HA1630S01/02/03 Series Ultra-Small Low Voltage Operation CMOS Single Operational Amplifier REJ03D0798-0100 Rev.1.00 Mar 10, 2006 Description The HA1630S01/02/03 are single CMOS Operational Amplifiers realizing low voltage operation, low input offset voltage and low supply current. In addition to a low operating voltage from 1.8V, these device output can achieve full swing output voltage capability extending to either supply. Available in an ultra-small CMPAK-5 package that occupies only 1/8 the area of the SOP-8 package. Features • Low power and single supply operation • Low input offset voltage • Low supply current • Maximum output voltage • Low input bias current VDD = 1.8 to 5.5 V VIO = 4.0 mV Max IDD = 15 µA Typ (HA1630S01) IDD = 50 µA Typ (HA1630S02) IDD = 100 µA Typ (HA1630S03) VOH = 2.9 V Min (at VDD = 3.0 V) IIB = 1 pA Typ Ordering Information Type No. Package Name Package Code HA1630S01CM HA1630S01LP CMPAK-5 MPAK-5 PTSP0005ZC-A PLSP0005ZB-A HA1630S02CM HA1630S02LP CMPAK-5 MPAK-5 PTSP0005ZC-A PLSP0005ZB-A HA1630S03CM HA1630S03LP CMPAK-5 MPAK-5 PTSP0005ZC-A PLSP0005ZB-A Rev.1.00 Mar 10, 2006 page 1 of 23 HA1630S01/02/03 Series Pin Arrangement VDD 5 VOUT 4 + − 1 2 3 VIN(+) VSS VIN(–) Equivalent Circuit VDD VIN(–) VIN(+) VSS Rev.1.00 Mar 10, 2006 page 2 of 23 VOUT HA1630S01/02/03 Series Absolute Maximum Ratings (Ta = 25°C) Items Supply voltage Symbol Ratings 7 Unit V VDD Differential input voltage Input voltage VIN(diff) VIN –VDD to +VDD –0.3 to +VDD V V Power dissipation Operating temp. Range PT Topr 200 –40 to +85 mW °C Storage temp. Range Tstg –55 to +125 Note: 1. Do not apply Input Voltage exceeding VDD or 7 V. °C Note 1 Electrical Characteristics (VDD = 3.0 V, Ta = 25°C) Min Typ Max Unit Input offset voltage Input offset current Items VIO IIO — — — (1.0) 4.0 — mV pA Vin = 1.5 V Vin = 1.5 V Input bias current Output high voltage IIB VOH — 2.9 (1.0) — — — pA V Vin = 1.5 V RL = 1 MΩ Output source current IO SOURCE 6 25 12 50 — — µA VOH = 2.5 V (HA1630S01) VOH = 2.5 V (HA1630S02) Output low voltage VOL 50 — 100 — — 0.1 Output sink current IO SINK — — (0.8) (1.0) — — Common mode input voltage range VCM — –0.1 to 2.1 (1.2) — — — Slew rate SR — — (0.125) (0.50) — — Voltage gain AV — 60 (1.00) 100 — — Gain bandwidth product BW — — (200) (680) — — Power supply rejection ratio PSRR — 60 (1200) 80 — — dB Common mode rejection ratio Supply current CMRR IDD 60 — 80 15 — 30 dB µA — — 50 100 100 200 Note: Symbol 1. ( ) : Design specification Rev.1.00 Mar 10, 2006 page 3 of 23 V mA Test Condition VOH = 2.5 V (HA1630S03) RL = 1 MΩ VOL = 0.5 V (HA1630S01) VOL = 0.5 V (HA1630S02) VOL = 0.5 V (HA1630S03) V V/µs CL = 20 pF (HA1630S01) CL = 20 pF (HA1630S02) CL = 20 pF (HA1630S03) dB kHz CL = 20 pF (HA1630S01) CL = 20 pF (HA1630S02) CL = 20 pF (HA1630S03) RL = ∞ (HA1630S01) RL = ∞ (HA1630S02) RL = ∞ (HA1630S03) HA1630S01/02/03 Series Table of Graphs Electrical Characteristics HA1630S01 Figure