G1422 Global Mixed-mode Technology Inc. 2W Stereo Audio Amplifier Features General Description The G1422 is a stereo audio power amplifier in 20pin TSSOP thermal pad package. It can drive 2W continuous RMS power into 4Ω load per channel in Bridge-Tied Load (BTL) mode at 5V supply voltage. Its THD is smaller than 1% under the above operation condition. To simplify the audio system design in the notebook application, the G1422 supports the BridgeTied Load (BTL) mode for driving the speakers, Single-End (SE) mode for driving the headphone. For the low current consumption applications, the SHDN mode is supported to disable the G1422 when it is idle. The current consumption can be further reduced to below 2µA. Depop Circuitry Integrated Output Power at 1% THD+N, VDD=5V --2W/CH (typical) into a 4Ω Load --1.2W/CH (typical) into a 8Ω Load Bridge-Tied Load (BTL), Single-Ended (SE) Shutdown Control Available Thermal protection Surface-Mount Power Package 20-Pin TSSOP-P Applications Stereo Power Amplifiers for Notebooks or Desktop Computers Multimedia Monitors Stereo Power Amplifiers for Portable Audio Systems Ordering Information ORDER NUMBER ORDER NUMBER (Pb free) MARKING TEMP. RANGE PACKAGE G1422F2U G1422F2Uf G1422 -40°C to +85°C TSSOP-20 (FD) Note:F2: TSSOP-20 (FD) U: Tape & Reel Pin Configuration G1422 SHUTDOWN 1 GND/HS 2 19 +OUTA 3 18 +OUTB VDD 4 17 VDD -OUTA -INA 5 16 15 -OUTB -INB 20 HP-IN GND/HS 6 GND/HS 7 14 BYPASS +INA 8 13 +INB GND/HS 9 12 GND/HS Thermal Pad 11 GND/HS GND/HS 10 Bottom View Top View TSSOP-20 (FD) Note: Recommend connecting the Thermal Pad to the GND for excellent power dissipation. TEL: 886-3-5788833 http://www.gmt.com.tw Ver: 1.2 Jun 29, 2005 1 G1422 Global Mixed-mode Technology Inc. Absolute Maximum Ratings Power Dissipation (1) TA ≤ 25°C………………………………………….2.7W TA ≤ 70°C………………………………………….1.7W TA ≤ 85°C………………….………………………1.4W Electrostatic Discharge, VESD Human body mode..………………….…-3000 to 3000(2) Supply Voltage, VCC…………………..…...…….……...6V Operating Ambient Temperature Range TA…….…………………………….……….-40°C to +85°C Maximum Junction Temperature, TJ…..……….….150°C Storage Temperature Range, TSTG….…-65°C to+150°C Reflow Temperature (soldering, 10sec)….……..260°C Note: (1) : Recommended PCB Layout (2) : Human body model : C = 100pF, R = 1500Ω, 3 positive pulses plus 3 negative pulses Electrical Characteristics DC Electrical Characteristics, VDD = 5.0V, TA=+25°C, unless otherwise noted PARAMETER Supply Current SYMBOL IDD CONDITION VDD = 5V Stereo BTL STEREO SE VDD = 5V,Gain = 2 VDD = 5V MIN TYP MAX --- 8.5 15 ------- 4 5 0.1 8 50 2 UNIT mA DC Differential Output Voltage IDD in Shutdown VO(DIFF) ISD mV µA Headphone High Input Voltage VIH 4 --- --- V Headphone Low Input Voltage VIL --- --- 0.8 V TYP MAX UNIT (AC Operation Characteristics, VDD = 5.0V, TA=+25°C, RL = 4Ω, unless otherwise noted) PARAMETER Output power (each channel) see Note SYMBOL P(OUT) Total harmonic distortion plus noise THD+N Maximum output power bandwidth BOM Phase margin Power supply ripple rejection Channel-to-channel output separation Input separation BTL attenuation in SE mode Input impedance Signal-to-noise ratio Output noise