HFA1155 TM Data Sheet June 2000 380MHz, SOT-23, Low Power Current Feedback Operational Amplifier The HFA1155 is a low power, high-speed op amp and is the most recent addition to Intersil’s HFA1XX5 series of low power op amps and buffers. Intersil's proprietary complementary bipolar UHF-1 process, coupled with the current feedback architecture deliver superb bandwidth even at very high gains (>250MHz at AV = 10). The excellent video parameters make this amplifier ideal for professional video applications. Though specified for ±5V operation, the HFA1155 operates with single supply voltages as low as 4.5V, and requires only 1.4mA of ICC in 5V applications (see Application Information section, and Application Note AN9897). For a lower distortion, higher bandwidth amplifier in a SOT23 package, please refer to the HFA1150 data sheet. Features • Low Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5.5mA • Low Distortion (10MHz, HD2). . . . . . . . . . . . . . . . . -53dBc • -3dB Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . 380MHz • High Slew Rate. . . . . . . . . . . . . . . . . . . . . . . . . . 1700V/µs • Fast Settling Time (0.1%) . . . . . . . . . . . . . . . . . . . . . 30ns • Excellent Gain Flatness . . . . . . . . . . . ±0.04dB to 50MHz • High Output Current . . . . . . . . . . . . . . . . . . . . . . . . . 55mA • Fast Overdrive Recovery . . . . . . . . . . . . . . . . . . . . . <7ns • Operates with 5V Single Supply (See AN9897) Applications • Video Switching and Routing • IF Signal Processing TEMP. RANGE (oC) PACKAGE PKG. NO. • Flash A/D Driver HFA1155IB (H1155I) -40 to 85 8 Ld SOIC M8.15 • Medical Imaging Systems HFA1155IB96 (H1155I) -40 to 85 8 Ld SOIC Tape and Reel M8.15 • Related Literature - AN9420, Current Feedback Theory - AN9897, Single 5V Supply Operation HFA1155IH96 (1155) -40 to 85 5 Ld SOT-23 Tape and Reel P5.064 HFA11XXEVAL 4863 • Pulse and Video Amplifiers Ordering Information PART NUMBER (BRAND) File Number DIP Evaluation Board for High-Speed Op Amps OPAMPSOT23EVAL SOT-23 Evaluation Board for High-Speed Op Amps Pinouts HFA1155 (SOIC) TOP VIEW 1 -IN 2 +IN V- OUT 1 8 NC 7 V+ V- 3 6 OUT +IN 3 4 5 NC + 1 2 5 V+ + NC HFA1155 (SOT23) TOP VIEW 4 -IN CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. 1-888-INTERSIL or 321-724-7143 | Intersil and Design is a trademark of Intersil Corporation. | Copyright © Intersil Corporation 2000 HFA1155 Absolute Maximum Ratings TA = 25oC Thermal Information Thermal Resistance (Typical, Note 1) θJA (oC/W) SOIC Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 SOT-23 Package . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 Moisture Sensitivity (see Technical Brief TB363) SOIC Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Level 1 SOT-23 Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Level 1 Maximum Junction Temperature (Plastic Package) . . . . . . . . .150oC Maximum Storage Temperature Range . . . . . . . . . . -65oC to 150oC Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . 300oC (Lead Tips Only) Voltage Between V+ and V- . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12V Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VSUPPLY Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5V Output Current (50% Duty Cycle) . . . . . . . . . . . . . . . . . . . . . . 