HA1630S02 Figure HA1630S03 Figure Test Circuit Supply current IDD vs Supply voltage vs Ambient temperature 1-1 1-2 2-1 2-2 3-1 3-2 2 Output high voltage VOH vs Output source current vs Supply voltage 1-3 1-4 2-3 2-4 3-3 3-4 4 Output source current Output low voltage IO SOURCE VOL vs Ambient temperature vs Output sink current 1-5 1-6 2-5 2-6 3-5 3-6 6 5 Output sink current Input offset voltage IO SINK VIO vs Ambient temperature Distribution 1-7 1-8 2-7 2-8 3-7 3-8 6 1 vs Supply voltage vs Ambient temperature 1-9 1-10 2-9 2-10 3-9 3-10 Common mode input voltage range Power supply rejection ratio VCM vs Ambient temperature 1-11 2-11 3-11 7 PSRR vs Frequency 1-12 2-12 3-12 1 Common mode rejection ratio Voltage gain & phase angle CMRR vs Frequency 1-13 2-13 3-13 7 AV vs Frequency 1-14 2-14 3-14 10 Input bias current IIB vs Ambient temperature vs Input voltage 1-15 1-16 2-15 2-16 3-15 3-16 3 Slew Rate (rising) Slew Rate (falling) SRr SRf vs Ambient temperature vs Ambient temperature 1-17 1-18 2-17 2-18 3-17 3-18 9 Large signal transient response Small signal transient response 1-19 2-19 3-19 1-20 2-20 3-20 vs. Output voltage p-p vs. Output voltage p-p — — 2-21 2-22 3-21 3-22 vs Frequency 1-21 2-23 3-23 vs Frequency 1-22 2-24 3-24 Slew rate Total harmonic distortion + noise (0 dB) (40 dB) Maximum p-p output voltage Voltage noise density Rev.1.00 Mar 10, 2006 page 4 of 23 8 HA1630S01/02/03 Series Main Characteristics (HA1630S01) Figure 1-1. HA1630S01 Supply Current vs. Supply Voltage Figure 1-2. HA1630S01 Supply Current vs. Ambient Temperature 25 Ta = 25°C Supply Current IDD (µA) Supply Current IDD (µA) 25 20 15 10 5 0 0 1 2 3 4 5 Supply Voltage VDD (V) 20 VDD = 5.0 V VDD = 3.0 V 15 10 VDD = 1.8 V 5 0 −40 6 6 VDD = 5.0 V 5 4 VDD = 3.0 V 3 2 VDD = 1.8 V 1 Ta = 25°C 0 0 Output Source Current IOSOURCE (µA) 40 30 VDD = 5.0 V VDD = 3.0 V 10 VDD = 1.8 V 0 −40 −20 6 Ta = 25°C R L = 1 MΩ 5 RL = 510 kΩ 4 3 2 1 5 10 15 Output Source Current IOSOURCE (µA) Figure 1-5. HA1630S01 Output Source Current vs. Ambient Temperature 50 20 100 Figure 1-4. HA1630S01 Output High Voltage vs. Supply Voltage Output High Voltage VOH (V) Output High Voltage VOH (V) Figure 1-3. HA1630S01 Output High Voltage vs. Output Source Current −20 0 20 40 60 80 Ambient Temperature Ta (°C) 0 20 40 60 80 Ambient Temperature Ta (°C) Rev.1.00 Mar 10, 2006 page 5 of 23 100 1 2 3 4 5 Supply Voltage VDD (V) 6 HA1630S01/02/03 Series Figure 1-7. HA1630S01 Output Sink Current vs. Ambient Temperature 2.0 2.0 VDD = 5.0 V 1.5 Output Sink Current IOSINK (mA) Output Low Voltage VOL (V) Figure 1-6. HA1630S01 Output Low Voltage vs. Output Sink Current VDD = 3.0 V VDD = 1.8 V 1.0 0.5 0 0 0.2 0.4 0.6 0.8 Output Sink Current IOSINK (mA) 1.5 VDD = 5.0 V VDD = 3.0 V 1.0 VDD = 1.8 V 0.5 0 −40 1.0 Percentage (%) 40 Ta = 25°C VDD = 3.0 V 30 20 10 0 −4 −3 −2 −1 0 1 2 3 Input Offset Voltage VIO (mV) 4 4 Ta = 25°C VIN = 0.5 V 3 2 1 0 −1 −2 −3 −4 1 2 3 2 Common