voltage PSRR CONDITION THD = 1%, BTL, RL = 4Ω --- 2 --- THD = 1%, BTL, RL = 8Ω THD = 10%, BTL, RL = 4Ω ----- 1.25 2.5 ----- THD = 10%, BTL, RL = 8Ω THD = 1%, SE, RL = 4Ω THD = 1%, SE, RL = 8Ω ------- 1.6 550 340 ------- THD = 10%, SE, RL = 4Ω THD = 10%, SE, RL L = 8Ω THD = 0.5%, SE, RL = 32Ω PO = 1.6W, BTL, RL = 4Ω ----- 700 440 ----- PO = 1W, BTL, RL = 8Ω PO = 75mW, SE, RL = 32Ω VI = 1V, RL = 10KΩ, G = 1, SE ----------- 92 300 100 15 2.5 ----------- G = 1, THD = 1% RL = 4Ω, Open Load ----- 20 65 ----- kHz ° f = 120Hz f = 1kHz ----- 75 80 ----- dB dB 80 85 2 90 55 ----------- dB dB MΩ PO = 500mW, BTL Output noise voltage ----------- ZI Vn MIN W mW m% dB µV (rms) Note :Output power is measured at the output terminals of the IC at 1kHz. TEL: 886-3-5788833 http://www.gmt.com.tw Ver: 1.2 Jun 29, 2005 2 G1422 Global Mixed-mode Technology Inc. Typical Characteristics Table of Graphs FIGURE THD +N Total harmonic distortion plus noise Vn IDD vs Frequency 2,4,6,9,11,15,17 vs Output Power 1,3,5,7,8,10,12,13,14,16,18 Output noise voltage vs Frequency 20 Supply ripple rejection ratio vs Frequency 19 Crosstalk vs Frequency 22,23 Open loop response vs Frequency 21 Supply current PO Output power PD Power dissipation Vs Supply Voltage 24 vs Load Resistance 25,26 Vs Load Resistance 27,28 vs Output Power 29,30,31,32 Total Harmonic Distortion Plus Noise vs Output Power Total Harmonic Distortion Plus Noise vs Frequency 10 10 5 5 20kHz 2 2 1 1 0.5 1kHz Po=1.8W 0.5 % % 0.2 0.1 0.2 20 Hz 0.02 0.01 3m 5m 10m 20m 50m 100m 200m 500m VDD=5V RL=3Ω BTL Av=-2V/V 0.1 VDD=5V RL=3Ω BTL Av=-2V/V 0.05 0.05 0.02 1 2 0.01 20 3 50 100 200 500 W Figure 1 2k 5k 10k 20k Figure 2 Total Harmonic Distortion Plus Noise vs Output Power Total Harmonic Distortion Plus Noise vs Frequency 10 10 5 5 20kHz 2 2 1 1 0.5 1k Hz Av=-4V/V Av=-2V/V 0.5 1kHz % % 0.2 0.1 0.2 VDD=5V RL=4Ω BTL Av=-2V/V 20 Hz 0.05 0.02 0.01 3m 5m 10m 20m 50m 100m 200m 500m 1 0.1 VDD=5V RL=4Ω BTL Po=2W Av=-1V/V 0.05 0.02 2 0.01 20 3 50 100 200 500 1k W Hz Figure 3 Figure 4 2k 5k 10k 20k TEL: 886-3-5788833 http://www.gmt.com.tw Ver: 1.2 Jun 29, 2005 3 G1422 Global Mixed-mode Technology Inc. Total Harmonic Distortion Plus Noise vs Output Power Total Harmonic Distortion Plus Noise vs Frequency 10 10 VDD=5V RL=8Ω BTL Av=-2V/V 5 20kHz 2 1 5 2 1 0.5 % 0.2 0.2 0.1 0.1 0.05 20 Hz 0.02 0.01 2m 0.01 20 5m Av=-2V/V 0.05 0.02 10m 20m 50m 100m 200m 500m 1 2 Av=-1V/V 50 100 200 500 1k W Hz Figure 5 Figure 6 Total Harmonic Distortion Plus Noise vs Output Power 2k 5k 10k 20k Total Harmonic Distortion Plus Noise vs Frequency 10 10 VDD=5V RL=32Ω BTL Av=-2V/V 5 2 1 Av=-4V/V 0.5 1kHz % VDD=5V RL=8Ω BTL Po=1W 20kHz 5 20kH 2 1 0.5 1kHz 0.5 % % 0.2 0.1 0.2 1kHz 0.1 0.05 0.05 0.02 20 Hz 0.01 1m 2m 0.02 5m 10m 20m 50m 100m 200m 500m 0.01 1m 1 1 0.2 50m 100m 200m 500m 1 Total Harmonic Distortion Plus Noise vs Output Power 10 VDD=3.3V RL=4Ω BTL Po=0.75W 5 Av=-4V/V 1 0.5 % Av=-2V/V 0.1 Av=-1V/V 100 1kHz 0.2 0.05 50 20kHz 2 0.1 0.01 20 20m Figure 8 0.05 0.02 10m Figure 7 0.5 % 5m W 10 2 2m 20 Hz W Total Harmonic Distortion Plus Noise vs Frequency 5 VDD=3.3V RL=4Ω BTL Av=-2V/V 0.02 200 500 1k 2k 5k 10k 0.01 