GMT G1422

G1422
Global Mixed-mode Technology Inc.
2W Stereo Audio Amplifier
Features
General Description
„
The G1422 is a stereo audio power amplifier in 20pin
TSSOP thermal pad package. It can drive 2W continuous RMS power into 4Ω load per channel in
Bridge-Tied Load (BTL) mode at 5V supply voltage. Its
THD is smaller than 1% under the above operation
condition. To simplify the audio system design in the
notebook application, the G1422 supports the BridgeTied Load (BTL) mode for driving the speakers, Single-End (SE) mode for driving the headphone. For the
low current consumption applications, the SHDN mode
is supported to disable the G1422 when it is idle. The
current consumption can be further reduced to below
2µA.
„
„
„
„
„
Depop Circuitry Integrated
Output Power at 1% THD+N, VDD=5V
--2W/CH (typical) into a 4Ω Load
--1.2W/CH (typical) into a 8Ω Load
Bridge-Tied Load (BTL), Single-Ended (SE)
Shutdown Control Available
Thermal protection
Surface-Mount Power Package
20-Pin TSSOP-P
Applications
„
Stereo Power Amplifiers for Notebooks or
Desktop Computers
„ Multimedia Monitors
„ Stereo Power Amplifiers for Portable Audio
Systems
Ordering Information
ORDER
NUMBER
ORDER NUMBER
(Pb free)
MARKING
TEMP.
RANGE
PACKAGE
G1422F2U
G1422F2Uf
G1422
-40°C to +85°C
TSSOP-20 (FD)
Note:F2: TSSOP-20 (FD)
U: Tape & Reel
Pin Configuration
G1422
SHUTDOWN
1
GND/HS
2
19
+OUTA
3
18
+OUTB
VDD
4
17
VDD
-OUTA
-INA
5
16
15
-OUTB
-INB
20 HP-IN
GND/HS
6
GND/HS
7
14
BYPASS
+INA
8
13
+INB
GND/HS
9
12
GND/HS
Thermal
Pad
11 GND/HS
GND/HS 10
Bottom View
Top View
TSSOP-20 (FD)
Note: Recommend connecting the Thermal Pad to the GND for excellent power dissipation.
TEL: 886-3-5788833
http://www.gmt.com.tw
Ver: 1.2
Jun 29, 2005
1
G1422
Global Mixed-mode Technology Inc.
Absolute Maximum Ratings
Power Dissipation (1)
TA ≤ 25°C………………………………………….2.7W
TA ≤ 70°C………………………………………….1.7W
TA ≤ 85°C………………….………………………1.4W
Electrostatic Discharge, VESD
Human body mode..………………….…-3000 to 3000(2)
Supply Voltage, VCC…………………..…...…….……...6V
Operating Ambient Temperature Range
TA…….…………………………….……….-40°C to +85°C
Maximum Junction Temperature, TJ…..……….….150°C
Storage Temperature Range, TSTG….…-65°C to+150°C
Reflow Temperature (soldering, 10sec)….……..260°C
Note:
(1)
: Recommended PCB Layout
(2)
: Human body model : C = 100pF, R = 1500Ω, 3 positive pulses plus 3 negative pulses
Electrical Characteristics
DC Electrical Characteristics, VDD = 5.0V, TA=+25°C, unless otherwise noted
PARAMETER
Supply Current
SYMBOL
IDD
CONDITION
VDD = 5V
Stereo BTL
STEREO SE
VDD = 5V,Gain = 2
VDD = 5V
MIN
TYP
MAX
---
8.5
15
-------
4
5
0.1
8
50
2
UNIT
mA
DC Differential Output Voltage
IDD in Shutdown
