IRF IR21814SPBF

Data Sheet No. PD60172 Rev.G
IR2181(4)(S) & (PbF)
HIGH AND LOW SIDE DRIVER
Features
• Floating channel designed for bootstrap operation
•
•
•
•
•
•
•
•
Packages
Fully operational to +600V
Tolerant to negative transient voltage
dV/dt immune
Gate drive supply range from 10 to 20V
Undervoltage lockout for both channels
3.3V and 5V input logic compatible
Matched propagation delay for both channels
Logic and power ground +/- 5V offset.
Lower di/dt gate driver for better noise immunity
Output source/sink current capability 1.4A/1.8A
Also available LEAD-FREE (PbF)
14-Lead PDIP
IR21814
8-Lead PDIP
IR2181
14-Lead SOIC
IR21814S
8-Lead SOIC
IR2181S
IR2181/IR2183/IR2184 Feature Comparison
Description
!"!
!#!
$
%&&
The IR2181(4)(S) are high voltage,
'*7*
high speed power MOSFET and IGBT
%
!
*7%''
'*7*9
%
drivers with independent high and low
'*7:
!;
%
<!
*7%''
side referenced output channels. Pro'*7:9
#=9>;
%
'*79
!;
prietary HVIC and latch immune
%
<!
7%'?
'*799
#=9>;
%
CMOS technologies enable ruggedized monolithic construction. The logic input is compatible with standard CMOS or LSTTL output, down to
3.3V logic. The output drivers feature a high pulse current buffer stage designed for minimum driver crossconduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high side
configuration which operates up to 600 volts.
Typical Connection
IR2181
IR21814
(Refer to Lead Assignments for correct pin
configuration). This/These diagram(s) show
electrical connections only. Please refer to
our Application Notes and DesignTips for
proper circuit board layout.
www.irf.com
1
IR2181(4) (S) & (PbF)
Absolute Maximum Ratings
Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured
under board mounted and still air conditions.
Symbol
Definition
Min.
Max.
Units
VB
High side floating absolute voltage
-0.3
625
VS
High side floating supply offset voltage
VB - 25
VB + 0.3
VHO
High side floating output voltage
VS - 0.3
VB + 0.3
VCC
Low side and logic fixed supply voltage
-0.3
25
VLO
Low side output voltage
-0.3
VCC + 0.3
VIN
Logic input voltage (HIN & LIN - IR2181/IR21814)
VSS - 0.3
VSS + 10
VSS
Logic ground (IR21814 only)
VCC - 25
VCC + 0.3
—
50
dVS/dt
PD
RthJA
Allowable offset supply voltage transient
Package power dissipation @ TA ≤ +25°C
Thermal resistance, junction to ambient
(8-lead PDIP)
—
1.0
(8-lead SOIC)
—
0.625
(14-lead PDIP)
—
1.6
(14-lead SOIC)
—
1.0
(8-lead PDIP)
—
125
(8-lead SOIC)
—
200
(14-lead PDIP)
—
75
(14-lead SOIC)
—
120
TJ
Junction temperature
—
150
TS
Storage temperature
-50
150
TL
Lead temperature (soldering, 10 seconds)
—
300
V
V/ns
W
°C/W
°C
Recommended Operating Conditions
The Input/Output logic timing diagram is shown in figure 1. For proper operation the device should be used within the
recommended conditions. The VS and VSS offset rating are tested with all supplies biased at 15V differential.
Symbol
Min.
Max.
VB
High side floating supply absolute voltage
Definition
VS + 10
VS + 20
VS
High side floating supply offset voltage
Note 1
600
VHO
High side floating output voltage
VS
VB
VCC
Low side and logic fixed supply voltage
10
20
VLO
Low side output voltage
0
VCC
VIN
Logic input voltage (HIN & LIN - IR2181/IR21814)
VSS
VSS + 5
VSS
Logic ground (IR21814/IR21824 only)
-5
5
Ambient temperature
-40
125
TA
Units
V
°C
Note 1: Logic operational for VS of -5 to +600V. Logic state held for VS of -5V to -VBS. (Please refer to the Design Tip
DT97-3 for more details).