1m 20k VDD=3.3V RL=8Ω BTL Av=-2V/V 2m 5m 20 Hz 10m 20m 50m Hz W Figure 9 Figure 10 100m 200m 500m 1 TEL: 886-3-5788833 http://www.gmt.com.tw Ver: 1.2 Jun 29, 2005 4 G1422 Global Mixed-mode Technology Inc. Total Harmonic Distortion Plus Noise vs Frequency Total Harmonic Distortion Plus Noise vs Output Power 10 10 5 2 1 VDD=3.3V RL=8Ω BTL Po=0.45W VDD=5V RL=4Ω SE Av=-2V/V 5 2 Av=-4V/V 20kHz 1 0.5 0.5 % % 0.2 0.1 0.2 Av=-2V/V 0.1 0.05 0.02 1kHz 0.05 Av=-1V/V 0.01 20 50 100 0.02 200 500 1k 2k 5k 10k 0.01 1m 20k 100Hz 2m 5m 10m 20m 50m Hz Figure 11 1 500m 1 Total Harmonic Distortion Plus Noise vs Output Power 10 10 2 200m Figure 12 Total Harmonic Distortion Plus Noise vs Output Power 5 100m W VDD=5V RL=8Ω SE Av=-2V/V 5 2 1 20kHz 0.5 VDD=5V RL=16Ω SE Av=-2V/V 0.5 20kHz % % 0.2 0.2 0.1 1kHz 0.1 0.02 0.01 1m 20 Hz 0.05 0.05 100kHz 2m 0.02 5m 10m 20m 50m 100m 200m 500m 0.01 1m 1 1kHz 2m 5m 10m 20m Figure 13 10 5 VDD=5V RL=16Ω SE Po=150mW 1 0.5 Av=-4V/V % 20kHz % 0.2 0.2 0.1 Av=-2V/V 0.05 0.05 0.02 0.02 0.01 20 VDD=5V RL=32Ω SE Av=-2V/V 2 0.5 0.1 500m Total Harmonic Distortion Plus Noise vs Output Power 10 1 200m Figure 14 Total Harmonic Distortion Plus Noise vs Frequency 2 100m W W 5 50m Av=-1V/V 50 100 200 500 1k 2k 5k 10k 0.01 1m 20k 1kHz 2m 20 Hz 5m 10m 20m 50m Hz W Figure 15 Figure 16 100m 200m 500m 1 TEL: 886-3-5788833 http://www.gmt.com.tw Ver: 1.2 Jun 29, 2005 5 G1422 Global Mixed-mode Technology Inc. Total Harmonic Distortion Plus Noise vs Frequency Total Harmonic Distortion Plus Noise vs Output Power 10 5 2 1 0.5 10 5 VDD=5V RL=32Ω SE Po=75mW 1 0.5 Av=-4V/V 0.2 % 20kHz 0.2 0.1 0.05 VDD=3.3V RL=32Ω SE Av=-2V/V 2 % 0.1 20 Hz 0.05 Av=-2V/V 0.02 0.02 0.01 0.01 Av=-1V/V 0.005 1kHz 0.005 0.002 0.002 0.001 20 50 100 200 500 1k 2k 5k 10k 0.001 1m 20k 2m 5m 10m Hz 50m Figure 17 Figure 18 Supply Ripple Rejection Ratio vs Frequency Output Noise Voltage vs Frequency +0 100m 100u 90u T -10 -20 -30 VDD=5V RL=4Ω CB=4.7µF 80u Vripple=0.5Vpp 50u 70u VDD=5V RL=4Ω BTL Mode 20kHz LP 60u -40 d B 20m W 40u -50 V 30u SE Mode -60 -70 20u VDD=5V RL=32Ω SE Mode BW<32kHz -80 -90 BTL Mode -100 20 50 100 200 500 1k 2k 5k 10k 10u 20 20k 50 100 200 Hz 500 1k 2k 5k 10k 20k Hz Figure 19 Figure 20 Open Loop Response Channel Separation -30 -35 -40 -45 -50 VDD=5V Po=1.5W RL=4Ω BTL -55 -60 d B Channel A to B -65 -70 -75 -80 -85 Channel B to A -90 -95 -100 20 50 100 200 500 1k 2k 5k 10k 20k Hz Figure 22 Figure 21 TEL: 886-3-5788833 http://www.gmt.com.tw Ver: 1.2 Jun 29, 2005 6 G1422 Global Mixed-mode Technology Inc. Channel Separation Supply Current vs Supply Voltage 9 -30 -35 -45 -50 -55 VDD=5V Po=75mW RL=32Ω SE -60 d B Stereo BTL 8 Supply Current(mA) -40 -65 -70 -75 Channel A to B -80 7 6 5 4 -85 3 -90 -100 20 Stereo SE Channel B to A -95 50 100 200 500 1k 2k 5k 10k 2 20k 3 Hz 4 5 Supply Voltage(V) Figure 23 6 Figure 24 Output Power vs Supply Voltage Output Power vs Supply Voltage 0.25 3 THD+N=1% BTL Each Channel RL=4Ω 2 RL=3Ω 1.5 THD+N=1% SE Each Channel 0.2 Output Power(W) Output Power(W) 2.5 1 RL=8Ω 0.15 RL=16Ω 0.1 RL=32Ω 0.05 0.5 0 0 2.5 3.5 4.5 5.5 Supply Voltage(V) 2.5 6.5 3.5 4.5 Supply Voltage(V) 6.5 Figure 26 Figure 25 Output