VO(DIFF)
ISD
mV
µA
Headphone High Input Voltage
VIH
4
---
---
V
Headphone Low Input Voltage
VIL
---
---
0.8
V
TYP
MAX
UNIT
(AC Operation Characteristics, VDD = 5.0V, TA=+25°C, RL = 4Ω, unless otherwise noted)
PARAMETER
Output power (each channel) see Note
SYMBOL
P(OUT)
Total harmonic distortion plus noise
THD+N
Maximum output power bandwidth
BOM
Phase margin
Power supply ripple rejection
Channel-to-channel output separation
Input separation
BTL attenuation in SE mode
Input impedance
Signal-to-noise ratio
Output noise voltage
PSRR
CONDITION
THD = 1%, BTL, RL = 4Ω
---
2
---
THD = 1%, BTL, RL = 8Ω
THD = 10%, BTL, RL = 4Ω
-----
1.25
2.5
-----
THD = 10%, BTL, RL = 8Ω
THD = 1%, SE, RL = 4Ω
THD = 1%, SE, RL = 8Ω
-------
1.6
550
340
-------
THD = 10%, SE, RL = 4Ω
THD = 10%, SE, RL L = 8Ω
THD = 0.5%, SE, RL = 32Ω
PO = 1.6W, BTL, RL = 4Ω
-----
700
440
-----
PO = 1W, BTL, RL = 8Ω
PO = 75mW, SE, RL = 32Ω
VI = 1V, RL = 10KΩ, G = 1, SE
-----------
92
300
100
15
2.5
-----------
G = 1, THD = 1%
RL = 4Ω, Open Load
-----
20
65
-----
kHz
°
f = 120Hz
f = 1kHz
-----
75
80
-----
dB
dB
80
85
2
90
55
-----------
dB
dB
MΩ
PO = 500mW, BTL
Output noise voltage
-----------
ZI
Vn
MIN
W
mW
m%
dB
µV (rms)
Note :Output power is measured at the output terminals of the IC at 1kHz.
TEL: 886-3-5788833
http://www.gmt.com.tw
Ver: 1.2
Jun 29, 2005
2
G1422
Global Mixed-mode Technology Inc.
Typical Characteristics
Table of Graphs
FIGURE
THD +N Total harmonic distortion plus noise
Vn
IDD
vs Frequency
2,4,6,9,11,15,17
vs Output Power
1,3,5,7,8,10,12,13,14,16,18
Output noise voltage
vs Frequency
20
Supply ripple rejection ratio
vs Frequency
19
Crosstalk
vs Frequency
22,23
Open loop response
vs Frequency
21
Supply current
PO
Output power
PD
Power dissipation
Vs Supply Voltage
24
vs Load Resistance
25,26
Vs Load Resistance
27,28
vs Output Power
29,30,31,32
Total Harmonic Distortion Plus
Noise vs Output Power
Total Harmonic Distortion Plus
Noise vs Frequency
10
10
5
5
20kHz
2
2
1
1
0.5
1kHz
Po=1.8W
0.5
%
%
0.2
0.1
0.2
20 Hz
0.02
0.01
3m
5m
10m
20m
50m
100m
200m
500m
VDD=5V
RL=3Ω
BTL
Av=-2V/V
0.1
VDD=5V
RL=3Ω
BTL
Av=-2V/V
0.05
0.05
0.02
1
2
0.01
20
3
50
100
200
500
W
Figure 1
2k
5k
10k
20k
Figure 2
Total Harmonic Distortion Plus
Noise vs Output Power
Total Harmonic Distortion Plus
Noise vs Frequency
10
10
5
5
20kHz
2
2
1
1
0.5
1k
Hz
Av=-4V/V
Av=-2V/V
0.5
1kHz
%
%
0.2
0.1
0.2
VDD=5V
RL=4Ω
BTL
Av=-2V/V
20 Hz
0.05
0.02
0.01
3m
5m
10m
20m
50m
100m
200m
500m
1
0.1
VDD=5V
RL=4Ω
BTL
Po=2W
Av=-1V/V
0.05
0.02
2
0.01
20
3
50
100
200
500
1k
W
Hz
Figure 3
Figure 4
2k
5k
10k
20k
TEL: 886-3-5788833
http://www.gmt.com.tw
Ver: 1.2
Jun 29, 2005
3
G1422
Global Mixed-mode Technology Inc.