Note 2: HIN and LIN pins are internally clamped with a 5.2V zener diode.
2
www.irf.com
IR2181(4) (S) & (PbF)
Dynamic Electrical Characteristics
VBIAS (VCC, VBS) = 15V, VSS = COM, CL = 1000 pF, TA = 25°C.
Symbol
Definition
Min.
Typ.
Max. Units Test Conditions
ton
toff
Turn-on propagation delay
—
180
270
VS = 0V
Turn-off propagation delay
—
220
330
VS = 0V or 600V
MT
Delay matching, HS & LS turn-on/off
—
0
35
tr
Turn-on rise time
—
40
60
VS = 0V
tf
Turn-off fall time
—
20
35
VS = 0V
nsec
Static Electrical Characteristics
VBIAS (VCC, VBS) = 15V, VSS = COM and TA = 25°C unless otherwise specified. The VIL, VIH and IIN parameters are
referenced to VSS/COM and are applicable to the respective input leads HIN and LIN. The VO, IO and Ron parameters are
referenced to COM and are applicable to the respective output leads: HO and LO.
Symbol
Definition
VIH
Logic “1” input voltage (IR2181/IR21814 )
VIL
Min. Typ. Max. Units Test Conditions
2.7
—
—
VCC = 10V to 20V
Logic “0” input voltage (IR2181/IR21814)
—
—
0.8
VOH
High level output voltage, VBIAS - VO
—
—
1.2
IO = 0A
VOL
Low level output voltage, VO
—
—
0.1
IO = 0A
VB = VS = 600V
V
VCC = 10V to 20V
ILK
Offset supply leakage current
—
—
50
IQBS
Quiescent VBS supply current
20
60
150
IQCC
50
120
240
IIN+
Quiescent VCC supply current
Logic “1” input bias current
—
25
60
VIN = 5V
IIN-
Logic “0” input bias current
—
—
1.0
VIN = 0V
VCCUV+
VCC and VBS supply undervoltage positive going
8.0
8.9
9.8
VBSUV+
threshold
VCCUV-
VCC and VBS supply undervoltage negative going
7.4
8.2
9.0
VBSUV-
threshold
VCCUVH
Hysteresis
0.3
0.7
—
IO+
Output high short circuit pulsed current
1.4
1.9
—
IO-
Output low short circuit pulsed current
1.8
2.3
—
VIN = 0V or 5V
µA
VIN = 0V or 5V
V
VBSUVH
A
www.irf.com
VO = 0V,
PW ≤ 10 µs
VO = 15V,
PW ≤ 10 µs
3
IR2181(4) (S) & (PbF)
Functional Block Diagrams
VB
2181
UV
DETECT
HO
R
VSS/COM
LEVEL
SHIFT
HIN
HV
LEVEL
SHIFTER
Q
R
PULSE
FILTER
S
VS
PULSE
GENERATOR
VCC
UV
DETECT
VSS/COM
LEVEL
SHIFT
LIN
LO
DELAY
COM
VB
21814
UV
DETECT
HO
R
HIN
VSS/COM
LEVEL
SHIFT
HV
LEVEL
SHIFTER
R
PULSE
FILTER
Q
S
VS
PULSE
GENERATOR
VCC
UV
DETECT
LIN
VSS/COM
LEVEL
SHIFT
DELAY
LO
COM
VSS
4
www.irf.com
IR2181(4) (S) & (PbF)
Lead Definitions
Symbol Description
HIN
Logic input for high side gate driver output (HO), in phase (IR2181/IR21814)
LIN
Logic input for low side gate driver output (LO), in phase (IR2181/IR21814)
VSS
Logic Ground (IR21814 only)
VB
High side floating supply
HO
High side gate drive output
VS
High side floating supply return
VCC
Low side and logic fixed supply
LO
Low side gate drive output
COM
Low side return
Lead Assignments
HIN
VB
2
LIN
HO
7
3
COM
VS
6
4
LO
VCC
5
1
HIN
VB
8
2
LIN
HO
7
3
COM
VS
6
4
LO
VCC
5
1
8-Lead PDIP
8-Lead SOIC
IR2181
IR2181S
14
1
HIN
2
LIN
VB
13
3
VSS
HO
12
VS
11
4
HIN
2
LIN
VB
13
VSS
HO
12
VS
11
4
COM
10
6
LO
9
7
VCC
8
IR21814
14
1
3
5
14-Lead PDIP
www.irf.com
8
5
COM
10
6
LO
9
7
VCC
8
14-Lead SOIC
IR21814S
5
IR2181(4) (S) & (PbF)
;]
;]
&&
^]
Figure 1. Input/Output Timing Diagram
*]
&
^]
*]
Figure 2. Switching Time Waveform Definitions
;]
;]
*]
^]
Figure 3. Delay Matching Waveform Definitions
6
www.irf.com
500
500
Turn-on Propagation Delay (ns)
Turn-on Propagation Delay (ns)
IR2181(4) (S) & (PbF)
400
300
M ax.
