOR M L NMAIN TRANSFORMER DESIGN PARAMETERS NP EPR-31 – Multi-Output, 180 W, PC Main Power Supply eer28l P/N: EER28L EER28L_BOBBIN P/N: 0.814 cm^2 7.55 cm 2520 nH/T^2 21.8 mm 0.02 mm 9% 3.0 0.80 9% % mm 3 45 45 NB 6 NAUX1 4 VAUX1 ACTUAL NIND1 11.63 Volts 0 VIND1 ACTUAL 0.00 Volts BM BP LP MIN IMAG OD_P AWG_P CURRENT WAVESHAPE PARAMETERS PC40EER28L-Z BEER-28L-1112CPH Core Effective Cross Sectional Area Core Effective Path Length Ungapped Core Effective Inductance Bobbin Physical Winding Width Maximum actual gap when zero gap specified Percentage of total PS losses lost in transformer windings; default 10% Transformer margin Transformer primary layers Main rounded turns Primary rounded turns Bias turns to maintain 8V minimum input voltage, light load Auxiliary rounded turns (DC stacked on Main winding) Approx. Aux output voltage with NAUX1 = 4 Turns and DC stack Independent rounded turns (separate winding) Approximate Independent output voltage with NIND1 = 0 turns Maximum operating flux density at minimum switching frequency Maximum peak flux density at minimum switching 2922 Gauss frequency Minimum primary magnetizing inductance 3.419 mHenries (assumes LGMAX=20um) Peak magnetizing current at minimum input 0.188 Amps voltage 0.33 mm Primary wire outer diameter Primary Wire Gauge (rounded to maximum AWG 28 AWG value) 1816 Gauss IP 3.079 Amps IPRMS INDUCTOR OUTPUT PARAMETERS 1.727 Amps Maximum peak primary current at maximum DC Bus voltage Maximum primary RMS current at minimum DC Bus voltage KDIMAIN Main / Auxiliary coupled output inductance 7.6 uHenries (referred to Main winding) Main / Auxiliary coupled output inductor full-load 3034 uJoules stored energy Current ripple factor of combined Main and Aux1 0.150 outputs LMAINMA WLMAINMA KDIMAINMA LIND1 12.3 uHenries 888 uJoules 0.150 0.0 uHenries WLIND1 KDIIND1 0.0 uJoules 0.000 LMAIN WLMAIN Magamp output inductance Magamp output inductor full-load stored energy Current ripple factor for Magamp output Independent output inductance Independent output inductor full-load stored energy Current ripple factor for Independent output SECONDARY OUTPUT PARAMETERS ISMAINRMSLL 17.36 Amps ISAUX1RMSLL ISIND1RMSDLL 4.23 Amps 0.00 Amps IDAVMAIN 14.6 Amps Page 25 of 36 Maximum transformer secondary RMS current (DC Stack) Maximum transformer secondary RMS current (DC Stack) Maximum transformer secondary RMS current Maximum average current, Main rectifier (single device rating) Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com EPR-31 – Multi Output, 180 W, PC Main Power Supply IDAVMAINMA 9.3 Amps IDAVAUX1 5.4 Amps IDAVIND1 IRMSMAIN IRMSMAINMA IRMSAUX1 0.0 Amps 0.52 Amps 0.52 Amps 0.30 Amps IRMSIND1 DIODE PIV VPIVMAIN VPIVMAINMA VPIVAUX1 VPIVIND1 VPIVB 0.00 Amps 28.8 Volts 28.8 Volts 34.0 Volts 0.0 Volts 100.7 Volts VCEO OPTO VACUVL VACUV VACUVX RUVA RUVB RUVC 49.8 Volts 68 AC volts 78 AC volts 68.04 2.23 MOhm 658.78 kOhm 75.91 kOhm VACUVL ACTUAL 67.5 AC volts VACUVX ACTUAL DUTY CYCLE LIMIT CIRCUIT PARAMETERS VZ 70.36 AC volts 6.80 Volts 380 Volts 2.20 MOhm 2.20 MOhm 37.90 kOhm 137.30 kOhm 85.80 pF VOV RA RB RC RD CVS DUTY CYCLE PARAMETERS (see graph) DMAX ACTUAL 0.694 DMAX RESET 0.79 DXDO MIN 0.70 DXDO MAX DLL ACTUAL Caution 0.80 0.45 DXLL MIN 0.54 DXLL MAX DLL RESET 0.65 0.67 DHL ACTUAL 0.23 DXHL MIN 0.24 DXHL MAX 0.35 DHL RESET 0.36 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com 01-Feb-05 Maximum average current, Magamp rectifier (single device rating) Maximum average current, Auxiliary rectifier (single device rating) Maximum average