60mA ESD Rating Human Body Model (Per MIL-STD-883 Method 3015.7) . . . 600V Operating Conditions Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . -40oC to 85oC CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. NOTE: 1. θJA is measured with the component mounted on a low effective thermal conductivity test board in free air. See Tech Brief TB379 for details. VSUPPLY = ±5V, AV = +1, RF = 510Ω, RL = 100Ω, Unless Otherwise Specified Electrical Specifications PARAMETER TEST CONDITIONS (NOTE 2) TEST TEMP. LEVEL (oC) HFA1155IB (SOIC) HFA1155IH (SOT-23) MIN TYP MAX MIN TYP MAX UNITS 2 6 - 2 6 mV INPUT CHARACTERISTICS Input Offset Voltage (Note 3) A 25 - A Full - - 10 - - 10 mV Input Offset Voltage Drift C Full - 10 - - 10 - µV/oC A 25 40 46 - 40 46 - dB A Full 38 - - 38 - - dB A 25 45 50 - 45 50 - dB A Full 42 - - 42 - - dB A 25 - 25 40 - 25 40 µA A Full - - 65 - - 65 µA C Full - 40 - - 40 - nA/oC ∆VCM = ±2V VIO CMRR ∆VS = ±1.25V VIO PSRR Non-Inverting Input Bias Current (Note 3) +IN = 0V +IBIAS Drift ∆VCM = ±2V +IBIAS CMS Inverting Input Bias Current (Note 3) -IN = 0V -IBIAS Drift ∆VCM = ±2V -IBIAS CMS ∆VS = ±1.25V A 25 - 20 40 - 20 40 µA/V A Full - - 50 - - 50 µA/V A 25 - 12 50 - 12 50 µA A Full - - 60 - - 60 µA C Full - 40 - - 40 - nA/oC A 25 - 1 7 - 1 7 µA/V A Full - - 10 - - 10 µA/V A 25 - 6 15 - 6 15 µA/V A Full - - 27 - - 27 µA/V Non-Inverting Input Resistance A 25 25 50 - 25 50 - kΩ Inverting Input Resistance C 25 - 40 - - 40 - Ω -IBIAS PSS Input Capacitance (Either Input) B 25 - 2 - - 2 - pF Input Common Mode Range C Full ±2.5 ±3.0 - ±2.5 ±3.0 - V Input Noise Voltage (Note 3) 100kHz B 25 - 4.7 - - 4.7 - nV/√Hz +Input Noise Current (Note 3) 100kHz B 25 - 26 - - 26 - pA/√Hz -Input Noise Current (Note 3) 100kHz B 25 - 35 - - 35 - pA/√Hz Open Loop Transimpedance Gain (Note 3) B 25 - 630 - - 630 - kΩ Minimum Stable Gain A Full 1 - - 1 - - V/V TRANSFER CHARACTERISTICS 2 HFA1155 VSUPPLY = ±5V, AV = +1, RF = 510Ω, RL = 100Ω, Unless Otherwise Specified (Continued) Electrical Specifications PARAMETER TEST CONDITIONS (NOTE 2) TEST TEMP. LEVEL (oC) HFA1155IB (SOIC) HFA1155IH (SOT-23) MIN TYP MAX MIN TYP MAX UNITS AC CHARACTERISTICS AV = +2, (Note 4) Unless Otherwise Specified -3dB Bandwidth (VOUT = 0.2VP-P, Note 3) AV = -1 B 25 - 370 - - 360 - MHz AV = +1 B 25 - 370 - - 365 - MHz AV = +2 B 25 - 380 - - 355 - MHz -3dB Bandwidth (VOUT = 2VP-P) AV = +2 B 25 - 175 - - 170 - MHz Gain Flatness (VOUT = 0.2VP-P, Note 3) To 25MHz B 25 - ±0.03 - - ±0.06 - dB To 50MHz B 25 - ±0.04 - - ±0.06 - dB To 100MHz B 25 - ±0.15 - - ±0.1 - dB Full Power Bandwidth (VOUT = 5VP-P at AV = +2; VOUT = 4VP-P at AV = +1, Note 3) AV = +1 B 25 - 50 - - 45 - MHz AV = +2 B 25 - 75 - - 75 - MHz A 25 ±3.0 ±3.3 - ±3.0 ±3.3 - V A Full ±2.5 ±3.0 - ±2.5 ±3.0 - V A 25, 85 ±40 ±55 - ±40 ±55 - mA A -40 ±35 ±50 - ±35 ±50 - mA OUTPUT CHARACTERISTICS AV = +2, (Note 4) Unless Otherwise Specified Output Voltage AV = -1 RL = 50Ω, AV = -1 Output Current B 25 - 0.09 - - 0.09 - Ω 2nd Harmonic Distortion (Note 3) 10MHz, VOUT = 2VP-P B 25 - -53 - - -53 - dBc 20MHz, VOUT = 2VP-P B 25 - -47 - - -47 - dBc 3rd Harmonic Distortion (Note 3) 