Data Sheet No. PD60195-D IR2010(S) & (PbF) HIGH AND LOW SIDE DRIVER Features • Floating channel designed for bootstrap operation • • • • • • • • Fully operational to 200V Tolerant to negative transient voltage, dV/dt immune Gate drive supply range from 10 to 20V Undervoltage lockout for both channels 3.3V logic compatible Separate logic supply range from 3.3V to 20V Logic and power ground ±5V offset CMOS Schmitt-triggered inputs with pull-down Shut down input turns off both channels Matched propagation delay for both channels Outputs in phase with inputs Also available LEAD-FREE Product Summary VOFFSET 200V max. IO+/- 3.0A / 3.0A typ. VOUT 10 - 20V ton/off 95 & 65 ns typ. Delay Matching 15 ns max. Applications • Audio Class D amplifiers • High power DC-DC SMPS converters • Other high frequency applications Packages Description The IR2010 is a high power, high voltage, high speed power MOSFET and IGBT drivers with independent high and low side referenced output channels, ideal for Audio Class D and DC-DC converter applications. Logic inputs are compatible with standard CMOS or LSTTL output, down to 3.0V logic. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. Propagation delays are matched to simplify use in high frequency applications. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high side configuration which operates up to 200 volts. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. Typical Connection 14-Lead PDIP 16-Lead SOIC (Refer to Lead Assignments for correct configuration). This/These diagram(s) show electrical connections only. Please refer to our Application Notes and DesignTips for proper circuit board layout. www.irf.com 1 IR2010(S) & (PbF) Absolute Maximum Ratings Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Symbol Definition VB High side floating supply voltage VS Min. Max. -0.3 225 Units High side floating supply offset voltage VB - 25 VB + 0.3 VHO High side floating output voltage VS - 0.3 VB + 0.3 VCC Low side fixed supply voltage -0.3 25 VLO Low side output voltage -0.3 VCC + 0.3 VDD Logic supply voltage -0.3 VSS + 25 VSS Logic supply offset voltage VCC - 25 VCC + 0.3 VIN Logic input voltage (HIN, LIN & SD) VSS - 0.3 VDD + 0.3 Allowable offset supply voltage transient (figure 2) — 50 Package power dissipation @ TA ≤ +25°C dVs/dt PD RTHJA Thermal resistance, junction to ambient (14 lead DIP) — 1.6 (16 lead SOIC) — 1.25 (14 lead DIP) — 75 (16 lead SOIC) — 100 TJ Junction temperature — 150 TS Storage temperature -55 150 TL Lead temperature (soldering, 10 seconds) — 300 V V/ns W °C/W °C Recommended Operating Conditions The input/output logic timing diagram is shown in figure 1. For proper operation the device should be used within the recommended conditions. The VS and VSS offset ratings are tested with all supplies biased at 15V differential. Typical ratings at other bias conditions are shown in figures 24 and 25. Symbol Min. Max. VB High side floating supply absolute voltage Definition VS + 10 VS + 20 VS High side floating supply offset voltage Units Note 1 200 VHO High side floating