200
Typ.
100
0
-50
-25
0
25
50
75
100
125
400
M ax.
300
Typ.
200
100
0
10
12
Temperature (oC)
16
18
20
Supply Voltage (V)
Figure 4A. Turn-on Propagation Delay
vs. Temperature
Figure 4B. Turn-on Propagation Delay
vs. Supply Voltage
600
Turn-off Propagation Delay (ns)
600
Turn-off Propagation Delay (ns)
14
500
400
300
M ax.
200
Typ.
100
-50
-25
0
25
50
75
100
Temperature (oC)
Figure 5A. Turn-off Propagation Delay
vs. Temperature
www.irf.com
125
500
400
M ax.
300
Typ.
200
100
0
10
12
14
16
18
20
Supply Voltage (V)
Figure 5B. Turn-off Propagation Delay
vs. Supply Voltage
7
120
120
100
100
Turn-on Rise Time (ns)
Turn-on Rise Time (ns)
IR2181(4) (S) & (PbF)
80
60
40
20
M ax.
Typ.
0
-50
80
M ax.
60
Typ.
40
20
0
-25
0
25
50
75
100
125
10
12
Temperature (oC)
Turn-off Fall Time (ns)
Turn-off Fall Time (ns)
20
80
60
40
M ax.
Typ
60
M ax.
40
Typ.
20
0
-25
0
25
50
75
100
Temperature (oC)
Figure 7A. Turn-off Fall Time vs. Temperature
8
18
Figure 6B. Turn-on Rise Time vs. Supply Voltage
80
0
-50
16
Supply Voltage (V)
Figure 6A. Turn-on Rise Time vs. Temperature
20
14
125
10
12
14
16
18
20
Supply Voltage (V)
Figure 7B. Turn-off Fall Time vs. Supply Voltage
www.irf.com
6
6
5
5
Logic "1" Input Voltage (V)
Logic "1" Input Voltage (V)
IR2181(4) (S) & (PbF)
4
3
M in.
2
1
0
-50
4
3
M in.
2
1
0
-25
0
25
50
75
100
125
10
12
Temperature (oC)
6
5
5
Logic "0" Input Voltage (V)
Logic "0" Input Voltage (V)
18
20
Figure 8B. Logic "1" Input Voltage
vs. Supply Voltage
6
4
3
2
0
-50
16
Supply Voltage (V)
Figure 8A. Logic "1" Input Voltage
vs. Temperature
1
14
M ax.
4
3
2
1
M ax.
0
-25
0
25
50
75
100
Temperature (oC)
Figure 9A. Logic "0" Input Voltage
vs. Temperature
www.irf.com
125
10
12
14
16
18
20
Supply Voltage (V)
Figure 9B. Logic "0" Input Voltage
vs. Supply Voltage
9
5
5
4
4
High Level Output (V)
High Level Output (V)
IR2181(4) (S) & (PbF)
3
2
M ax.
1
3
2
M ax.