current, Independent rectifier (single device rating) Maximum RMS current, Main output capacitor Maximum RMS current, Magamp output capacitor Maximum RMS current, Auxiliary output capacitor Maximum RMS current, Independent output capacitor No derating Main output rectifiers peak-inverse voltage Magamp output rectifiers peak-inverse voltage Auxiliary output rectifiers peak-inverse voltage Independent output rectifiers peak-inverse voltage Bias output rectifier peak-inverse voltage Optocoupler Maximum optocoupler collector-emitter voltage AC undervoltage lockout voltage; On-Off transition AC undervoltage lockout voltage; Off-On transition Resistor RUVA value Resistor RUVB value Resistor RUVC value Actual AC undervoltage lockout voltage; On-Off transition Actual AC undervoltage lockout voltage; Off-On transition Zener voltage used within DLIM circuit Approximate frequency reduction voltage (determines CVS value) Resistor RA value Resistor RB value Resistor RC value Resistor RD value Capacitor CVS value Dropout Duty-Cycle Parameters Operating Duty cycle at DC Bus dropout voltage Transformer Reset Minimum duty cycle at DC Bus dropout voltage Device Min Duty cycle limit at DC Bus dropout voltage !!! >DMAXRESET from VMIN to VDROPOUT. NOT hazardous Duty cycle at minimum DC Bus voltage Duty cycle minimum limit at minimum DC Bus voltage Duty cycle maximum limit at minimum DC Bus voltage Minimum duty cycle to reset transformer at low line High Line Duty-Cycle Parameters Duty cycle at minimum DC Bus voltage Duty cycle minimum limit at maximum DC Bus voltage Duty cycle maximum limit at maximum DC Bus voltage Minimum duty cycle to reset transformer at high line Page 26 of 36 01-Feb-05 EPR-31 – Multi-Output, 180 W, PC Main Power Supply 9 Performance Data 9.1 Efficiency and Regulation Output Current Input VAC Output Voltage P OUT P IN Eff (V) (W) (W) % 4.91 -12.00 108.61 153 70.99 4.88 -12.00 107.5 140 76.79 +5 V +12 V +3.3 V +5 VSB -12 V +5 V +12 V +3.3 V +5 VSB -12 V (A) (A) (A) (A) (A) (V) (V) (V) (V) 115 2 3 16.7 1.5 0 5.09 12.02 3.38 115 12 3 0.5 2 0 5.04 12.26 3.38 115 2 10 0.5 0 0.3 5.15 11.79 3.38 4.88 -12.04 145.35 169 86.01 115 2 10 12 2 0.3 5.07 11.72 3.27 5.08 -11.98 180 245 73.47 90 2 3 16.7 1.5 0 5.13 12.15 3.26 4.87 -12.00 108.6 156 69.62 90 12 3 0.5 2 0 5.04 12.27 3.3 4.88 -12.00 107.5 145 74.14 90 2 10 0.5 0 0.3 5.07 11.79 3.38 4.88 -12.02 145.35 173 84.02 90 2 10 12 2 0.3 5.07 11.72 3.24 5.08 -12.04 180 253 71.15 0.5 0 2.5 3.4 73.53 1.5 0 14.85 25.2 58.93 230 115 0.4 0.2000 0.5 5.02 <1 watt input power spec (+5 V standby loaded to 0.5 W and main supply off at 115 VAC input). Input power is 0.86 W. If interconnect board is used, subtract 0.07 W (standby LED consumption) from input power measurement. Blue Angel (240 VAC input, Main convert inhibited, +5 V standby loaded to 2.5 A). Input power is 4.1 W. Page 27 of 36 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com EPR-31 – Multi Output, 180 W, PC Main Power Supply 01-Feb-05 10 Thermal Performance Thermal test taken at 90 VAC (worst case condition). Ambient Temperature is 50 °C. Output loads: +5 V/8 A, +3.3 V/8 A, +12 V/9 A, +5 V standby/1.5 A. Device Temp (°C) U1 (TOP249) 91 L1 (Output Choke) 83 Passive PFC Choke 78 D8 (+5 V Output Diode) 88 T1 (Main Transformer) 71 L7 (Input Ballun) 68 BR1 (Input Bridge) 62 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 28 of 36 01-Feb-05 EPR-31 – Multi-Output, 180 W, PC Main Power Supply 11 Waveforms +5 V Output 3.3 V Output Figure 21 − Primary Drain Current at Start-up, Activated from Remote ON/OFF at 120 VAC Input. +5 V / 8 A, +12 V / 9 A, +3.3 V / 8 A, +5 V Standby /1.5 A (0.5 A / division) Figure 22 − +5 V and +3.3 V Rise at Turn-on from Remote ON/OFF, 120 VAC Input. +5 V / 8 A, +3.3 V / 8 A, +12 V / 9 A, +5 V Standby / 1.5 A 5 V Stdanby 5 V Standby 5 V Main 5 V Main Figure 23 − +5 V Main and +5 V Standby Start-up (120 VAC). Max Load on all Outputs. Page 29 of 36 Figure 24 − +5 V and +5 V Standby Dropout After AC OFF. Max Load on 5 V Standby, Min Load on all Other Outputs. Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com EPR-31 – Multi Output, 180 W, PC Main Power Supply 01-Feb-05 Figure 25 − TOP249 Drain Switching Waveform, +5 V at 8 A, +3.3 V at 8 A, +12 V at 9 A, 110 VAC Input. Figure 26 − 110 VAC Applied Line Terminated with Following Loads: +5 V at 13 A, +3.3 V at 6 A, +12 V at 8 A. Figure 27 – Drain Switching Voltage of TNY266 (PC Standby). 230 VAC Input, +5 V Standby Output Loaded to 1.5 A. Figure 28 – +5 V (Main) Step Load (2 A to 8 A), Max Continuous Load on Other Outputs. Figure 29 − +3.3 V Step Load 6 A to 12 A. Figure 30 − +5 V Standby Step Load 0.3 A to 1.5 A. Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 30 of 36 01-Feb-05 EPR-31 – Multi-Output, 180 W, PC Main Power Supply 12 Output Ripple Measurements 12.1 Ripple Measurement Technique For DC output ripple measurements, a modified oscilloscope test probe must be utilized in order to reduce spurious signals due to pickup. Details of the probe modification are provided in Figure 31 and Figure 32. The 5125BA probe adapter is affixed with two capacitors tied in parallel across the probe tip. The capacitors include one (1) 0.1 µF/50 V ceramic type and one (1) 1.0 µF/50 V aluminum electrolytic. The aluminum electrolytic type capacitor is polarized, so proper polarity across DC outputs must be maintained (see below). Probe Ground Probe Tip Figure 31 − Oscilloscope Probe Prepared for Ripple Measurement (End Cap and Ground Lead Removed). Figure 32 − Oscilloscope Probe with Probe Master 5125BA BNC Adapter (Modified for ripple measurement: wires for probe tip and ground with two decoupling capacitors connected in parallel). Page 31 of 36 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com EPR-31 – Multi Output, 180 W, PC Main Power Supply 01-Feb-05 12.2 Measurement Results Figure 33 − +12 V Output Ripple, Load: +12 V / 8 A, +5 V / 8 A, +3.3 V / 8 A, +5 V Standby / 1.5 A, –12 V / 0.2 A (2 µs and 20 mV / division). Figure 34 − +5 V Output Ripple, Load: +12 V / 8 A, +5 V / 8 A, +3.3 V / 8 A, +5 V Standby / 1.5 A, –12 V / 0.2 A (2 µs and 20 mV / division). Figure 35 − +3.3 V Output Ripple, Load: +12 V / 8 A, +5 V / 8 A, +3.3 V / 8 A, +5 V Standby / 1.5 A, –12 V / 0.2 A (5 µs and 50 mV / division). Figure 36 − +5 V Standby Output Ripple, Load: +12 V / 8 A, +5 V / 8 A, +3.3 V / 8 A, +5 V Standby / 1.5 A, –12 V / 0.2 A (200 µs and 50 mV / division). Figure 37 − –12 V Output Ripple, Load: +12 V / 8 A, +5 V / 8 A, +3.3 V / 8 A, +5 V Standby / 1.5 A, -12 V / 0.2 A (2 µs and 50 mV / division). Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 32 of 36 01-Feb-05 EPR-31 – Multi-Output, 180 W, PC Main Power Supply 13 Conducted EMI Figure 38 − Conducted EMI, Maximum Steady State Load, 115 VAC, 60 Hz, and EN55022 B Limits. Figure 39 − Conducted EMI, Maximum Steady State Load, 230 VAC, 60 Hz, and EN55022 B Limits. Page 33 of 36 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com EPR-31 – Multi Output, 180 W, PC Main Power Supply 01-Feb-05 14 Revision History Date 14-Sep-02 15-May-03 20-Jun-03 28-Jul-03 01-Oct-03 18-Dec-03 01-Feb-05 Author AO AO AO IM JJ IM AO Revision 0.1 0.3 0.3 0.4 0.5 1.0 1.1 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Description & changes First Draft Second Draft Third Draft Formatting for first release Editing Content for first release Release of the first edition Corrected item 44 description on page 16 and inserted missing Figure 14 Page 34 of 36 01-Feb-05 EPR-31 – Multi-Output, 180 W, PC Main Power Supply Notes Page 35 of 36 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com EPR-31 – Multi Output, 180 W, PC Main Power Supply 01-Feb-05 For the latest updates, visit our website: www.powerint.com Power Integrations may make changes to its products at any time. Power Integrations has no liability arising from your use of any information, device or circuit described herein nor does it convey any license under its patent rights or the rights of others. POWER INTEGRATIONS MAKES NO WARRANTIES HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS. PATENT INFORMATION The products and applications illustrated herein (including circuits external to the products and transformer construction) may be covered by one or more U.S. and foreign patents or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations’ patents may be found at www.powerint.com. The PI Logo, TOPSwitch, TinySwitch, LinkSwitch, DPA-Switch and EcoSmart are registered trademarks of Power Integrations. PI Expert and PI FACTS are trademarks of Power Integrations. © Copyright 2005 Power Integrations. Power Integrations Worldwide Sales Support Locations WORLD HEADQUARTERS 5245 Hellyer Avenue, San Jose, CA 95138, USA Main: +1-408-414-9200 Customer Service: Phone: +1-408-414-9665 Fax: +1-408-414-9765 e-mail: [email protected] GERMANY Rueckertstrasse 3, D-80336, Munich, Germany Phone: +49-895-527-3910 Fax: +49-895-527-3920 e-mail: [email protected] JAPAN Keihin-Tatemono 1st Bldg. 12-20 Shin-Yokohama, 2-Chome, Kohoku-ku, Yokohama-shi, Kanagawa 222-0033, Japan Phone: +81-45-471-1021 Fax: +81-45-471-3717 e-mail: [email protected] TAIWAN 5F-1, No. 316, Nei Hu Rd., Sec. 1 Nei Hu Dist. Taipei, Taiwan 114, R.O.C. Phone: +886-2-2659-4570 Fax: +886-2-2659-4550 e-mail: [email protected] CHINA (SHANGHAI) Rm 807-808A, Pacheer, Commercial Centre, 555 Nanjing West Road, Shanghai, 200041, China Phone: +86-21-6215-5548 Fax: +86-21-6215-2468 e-mail: [email protected] INDIA (TECHNICAL SUPPORT) 261/A, Ground Floor 7th Main, 17th Cross, Sadashivanagar Bangalore 560080 Phone: +91-80-5113-8020 Fax: +91-80-5113-8023 e-mail: [email protected] KOREA RM 602, 6FL Korea City Air Terminal B/D, 159-6, Samsung-Dong, Kangnam-Gu, Seoul, Korea Phone: +82-2-2016-6610 Fax: +82-2-2016-6630 e-mail: [email protected] UK (EUROPE & AFRICA HEADQUARTERS) 1st Floor, St. James’s House East Street Farnham, Surrey GU9 7TJ United Kingdom Phone: +44 (0) 1252-730-140 Fax: +44 (0) 1252-727-689 e-mail: [email protected] CHINA (SHENZHEN) Room 2206-2207, Block A, Electronics Science & Technology Bldg., 2070 Shennan Zhong Road, Shenzhen, Guangdong, China, 518031 Phone: +86-755-8379-3243 Fax: +86-755-8379-5828 e-mail: [email protected] ITALY Via Vittorio Veneto 12, Bresso Milano, 20091, Italy Phone: +39-028-928-6001 Fax: +39-028-928-6009 e-mail: [email protected] SINGAPORE 51 Newton Road, #15-08/10 Goldhill Plaza, Singapore, 308900 Phone: +65-6358-2160 Fax: +65-6358-2015 e-mail: [email protected] APPLICATIONS HOTLINE World Wide +1-408-414-9660 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com APPLICATIONS FAX World Wide +1-408-414-9760 Page 36 of 36