output voltage VS VB VCC Low side fixed supply voltage 10 20 VLO Low side output voltage 0 VCC VDD Logic supply voltage VSS + 3 VSS + 20 VSS Logic supply offset voltage -5 (Note 2) 5 VIN Logic input voltage (HIN, LIN & SD) VSS VDD TA Ambient temperature -40 125 V °C Note 1: Logic operational for VS of -4 to +200V. Logic state held for VS of -4V to -VBS. Note 2: When VDD < 5V, the minimum VSS offset is limited to -VDD. (Please refer to the Design Tip DT97-3 for more details). 2 www.irf.com IR2010(S) & (PbF) Dynamic Electrical Characteristics VBIAS (VCC, VBS, VDD) = 15V, CL = 1000 pF, TA = 25°C and VSS = COM unless otherwise specified. The dynamic electrical characteristics are measured using the test circuit shown in Figure 3. Symbol Definition Figure Min. Typ. Max. Units Test Conditions ton Turn-on propagation delay 7 50 95 135 VS = 0V toff Turn-off propagation delay 8 30 65 105 VS = 200V tsd Shutdown propagation delay 9 35 70 105 tr Turn-on rise time 10 — 10 20 tf Turn-off fall time 11 — 15 25 Delay matching, HS & LS turn-on/off 6 — — 15 MT ns VS = 200V Static Electrical Characteristics VBIAS (VCC, VBS, VDD) = 15V, TA = 25°C and VSS = COM unless otherwise specified. The VIN, VTH and IIN parameters are referenced to VSS and are applicable to all three logic input leads: HIN, LIN and SD. The VO and IO parameters are referenced to COM and are applicable to the respective output leads: HO or LO. Symbol Definition Figure Min. Typ. Max. Units Test Conditions VIH Logic “1” input voltage 12 9.5 — — VIL Logic “0” input voltage 13 — — 6.0 VIH Logic “1” input voltage 12 2 — — VIL Logic “0” input voltage 13 — — 1 VOH High level output voltage, VBIAS - VO 14 — — 1.0 IO = 0A VOL Low level output voltage, VO 15 — — 0.1 IO = 0A VDD = 15V V VDD = 3.3V ILK Offset supply leakage current 16 — — 50 VB=VS = 200V IQBS Quiescent VBS supply current 17 — 70 210 VIN = 0V or VDD IQCC Quiescent VCC supply current 18 — 100 230 VIN = 0V or VDD µA IQDD Quiescent VDD supply current 19 — 1 5 IIN+ Logic “1” input bias current 20 — 20 40 VIN = VDD IIN- 21 22 — 7.5 — 8.6 1.0 9.7 VIN = 0V 23 7.0 8.2 9.4 24 7.5 8.6 9.7 25 7.0 8.2 9.4 IO+ Logic “0” input bias current VBS supply undervoltage positive going threshold VBS supply undervoltage negative going threshold VCC supply undervoltage positive going threshold VCC supply undervoltage negative going threshold Output high short circuit pulsed current 26 2.5 3.0 — IO- Output low short circuit pulsed current 27 2.5 3.0 — VBSUV+ VBSUVVCCUV+ VCCUV- www.irf.com VIN = 0V or VDD V A VO = 0V, VIN = VDD PW ≤ 10 µs VO = 15V, VIN = 0V PW ≤ 10 µs 3 IR2010(S) & (PbF) Functional Block Diagram Lead Definitions Symbol Description VDD HIN SD LIN VSS VB HO VS VCC LO COM Logic supply Logic input for high side gate driver output (HO), in phase Logic input for shutdown Logic input for low side gate driver output (LO), in phase Logic ground High side floating supply High side gate drive output High side floating supply return Low side supply Low side gate drive output Low side return Lead Assignments 14 Lead PDIP 16 Lead SOIC (Wide Body) IR2010 IR2010S Part Number 4 www.irf.com IR2010(S) & (PbF) HV =10 to 200V HIN LIN SD <50 V/ns HO LO Figure 1. Input/Output Timing Diagram Figure 2. Floating Supply Voltage Transient Test Circuit (0 to 200V) Figure 3. Switching Time Test Circuit Figure 4. Switching Time Waveform Definition !" Figure 5. Shutdown Waveform Definitions www.irf.com Figure 6. Delay Matching Waveform Definitions 5 IR2010(S) & (PbF) 250 m ax 200 Turn-on Time (nS) Turn-on Time (nS) 250 150 typ 100 200 m ax 150 100 typ 50 50 0 0 -50 -25 0 25 50 75 100 10 125 12 Temperature (C) 20 250 Turn-off Time (nS) 250 200 m ax 150 100 typ 50 0 0 2 4 6 8 10 12 14 16 18 200 max 150 100 typ 50 0 -50 20 -25 0 25 50 75 100 125 Temperature (C) VDD Supply Voltage (V) Figure 7C. Turn-on Time vs VDD Voltage Figure 8A. Turn-off Time vs. Temperature 250 300 250 Turn-off Time (nS) 200 Turn-off Time (nS) 18 VCC/VBS Supply Voltage (V) 300 150 m ax 100 50 200 150 max 100 50 typ typ 0 0 10 12 14 16 18 VCC/VBS Supply Voltage (V) Figure 8B. Turn-off Time vs. VCC/VBS Voltage 6 16 Figure 7B. Turn-on Time vs. VCC/VBS Voltage Figure 7A. Turn-on Time vs. Temperature Turn-on Time (nS) 14 20 0 2 4 6 8 10 12 14 16 18 20 Vdd Supply Voltage (V) Figure 8C. Turn-off Time vs. VDD Voltage www.irf.com IR2010(S) & (PbF) 2 50 200 Shutdown Time (nS) Shutdown Time (nS) 250 max 150 100 typ 2 00 1 50 m ax 1 00 50 50 typ 0 0 -50 -25 0 25 50 75 100 10 125 12 14 18 20 VCC/VBS Supply Voltage (V) Temperature (C) Figure 9B. Shutdown Time vs. VCC/VBSVoltage Figure 9A. Shutdown Time vs. Temperature 40 300 Turn-on Rise Time (nS) 250 Shutdown Time (nS) 16 200 150 100 50 0 30 max 20 10 typ 0 0 2 4 6 8 10 12 14 16 18 20 -50 -25 0 VDD Supply Voltage (V) 25 50 75 100 125 Temperature (C) Figure 10A. Turn-on Rise Time vs. Temperature Figure 9C. Shutdown Time vs VDD Voltage 40 30 S) Turn-off Fall Time (nS) Turn-on Rise Time (nS) 40 max 20 10 typ max 30 20 typ 10 0 10 12 14 16 18 VBIAS Supply Voltage (V) Figure 10B. Turn-on Rise Time vs. VBIAS (VCC=VBS=VDD) Voltage www.irf.com 20 0 -50 -25 0 25 50 75 100 125 Temperature (C) Figure 11A. Turn-off Fall Time vs. Temperature 7 IR2010(S) & (PbF) 15 Logic '1' Input Threshold (V) Turn-off Fall Time (nS) 40 30 max 20 typ 10 12 0 9 min 6 3 0 10 12 14 16 18 20 -50 -25 0 Figure 11B. Turn-Off Fall Time vs. VBIAS (VCC=VBS=VDD) Voltage Logic '0' Input Threshold (V) Logic '1' Input Threshold (V ) 75 100 125 15 12 9 6 3 min 12 9 max 6 3 0 0 0 2 4 6 8 10 12 14 16 18 -50 20 -25 0 Figure 12B. Logic “1” Input Threshold vs. VDD Voltage 50 75 100 125 Figure 13A. Logic “0” Input Threshold vs. Temperature 5 12 4 High Level Output (V) 15 9 6 max 3 25 Temperature (C) VDD Logic Supply Voltage (V) Logic '0' Input Threshold (V) 50 Figure 12A. Logic “1” Input Threshold vs. Temperature 15 3 2 max 1 0 0 0 2 4 6 8 10 12 14 16 18 20 VDD Logic Supply Voltage (V) Figure 13B. Logic “0” Input Threshold vs. VDD Voltage 8 25 Temperature (C) VBIAS Supply Voltage (V) -50 -25 0 25 50 75 100 125 Temperature (C) Figure 14A. High Level Output vs. Temperature www.irf.com 5 1.0 4 0.8 Low Level Output (V) High Level Output (V) IR2010(S) & (PbF) 3 2 max 0.6 0.4 0.2 1 m ax 0.0 0 10 12 14 16 18 -50 20 -25 0 VBIAS Supply Voltage (V) 75 10 0 12 5 Figure 15A. Low Level Output vs. Temperature 1.0 300 Offset Supply Current (uA) Low Level Output (V) 50 Temperature (C) Figure 14B. High Level Output vs. VBIAS Voltage 0.8 0.6 0.4 0.2 200 m ax 100 max 0 0.0 10 12 14 16 18 -50 20 -25 0 25 50 75 100 125 Temperature (C) VBIAS Supply Voltage (V) Figure 16A. Offset Supply Current vs. Temperature Figure 15B. Low Level Output vs. VBIAS Voltage 100 500 80 400 VBS Supply Current (uA) Offset Supply Current (uA) 25 60 m ax 40 20 max 300 200 100 typ 0 0 20 40 60 80 100 120 140 160 180 200 Offset Supply Voltage (V) Figure 16B. Offset Supply Current vs. Offset Voltage www.irf.com 0 -50 -25 0 25 50 75 100 125 Temperature (C) Figure 17A. Vbs Supply Current vs. Temperature 9 500 500 400 400 VCC Supply Current (uA) VBS Supply Current (uA) IR2010(S) & (PbF) 300 max 200 100 300 max 200 100 typ typ 0 0 10 12 14 16 18 -50 20 -25 0 25 Figure 17B. Vbs Supply Current vs. VBS Voltage 100 125 20 VDD Supply Current (uA) VCC Supply Current (uA) 75 Figure 18A. Vcc Supply Current vs. Temperature 500 400 300 max 200 100 typ 10 15 10 max 5 typ 0 0 12 14 16 18 -50 20 -25 0 25 50 75 100 125 Temperature (C) VCC Voltage (V) Figure 18B. Vcc Supply Current vs. VCC Voltage Figure 19A. Vdd Supply Current vs. Temperature 10 100 Logic '1' Input Current (uA) VDD Supply Current (uA) 50 Temperature (C) VBS Floating Supply Voltage (V) 8 6 max 4 2 80 60 max 40 20 typ typ 0 2 4 6 8 10 12 0 14 16 18 VDD Voltage (V) Figure 19B. Vdd Supply Current vs. VDD Voltage 10 20 -50 -25 0 25 50 75 100 125 Temperature (C) Figure 20A. Logic “1” Input Current vs. Temperature www.irf.com IR2010(S) & (PbF) 5.0 Logic '0' Input Current (uA) Logic “1” Input Current (uA) 100 80 60 40 max 20 4.0 3.0 2.0 max 1.0 typ 0.0 0 2 4 6 8 10 12 14 16 18 -50 20 -25 0 V DD Voltage (V) 5 .0 11.0 4 .0 10.0 3 .0 2 .0 m ax 75 100 125 Max. 9.0 Typ. 8.0 Min. 7.0 1 .0 6.0 0 .0 2 4 6 8 10 12 14 16 18 20 -50 -25 0 VDD Voltage (V) 25 50 75 100 125 Temperature (°C) Figure 21B. Logic “0” Input Current vs. VDD Voltage Figure 22. VBS Undervoltage (+) vs. Temperature 11.0 11.0 VCC Undervoltage Lockout + (V) 10.0 VBS Undervoltage Lockout - (V) 50 Figure 21A. Logic “0” Input Current vs. Temperature VBS Undervoltage Lockout + (V) Logic “0” Input Current (uA) Figure 20B. Logic “1” Input Current vs. VDD Voltage Max. 9.0 Typ. 8.0 7.0 25 Temperature (C) 10.0 Max. 9.0 Typ. 8.0 Min. 7.0 Min. 6.0 6.0 -50 -25 0 25 50 75 100 Temperature (°C) Figure 23. VBS Undervoltage (-) vs. Temperature www.irf.com 125 -50 -25 0 25 50 75 100 125 Temperature (°C) Figure 24. VCC Undervoltage (+) vs. Temperature 11 IR2010(S) & (PbF) 5.0 Output Source Current (uA) Vcc Undervoltage Lockout - (V) 11.0 10.0 Max. 9.0 Typ. 8.0 7.0 Min. 4.0 typ 3.0 min 2.0 1.0 0.0 6.0 -50 -25 0 25 50 75 100 -50 125 -25 0 Figure 25. VCC Undervoltage (-) vs. Temperature 50 75 10 0 12 5 Figure 26A. Output Source Current vs. Temperature 5.0 Output Sink Current (uA) 5.0 Output Source