Mode Input Voltage VCM (V) Input Offset Voltage VIO (mV) 6 3.0 4 VDD = 1.8 V, VIN = 0.9 V 1 0 VDD = 3.0 V, VIN = 1.5 V VDD = 5.0 V, VIN = 2.5 V −2 −3 −4 −40 3 4 5 Supply Voltage VDD (V) Figure 1-11. HA1630S01 Common Mode Input Voltage vs. Ambient Temperature Figure 1-10. HA1630S01 Input Offset Voltage vs. Ambient Temperature −1 100 Figure 1-9. HA1630S01 Input Offset Voltage vs. Supply Voltage Input Offset Voltage VIO (mV) Figure 1-8. HA1630S01 Input Offset Voltage Distribution −20 0 20 40 60 80 Ambient Temperature Ta (°C) −20 0 20 40 60 80 Ambient Temperature Ta (°C) Rev.1.00 Mar 10, 2006 page 6 of 23 100 2.0 1.0 VDD = 3.0 V 0 −1.0 −40 −20 0 20 40 60 80 Ambient Temperature Ta (°C) 100 HA1630S01/02/03 Series Power Supply Rejection Ratio PSRR (dB) Figure 1-12. HA1630S01 Power Supply Rejection Ratio vs. Frequency 120 Ta = 25°C VDD = 3.0 V RL = 1 MΩ CL = 20 pF 100 80 60 40 20 0 10 100 1k 10k 100k 1M Frequency f (Hz) Common Mode Rejection Ratio CMRR (dB) Figure 1-13. HA1630S01 Common Mode Rejection Ratio vs. Frequency 120 Ta = 25°C VDD = 3.0 V RL = 1 MΩ CL = 20 pF 100 80 60 40 20 0 10 100 1k 10k 100k 1M Frequency f (Hz) Figure 1-14. HA1630S01 Open Loop Voltage Gain and Phase Angle vs. Frequency 80 225 Ta = 25°C VDD = 3.0 V 180 RL = 1 MΩ CL = 20 pF 135 Open Loop Voltage Gain 60 40 20 90 Phase Angle 45 0 Phase Margin: 50 deg −20 −40 10 0 −45 100 1k 10k Frequency f (Hz) Rev.1.00 Mar 10, 2006 page 7 of 23 100k −90 1M Phase Angle (deg) Open Loop Voltage Gain AVOL (dB) 100 HA1630S01/02/03 Series 200 VDD = 3.0 V 100 0 −100 −200 −40 −20 0 20 40 60 80 Ambient Temperature Ta (°C) Figure 1-16. HA1630S01 Input Bias Current vs. Input Voltage Input Bias Current IIB (pA) Input Bias Current IIB (pA) Figure 1-15. HA1630S01 Input Bias Current vs. Ambient Temperature 200 100 0 −100 −200 100 0.5 1.0 1.5 2.0 Input Voltage VIN (V) 2.5 3.0 0.20 Slew Rate SRf (V/µs) 0.20 Slew Rate SRr (V/µs) 0 Figure 1-18. HA1630S01 Slew Rate (falling) vs. Ambient Temperature Figure 1-17. HA1630S01 Slew Rate (rising) vs. Ambient Temperature VDD = 5.0 V VDD = 3.0 V 0.15 VDD = 1.8 V 0.10 0.05 −40 Ta = 25°C VDD = 3.0 V −20 0 20 40 60 80 100 VDD = 5.0 V VDD = 3.0 V 0.15 0.10 0.05 −40 VDD = 1.8 V −20 0 20 40 60 80 Ambient Temperature Ta (°C) Ambient Temperature Ta (°C) Figure 1-19. HA1630S01 Large Signal Transient Response Figure 1-20. HA1630S01 Small Signal Transient Response Ta = 25°C VDD = 3.0 V RL = 1 MΩ CL = 20 pF Rev.1.00 Mar 10, 2006 page 8 of 23 100 Ta = 25°C VDD = 3.0 V RL = 1 MΩ CL = 20 pF HA1630S01/02/03 Series Output Voltage Vout p-p (V) Figure 1-21. HA1630S01 Voltage Output p-p vs. Frequency 3.5 3.0 2.5 2.0 Ta = 25°C VDD = 3.0 V Gain = 40 dB, Vp-p = 0.03 V Gain = 20 dB, Vp-p = 0.3 V Gain = 0 dB, Vp-p = 2.5 V 1.5 1.0 0.5 0 100 1k 10k Frequency f (Hz) 100k Figure 1-22. HA1630S01 Voltage Noise Density vs. Frequency Voltage Noise Density (nV/√Hz) 200 100 0 100 10k Frequency f (Hz) Rev.1.00 Mar 10, 2006 page 9 of 23 1M