Total Harmonic Distortion Plus
Noise vs Output Power
Total Harmonic Distortion Plus
Noise vs Frequency
10
10
VDD=5V
RL=8Ω
BTL
Av=-2V/V
5
20kHz
2
1
5
2
1
0.5
%
0.2
0.2
0.1
0.1
0.05
20 Hz
0.02
0.01
2m
0.01
20
5m
Av=-2V/V
0.05
0.02
10m
20m
50m
100m
200m
500m
1
2
Av=-1V/V
50
100
200
500
1k
W
Hz
Figure 5
Figure 6
Total Harmonic Distortion Plus
Noise vs Output Power
2k
5k
10k
20k
Total Harmonic Distortion Plus
Noise vs Frequency
10
10
VDD=5V
RL=32Ω
BTL
Av=-2V/V
5
2
1
Av=-4V/V
0.5
1kHz
%
VDD=5V
RL=8Ω
BTL
Po=1W
20kHz
5
20kH
2
1
0.5
1kHz
0.5
%
%
0.2
0.1
0.2
1kHz
0.1
0.05
0.05
0.02
20 Hz
0.01
1m
2m
0.02
5m
10m
20m
50m
100m
200m
500m
0.01
1m
1
1
0.2
50m
100m
200m
500m
1
Total Harmonic Distortion Plus
Noise vs Output Power
10
VDD=3.3V
RL=4Ω
BTL
Po=0.75W
5
Av=-4V/V
1
0.5
%
Av=-2V/V
0.1
Av=-1V/V
100
1kHz
0.2
0.05
50
20kHz
2
0.1
0.01
20
20m
Figure 8
0.05
0.02
10m
Figure 7
0.5
%
5m
W
10
2
2m
20 Hz
W
Total Harmonic Distortion Plus
Noise vs Frequency
5
VDD=3.3V
RL=4Ω
BTL
Av=-2V/V
0.02
200
500
1k
2k
5k
10k
0.01
1m
20k
VDD=3.3V
RL=8Ω
BTL
Av=-2V/V
2m
5m
20 Hz
10m
20m
50m
Hz
W
Figure 9
Figure 10
100m
200m
500m
1
TEL: 886-3-5788833
http://www.gmt.com.tw
Ver: 1.2
Jun 29, 2005
4
G1422
Global Mixed-mode Technology Inc.
Total Harmonic Distortion Plus
Noise vs Frequency
Total Harmonic Distortion Plus
Noise vs Output Power
10
10
5
2
1
VDD=3.3V
RL=8Ω
BTL
Po=0.45W
VDD=5V
RL=4Ω
SE
Av=-2V/V
5
2
Av=-4V/V
20kHz
1
0.5
0.5
%
%
0.2
0.1
0.2
Av=-2V/V
0.1
0.05
0.02
1kHz
0.05
Av=-1V/V
0.01
20
50
100
0.02
200
500
1k
2k
5k
10k
0.01
1m
20k
100Hz
2m
5m
10m
20m
50m
Hz
Figure 11
1
500m
1
Total Harmonic Distortion Plus
Noise vs Output Power
10
10
2
200m
Figure 12
Total Harmonic Distortion Plus
Noise vs Output Power
5
100m
W
VDD=5V
RL=8Ω
SE
Av=-2V/V
5
2
1
20kHz
0.5
VDD=5V
RL=16Ω
SE
Av=-2V/V
0.5
20kHz
%
%
0.2
0.2
0.1
1kHz
0.1
0.02
0.01
1m
20 Hz
0.05
0.05
100kHz
2m
0.02
5m
10m
20m
50m
100m
200m
500m
0.01
1m
1
1kHz
2m
5m
10m
20m
Figure 13
10
5
VDD=5V
RL=16Ω
SE
Po=150mW
1
0.5
Av=-4V/V
%
20kHz
%
0.2
0.2
0.1
Av=-2V/V
0.05
0.05
0.02
0.02
0.01
20
VDD=5V
RL=32Ω
SE
Av=-2V/V
2
0.5
0.1
500m
Total Harmonic Distortion Plus
Noise vs Output Power
10
1
200m
Figure 14
Total Harmonic Distortion Plus
Noise vs Frequency
2
100m
W
W
5
50m
Av=-1V/V
50
100
200
500
1k
2k
5k
10k
0.01
1m
20k
1kHz
2m
20 Hz
5m
10m
20m
50m
Hz
W
Figure 15
Figure 16
100m
200m
500m
1
TEL: 886-3-5788833
http://www.gmt.com.tw
Ver: 1.2
Jun 29, 2005
5
G1422
Global Mixed-mode Technology Inc.