Current (uA) 25 Temperature (C) Temperature (°C) 4.0 3.0 typ 2.0 min 1.0 4.0 typ 3.0 min 2.0 1.0 0.0 0.0 10 12 14 16 18 20 -50 -25 Vbias Supply Voltage (V) 0 25 50 75 100 125 Temperature (C) Figure 26B. Output Source Current vs. VBIAS Voltage Figure 27A. Output Sink Current vs. Temperature 200V 1 5 0 .0 0 Junction Temperature (C) Output Sink Current (uA) 5.0 4.0 3.0 typ 2.0 min 100V 1 2 5 .0 0 1 0 0 .0 0 10V 7 5 .00 5 0 .00 2 5 .00 1.0 0 .0 0 0.0 1.E + 0 3 10 12 14 16 18 20 Vbias Supply Voltage (V) Figure 27B. Output Sink Current vs. VBIAS Voltage 12 1.E + 0 4 1.E + 0 5 F re q u e n cy (H z) 1.E + 0 6 Figure 28. IR2010 Tj vs Frequency RGATE = 10 Ohm, Vcc = 15V with IRFPE50 www.irf.com IR2010(S) & (PbF) 150.00 150.00 125.00 200V 100.00 100V 10V 75.00 50.00 25.00 Ju nctio n T em perature (C ) Ju nctio n Tem perature (C ) 125.00 200V 100.00 100V 75.00 10V 50.00 25.00 0.00 0.00 1.E + 03 1.E + 04 1.E + 05 1.E + 03 1.E + 06 1.E + 04 1.E + 05 1.E + 06 Frequ ency (H z) Frequ ency (H z) Figure 29. IR2010 Tj vs Frequency RGATE = 16 Ohm, Vcc = 15V with IRFBC40 Figure 30. IR2010 Tj vs Frequency RGATE = 22 Ohm, Vcc = 15V with IRFBC30 1 5 0 .0 0 125.00 1 2 5 .0 0 200V 100.00 100V 75.00 10V 50.00 25.00 0.00 1.E + 03 100V 10V 1 0 0 .0 0 7 5 .0 0 5 0 .0 0 2 5 .0 0 0 .0 0 1.E + 04 1.E + 05 Frequ ency (H z) Figure 31. IR2010 Tj vs Frequency RGATE = 33 Ohm, Vcc = 15V with IRFBC20 www.irf.com Ju nction Tem perature (C ) Ju nction Tem perature (C ) 200V 150.00 1.E + 06 1.E + 03 1.E + 04 1.E + 05 1.E + 06 Freq uen cy (H z) Figure 32. IR2010S Tj vs Frequency RGATE = 10 Ohm, Vcc = 15V with IRFPE50 13 IR2010(S) & (PbF) 1 5 0 .0 0 150.00 200V 200V 125.00 100V 1 0 0 .0 0 10V 7 5 .0 0 5 0 .0 0 2 5 .0 0 Junction Temperature (C) Junction Temperature (C) 1 2 5 .0 0 100V 100.00 10V 75.00 50.00 25.00 0.00 0 .0 0 1.E + 03 1.E + 04 1.E + 05 1.E + 03 1.E + 06 Frequency (Hz) 1.E + 04 1.E + 05 1.E + 06 Frequency (Hz) Figure 34. IR2010S Tj vs Frequency RGATE = 22 Ohm, Vcc = 15V with IRFBC30 Figure 33. IR2010S Tj vs Frequency RGATE = 16 Ohm, Vcc = 15V with IRFBC40 150.00 Junction Temperature (C) 125.00 200V 100.00 100V 75.00 10V 50.00 25.00 0.00 1.E + 03 1.E + 04 1.E + 05 1.E + 06 Frequency (Hz) Figure 35. IR2010S Tj vs Frequency RGATE = 33 Ohm, Vcc = 15V with IRFBC20 14 www.irf.com IR2010(S) & (PbF) Case Outlines 14 Lead PDIP 16 Lead SOIC (wide body) www.irf.com 01-6010 01-3002 03 (MS-001AC) 01 6012 01-3014 03 (MS-013AA) 15 IR2010(S) & (PbF) LEADFREE PART MARKING INFORMATION Part number Date code IRxxxxxx YWW? Pin 1 Identifier ? P MARKING CODE Lead Free Released Non-Lead Free Released IR logo ?XXXX Lot Code (Prod mode - 4 digit SPN code) Assembly site code Per SCOP 200-002 ORDER INFORMATION Basic Part (Non-Lead Free) 14-Lead PDIP IR2010 order IR2010 16-Lead SOIC IR2010S order IR2010S Leadfree Part 14-Lead PDIP IR2010 order IR2010PbF 16-Lead SOIC IR2010S order IR2010SPbF IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105 This product has been qualified per industrial level Data and specifications subject to change without notice. 9/12/2004 16 www.irf.com