10MHz, VOUT = 2VP-P B 25 - -66 - - -66 - dBc 20MHz, VOUT = 2VP-P B 25 - -60 - - -60 - dBc 1.1 - - 1.1 - ns DC Closed Loop Output Resistance (Note 3) TRANSIENT CHARACTERISTICS AV = +2, (Note 4) Unless Otherwise Specified Rise and Fall Times VOUT = 0.5VP-P B 25 - Overshoot VOUT = 0.5VP-P B 25 - 12 - - 11 - % Slew Rate (VOUT = 5VP-P at AV = +2, -1; VOUT = 4VP-P at AV = +1) AV = -1 B 25 - 1700 - - 1650 - V/µs AV = +1 B 25 - 290 - - 270 - V/µs AV = +2 B 25 - 535 - - 510 - V/µs Settling Time (VOUT = 2V to 0V, Note 3) To 0.1% B 25 - 30 - - 38 - ns To 0.05% B 25 - 40 - - 50 - ns To 0.01% B 25 - 70 - - 75 - ns VIN = ±2V B 25 - 7 - - 7 - ns Overdrive Recovery Time VIDEO CHARACTERISTICS AV = +2, (Note 4) Unless Otherwise Specified Differential Gain Differential Phase NTSC, RL = 150Ω B 25 - 0.02 - - 0.02 - % NTSC, RL = 75Ω B 25 - 0.02 - - 0.02 - % NTSC, RL = 150Ω B 25 - 0.06 - - 0.06 - Degrees NTSC, RL = 75Ω B 25 - 0.12 - - 0.12 - Degrees Note 5 B Full ±2.25 - ±5.5 ±2.25 - ±5.5 V A Full - 5.5 8 - 5.5 8 mA POWER SUPPLY CHARACTERISTICS Power Supply Range Power Supply Current (Note 3) NOTES: 2. Test Level: A. Production Tested; B. Typical or Guaranteed Limit Based on Characterization; C. Design Typical for Information Only. 3. See Typical Performance Curves for more information. 4. The feedback resistor value depends on closed loop gain and package type. See the “Optimum Feedback Resistor” table in the Application Information section for values used for characterization. 5. The minimum supply voltage entry is a typical value. 3 HFA1155 Application Information Relevant Application Notes The following Application Notes pertain to the HFA1155: OPTIMUM FEEDBACK RESISTOR ACL RF (Ω) SOIC/SOT-23 BANDWIDTH (MHz) SOIC/SOT-23 -1 576/576 370/360 • AN9787-An Intuitive Approach to Understanding Current Feedback Amplifiers +1 453, (+RS = 348)/ 453, (+RS = 221) 370/365 • AN9420-Current Feedback Amplifier Theory and Applications +2 715/604 380/355 +5 402/475 300/300 +10 182/182 230/250 • AN9663-Converting from Voltage Feedback to Current Feedback Amplifiers • AN9897-Operating the HFA1155 from 5V Single Supply These publications may be obtained from Intersil’s web site (www.intersil.com) or via our AnswerFax system. Performance Differences Between Packages The HFA1155 is a high frequency current feedback amplifier. As such, it is sensitive to parasitic capacitances which influence the amplifier’s operation. The different parasitic capacitances of the SOIC and SOT-23 packages yield performance differences (notably bandwidth and bandwidth related parameters) between the two devices - see Electrical Specification tables for details. Because of these performance differences, designers should evaluate and breadboard with the same package style to be used in production. Note that some “Typical Performance Curves” have separate graphs for each package type. Graphs not labeled with a specific package type are applicable to both packages. Optimum Feedback Resistor The enclosed frequency response graphs detail the performance of the HFA1155 in various gains. Although the bandwidth dependency on ACL isn’t as severe as that of a voltage feedback amplifier, there is an appreciable decrease in bandwidth at higher