HA1630S01/02/03 Series Main Characteristics (HA1630S02) Figure 2-1. HA1630S02 Supply Current vs. Supply Voltage 100 Ta = 25°C Supply Current IDD (µA) Supply Current IDD (µA) 100 Figure 2-2. HA1630S02 Supply Current vs. Ambient Temperature 80 60 40 20 0 1 2 3 4 5 Supply Voltage VDD (V) 80 VDD = 5.0 V VDD = 3.0 V VDD = 1.8 V 60 40 20 0 −40 6 5 VDD = 5.0 V Ta = 25°C 4 3 VDD = 3.0 V 2 VDD = 1.8 V 1 0 6 Ta = 25°C VDD = 3.0 V 5 4 RL = 1 MΩ RL = 120 kΩ 3 2 1 0 10 20 30 40 50 60 Output Source Current IOSOURCE (µA) Figure 2-5. HA1630S02 Output Source Current vs. Ambient Temperature 100 Output Source Current IOSOURCE (µA) 100 Figure 2-4. HA1630S02 Output High Voltage vs. Supply Voltage Output High Voltage VOH (V) Output High Voltage VOH (V) Figure 2-3. HA1630S02 Output High Voltage vs. Output Source Current −20 0 20 40 60 80 Ambient Temperature Ta (°C) 80 60 VDD = 5.0 V VDD = 3.0 V VDD = 1.8 V 40 20 0 −40 −20 0 20 40 60 80 Ambient Temperature Ta (°C) Rev.1.00 Mar 10, 2006 page 10 of 23 100 1 2 3 4 5 Supply Voltage VDD (V) 6 HA1630S01/02/03 Series Figure 2-7. HA1630S02 Output Sink Current vs. Ambient Temperature 2.5 1.5 VDD = 5.0 V VDD = 5.0 V VDD = 3.0 V VDD = 1.8 V 1.0 Output Sink Current IOSINK (mA) Output Low Voltage VOL (V) Figure 2-6. HA1630S02 Output Low Voltage vs. Output Sink Current 0.5 0 0 0.5 1.0 Output Sink Current IOSINK (mA) VDD = 3.0 V 2.0 VDD = 1.8 V 1.5 1.0 0.5 0 −40 1.5 Percentage (%) 40 Ta = 25°C VDD = 3.0 V 30 20 10 0 −4 −3 −2 −1 0 1 2 3 Input Offset Voltage VIO (mV) 4 4 Ta = 25°C VIN = 0.5 V 3 2 1 0 −1 −2 −3 −4 1 2 VDD = 3.0 V, VIN = 1.5 V 2 VDD = 5.0 V, VIN = 2.5 V 1 0 −1 −2 −3 −4 −40 −20 0 20 40 60 80 Ambient Temperature Ta (°C) Rev.1.00 Mar 10, 2006 page 11 of 23 6 3.0 VDD = 1.8 V, VIN = 0.9 V Common Mode Input Voltage VCM (V) Input Offset Voltage VIO (mV) 3 3 4 5 Supply Voltage VDD (V) Figure 2-11. HA1630S02 Common Mode Input Voltage vs. Ambient Temperature Figure 2-10. HA1630S02 Input Offset Voltage vs. Ambient Temperature 4 100 Figure 2-9. HA1630S02 Input Offset Voltage vs. Supply Voltage Input Offset Voltage VIO (mV) Figure 2-8. HA1630S02 Input Offset Voltage Distribution −20 0 20 40 60 80 Ambient Temperature Ta (°C) 100 2.0 VDD = 3.0 V 1.0 0 −1.0 −40 −20 0 20 40 60 80 Ambient Temperature Ta (°C) 100 HA1630S01/02/03 Series Power Supply Rejection Ratio PSRR (dB) Figure 2-12. HA1630S02 Power Supply Rejection Ratio vs. Frequency 120 Ta = 25°C VDD = 3.0 V RL = 1 MΩ CL = 20 pF 100 80 60 40 20 0 10 100 1k 10k 100k 1M Frequency f (Hz) Common Mode Rejection Ratio CMRR (dB) Figure 2-13. HA1630S02 Common Mode Rejection Ratio vs. Frequency 120 Ta = 25°C VDD = 3.0 V RL = 1 MΩ CL = 20 pF 100 80 60 40 20 0 10 100 1k 10k 100k 1M Frequency f (Hz) Figure 2-14. HA1630S02 Open Loop Voltage Gain and Phase Angle vs. Frequency 225 80 Ta = 25°C VDD = 3.0 V 180 RL = 1 MΩ CL = 20 pF 135 Open Loop Voltage Gain 60 40 90 Phase Angle 20 45 0 0 Phase Margin: 50 deg −20 −40 10 −45 100 1k 10k