Total Harmonic Distortion Plus
Noise vs Frequency
Total Harmonic Distortion Plus
Noise vs Output Power
10
5
2
1
0.5
10
5
VDD=5V
RL=32Ω
SE
Po=75mW
1
0.5
Av=-4V/V
0.2
%
20kHz
0.2
0.1
0.05
VDD=3.3V
RL=32Ω
SE
Av=-2V/V
2
%
0.1
20 Hz
0.05
Av=-2V/V
0.02
0.02
0.01
0.01
Av=-1V/V
0.005
1kHz
0.005
0.002
0.002
0.001
20
50
100
200
500
1k
2k
5k
10k
0.001
1m
20k
2m
5m
10m
Hz
50m
Figure 17
Figure 18
Supply Ripple Rejection Ratio
vs Frequency
Output Noise Voltage
vs Frequency
+0
100m
100u
90u
T
-10
-20
-30
VDD=5V
RL=4Ω
CB=4.7µF
80u
Vripple=0.5Vpp
50u
70u
VDD=5V RL=4Ω
BTL Mode 20kHz LP
60u
-40
d
B
20m
W
40u
-50
V
30u
SE Mode
-60
-70
20u
VDD=5V RL=32Ω
SE Mode BW<32kHz
-80
-90
BTL Mode
-100
20
50
100
200
500
1k
2k
5k
10k
10u
20
20k
50
100
200
Hz
500
1k
2k
5k
10k
20k
Hz
Figure 19
Figure 20
Open Loop Response
Channel Separation
-30
-35
-40
-45
-50
VDD=5V
Po=1.5W
RL=4Ω
BTL
-55
-60
d
B
Channel A to B
-65
-70
-75
-80
-85
Channel B to A
-90
-95
-100
20
50
100
200
500
1k
2k
5k
10k
20k
Hz
Figure 22
Figure 21
TEL: 886-3-5788833
http://www.gmt.com.tw
Ver: 1.2
Jun 29, 2005
6
G1422
Global Mixed-mode Technology Inc.
Channel Separation
Supply Current vs Supply Voltage
9
-30
-35
-45
-50
-55
VDD=5V
Po=75mW
RL=32Ω
SE
-60
d
B
Stereo BTL
8
Supply Current(mA)
-40
-65
-70
-75
Channel A to B
-80
7
6
5
4
-85
3
-90
-100
20
Stereo SE
Channel B to A
-95
50
100
200
500
1k
2k
5k
10k
2
20k
3
Hz
4
5
Supply Voltage(V)
Figure 23
6
Figure 24
Output Power vs Supply Voltage
Output Power vs Supply Voltage
0.25
3
THD+N=1%
BTL
Each Channel
RL=4Ω
2
RL=3Ω
1.5
THD+N=1%
SE
Each Channel
0.2
Output Power(W)
Output Power(W)
2.5
1
RL=8Ω
0.15
RL=16Ω
0.1
RL=32Ω
0.05
0.5
0
0
2.5
3.5
4.5
5.5
Supply Voltage(V)
2.5
6.5
3.5
4.5
Supply Voltage(V)
6.5
Figure 26
Figure 25
Output Power vs Load Resistance
Output Power vs Loard Resistance
2.5
0.7
THD+N=1%
BTL
Each Channel
THD+N=1%
SE
Each Channel
0.6
Output Power(W)
2
Output Power(W)
5.5
VDD=5V
1.5
1
0.5
0.5
VDD=5V
0.4
0.3
0.2
0.1
VDD=3.3V
VDD=3.3V
0
0
0
10
20
30
Load Resistance(Ω)
4
40
8
12
16
20
24
28
32
Load Resistance(Ω)
Figure 27
Figure 28
TEL: 886-3-5788833
http://www.gmt.com.tw
Ver: 1.2
Jun 29, 2005
7
G1422
Global Mixed-mode Technology Inc.