Power vs Load Resistance Output Power vs Loard Resistance 2.5 0.7 THD+N=1% BTL Each Channel THD+N=1% SE Each Channel 0.6 Output Power(W) 2 Output Power(W) 5.5 VDD=5V 1.5 1 0.5 0.5 VDD=5V 0.4 0.3 0.2 0.1 VDD=3.3V VDD=3.3V 0 0 0 10 20 30 Load Resistance(Ω) 4 40 8 12 16 20 24 28 32 Load Resistance(Ω) Figure 27 Figure 28 TEL: 886-3-5788833 http://www.gmt.com.tw Ver: 1.2 Jun 29, 2005 7 G1422 Global Mixed-mode Technology Inc. Power Dippipation vs Output Power Power Dissipation vs Output Power 1.8 0.8 1.6 0.7 RL=3Ω Power Dissipation(W) Power Dissipation 1.4 1.2 RL=4Ω 1 VDD=5V BTL Each Channel 0.8 0.6 RL=8Ω 0.4 RL=3Ω 0.6 0.5 RL=4Ω 0.4 VDD=3.3V BTL Each Channel 0.3 0.2 RL=8Ω 0.1 0.2 0 0 0 0.5 1 1.5 Po-Output Pow er(W) 2 2.5 0 0.5 1 Po-Output Pow er(W) Figure 29 Figure 30 Power Dissipation vs Output Power 0.16 0.3 0.14 Power Dissipation(W) Power Dissipation(W) Power Dissipation vs Output Power 0.35 RL=4Ω 0.25 RL=8Ω 0.2 0.15 0.1 VDD=5V SE Each Channel RL=32Ω 0.05 1.5 RL=4Ω 0.12 VDD=3.3V SE Each Channel 0.1 RL=8Ω 0.08 0.06 0.04 RL=32Ω 0.02 0 0 0 0.2 0.4 0.6 0.8 0 0.1 0.2 Po-Output Pow er(W) Po-Output Pow er(W) Figure 31 Figure 32 0.3 Recommended Minimum Footprint TSSOP-20 (FD) TEL: 886-3-5788833 http://www.gmt.com.tw Ver: 1.2 Jun 29, 2005 8 Global Mixed-mode Technology Inc. G1422 Pin Description PIN NAME I/O 1 SHUTDOWN I 2,7,9,10,11,12,19 GND/HS Shutdown mode control signal input, places entire IC in shutdown mode when held high, IDD is below 2µA. Ground connection for circuitry, directly connected to thermal pad. 3 4,17 +OUTA VDD O A channel + output in BTL mode, high impedance state in SE mode Supply voltage for circuitry. 5 -OUTA O A channel - output in BTL mode, - output in SE mode. 6 8 13 14 15 -INA +INA +INB BYPASS -INB I I I I A channel input signal I, selected when MUXCTRL is held low. A channel positive input of OPAMP, biasing DC operation of OPAMP B channel positive input of OPAMP, biasing DC operation of OPAMP Connect to voltage divider for internal mid-supply bias. B channel input signal I, selected when MUXCTRL is held low. 16 18 20 -OUTB +OUTB HP-IN O O I B channel - output in BTL mode, - output in SE mode. B channel + output in BTL mode, high impedance state in SE mode Mode control signal input, hold low for BTL mode, hold high for SE mode. Thermal Pad FUNCTION Recommend connecting the Thermal Pad to the GND for excellent power dissipation. TEL: 886-3-5788833 http://www.gmt.com.tw Ver: 1.2 Jun 29, 2005 9 G1422 Global Mixed-mode Technology Inc. Block Diagram 20k 6 -INA 8 +INA 14 1 13 _ 5 +OUT 3 + BYPASS SHUTDOWN BIAS CIRCUITS MODES CONTROL CIRCUITS VDD 4,17 HP-IN 20 +INB + 15 -OUT -INB _ +OUTB 18 -OUTB 16 20k Parameter Measurement Information 1 14 8 SHUTDOWN 6 VDD 4,17 -OUTA 5 +OUTA 3 RL 4/8/32Ω +INA + CI 20 BYPASS CB 4.7µF AC source HP-IN _ -INA RI RF BTL Mode Test Circuit TEL: 886-3-5788833 http://www.gmt.com.tw Ver: 1.2 Jun 29, 2005 10 G1422 Global Mixed-mode Technology Inc. Parameter Measurement Information (Continued) 1 SHUTDOWN HP-IN 14 20 VDD BYPASS VDD 4,17 8 +INA CB 4.7µF + CI 6 AC source _ -INA -OUTA 5 +OUTA 3 RI RL 32Ω RF SE Mode Test Circuit TEL: 886-3-5788833 http://www.gmt.com.tw