Data Sheet No. PD60172 Rev.G IR2181(4)(S) & (PbF) HIGH AND LOW SIDE DRIVER Features • Floating channel designed for bootstrap operation • • • • • • • • Packages Fully operational to +600V Tolerant to negative transient voltage dV/dt immune Gate drive supply range from 10 to 20V Undervoltage lockout for both channels 3.3V and 5V input logic compatible Matched propagation delay for both channels Logic and power ground +/- 5V offset. Lower di/dt gate driver for better noise immunity Output source/sink current capability 1.4A/1.8A Also available LEAD-FREE (PbF) 14-Lead PDIP IR21814 8-Lead PDIP IR2181 14-Lead SOIC IR21814S 8-Lead SOIC IR2181S IR2181/IR2183/IR2184 Feature Comparison Description !"! !#! $ %&& The IR2181(4)(S) are high voltage, '*7* high speed power MOSFET and IGBT % ! *7%'' '*7*9 % drivers with independent high and low '*7: !; % <! *7%'' side referenced output channels. Pro'*7:9 #=9>; % '*79 !; prietary HVIC and latch immune % <! 7%'? '*799 #=9>; % CMOS technologies enable ruggedized monolithic construction. The logic input is compatible with standard CMOS or LSTTL output, down to 3.3V logic. The output drivers feature a high pulse current buffer stage designed for minimum driver crossconduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high side configuration which operates up to 600 volts. Typical Connection IR2181 IR21814 (Refer to Lead Assignments for correct pin configuration). This/These diagram(s) show electrical connections only. Please refer to our Application Notes and DesignTips for proper circuit board layout. www.irf.com 1 IR2181(4) (S) & (PbF) Absolute Maximum Ratings Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Symbol Definition Min. Max. Units VB High side floating absolute voltage -0.3 625 VS High side floating supply offset voltage VB - 25 VB + 0.3 VHO High side floating output voltage VS - 0.3 VB + 0.3 VCC Low side and logic fixed supply voltage -0.3 25 VLO Low side output voltage -0.3 VCC + 0.3 VIN Logic input voltage (HIN & LIN - IR2181/IR21814) VSS - 0.3 VSS + 10 VSS Logic ground (IR21814 only) VCC - 25 VCC + 0.3 — 50 dVS/dt PD RthJA Allowable offset supply voltage transient Package power dissipation @ TA ≤ +25°C Thermal resistance, junction to ambient (8-lead PDIP) — 1.0 (8-lead SOIC) — 0.625 (14-lead PDIP) — 1.6 (14-lead SOIC) — 1.0 (8-lead PDIP) — 125 (8-lead SOIC) — 200 (14-lead PDIP) — 75 (14-lead SOIC) — 120 TJ Junction temperature — 150 TS Storage temperature -50 150 TL Lead temperature (soldering, 10 seconds) — 300 V V/ns W °C/W °C Recommended Operating Conditions The Input/Output logic timing diagram is shown in figure 1. For proper operation the device should be used within the recommended conditions. The VS and VSS offset rating are tested with all supplies biased at 15V differential. Symbol Min. Max. VB High side floating supply absolute voltage Definition VS + 10 VS + 20 VS High side floating supply offset voltage Note 1 600 VHO High side floating output voltage VS VB VCC Low side and logic fixed supply voltage 10 20 VLO Low side output voltage 0 VCC VIN Logic input voltage (HIN & LIN - IR2181/IR21814) VSS VSS + 5 VSS Logic ground (IR21814/IR21824 only) -5 5 Ambient temperature -40 125 TA Units V °C Note 1: Logic operational for VS of -5 to +600V. Logic state held for VS of -5V to -VBS. (Please refer to the Design Tip DT97-3 for more details). Note 2: HIN and LIN pins are internally clamped with a 5.2V zener diode. 