Power Dippipation vs Output Power
Power Dissipation vs Output Power
1.8
0.8
1.6
0.7
RL=3Ω
Power Dissipation(W)
Power Dissipation
1.4
1.2
RL=4Ω
1
VDD=5V
BTL
Each Channel
0.8
0.6
RL=8Ω
0.4
RL=3Ω
0.6
0.5
RL=4Ω
0.4
VDD=3.3V
BTL
Each Channel
0.3
0.2
RL=8Ω
0.1
0.2
0
0
0
0.5
1
1.5
Po-Output Pow er(W)
2
2.5
0
0.5
1
Po-Output Pow er(W)
Figure 29
Figure 30
Power Dissipation vs Output Power
0.16
0.3
0.14
Power Dissipation(W)
Power Dissipation(W)
Power Dissipation vs Output Power
0.35
RL=4Ω
0.25
RL=8Ω
0.2
0.15
0.1
VDD=5V
SE
Each Channel
RL=32Ω
0.05
1.5
RL=4Ω
0.12
VDD=3.3V
SE
Each Channel
0.1
RL=8Ω
0.08
0.06
0.04
RL=32Ω
0.02
0
0
0
0.2
0.4
0.6
0.8
0
0.1
0.2
Po-Output Pow er(W)
Po-Output Pow er(W)
Figure 31
Figure 32
0.3
Recommended Minimum Footprint
TSSOP-20 (FD)
TEL: 886-3-5788833
http://www.gmt.com.tw
Ver: 1.2
Jun 29, 2005
8
Global Mixed-mode Technology Inc.
G1422
Pin Description
PIN
NAME
I/O
1
SHUTDOWN
I
2,7,9,10,11,12,19
GND/HS
Shutdown mode control signal input, places entire IC in shutdown mode when held
high, IDD is below 2µA.
Ground connection for circuitry, directly connected to thermal pad.
3
4,17
+OUTA
VDD
O
A channel + output in BTL mode, high impedance state in SE mode
Supply voltage for circuitry.
5
-OUTA
O
A channel - output in BTL mode, - output in SE mode.
6
8
13
14
15
-INA
+INA
+INB
BYPASS
-INB
I
I
I
I
A channel input signal I, selected when MUXCTRL is held low.
A channel positive input of OPAMP, biasing DC operation of OPAMP
B channel positive input of OPAMP, biasing DC operation of OPAMP
Connect to voltage divider for internal mid-supply bias.
B channel input signal I, selected when MUXCTRL is held low.
16
18
20
-OUTB
+OUTB
HP-IN
O
O
I
B channel - output in BTL mode, - output in SE mode.
B channel + output in BTL mode, high impedance state in SE mode
Mode control signal input, hold low for BTL mode, hold high for SE mode.
Thermal Pad
FUNCTION
Recommend connecting the Thermal Pad to the GND for excellent power dissipation.
TEL: 886-3-5788833
http://www.gmt.com.tw
Ver: 1.2
Jun 29, 2005
9
G1422
Global Mixed-mode Technology Inc.
Block Diagram
20k
6
-INA
8
+INA
14
1
13
_
5
+OUT
3
+
BYPASS
SHUTDOWN
BIAS CIRCUITS
MODES CONTROL
CIRCUITS
VDD
4,17
HP-IN
20
+INB
+
15
-OUT
-INB
_
+OUTB
18
-OUTB
16
20k
Parameter Measurement Information
1
14
8
SHUTDOWN
6
VDD
4,17
-OUTA
5
+OUTA
3
RL 4/8/32Ω
+INA
+
CI
20
BYPASS
CB
4.7µF
AC source
HP-IN
_
-INA
RI
RF
BTL Mode Test Circuit
TEL: 886-3-5788833
http://www.gmt.com.tw
Ver: 1.2
Jun 29, 2005
10
G1422
Global Mixed-mode Technology Inc.