Ver: 1.2 Jun 29, 2005 11 G1422 Global Mixed-mode Technology Inc. Application Circuits PHONEJACK R2 1K R1 1K COB 100µF COA 100µF 1 2 SHUTDOWN HP-IN GND GND SPEAKER 3 4 RFA1 20K CA1 1µF 5 RA1 20K 6 RCA 7 8 9 10 +OUTA +OUTB VDD VDD -OUTA -INA GND -OUTB G1422 -INB BYPASS +INA +INB GND GND GND GND 20 19 R4 100K 0.1µF R3 100K SPEAKER 18 17 16 15 RFB1 20K CS 1µF RB1 20K CB1 1µF RCA 14 CB 0.33µF 13 12 11 Logical Truth Table HP-IN INPUTS Shutdown A/B Out- AMPLIFIER STATES A/B Out+ Mode X High ---- ---- Mute Low Low BTL Output BTL Output BTL Low Low BTL Output BTL High Low ---- SE High Low BTL Output SE Output SE Output ---- SE TEL: 886-3-5788833 http://www.gmt.com.tw Ver: 1.2 Jun 29, 2005 12 G1422 Global Mixed-mode Technology Inc. Application Information Bridged-Tied Load Mode Operation The G1422 has two linear amplifiers to drive both ends of the speaker load in Bridged-Tied Load (BTL) mode operation. Figure C shows the BTL configuration. The differential driving to the speaker load means that when one side is slewing up, the other side is slewing down, and vice versa. This configuration in effect will double the voltage swing on the load as compared to a ground reference load. In BTL mode, the peak-to-peak voltage VO(PP) on the load will be two times than a ground reference configuration. The voltage on the load is doubled, this will also yield 4 times output power on the load at the same power supply rail and loading. Another benefit of using differential driving configuration is that BTL operation cancels the dc offsets, which eliminates the dc coupling capacitor that is needed to cancelled dc offsets in the ground reference configuration. Low-frequency performance is then limited only by the input network and speaker responses. Cost and PCB space can be minimized by eliminating the dc coupling capacitors. Single Ended Mode Operation The G1422 can drive clean, low distortion SE output power into headphone loads (generally 16Ω or 32Ω) as in Figure A. Please refer to Electrical Characteristics to see the performances. A coupling capacitor is needed to block the dc offset voltage, allowing pure ac signals into headphone loads. Choosing the coupling capacitor will also determine the 3 dB point of the high-pass filter network, as Figure B. fC=1/(2πRLCC) For example, a 68uF capacitor with 32Ω headphone load would attenuate low frequency performance below 73Hz. So the coupling capacitor should be well chosen to achieve the excellent bass performance when in SE mode operation. VDD VDD Vo(PP) Vo(PP) VDD CC RL 2xVo(PP) -Vo(PP) RL Vo(PP) Figure C Figure A -3 dB fc Figure B TEL: 886-3-5788833 http://www.gmt.com.tw Ver: 1.2 Jun 29, 2005 13 G1422 Global Mixed-mode Technology Inc. De-popping circuitry of theG1422 is shown on Figure D. The PNP transistor limits the voltage drop across the 225kΩ by slewing the internal node slowly when power is applied. At start-up, the voltage at BYPASS capacitor is 0. The PNP is ON to pull the mid-point of the bias circuit down. So the capacitor sees a lower effective voltage, and thus the charging is slower. This appears as a linear ramp (while the PNP transistor is conducting), followed