gains. This decrease can be minimized by taking advantage of the current feedback amplifier’s unique relationship between bandwidth and RF. All current feedback amplifiers require a feedback resistor, even for unity gain applications, and the RF, in conjunction with the internal compensation capacitor, sets the dominant pole of the frequency response. Thus, the amplifier’s bandwidth is inversely proportional to RF. The HFA1155 is optimized for RF = 715Ω/604Ω (SOIC/SOT-23), at a gain of +2. Decreasing RF decreases stability, resulting in excessive peaking and overshoot (Note: Capacitive feedback causes the same problems due to the feedback impedance decrease at higher frequencies). At higher gains the amplifier is more stable, so RF can be decreased in a trade-off of stability for bandwidth. The table below lists recommended RF values for various gains, and the expected bandwidth. 4 5V Single Supply Operation This amplifier operates at single supply voltages down to 4.5V. The dramatic supply current reduction at this operating condition (refer also to Figure 25) makes this op amp an even better choice for low power 5V systems. Refer to Application Note AN9897 for further information. Driving Capacitive Loads Capacitive loads, such as an A/D input, or an improperly terminated transmission line will degrade the amplifier’s phase margin resulting in frequency response peaking and possible oscillations. In most cases, the oscillation can be avoided by placing a resistor (RS) in series with the output prior to the capacitance. Figure 1 details starting points for the selection of this resistor. The points on the curve indicate the RS and CL combinations for the optimum bandwidth, stability, and settling time, but experimental fine tuning is recommended. Picking a point above or to the right of the curve yields an overdamped response, while points below or left of the curve indicate areas of underdamped performance. RS and CL form a low pass network at the output, thus limiting system bandwidth well below the amplifier bandwidth of 380MHz/355MHz (SOIC/SOT-23, AV = +2). By decreasing RS as CLincreases (as illustrated by the curves), the maximum bandwidth is obtained without sacrificing stability. In spite of this, bandwidth still decreases as the load capacitance increases. For example, at AV = +2, RS = 30Ω, CL = 22pF, the SOIC bandwidth is 290MHz, but the bandwidth drops to 90MHz at AV = +2, RS = 6Ω, CL = 390pF. HFA1155 50 SERIES OUTPUT RESISTANCE (Ω) AV = +2 To order evaluation boards (part number HFA11XXEVAL or OPAMPSOT23EVAL), please contact your local sales office. The schematic and layout of the HFA11XXEVAL and OPAMPSOT23EVAL boards are shown below. 40 511Ω 511Ω 30 20 50Ω NC 1 8 2 7 0.1µF 10µF +5V 50Ω IN 10 10µF 0 3 6 4 5 50 100 150 200 250 300 350 NC 0.1µF GND GND -5V 0 OUT 400 LOAD CAPACITANCE (pF) FIGURE 1. RECOMMENDED SERIES OUTPUT RESISTOR vs LOAD CAPACITANCE FIGURE 2. HFA11XXEVAL SCHEMATIC HFA11XXEVAL TOP LAYOUT VH PC Board Layout The frequency response of this amplifier depends greatly on the amount of care taken in designing the PC board. The use of low inductance components such as chip resistors and chip capacitors is strongly recommended, while a solid ground