Frequency f (Hz) Rev.1.00 Mar 10, 2006 page 12 of 23 100k 1M −90 10M Phase Angle (deg) Open Loop Voltage Gain AVOL (dB) 100 HA1630S01/02/03 Series 200 VDD = 3.0 V 100 0 −100 −200 0 25 50 75 Ambient Temperature Ta (°C) Figure 2-16. HA1630S02 Input Bias Current vs. Input Voltage Input Bias Current IIB (pA) Input Bias Current IIB (pA) Figure 2-15. HA1630S02 Input Bias Current vs. Ambient Temperature 200 100 0 −100 −200 100 Figure 2-17. HA1630S02 Slew Rate (rising) vs. Ambient Temperature 0.5 1.0 1.5 2.0 Input Voltage VIN (V) 2.5 3.0 0.8 VDD = 5.0 V VDD = 5.0 V 0.7 Slew Rate SRf (V/µs) Slew Rate SRr (V/µs) 0 Figure 2-18. HA1630S02 Slew Rate (falling) vs. Ambient Temperature 0.8 VDD = 3.0 V VDD = 1.8 V 0.6 0.5 0.4 0.3 −40 Ta = 25°C VDD = 3.0 V −20 0 20 40 60 80 100 0.7 VDD = 3.0 V VDD = 1.8 V 0.6 0.5 0.4 0.3 −40 −20 0 20 40 60 80 Ambient Temperature Ta (°C) Ambient Temperature Ta (°C) Figure 2-19. HA1630S02 Large Signal Transient Response Figure 2-20. HA1630S02 Small Signal Transient Response Ta = 25°C VDD = 3.0 V RL = 1 MΩ CL = 20 pF Rev.1.00 Mar 10, 2006 page 13 of 23 100 Ta = 25°C VDD = 3.0 V RL = 1 MΩ CL = 20 pF HA1630S01/02/03 Series Figure 2-21. HA1630S02 Total Harmonic Distortion + Noise vs. Output Voltage p-p 10 VDD = 3.0 V Ta = 25°C Gain = 0 dB 1 T.H.D. + Noise (%) T.H.D. + Noise (%) 10 Figure 2-22. HA1630S02 Total Harmonic Distortion + Noise vs. Output Voltage p-p 0.1 f = 10 kHz f = 1 kHz 0.01 f = 100 Hz 0.001 f = 1 kHz 0.1 f = 100 Hz 0.01 V = 3.0 V DD 0.001 0 0.5 1.0 1.5 2.0 2.5 3.0 f = 10 kHz 1 Ta = 25°C Gain = 40 dB 0 Output Voltage Vout p-p (V) 0.5 1.0 1.5 2.0 2.5 Output Voltage Vout p-p (V) Voltage Output Vout p-p (V) Figure 2-23. HA1630S02 Voltage Output p-p vs. Frequency 3.5 Ta = 25°C VDD = 3.0 V Gain = 40 dB, Vp-p = 0.03 V 3.0 2.5 2.0 Gain = 20 dB, Vp-p = 0.3 V Gain = 0 dB, Vp-p = 2.5 V 1.5 1.0 0.5 0 100 1k 10k Frequency f (Hz) 100k Figure 2-24. HA1630S02 Voltage Noise Density vs. Frequency Voltage Noise Density (nV/√Hz) 200 100 0 100 10k Frequency f (Hz) Rev.1.00 Mar 10, 2006 page 14 of 23 1M 3.0 HA1630S01/02/03 Series Main Characteristics (HA1630S03) Figure 3-1. HA1630S03 Supply Current vs. Supply Voltage 200 Ta = 25°C Supply Current IDD (µA) Supply Current IDD (µA) 200 Figure 3-2. HA1630S03 Supply Current vs. Ambient Temperature 150 100 50 0 1 2 3 4 5 Supply Voltage VDD (V) VDD = 5.0 V 150 VDD = 3.0 V 100 VDD = 1.8 V 50 0 −40 6 6 Ta = 25°C 5 VDD = 5.5 V 4 3 VDD = 3.0 V 2 VDD = 1.8 V 1 0 6 Ta = 25°C 5 RL = 1 MΩ RL = 51 kΩ 4 3 2 1 0 50 100 150 Output Source Current IOSOURCE (µA) Figure 3-5. HA1630S03 Output Source Current vs. Ambient Temperature 200 Output Source Current IOSOURCE (µA) 110 Figure 3-4. HA1630S03 Output High Voltage vs. Supply Voltage Output High Voltage VOH (V) Output High Voltage VOH (V) Figure 3-3. HA1630S03 Output High Voltage vs. Output Source Current −15 10 35 60 85 Ambient Temperature Ta (°C) VDD = 5.0 V VDD = 3.0 V 150 VDD = 1.8 V 100 50 0 −40 −20 0 