2 www.irf.com IR2181(4) (S) & (PbF) Dynamic Electrical Characteristics VBIAS (VCC, VBS) = 15V, VSS = COM, CL = 1000 pF, TA = 25°C. Symbol Definition Min. Typ. Max. Units Test Conditions ton toff Turn-on propagation delay — 180 270 VS = 0V Turn-off propagation delay — 220 330 VS = 0V or 600V MT Delay matching, HS & LS turn-on/off — 0 35 tr Turn-on rise time — 40 60 VS = 0V tf Turn-off fall time — 20 35 VS = 0V nsec Static Electrical Characteristics VBIAS (VCC, VBS) = 15V, VSS = COM and TA = 25°C unless otherwise specified. The VIL, VIH and IIN parameters are referenced to VSS/COM and are applicable to the respective input leads HIN and LIN. The VO, IO and Ron parameters are referenced to COM and are applicable to the respective output leads: HO and LO. Symbol Definition VIH Logic “1” input voltage (IR2181/IR21814 ) VIL Min. Typ. Max. Units Test Conditions 2.7 — — VCC = 10V to 20V Logic “0” input voltage (IR2181/IR21814) — — 0.8 VOH High level output voltage, VBIAS - VO — — 1.2 IO = 0A VOL Low level output voltage, VO — — 0.1 IO = 0A VB = VS = 600V V VCC = 10V to 20V ILK Offset supply leakage current — — 50 IQBS Quiescent VBS supply current 20 60 150 IQCC 50 120 240 IIN+ Quiescent VCC supply current Logic “1” input bias current — 25 60 VIN = 5V IIN- Logic “0” input bias current — — 1.0 VIN = 0V VCCUV+ VCC and VBS supply undervoltage positive going 8.0 8.9 9.8 VBSUV+ threshold VCCUV- VCC and VBS supply undervoltage negative going 7.4 8.2 9.0 VBSUV- threshold VCCUVH Hysteresis 0.3 0.7 — IO+ Output high short circuit pulsed current 1.4 1.9 — IO- Output low short circuit pulsed current 1.8 2.3 — VIN = 0V or 5V µA VIN = 0V or 5V V VBSUVH A www.irf.com VO = 0V, PW ≤ 10 µs VO = 15V, PW ≤ 10 µs 3 IR2181(4) (S) & (PbF) Functional Block Diagrams VB 2181 UV DETECT HO R VSS/COM LEVEL SHIFT HIN HV LEVEL SHIFTER Q R PULSE FILTER S VS PULSE GENERATOR VCC UV DETECT VSS/COM LEVEL SHIFT LIN LO DELAY COM VB 21814 UV DETECT HO R HIN VSS/COM LEVEL SHIFT HV LEVEL SHIFTER R PULSE FILTER Q S VS PULSE GENERATOR VCC UV DETECT LIN VSS/COM LEVEL SHIFT DELAY LO COM VSS 4 www.irf.com IR2181(4) (S) & (PbF) Lead Definitions Symbol Description HIN Logic input for high side gate driver output (HO), in phase (IR2181/IR21814) LIN Logic input for low side gate driver output (LO), in phase (IR2181/IR21814) VSS Logic Ground (IR21814 only) VB High side floating supply HO High side gate drive output VS High side floating supply return VCC Low side and logic fixed supply LO Low side gate drive output COM Low side return Lead Assignments HIN VB 2 LIN HO 7 3 COM VS 6 4 LO VCC 5 1 HIN VB 8 2 LIN HO 7 3 COM VS 6 4 LO VCC 5 1 8-Lead PDIP 8-Lead SOIC IR2181 IR2181S 14 1 HIN 2 LIN VB 13 3 VSS HO 12 VS 11 4 HIN 2 LIN VB 13 VSS HO 12 VS 11 4 COM 10 6 LO 9 7 VCC 8 IR21814 14 1 3 5 14-Lead PDIP www.irf.com 8 5 COM 10 6 LO 9 7 VCC 8 14-Lead SOIC IR21814S 5 IR2181(4) (S) & (PbF) ;] ;] && ^] Figure 1. Input/Output Timing Diagram *] & ^] *] Figure 2. Switching Time Waveform Definitions ;] ;] *] ^] Figure 3. Delay Matching Waveform Definitions 6 www.irf.com 500 500 Turn-on Propagation Delay (ns) Turn-on Propagation Delay (ns) IR2181(4) (S) & (PbF) 