plane is a must! Attention should be given to decoupling the power supplies. A large value (10µF) tantalum in parallel with a small value chip (0.1µF) capacitor works well in most cases. Terminated microstrip signal lines are recommended at the input and output of the device. Output capacitance, such as that resulting from an improperly terminated transmission line, will degrade the frequency response of the amplifier and may cause oscillations. In most cases, the oscillation can be avoided by placing a resistor in series with the output. Care must also be taken to minimize the capacitance to ground seen by the amplifier’s inverting input. The larger this capacitance, the worse the gain peaking, resulting in pulse overshoot and eventual instability. To reduce this capacitance, remove the ground plane under traces connected to -IN and keep these traces as short as possible. Examples of good high frequency layouts are the evaluation boards shown below. Evaluation Boards The performance of the HFA1155IB (SOIC) may be evaluated using the HFA11XX Evaluation Board and a SOIC to DIP adaptor like the Aries Electronics Part Number 08-350000-10. The SOT-23 version can be evaluated using the OPAMPSOT23EVAL board. Note that the feedback and gain setting resistors on both boards must be changed to the appropriate values listed in the “Optimum Feedback Resistor” table. 5 1 +IN VL V+ VGND HFA11XXEVAL BOTTOM LAYOUT HFA1155 OPAMPSOT23EVAL TOP LAYOUT OPAMPSOT23EVAL GND LAYOUT OPAMPSOT23EVAL BOTTOM LAYOUT 49.9Ω 499Ω OUT -5V 0.1µF 10µF 0.1µF + 3 +IN +5V 0Ω 2 0Ω 10µF 5 1 4 0Ω 499Ω 49.9Ω GND FIGURE 3. OPAMPSOT23EVAL SCHEMATIC Typical Performance Curves VSUPPLY = ±5V, RF = Value From the “Optimum Feedback Resistor” Table, TA = 25oC, RL = 100Ω, Unless Otherwise Specified 200 2.0 AV = +1 150 1.5 100 1.0 OUTPUT VOLTAGE (V) OUTPUT VOLTAGE (mV) AV = +1 50 0 -50 -100 -150 0.5 0 -0.5 -1.0 -1.5 -200 -2.0 TIME (5ns/DIV.) FIGURE 4. SMALL SIGNAL PULSE RESPONSE 6 TIME (5ns/DIV.) FIGURE 5. LARGE SIGNAL PULSE RESPONSE HFA1155 Typical Performance Curves VSUPPLY = ±5V, RF = Value From the “Optimum Feedback Resistor” Table, TA = 25oC, RL = 100Ω, Unless Otherwise Specified (Continued) 200 2.0 AV = +2 150 1.5 100 1.0 OUTPUT VOLTAGE (V) OUTPUT VOLTAGE (mV) AV = +2 50 0 -50 -100 -150 0.5 0 -0.5 -1.0 -1.5 -200 -2.0 TIME (5ns/DIV.) TIME (5ns/DIV.) FIGURE 6. SMALL SIGNAL PULSE RESPONSE FIGURE 7. LARGE SIGNAL PULSE RESPONSE 200 2.0 AV = +5 SOIC 1.5 100 OUTPUT VOLTAGE (V) OUTPUT VOLTAGE (mV) 150 AV = +10 50 0 -50 -100 -150 1.0 0.5 AV = +5 0 AV = +5 -0.5 -1.0 -1.5 AV = +5 -200 -2.0 TIME (5ns/DIV.) TIME (5ns/DIV.) FIGURE 9. LARGE SIGNAL PULSE RESPONSE FIGURE 8. SMALL SIGNAL PULSE RESPONSE 200 2.0 AV = +10 SOT-23 100 50 SOT-23 1.5 AV = +10 AV = +5 0 AV = +10 -50 -100 -150 OUTPUT VOLTAGE (V) OUTPUT VOLTAGE (mV) 150 SOIC AV = +10 1.0 0.5 AV = +5 0 AV = +5 -0.5 -1.0 -1.5 -200 -2.0 TIME (5ns/DIV.) FIGURE 10. SMALL SIGNAL PULSE RESPONSE 7 TIME (5ns/DIV.) FIGURE 11. LARGE SIGNAL PULSE RESPONSE HFA1155 GAIN 0 -3 AV = +2 -6 PHASE AV = +2 0 90 180 270 360 AV = +1 1 10 100 FREQUENCY (MHz) VOUT = 200mVP-P , SOIC 3 AV = +5 GAIN 0 -3 AV = +10 -6 PHASE AV = +5 0 90 180 AV = +10 270 360 1000 1 10 100 FREQUENCY (MHz) PHASE (DEGREES) AV = +1 NORMALIZED GAIN (dB) VOUT = 200mVP-P , SOIC 3 VSUPPLY = ±5V, RF = Value From the “Optimum Feedback Resistor” Table, TA = 25oC, RL = 100Ω, Unless Otherwise Specified (Continued) PHASE (DEGREES) NORMALIZED GAIN (dB) Typical Performance Curves 1000 FIGURE 13. FREQUENCY RESPONSE FIGURE 12. FREQUENCY RESPONSE VOUT = 5VP-P , AV = 2, SOIC VOUT = 200mVP-P , SOIC 0.4 VOUT = 4VP-P , AV = 1 NORMALIZED GAIN (dB) NORMALIZED GAIN (dB) 0.3 0.2 AV = +2 0.1 0 -0.1 AV = +1 -0.2 3 0 AV = +2 -3 AV = +1 -6 -9 -0.3 -0.4 10 FREQUENCY (MHz) 1 1000 100 0 -3 AV = +1 -6 PHASE 0 AV = +2 90 180 270 360 AV = +1 1 10 100 FREQUENCY (MHz) FIGURE 16. FREQUENCY RESPONSE 8 1000 NORMALIZED GAIN (dB) AV = +2 PHASE (DEGREES) NORMALIZED GAIN (dB) VOUT = 200mVP-P , SOT-23 GAIN 1000 FIGURE 15. FULL POWER BANDWIDTH FIGURE 14. GAIN FLATNESS 3 10 100 FREQUENCY (MHz) VOUT = 200mVP-P , SOT-23 3 AV = +5 GAIN 0 -3 AV = +10 -6 PHASE AV = +5 0 90 180 270 AV = +10 1 10 100 FREQUENCY (MHz) FIGURE 17. FREQUENCY RESPONSE 360 1000 PHASE (DEGREES) 1 HFA1155 Typical Performance Curves VSUPPLY = ±5V, RF = Value From the “Optimum Feedback Resistor” Table, TA = 25oC, RL = 100Ω, Unless Otherwise Specified (Continued) VOUT = 5VP-P , AV = 2, SOT-23 VOUT = 200mVP-P , SOT-23 0.4 AV = +1 VOUT = 4VP-P , AV = 1 NORMALIZED GAIN (dB) NORMALIZED GAIN (dB) 0.3 0.2 0.1 0 AV = +2 -0.1 AV = +1 -0.2 3 0 AV = +2 -3 -6 AV = +1 -9 -0.3 -0.4 1 10 FREQUENCY (MHz) 1 1000 100 10 100 FREQUENCY (MHz) 1000 FIGURE 19. FULL POWER BANDWIDTH FIGURE 18. GAIN FLATNESS 630 1000 6.3 180 PHASE 135 90 0.63 45 0 0.01 0.1 1 10 FREQUENCY (MHz) 100 PHASE (DEGREES) GAIN (kΩ) 63 OUTPUT RESISTANCE (Ω) GAIN 1 0.3 500 1 10 100 FREQUENCY (MHz) 1000 FIGURE 21. CLOSED LOOP OUTPUT RESISTANCE AV = +2 VOUT = 2V SOIC 0.05 0.025 0 -0.025 -0.05 -0.1 AV = +2 VOUT = 2V 0.1 SETTLING ERROR (%) SETTLING ERROR (%) 10 0.1 FIGURE 20. OPEN LOOP TRANSIMPEDANCE 0.1 100 SOT-23 0.05 0.025 0 -0.025 -0.05 -0.1 10 20 30 40 50 60 70 80 TIME (ns) FIGURE 22. SETTLING RESPONSE 9 90 100 10 20 30 40 50 60 70 80 TIME (ns) FIGURE 23. SETTLING RESPONSE 90 100 HFA1155 VSUPPLY = ±5V, RF = Value From the “Optimum Feedback Resistor” Table, TA = 25oC, RL = 100Ω, Unless Otherwise Specified (Continued) 100 9 90 8 80 7 70 6 60 ENI 5 ENI 4 I NI 3 I NI+ 50 40 30 8 7 SUPPLY CURRENT (mA) 10 NOISE CURRENT (pA/√Hz) NOISE VOLTAGE (nV/√Hz) Typical Performance Curves 6 5 4 3 2 2 20 1 10 1 0 0 0 100 1K 10K 100K 4 5 6 FREQUENCY (Hz) 8 9 10 11 12 FIGURE 25. SUPPLY CURRENT vs SUPPLY VOLTAGE FIGURE 24. INPUT NOISE vs FREQUENCY -30 -25 -30 -40 -35 50MHz DISTORTION (dBc) DISTORTION (dBc) 7 TOTAL SUPPLY VOLTAGE (V+ - V-, V) -40 20MHz -45 -50 10MHz -55 -50 50MHz 20MHz -60 -70 10MHz -80 -60 -65 -90 -6 -3 0 3 6 OUTPUT POWER (dBm) 9 FIGURE 26. 2nd HARMONIC DISTORTION vs POUT 10 12 -6 -3 0 6 3 OUTPUT POWER (dBm) 9 FIGURE 27. 3rd HARMONIC DISTORTION vs POUT 12 HFA1155 Die Characteristics DIE DIMENSIONS: PASSIVATION: 53 mils x 25mils 1350µm x 630µm Type: Nitride Thickness: 4kÅ ±0.5kÅ METALLIZATION: TRANSISTOR COUNT: Type: Metal 1: AlCu (2%)/TiW Thickness: Metal 1: 8kÅ ±0.4kÅ Type: Metal 2: AlCu (2%) Thickness: Metal 2: 16kÅ ±0.8kÅ 40 SUBSTRATE POTENTIAL (POWERED UP): Floating (Recommend Connection to V-) Metallization Mask Layout HFA1155 V+ OUT V- -IN 11 +IN HFA1155 Small Outline Plastic Packages (SOIC) M8.15 (JEDEC MS-012-AA ISSUE C) 8 LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGE N INDEX AREA H 0.25(0.010) M B M E INCHES -B- 1 2 SYMBOL 3 L SEATING PLANE -A- h x 45o A D -C- e α A1 B 0.25(0.010) M C A M C B S NOTES: 1. Symbols are defined in the “MO Series Symbol List” in Section 2.2 of Publication Number 95. 