20 40 60 80 Ambient Temperature Ta (°C) Rev.1.00 Mar 10, 2006 page 15 of 23 100 1 2 3 4 5 Supply Voltage VDD (V) 6 HA1630S01/02/03 Series Figure 3-7. HA1630S03 Output Sink Current vs. Ambient Temperature 2.5 1.5 VDD = 5.0 V Output Sink Current IOSINK (mA) Output Low Voltage VOL (V) Figure 3-6. HA1630S03 Output Low Voltage vs. Output Sink Current VDD = 3.0 V 1.0 VDD = 1.8 V 0.5 0 0 0.5 1.0 Output Sink Current IOSINK (mA) 2.0 VDD = 5.0 V VDD = 3.0 V 1.5 1.0 VDD = 1.8 V 0.5 0 −40 1.5 Figure 3-8. HA1630S03 Input Offset Voltage Distribution Input Offset Voltage VIO (mV) Percentage (%) Ta = 25°C VDD = 3.0 V 30 20 10 −4 −3 −2 −1 0 1 2 3 Input Offset Voltage VIO (mV) 4 4 Ta = 25°C VIN = 0.5 V 3 2 1 0 −1 −2 −3 −4 1 2 6 3.0 4 3 Common Mode Input Voltage VCM (V) Input Offset Voltage VIO (mV) 3 4 5 Supply Voltage VDD (V) Figure 3-11. HA1630S03 Common Mode Input Voltage vs. Ambient Temperature Figure 3-10. HA1630S03 Input Offset Voltage vs. Ambient Temperature VDD = 1.8 V, VIN = 0.9 V 2 1 0 −1 VDD = 3.0 V, VIN = 1.5 V −2 VDD = 5.0 V, VIN = 2.5 V −3 −4 −40 100 Figure 3-9. HA1630S03 Input Offset Voltage vs. Supply Voltage 40 0 −20 0 20 40 60 80 Ambient Temperature Ta (°C) −20 0 20 40 60 80 Ambient Temperature Ta (°C) Rev.1.00 Mar 10, 2006 page 16 of 23 100 2.0 VDD = 3.0 V 1.0 0 −1.0 −40 −20 0 20 40 60 80 Ambient Temperature Ta (°C) 100 HA1630S01/02/03 Series Power Supply Rejection Ratio PSRR (dB) Figure 3-12. HA1630S03 Power Supply Rejection Ratio vs. Frequency 120 Ta = 25°C VDD = 3.0 V RL = 1 MΩ CL = 20 pF 100 80 60 40 20 0 10 100 1k 10k 100k 1M Frequency f (Hz) Common Mode Rejection Ratio CMRR (dB) Figure 3-13. HA1630S03 Common Mode Rejection Ratio vs. Frequency 120 Ta = 25°C VDD = 3.0 V RL = 1 MΩ CL = 20 pF 100 80 60 40 20 0 10 100 1k 10k 100k 1M Frequency f (Hz) Figure 3-14. HA1630S03 Open Loop Voltage Gain and Phase Angle vs. Frequency 225 Ta = 25°C VDD = 3.0 V 180 RL = 1 MΩ CL = 20 pF 135 Open Loop Voltage Gain 80 60 40 20 90 Phase Angle 45 0 0 Phase Margin: 50 deg −20 −40 10 −45 100 1k 10k Frequency f (Hz) Rev.1.00 Mar 10, 2006 page 17 of 23 100k 1M −90 10M Phase Angle (deg) Open Loop Voltage Gain AVOL (dB) 100 HA1630S01/02/03 Series 200 VDD = 3.0 V 100 0 −100 −200 0 Figure 3-16. HA1630S03 Input Bias Current vs. Input Voltage Input Bias Current IIB (pA) Input Bias Current IIB (pA) Figure 3-15. HA1630S03 Input Bias Current vs. Ambient Temperature 25 50 75 Ambient Temperature Ta (°C) 200 100 0 −100 −200 100 Ta = 25°C VDD = 3.0 V 0 1.5 1.5 Slew Rate SRf (V/µs) Slew Rate SRr (V/µs) VDD = 5.0 V VDD = 3.0 V VDD = 1.8 V 0.9 0.6 0.3 0 −50 −25 0 25 50 75 100 1.0 1.5 2.0 Input Voltage VIN (V) 2.5 1.2 VDD = 5.0 V VDD = 3.0 V VDD = 1.8 V 0.9 0.6 0.3 0 −50 −25 0 25 50 75 Ambient Temperature Ta (°C) Ambient Temperature Ta (°C) Figure 3-19. HA1630S03 Large Signal Transient Response Figure 3-20. HA1630S03 Small Signal Transient Response Ta = 25°C VDD = 3.0 V RL = 1 MΩ CL = 20 pF Rev.1.00 Mar 10, 2006 page 