1
0
0
-50
-25
0
25
50
75
100
10
125
12
0.5
0.4
0.4
Low Level Output (V)
Low Level Output (V)
0.5
0.3
0.2
M ax.
0.0
-50
18
20
0.3
0.2
0.1
M ax.
0.0
-25
0
25
50
75
100
125
Temperature (oC)
Figure 11A. Low Level Output vs. Temperature
10
16
Figure 10B. High Level Output vs. Supply Voltage
Figure 10A. High Level Output vs. Temperature
0.1
14
Supply Voltage (V)
Temperature (oC)
10
12
14
16
18
20
Supply Voltage (V)
Figure 11B. Low Level Output vs. Supply Voltage
www.irf.com
500
400
300
200
100
M ax.
0
-50
-25
0
25
50
75
100
125
Offset Supply Leakage Current ( ◊ A)
Offset Supply Leakage Current ( ◊ A)
IR2181(4) (S) & (PbF)
500
400
300
200
100
M ax.
0
100
200
Figure 12A. Offset Supply Leakage Current
vs. Temperature
500
600
Figure 12B. Offset Supply Leakage Current
vs. VB Boost Voltage
250
200
M ax.
150
100
Typ.
50
M in.
V BS Supply Current ( ◊ A)
250
V BS Supply Current ( ◊ A)
400
VB Boost Voltage (V)
Temperature (oC)
0
-50
300
200
150
M ax.
100
Typ.
50
M in.
0
-25
0
25
50
75
Temperature (oC)
Figure 13A. VBS Supply Current
vs. Temperature
www.irf.com
100
125
10
12
14
16
18
20
VBS Floating Supply Voltage (V)
Figure 13B. VBS Supply Current
vs. VBS Floating Supply Voltage
11
IR2181(4) (S) & (PbF)
500
V CC Supply Current ( ◊ A)
V CC Supply Current ( ◊ A)
500
400
300
M ax.
200
Typ.
100
M in.
0
-50
400
300
M ax.
200
Typ.
100
M in.
0
-25
0
25
50
75
100
125
10
12
Temperature (oC)
Logic "1" Input Bias Current ( ◊ A)
Logic "1" Input Bias Current ( ◊ A)
100
80
60
M ax.
Typ.
20
-25
0
25
50
75
100
Temperature (oC)
Figure 15A. Logic "1" Input Bias Current
vs. Temperature
12
18
20
Figure 14B. VCC Supply Current
vs. VCC Supply Voltage
120
0
-50
16
VCC Supply Voltage (V)
Figure 14A. VCC Supply Current
vs. VCC Temperature
40
14
125
120
100
80
60
40
M ax.
Typ.
20
0
10
12
14
16
18
20
Supply Voltage (V)
Figure 15B. Logic "1" Input Bias Current
vs. Supply Voltage
www.irf.com
Logic "0" Input Bias Current ( ◊ A)
5
4
3
2
M ax.
1
0
-50
-25
0
25
50
75
100
125
5
4
3
2
M ax.
1
0
10
12
14
16
18
20
Temperature (oC)
Supply Voltage (V)
Figure 16A. Logic "0" Input Bias Current
vs. Temperature
Figure 16B. Logic "0" Input Bias Current
vs. Supply Voltage
12
12
V CC and V BS UVThreshold (-) (V)
V CC and V BS UV Threshold (+) (V)
Logic "0" Input Bias Current ( ◊ A)
IR2181(4) (S) & (PbF)
11
10
M ax.
9
Typ.
M in.
8
7
6
-50
-25
0
25
50
75
100
125
Temperature (oC)
Figure 17. VCC and VBS Undervoltage Threshold (+)
vs. Temperature
www.irf.com
11
10
M ax.
9
Typ.
8
M in.
7
6
-50
-25
0
25
50
75
100
125
Temperature (oC)
Figure 18. VCC and VBS Undervoltage Threshold (-)
vs. Temperature
13
IR2181(4) (S) & (PbF)
5
Output Source Current (A)
Output Source Current (A)
5
4
3
Typ.
2
1
M in.