2. Dimensioning and tolerancing per ANSI Y14.5M-1982. 3. Dimension “D” does not include mold flash, protrusions or gate burrs. Mold flash, protrusion and gate burrs shall not exceed 0.15mm (0.006 inch) per side. 4. Dimension “E” does not include interlead flash or protrusions. Interlead flash and protrusions shall not exceed 0.25mm (0.010 inch) per side. 5. The chamfer on the body is optional. If it is not present, a visual index feature must be located within the crosshatched area. 6. “L” is the length of terminal for soldering to a substrate. 7. “N” is the number of terminal positions. 8. Terminal numbers are shown for reference only. 9. The lead width “B”, as measured 0.36mm (0.014 inch) or greater above the seating plane, shall not exceed a maximum value of 0.61mm (0.024 inch). 10. Controlling dimension: MILLIMETER. Converted inch dimensions are not necessarily exact. 12 MAX MIN MAX NOTES A 0.0532 0.0688 1.35 1.75 - A1 0.0040 0.0098 0.10 0.25 - B 0.013 0.020 0.33 0.51 9 C 0.0075 0.0098 0.19 0.25 - D 0.1890 0.1968 4.80 5.00 3 E 0.1497 0.1574 3.80 4.00 4 e 0.10(0.004) MILLIMETERS MIN 0.050 BSC 1.27 BSC 0.2284 0.2440 h 0.0099 0.0196 0.25 0.50 5 L 0.016 0.050 0.40 1.27 6 8o 0o N α 5.80 8 0o 6.20 - H 8 - 7 8o Rev. 0 12/93 HFA1155 Small Outline Transistor Plastic Packages (SOT23-5) P5.064 D 5 LEAD SMALL OUTLINE TRANSISTOR PLASTIC PACKAGE e1 INCHES L E CL CL e E1 b CL 0.20 (0.008) M α C C CL A A2 A1 SEATING PLANE MIN MAX MIN MAX NOTES A 0.036 0.057 0.90 1.45 - A1 0.000 0.0059 0.00 0.15 - A2 0.036 0.051 0.90 1.30 - b 0.0138 0.0196 0.35 0.50 - C 0.0036 0.0078 0.09 0.20 - D 0.111 0.118 2.80 3.00 3 E 0.103 0.118 2.60 3.00 - E1 0.060 0.068 1.50 1.75 3 e 0.0374 Ref 0.95 Ref - e1 0.0748 Ref 1.90 Ref - L 0.004 N -C- MILLIMETERS SYMBOL α 0.023 0.10 5 0o 0.60 4, 5 5 10o 0o 6 10o Rev. 0 10/98 0.10 (0.004) C NOTES: 1. Dimensioning and tolerances per ANSI 14.5M-1982. 2. Package conforms to EIAJ SC-74A (1992). 3. Dimensions D and E1 are exclusive of mold flash, protrusions, or gate burrs. 4. Footlength L measured at reference to seating plane. 5. “L” is the length of flat foot surface for soldering to substrate. 6. “N” is the number of terminal positions. 7. Controlling dimension: MILLIMETER. Converted inch dimensions are not necessarily exact. All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification. Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see web site www.intersil.com Sales Office Headquarters NORTH AMERICA Intersil Corporation P. O. Box 883, Mail Stop 53-204 Melbourne, FL 32902 TEL: (321) 724-7000 FAX: (321) 724-7240 13 EUROPE Intersil SA Mercure Center 100, Rue de la Fusee 1130 Brussels, Belgium TEL: (32) 2.724.2111 FAX: (32) 2.724.22.05 ASIA Intersil Ltd. 8F-2, 96, Sec. 1, Chien-kuo North, Taipei, Taiwan 104 Republic of China TEL: 886-2-2515-8508 FAX: 886-2-2515-8369