Parameter Measurement Information (Continued)
1 SHUTDOWN
HP-IN
14
20
VDD
BYPASS
VDD 4,17
8
+INA
CB
4.7µF
+
CI
6
AC source
_
-INA
-OUTA
5
+OUTA
3
RI
RL 32Ω
RF
SE Mode Test Circuit
TEL: 886-3-5788833
http://www.gmt.com.tw
Ver: 1.2
Jun 29, 2005
11
G1422
Global Mixed-mode Technology Inc.
Application Circuits
PHONEJACK
R2
1K
R1
1K
COB
100µF
COA
100µF
1
2
SHUTDOWN
HP-IN
GND
GND
SPEAKER
3
4
RFA1
20K
CA1
1µF
5
RA1
20K
6
RCA
7
8
9
10
+OUTA
+OUTB
VDD
VDD
-OUTA
-INA
GND
-OUTB
G1422
-INB
BYPASS
+INA
+INB
GND
GND
GND
GND
20
19
R4
100K
0.1µF
R3
100K
SPEAKER
18
17
16
15
RFB1
20K
CS
1µF
RB1
20K
CB1
1µF
RCA
14
CB
0.33µF
13
12
11
Logical Truth Table
HP-IN
INPUTS
Shutdown
A/B Out-
AMPLIFIER STATES
A/B Out+
Mode
X
High
----
----
Mute
Low
Low
BTL
Output
BTL
Output
BTL
Low
Low
BTL
Output
BTL
High
Low
----
SE
High
Low
BTL
Output
SE
Output
SE
Output
----
SE
TEL: 886-3-5788833
http://www.gmt.com.tw
Ver: 1.2
Jun 29, 2005
12
G1422
Global Mixed-mode Technology Inc.
Application Information
Bridged-Tied Load Mode Operation
The G1422 has two linear amplifiers to drive both ends
of the speaker load in Bridged-Tied Load (BTL) mode
operation. Figure C shows the BTL configuration. The
differential driving to the speaker load means that
when one side is slewing up, the other side is slewing
down, and vice versa. This configuration in effect will
double the voltage swing on the load as compared to a
ground reference load. In BTL mode, the peak-to-peak
voltage VO(PP) on the load will be two times than a
ground reference configuration. The voltage on the
load is doubled, this will also yield 4 times output
power on the load at the same power supply rail and
loading. Another benefit of using differential driving
configuration is that BTL operation cancels the dc offsets, which eliminates the dc coupling capacitor that is
needed to cancelled dc offsets in the ground reference
configuration. Low-frequency performance is then limited only by the input network and speaker responses.
Cost and PCB space can be minimized by eliminating
the dc coupling capacitors.
Single Ended Mode Operation
The G1422 can drive clean, low distortion SE output
power into headphone loads (generally 16Ω or 32Ω)
as in Figure A. Please refer to Electrical Characteristics to see the performances. A coupling capacitor is
needed to block the dc offset voltage, allowing pure ac
signals into headphone loads. Choosing the coupling
capacitor will also determine the 3 dB point of the
high-pass filter network, as Figure B.
fC=1/(2πRLCC)
For example, a 68uF capacitor with 32Ω headphone
load would attenuate low frequency performance below 73Hz. So the coupling capacitor should be well
chosen to achieve the excellent bass performance
when in SE mode operation.
VDD
VDD
Vo(PP)
Vo(PP)
VDD
CC
RL
2xVo(PP)
-Vo(PP)
RL
Vo(PP)
Figure C
Figure A
-3 dB
fc
Figure B
TEL: 886-3-5788833
http://www.gmt.com.tw
Ver: 1.2
Jun 29, 2005
13
G1422
Global Mixed-mode Technology Inc.