by the expected exponential ramp of an R-C circuit. SHUTDOWN Mode Operations The G1422 implements the shutdown mode operations to reduce supply current, IDD, to the absolute minimum level during nonuse periods for battery-power conservation. When the shutdown pin (pin 1) is pulled high, all linear amplifiers will be deactivated to mute the amplifier outputs. And The G1422 enters an extra low current consumption state, IDD is smaller than 2µA. Shutdown pin should never be left unconnected, this floating condition will cause the amplifier operations unpredictable. Optimizing DEPOP Operation Circuitry has been implemented in the G1422 to minimize the amount of popping heard at power-up and when coming out of shutdown mode. Popping occurs whenever a voltage step is applied to the speaker and making the differential voltage generated at the two ends of the speaker. To avoid the popping heard, the bypass capacitor should be chosen promptly, 1/(CBx100kΩ) ≦ 1/(CI*(RI+RF)). Where 100kΩ is the output impedance of the mid-rail generator, CB is the mid-rail bypass capacitor, CI is the input coupling capacitor, RI is the input impedance, RF is the gain setting impedance which is on the feedback path. CB is the most important capacitor. Besides it is used to reduce the popping, CB can also determine the rate at which the amplifier starts up during startup or recovery from shutdown mode. VDD 100 kΩ 225 kΩ Bypass 100 kΩ Figure D TEL: 886-3-5788833 http://www.gmt.com.tw Ver: 1.2 Jun 29, 2005 14 G1422 Global Mixed-mode Technology Inc. Package Information C D L D1 E2 θ 0.127 TYP H E1 E A2 A A1 e 0.05 b TSSOP-20 (FD) Package Note: 1. JEDCE outline: MP-153 AC/MO-153 ACT (thermally enhanced variations only) 2. Dimension “D” does not include mold flash, protrusions or gate burrs. Mold flash, protrusions or gate burrs shall not exceed 0.15 per side. 3. Dimension “E1” does not include interlead flash or protrusion. Interlead flash or protrusion shall not exceed 0.25 per side. 4. Dimension “b” does not include dambar protrusion. Allowable dambar protrusion shall be 0.08mm total in excess of the “b” dimension at maximum material conditions. Dambar cannot be located on the lower radius of the foot. Minimum space between protrusion and adjacent lead is 0.07mm. 5. Dimensions “D” and “E1” to be determined at datum plane “H”. SYMBOLS A A1 A2 b C D D1 E E1 E2 e L θ MIN ----0.00 0.80 0.19 0.20 6.40 3.90 4.30 2.70 0.45 0º DIMENSION IN MM NOM --------1.00 --------6.50 ----6.40 BSC 4.40 ----0.65 BSC 0.60 ----- MAX MIN 1.20 0.15 1.05 0.30 ----6.60 4.40 ----0.000 0.031 0.007 0.008 0.252 0.154 4.50 3.20 0.169 0.106 0.75 8º 0.018 0º DIMENSION IN INCH NOM --------0.039 --------0.256 ----0.252 BSC 0.173 ----0.026 BSC 0.024 ----- MAX 0.047 0.006 0.041 0.012 ----0.260 0.173 0.177 0.126 0.030 8º Taping Specification PACKAGE TSSOP-20 (FD) Q’TY/BY REEL 2,500 ea Feed Direction Typical TSSOP Package Orientation GMT Inc. does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and GMT Inc. reserves the right at any time without notice to change said circuitry and specifications. TEL: 886-3-5788833 http://www.gmt.com.tw Ver: 1.2 Jun 29, 2005 15