0
-50
-25
0
25
50
75
100
Typ.
1
M in.
125
10
12
14
16
18
Supply Voltage (V)
Figure 19A. Output Source Current
vs. Temperature
Figure 19B. Output Source Current
vs. Supply Voltage
20
5
Output Sink Current (A)
Output Sink Current (A)
14
2
Temperature (oC)
4.0
Typ.
2.0
M in.
1.0
-50
3
0
5.0
3.0
4
4
3
2
Typ.
1
M in.
0
-25
0
25
50
75
100
125
10
12
14
16
18
Temperature (oC)
Supply Voltage (V)
Figure 20A. Output Sink Current
vs. Temperature
Figure 20B. Output Sink Current
vs. Supply Voltage
20
www.irf.com
140
140
120
120
100
80
140v
70v
60
0v
40
Temperature o(C)
Temprature (oC)
IR2181(4) (S) & (PbF)
100
140v
80
70v
0v
60
40
20
1
10
100
20
1000
1
Frequency (KHz)
10
100
1000
Frequency (KHz)
Figure 21. IR2181 vs. Frequency (IRFBC20),
Rgate=33Ω , V CC=15V
Fig u re 22. IR 2181 vs . Fre q u e n cy (IR FB C 30),
R gate =22 Ω, V C C =15V
140
140
120
120
140v
100
140v
80
70v
60
0v
Temperature o(C)
Temperature (oC)
70v
100
80
60
40
40
20
20
1
10
100
1000
Frequency (KHz)
Fig u re 23. IR 2181 vs . Fre q u e n cy (IR FB C 40),
R gate =15 Ω, V C C =15V
www.irf.com
0v
1
10
100
1000
Frequency (KHz)
Fig u re 24. IR 2181 vs . Fre q u e n cy (IR FP E50),
R gate =10 Ω, V C C =15V
15
140
140
120
120
100
80
60
140v
Temperature (oC)
Temperature o(C)
IR2181(4) (S) & (PbF)
70v
40
100
80
60
140v
70v
0v
40
0v
20
20
1
10
100
1
1000
1000
Fig u re 26. IR 21814 vs . Fre q u e n cy (IR FB C 30),
R gate =22 Ω, V C C =15V
Fig u re 25. IR 21814 vs . Fre q u e n cy (IR FB C 20),
R gate =33 Ω , V C C =15V
140v
140
140
120
120
70v
100
0v
100
140v
80
70v
60
0v
40
Temperature (oC)
Temperature (oC)
100
Frequency (KHz)
Frequency (KHz)
80
60
40
20
20
1
10
100
1000
Frequency (KHz)
Fig u re 27. IR 21814 vs . Fre q u e n cy (IR FB C 40),
R gate =15 Ω, V C C =15V
16
10
1
10
100
1000
Frequency (KHz)
Fig u re 28. IR 21814 vs . Fre q u e n cy (IR FP E50),
R gate =10 Ω , V C C =15V
www.irf.com
140
140
120
120
100
80
140v
60
70v
0v
40
Temperature o(C)
Temperature (oC)
IR2181(4) (S) & (PbF)
20
140v
100
70v
80
0v
60
40
20
1
10
100
1000
1
10
Frequency (KHz)
Fig u re 30. IR 2181s vs . Fre q u e n cy (IR FB C 30),
R gate =22 Ω , V C C =15V
140V 70V 0V
140
140v 70v
120
Tempreture (oC)
120
Temperature (oC)
1000
Frequency (KHz)
Fig u re 29. IR 2181s vs . Fre q u e n cy (IR FB C 20),
R gate =33 Ω , V C C =15V
140
100
0v
100
80
60
100
80
60
40
40
20
20
1
10
100
1000
Frequency (KHz)
Fig u re 31. IR 2181s vs . Fre q u e n cy (IR FB C 40),
R gate =15 Ω, V C C =15V
www.irf.com
1
10
100
1000
Frequency (KHz)
Fig u re 32. IR 2181s vs . Fre q u e n cy (IR FP E50),
R gate =10 Ω, V C C =15V
17
140
140
120
120
100
80
60
140v
70v
Temperature (oC)
Temperature (oC)
IR2181(4) (S) & (PbF)
80
140v
60
70v
0v
40
0v
40
100
20
20
1
10
100
1
1000
140
140