400 300 M ax. 200 Typ. 100 0 -50 -25 0 25 50 75 100 125 400 M ax. 300 Typ. 200 100 0 10 12 Temperature (oC) 16 18 20 Supply Voltage (V) Figure 4A. Turn-on Propagation Delay vs. Temperature Figure 4B. Turn-on Propagation Delay vs. Supply Voltage 600 Turn-off Propagation Delay (ns) 600 Turn-off Propagation Delay (ns) 14 500 400 300 M ax. 200 Typ. 100 -50 -25 0 25 50 75 100 Temperature (oC) Figure 5A. Turn-off Propagation Delay vs. Temperature www.irf.com 125 500 400 M ax. 300 Typ. 200 100 0 10 12 14 16 18 20 Supply Voltage (V) Figure 5B. Turn-off Propagation Delay vs. Supply Voltage 7 120 120 100 100 Turn-on Rise Time (ns) Turn-on Rise Time (ns) IR2181(4) (S) & (PbF) 80 60 40 20 M ax. Typ. 0 -50 80 M ax. 60 Typ. 40 20 0 -25 0 25 50 75 100 125 10 12 Temperature (oC) Turn-off Fall Time (ns) Turn-off Fall Time (ns) 20 80 60 40 M ax. Typ 60 M ax. 40 Typ. 20 0 -25 0 25 50 75 100 Temperature (oC) Figure 7A. Turn-off Fall Time vs. Temperature 8 18 Figure 6B. Turn-on Rise Time vs. Supply Voltage 80 0 -50 16 Supply Voltage (V) Figure 6A. Turn-on Rise Time vs. Temperature 20 14 125 10 12 14 16 18 20 Supply Voltage (V) Figure 7B. Turn-off Fall Time vs. Supply Voltage www.irf.com 6 6 5 5 Logic "1" Input Voltage (V) Logic "1" Input Voltage (V) IR2181(4) (S) & (PbF) 4 3 M in. 2 1 0 -50 4 3 M in. 2 1 0 -25 0 25 50 75 100 125 10 12 Temperature (oC) 6 5 5 Logic "0" Input Voltage (V) Logic "0" Input Voltage (V) 18 20 Figure 8B. Logic "1" Input Voltage vs. Supply Voltage 6 4 3 2 0 -50 16 Supply Voltage (V) Figure 8A. Logic "1" Input Voltage vs. Temperature 1 14 M ax. 4 3 2 1 M ax. 0 -25 0 25 50 75 100 Temperature (oC) Figure 9A. Logic "0" Input Voltage vs. Temperature www.irf.com 125 10 12 14 16 18 20 Supply Voltage (V) Figure 9B. Logic "0" Input Voltage vs. Supply Voltage 9 5 5 4 4 High Level Output (V) High Level Output (V) IR2181(4) (S) & (PbF) 3 2 M ax. 1 3 2 M ax. 1 0 0 -50 -25 0 25 50 75 100 10 125 12 0.5 0.4 0.4 Low Level Output (V) Low Level Output (V) 0.5 0.3 0.2 M ax. 0.0 -50 18 20 0.3 0.2 0.1 M ax. 0.0 -25 0 25 50 75 100 125 Temperature (oC) Figure 11A. Low Level Output vs. Temperature 10 16 Figure 10B. High Level Output vs. Supply Voltage Figure 10A. High Level Output vs. Temperature 0.1 14 Supply Voltage (V) Temperature (oC) 10 12 14 16 18 20 Supply Voltage (V) Figure 11B. Low Level Output vs. Supply Voltage www.irf.com 500 400 300 200 100 M ax. 0 -50 -25 0 25 50 75 100 125 Offset Supply Leakage Current ( ◊ A) Offset Supply Leakage Current ( ◊ A) IR2181(4) (S) & (PbF) 500 400 300 200 100 M ax. 0 100 200 Figure 12A. Offset Supply Leakage Current vs. Temperature 500 600 Figure 12B. Offset Supply Leakage Current vs. VB Boost Voltage 250 200 M ax. 150 100 Typ. 50 M in. V BS Supply Current ( ◊ A) 250 V BS Supply Current ( ◊ A) 400 VB Boost Voltage (V) Temperature (oC) 0 -50 300 200 150 M ax. 100 Typ. 50 M in. 0 -25 0 25 50 75 Temperature (oC) Figure 13A. VBS Supply Current vs. Temperature www.irf.com 100 125 10 12 14 16 18 20 VBS Floating Supply Voltage (V) Figure 13B. VBS Supply Current vs. VBS Floating Supply Voltage 11 IR2181(4) (S) & (PbF) 500 V CC Supply Current ( ◊ A) V CC Supply Current ( ◊ A) 500 400 300 M ax. 200 Typ. 100 M in. 0 -50 400 300 M ax. 200 Typ. 100 M in. 0 -25 0 25 50 75 100 125 10 12 Temperature (oC) Logic "1" Input Bias