De-popping circuitry of theG1422 is shown on Figure D. The PNP transistor limits the voltage drop
across the 225kΩ by slewing the internal node
slowly when power is applied. At start-up, the voltage at BYPASS capacitor is 0. The PNP is ON to
pull the mid-point of the bias circuit down. So the
capacitor sees a lower effective voltage, and thus
the charging is slower. This appears as a linear
ramp (while the PNP transistor is conducting), followed by the expected exponential ramp of an R-C
circuit.
SHUTDOWN Mode Operations
The G1422 implements the shutdown mode operations to reduce supply current, IDD, to the absolute
minimum level during nonuse periods for battery-power conservation. When the shutdown pin
(pin 1) is pulled high, all linear amplifiers will be
deactivated to mute the amplifier outputs. And The
G1422 enters an extra low current consumption
state, IDD is smaller than 2µA. Shutdown pin should
never be left unconnected, this floating condition
will cause the amplifier operations unpredictable.
Optimizing DEPOP Operation
Circuitry has been implemented in the G1422 to
minimize the amount of popping heard at power-up
and when coming out of shutdown mode. Popping
occurs whenever a voltage step is applied to the
speaker and making the differential voltage generated at the two ends of the speaker. To avoid the
popping heard, the bypass capacitor should be chosen promptly, 1/(CBx100kΩ) ≦ 1/(CI*(RI+RF)).
Where 100kΩ is the output impedance of the mid-rail
generator, CB is the mid-rail bypass capacitor, CI is
the input coupling capacitor, RI is the input impedance, RF is the gain setting impedance which is on
the feedback path. CB is the most important capacitor.
Besides it is used to reduce the popping, CB can also
determine the rate at which the amplifier starts up
during startup or recovery from shutdown mode.
VDD
100 kΩ
225 kΩ
Bypass
100 kΩ
Figure D
TEL: 886-3-5788833
http://www.gmt.com.tw
Ver: 1.2
Jun 29, 2005
14
G1422
Global Mixed-mode Technology Inc.
Package Information
C
D
L
D1
E2
θ
0.127 TYP
H
E1 E
A2
A
A1
e
0.05
b
TSSOP-20 (FD) Package
Note:
1. JEDCE outline: MP-153 AC/MO-153 ACT (thermally enhanced variations only)
2. Dimension “D” does not include mold flash, protrusions or gate burrs. Mold flash, protrusions or gate burrs shall
not exceed 0.15 per side.
3. Dimension “E1” does not include interlead flash or protrusion. Interlead flash or protrusion shall not exceed
0.25 per side.
4. Dimension “b” does not include dambar protrusion. Allowable dambar protrusion shall be 0.08mm total in excess of the “b” dimension at maximum material conditions. Dambar cannot be located on the lower radius of
the foot. Minimum space between protrusion and adjacent lead is 0.07mm.
5. Dimensions “D” and “E1” to be determined at datum plane “H”.
SYMBOLS
A
A1
A2
b
C
D
D1
E
E1
E2
e
L
θ
MIN
----0.00
0.80
0.19
0.20
6.40
3.90
4.30
2.70
0.45
0º
DIMENSION IN MM
NOM
--------1.00
--------6.50
----6.40 BSC
4.40
----0.65 BSC
0.60
-----
MAX
MIN
1.20
0.15
1.05
0.30
----6.60
4.40
----0.000
0.031
0.007
0.008
0.252
0.154
4.50
3.20
0.169
0.106
0.75
8º
0.018
0º
DIMENSION IN INCH
NOM
--------0.039
--------0.256
----0.252 BSC
0.173
----0.026 BSC
0.024
-----
MAX
0.047
0.006
0.041
0.012
----0.260
0.173
0.177
0.126
0.030
8º
Taping Specification
PACKAGE
TSSOP-20 (FD)
Q’TY/BY REEL
2,500 ea
Feed Direction
Typical TSSOP Package Orientation
GMT Inc. does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and GMT Inc. reserves the right at any time without notice to change said circuitry and specifications.
TEL: 886-3-5788833
http://www.gmt.com.tw
Ver: 1.2
Jun 29, 2005
15