120
120
140v
70v
0v
60
20
1000
Frequency (KHz)
Fig u re 35. IR 21814s vs . Fre q u e n cy (IR FB C 40),
R gate =15 Ω, V C C =15V
18
60
20
100
0v
80
40
10
140v 70v
100
40
1
1000
Fig u re 34. IR 21814s vs . Fre q u e n cy (IR FB C 30),
R gate =22 Ω , V C C =15V
Temperature o(C)
Temperature o(C)
Fig u re 33. IR 21814s vs . Fre q u e n cy (IR FB C 20),
R gate =33 Ω , V C C =15V
80
100
Frequency (KHz)
Frequency (KHz)
100
10
1
10
100
1000
Frequency (KHz)
Fig u re 36. IR 21814s vs . Fre q u e n cy (IR FP E50),
R gate =10 Ω, V C C =15V
www.irf.com
IR2181(4) (S) & (PbF)
Case outlines
01-6014
01-3003 01 (MS-001AB)
8-Lead PDIP
D
DIM
B
5
A
FOOTPRINT
8
6
7
6
5
H
E
1
6X
2
3
0.25 [.010]
4
e
A
6.46 [.255]
3X 1.27 [.050]
e1
0.25 [.010]
A1
.0688
1.35
1.75
A1 .0040
.0098
0.10
0.25
b
.013
.020
0.33
0.51
c
.0075
.0098
0.19
0.25
D
.189
.1968
4.80
5.00
.1574
3.80
4.00
E
.1497
e
.050 BASIC
e1
MAX
1.27 BASIC
.025 BASIC
0.635 BASIC
H
.2284
.2440
5.80
6.20
K
.0099
.0196
0.25
0.50
L
.016
.050
0.40
1.27
y
0°
8°
0°
8°
y
0.10 [.004]
8X L
8X c
7
C A B
NOTES:
1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994.
2. CONTROLLING DIMENSION: MILLIMETER
3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
4. OUTLINE C ONFORMS TO JEDEC OUTLINE MS-012AA.
8-Lead SOIC
www.irf.com
MIN
.0532
K x 45°
A
C
8X b
8X 1.78 [.070]
MILLIMETERS
MAX
A
8X 0.72 [.028]
INCHES
MIN
5 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS.
MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006].
6 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS.
MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010].
7 DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO
A SUBSTRATE.
01-6027
01-0021 11 (MS-012AA)
19
IR2181(4) (S) & (PbF)
14-Lead PDIP
14-Lead SOIC (narrow body)
20
01-6010
01-3002 03 (MS-001AC)
01-6019
01-3063 00 (MS-012AB)
www.irf.com
IR2181(4) (S) & (PbF)
LEADFREE PART MARKING INFORMATION
IRxxxxxx
Part number
YWW?
Date code
Pin 1
Identifier
?
P
MARKING CODE
Lead Free Released
Non-Lead Free
Released
IR logo
?XXXX
Lot Code
(Prod mode - 4 digit SPN code)
Assembly site code
Per SCOP 200-002
ORDER INFORMATION
Basic Part (Non-Lead Free)
8-Lead PDIP IR2181 order IR2181
8-Lead SOIC IR2181S order IR2181S
14-Lead PDIP IR21814 order IR21814
14-Lead SOIC IR21814 order IR21814S
Leadfree Part
8-Lead PDIP IR2181 order IR2181PbF
8-Lead SOIC IR2181S order IR2181SPbF
14-Lead PDIP IR21814 order IR21814PbF
14-Lead SOIC IR21814 order IR21814SPbF
Thisproduct has been designed and qualified for the industrial market.
Qualification Standards can be found on IR’s Web Site http://www.irf.com
Data and specifications subject to change without notice.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105
10/15/2004
www.irf.com
21