18 of 23 3.0 Figure 3-18. HA1630S03 Slew Rate (falling) vs. Ambient Temperature Figure 3-17. HA1630S03 Slew Rate (rising) vs. Ambient Temperature 1.2 0.5 100 Ta = 25°C VDD = 3.0 V RL = 1 MΩ CL = 20 pF HA1630S01/02/03 Series Figure 3-21. HA1630S03 Total Harmonic Distortion + Noise vs. Output Voltage p-p 10 VDD = 3.0 V Ta = 25°C Gain = 0 dB 1 T.H.D. + Noise (%) T.H.D. + Noise (%) 10 Figure 3-22. HA1630S03 Total Harmonic Distortion + Noise vs. Output Voltage p-p 0.1 f = 10 kHz 0.01 f = 100 Hz f = 1 kHz 0.001 1 f = 10 kHz f = 1 kHz 0.1 f = 100 Hz 0.01 V = 3.0 V DD Ta = 25°C Gain = 40 dB 0.001 0 0.5 1.0 1.5 2.0 2.5 3.0 0 Output Voltage Vout p-p (V) 0.5 1.0 1.5 2.0 2.5 Output Voltage Vout p-p (V) Voltage Output Vout p-p (V) Figure 3-23. HA1630S03 Voltage Output p-p vs. Frequency 3.5 Ta = 25°C VDD = 3.0 V Gain = 40 dB, Vp-p = 0.03 V 3.0 2.5 2.0 Gain = 20 dB, Vp-p = 0.3 V Gain = 0 dB, Vp-p = 2.5 V 1.5 1.0 0.5 0 100 1k 10k Frequency f (Hz) 100k 1M Figure 3-24. HA1630S03 Voltage Noise Density vs. Frequency Voltage Noise Density (nV/√Hz) 200 100 0 100 10k Frequency f (Hz) Rev.1.00 Mar 10, 2006 page 19 of 23 3.0 HA1630S01/02/03 Series Test Circuits 1. Power Supply Rejection Ratio, PSRP & Voltage Offset, VIO VIO VDD VIO = VO − RF RS 2 × RS R S + RF PSRR − + VO RS VDD VDD PSRR = −20log 2 VO1 − VO2 VDD1 − VDD2 × RS RS + RF Measure VO corresponding to VDD1 = 1.8 V and VDD2 = 5.5 V 2. Supply Current, IDD 3. Input Bias Current, IIB VDD VDD A − + − + VDD VDD 2 2 4. Output High Voltage, VOH VOH VDD RL = 1 MΩ VIN1 = VDD / 2 − 0.05 V VIN2 = VDD / 2 + 0.05 V − + VIN1 VIN2 VO RL 5. Output Low Voltage, VOL VOL VDD RL = 1 MΩ VIN1 = VDD / 2 + 0.05 V VIN2 = VDD / 2 − 0.05 V − + VIN1 VIN2 Rev.1.00 Mar 10, 2006 page 20 of 23 RL VO A HA1630S01/02/03 Series 6. Output Source Current, IOSOURCE & Output Sink Current, IOSINK VDD IOSOURCE VO = VDD − 0.5 V VIN1 = VDD / 2 − 0.05 V VIN2 = VDD / 2 + 0.05 V − + VIN1 A IOSINK VIN2 VO = + 0.5 V VIN1 = VDD / 2 + 0.05 V VIN2 = VDD / 2 − 0.05 V VO 7. Common Mode Input Voltage, VCM & Common Mode Rejection Ratio, CMRR VDD CMRR RF RS RS VO1 − VO2 CMRR = −20log − + VIN1 − VIN2 VO RF × RS RS + RF Measure VO corresponding to VIN1 = 0 V and VIN2 = 2.1 V VDD VIN 2 8. Total Harmonic Distortion, THD VDD RF Gain Variable RS THD VDD Gain Variable 1 + RF / RS = 100 freq = 100 Hz, 1 kHz, 10 kHz Gain = +1 − + − + VO VIN VO VIN VSS VSS 9. Slew Rate, SR 10. Gain, AV & Phase, GBW VDD VDD RF RS − + − + VO 1 MΩ 20 pF VSS Rev.1.00 Mar 10, 2006 page 21 of 23 VO 1 MΩ RS VSS 20 pF HA1630S01/02/03 Series Package Dimensions JEITA Package Code SC-74A Package Name MPAK-5 RENESAS Code PLSP0005ZB-A Previous Code MPAK-5 / MPAK-5V MASS[Typ.] 0.015g D A e Q E HE LP L A c Reference Dimension in Millimeters Symbol Min Nom Max L1 A3 A x M S b A e A2 A e1 A1 y S S b b1 I1 c1 c b2 A-A Section JEITA Package Code Pattern of terminal position areas RENESAS Code SC-88A Previous Code PTSP0005ZC-A D CMPAK-5 / CMPAK-5V