Current ( ◊ A) Logic "1" Input Bias Current ( ◊ A) 100 80 60 M ax. Typ. 20 -25 0 25 50 75 100 Temperature (oC) Figure 15A. Logic "1" Input Bias Current vs. Temperature 12 18 20 Figure 14B. VCC Supply Current vs. VCC Supply Voltage 120 0 -50 16 VCC Supply Voltage (V) Figure 14A. VCC Supply Current vs. VCC Temperature 40 14 125 120 100 80 60 40 M ax. Typ. 20 0 10 12 14 16 18 20 Supply Voltage (V) Figure 15B. Logic "1" Input Bias Current vs. Supply Voltage www.irf.com Logic "0" Input Bias Current ( ◊ A) 5 4 3 2 M ax. 1 0 -50 -25 0 25 50 75 100 125 5 4 3 2 M ax. 1 0 10 12 14 16 18 20 Temperature (oC) Supply Voltage (V) Figure 16A. Logic "0" Input Bias Current vs. Temperature Figure 16B. Logic "0" Input Bias Current vs. Supply Voltage 12 12 V CC and V BS UVThreshold (-) (V) V CC and V BS UV Threshold (+) (V) Logic "0" Input Bias Current ( ◊ A) IR2181(4) (S) & (PbF) 11 10 M ax. 9 Typ. M in. 8 7 6 -50 -25 0 25 50 75 100 125 Temperature (oC) Figure 17. VCC and VBS Undervoltage Threshold (+) vs. Temperature www.irf.com 11 10 M ax. 9 Typ. 8 M in. 7 6 -50 -25 0 25 50 75 100 125 Temperature (oC) Figure 18. VCC and VBS Undervoltage Threshold (-) vs. Temperature 13 IR2181(4) (S) & (PbF) 5 Output Source Current (A) Output Source Current (A) 5 4 3 Typ. 2 1 M in. 0 -50 -25 0 25 50 75 100 Typ. 1 M in. 125 10 12 14 16 18 Supply Voltage (V) Figure 19A. Output Source Current vs. Temperature Figure 19B. Output Source Current vs. Supply Voltage 20 5 Output Sink Current (A) Output Sink Current (A) 14 2 Temperature (oC) 4.0 Typ. 2.0 M in. 1.0 -50 3 0 5.0 3.0 4 4 3 2 Typ. 1 M in. 0 -25 0 25 50 75 100 125 10 12 14 16 18 Temperature (oC) Supply Voltage (V) Figure 20A. Output Sink Current vs. Temperature Figure 20B. Output Sink Current vs. Supply Voltage 20 www.irf.com 140 140 120 120 100 80 140v 70v 60 0v 40 Temperature o(C) Temprature (oC) IR2181(4) (S) & (PbF) 100 140v 80 70v 0v 60 40 20 1 10 100 20 1000 1 Frequency (KHz) 10 100 1000 Frequency (KHz) Figure 21. IR2181 vs. Frequency (IRFBC20), Rgate=33Ω , V CC=15V Fig u re 22. IR 2181 vs . Fre q u e n cy (IR FB C 30), R gate =22 Ω, V C C =15V 140 140 120 120 140v 100 140v 80 70v 60 0v Temperature o(C) Temperature (oC) 70v 100 80 60 40 40 20 20 1 10 100 1000 Frequency (KHz) Fig u re 23. IR 2181 vs . Fre q u e n cy (IR FB C 40), R gate =15 Ω, V C C =15V www.irf.com 0v 1 10 100 1000 Frequency (KHz) Fig u re 24. IR 2181 vs . Fre q u e n cy (IR FP E50), R gate =10 Ω, V C C =15V 15 140 140 120 120 100 80 60 140v Temperature (oC) Temperature o(C) IR2181(4) (S) & (PbF) 70v 40 100 80 60 140v 70v 0v 40 0v 20 20 1 10 100 1 1000 1000 Fig u re 26. IR 21814 vs . Fre q u e n cy (IR FB C 30), R gate =22 Ω, V C C =15V Fig u re 25. IR 21814 vs . Fre q u e n cy (IR FB C 20), R gate =33 Ω , V C C =15V 140v 140 140 120 120 70v 100 0v 100 140v 80 70v 60 0v 40 Temperature (oC) Temperature (oC) 100 Frequency (KHz) Frequency (KHz) 80 60 40 20 20 1 10 100 1000 Frequency (KHz) Fig u re 27. IR 21814 vs . Fre q u e n cy (IR FB C 40), R gate =15 Ω, V C C =15V 16 10 1 10 100 1000 Frequency (KHz) Fig u re 28. IR 21814 vs . Fre q u e n cy (IR FP E50), R gate =10 Ω , V C C =15V www.irf.com 140 140 120 120 100 80 140v 60 70v 0v 40 Temperature o(C) Temperature (oC) IR2181(4) (S) & (PbF) 20 140v 100 70v 80 0v 60 40 20 1 10 100 1000 1 10 Frequency (KHz) Fig u re 30. IR 2181s vs . Fre q u e n cy (IR FB C 30), R gate =22 Ω , V C C =15V 140V 70V 0V 140 140v 70v 120 Tempreture (oC) 120 Temperature (oC) 1000 Frequency (KHz) Fig u re 29. IR 2181s vs . Fre q u e n cy (IR FB C 20), R gate =33 Ω , V C C =15V 140 100 0v 100 80 60 100 80 60 40 40 20 20 1 10 100 1000 Frequency (KHz) Fig u re 31. IR 2181s vs . Fre q u e n cy (IR FB C 40), R gate =15 Ω, V C C =15V www.irf.com 1 10 100 1000 Frequency (KHz) Fig u re 32. IR 2181s vs . Fre q u e n cy (IR FP E50), R gate =10 Ω, V C C =15V 17 140 140 120 120 100 80 60 140v 70v Temperature (oC) Temperature (oC) IR2181(4) (S) & (PbF) 80 140v 60 70v 0v 40 0v 40 100 20 20 1 10 100 1 1000 140 140 120 120 140v 70v 0v 60 20 1000 Frequency (KHz) Fig u re 35. IR 21814s vs . Fre q u e n cy (IR FB C 40), R gate =15 Ω, V C C =15V 18 60 20 100 0v 80 40 10 140v 70v 100 40 1 1000 Fig u re 34. IR 21814s vs . Fre q u e n cy (IR FB C 30), R gate =22 Ω , V C C =15V Temperature o(C) Temperature o(C) Fig u re 33. IR 21814s vs . Fre q u e n cy (IR FB C 20), R gate =33 Ω , V C C =15V 80 100 Frequency (KHz) Frequency (KHz) 100 10 1 10 100 1000 Frequency (KHz) Fig u re 36. IR 21814s vs . Fre q u e n cy (IR FP E50), R gate =10 Ω, V C C =15V www.irf.com IR2181(4) (S) & (PbF) Case outlines 01-6014 01-3003 01 (MS-001AB) 8-Lead PDIP D DIM B 5 A FOOTPRINT 8 6 7 6 5 H E 1 6X 2 3 0.25 [.010] 4 e A 6.46 [.255] 3X 1.27 [.050] e1 0.25 [.010] A1 .0688 1.35 1.75 A1 .0040 .0098 0.10 0.25 b .013 .020 0.33 0.51 c .0075 .0098 0.19 0.25 D .189 .1968 4.80 5.00 .1574 3.80 4.00 E .1497 e .050 BASIC e1 MAX 1.27 BASIC .025 BASIC 0.635 BASIC H .2284 .2440 5.80 6.20 K .0099 .0196 0.25 0.50 L .016 .050 0.40 1.27 y 0° 8° 0° 8° y 0.10 [.004] 8X L 8X c 7 C A B NOTES: 1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994. 2. CONTROLLING DIMENSION: MILLIMETER 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES]. 4. OUTLINE C ONFORMS TO JEDEC OUTLINE MS-012AA. 8-Lead SOIC www.irf.com MIN .0532 K x 45° A C 8X b 8X 1.78 [.070] MILLIMETERS MAX A 8X 0.72 [.028] INCHES MIN 5 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006]. 6 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010]. 7 DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO A SUBSTRATE. 01-6027 01-0021 11 (MS-012AA) 19 IR2181(4) (S) & (PbF) 14-Lead PDIP 14-Lead SOIC (narrow body) 20 01-6010 01-3002 03 (MS-001AC) 01-6019 01-3063 00 (MS-012AB) www.irf.com IR2181(4) (S) & (PbF) LEADFREE PART MARKING INFORMATION IRxxxxxx Part number YWW? Date code Pin 1 Identifier ? P MARKING CODE Lead Free Released Non-Lead Free Released IR logo ?XXXX Lot Code (Prod mode - 4 digit SPN code) Assembly site code Per SCOP 200-002 ORDER INFORMATION Basic Part (Non-Lead Free) 8-Lead PDIP IR2181 order IR2181 8-Lead SOIC IR2181S order IR2181S 14-Lead PDIP IR21814 order IR21814 14-Lead SOIC IR21814 order IR21814S Leadfree Part 8-Lead PDIP IR2181 order IR2181PbF 8-Lead SOIC IR2181S order IR2181SPbF 14-Lead PDIP IR21814 order IR21814PbF 14-Lead SOIC IR21814 order IR21814SPbF Thisproduct has been designed and qualified for the industrial market. Qualification Standards can be found on IR’s Web Site http://www.irf.com Data and specifications subject to change without notice. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105 10/15/2004 www.irf.com 21