A A1 A2 A3 b b1 c c1 D E e HE L L1 LP x y b2 e1 I1 Q 1.0 0 1.0 0.35 0.1 2.8 1.5 2.5 0.3 0.1 0.2 1.1 0.25 0.42 0.4 0.13 0.11 2.95 1.6 0.95 2.8 1.3 0.1 1.2 0.5 0.15 3.1 1.8 3.0 0.7 0.5 0.6 0.05 0.05 0.55 2.15 0.85 0.3 MASS[Typ.] 0.006g A e Q c E HE LP L A A x M L1 S Reference Symbol A3 b A A A1 A2 A3 b b1 c c1 D E e e A2 A A1 y S S e1 b b1 c1 l1 c b2 A-A Section Rev.1.00 Mar 10, 2006 page 22 of 23 Pattern of terminal position areas HE L L1 LP x y Dimension in Millimeters Min 0.8 0 0.8 0.15 0.1 1.8 1.15 1.8 0.3 0.1 0.2 Nom 0.9 0.25 0.22 0.2 0.13 0.11 2.0 1.25 0.65 2.1 b2 e1 1.5 l1 Q 0.25 Max 1.1 0.1 1.0 0.3 0.15 2.2 1.35 2.4 0.7 0.5 0.6 0.05 0.05 0.35 0.9 HA1630S01/02/03 Series Taping & Reel Specification [Taping] Package Code MPAK-5 CMPAK-5 W 8 8 P 4 4 Ao 3.3 2.25 Bo 3.3 2.45 Ko 1.5 1.1 E 1.75 1.75 F 3.5 3.5 D1 1.05 1.05 Maximum Storage No. 3,000 pcs/reel 3,000 pcs/reel 4.0 φ 1.5 Unit: mm E 2.0 Cover tape B0 W F A0 D1 P Tape withdraw direction [Ordering Information] Ordering Unit 3,000 pcs 9.0 Mark Indication Index band Marking 1 B = Contorol code ( or blank) Rev.1.00 Mar 10, 2006 page 23 of 23 1A : HA1630S01 1B : HA1630S02 1C : HA1630S03 φ178 ± 2 2.0 ± 0.5 W2 9 9 4 ± 0.5 W1 11.4 11.4 0° Tape width 8 8 12 [Reel] Package MPAK-5 CMPAK-5 11.4 φ13 ± 0.5 K0 Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Keep safety first in your circuit designs! 1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap. Notes regarding these materials 1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party. 2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials. 3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein. The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors. Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com). 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein. 5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use. 6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials. 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited. 8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein. http://www.renesas.com RENESAS SALES OFFICES Refer to "http://www.renesas.com/en/network" for the latest and detailed information. Renesas Technology America, Inc. 450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501 Renesas Technology Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900 Renesas Technology (Shanghai) Co., Ltd. Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7898 Renesas Technology Hong Kong Ltd. 7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2730-6071 Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999 Renesas Technology Singapore Pte. Ltd. 1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001 Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145 Renesas Technology Malaysia Sdn. Bhd Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510 © 2006. Renesas Technology Corp., All rights reserved. Printed in Japan. Colophon .6.0