IRF IRF1405ZS

PD - 94645A
IRF1405Z
IRF1405ZS
IRF1405ZL
AUTOMOTIVE MOSFET
HEXFET® Power MOSFET
Features
l
l
l
l
l
Advanced Process Technology
Ultra Low On-Resistance
175°C Operating Temperature
Fast Switching
Repetitive Avalanche Allowed up to Tjmax
D
VDSS = 55V
RDS(on) = 4.9mΩ
G
Description
ID = 75A
S
Specifically designed for Automotive applications,
this HEXFET® Power MOSFET utilizes the latest
processing techniques to achieve extremely low
on-resistance per silicon area. Additional features
of this design are a 175°C junction operating
temperature, fast switching speed and improved
repetitive avalanche rating . These features combine to make this design an extremely efficient and
reliable device for use in Automotive applications
and a wide variety of other applications.
D2Pak
IRF1405ZS
TO-220AB
IRF1405Z
TO-262
IRF1405ZL
Absolute Maximum Ratings
Parameter
Max.
Units
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Silicon Limited)
ID @ TC = 100°C Continuous Drain Current, VGS @ 10V
150
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Package Limited)
IDM
Pulsed Drain Current
75
600
PD @TC = 25°C Power Dissipation
230
W
1.5
± 20
W/°C
V
270
mJ
c
Linear Derating Factor
VGS
Gate-to-Source Voltage
EAS (Thermally limited) Single Pulse Avalanche Energy
EAS (Tested )
Single Pulse Avalanche Energy Tested Value
d
c
IAR
Avalanche Current
EAR
Repetitive Avalanche Energy
TJ
Operating Junction and
TSTG
Storage Temperature Range
A
110
h
420
See Fig.12a, 12b, 15, 16
g
A
mJ
-55 to + 175
°C
Soldering Temperature, for 10 seconds
300 (1.6mm from case )
y
Mounting Torque, 6-32 or M3 screw
y
10 lbf in (1.1N m)
Thermal Resistance
Typ.
Max.
RθJC
Junction-to-Case
Parameter
–––
0.65
RθCS
Case-to-Sink, Flat, Greased Surface
0.50
–––
RθJA
Junction-to-Ambient
–––
62
RθJA
Junction-to-Ambient (PCB Mount, steady state)
–––
40
i
Units
°C/W
HEXFET® is a registered trademark of International Rectifier.
www.irf.com
1
08/29/03
IRF1405Z/S/L
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Min. Typ. Max. Units
V(BR)DSS
Drain-to-Source Breakdown Voltage
55
–––
–––
∆V(BR)DSS/∆TJ
Breakdown Voltage Temp. Coefficient
–––
0.049
–––
RDS(on)
Static Drain-to-Source On-Resistance
–––
3.7
4.9
VGS(th)
Gate Threshold Voltage
2.0
–––
4.0
gfs
IDSS
Forward Transconductance
88
–––
Drain-to-Source Leakage Current
–––
–––
–––
–––
250
–––
–––
200
IGSS
Gate-to-Source Forward Leakage
V
Conditions
VGS = 0V, ID = 250µA
V/°C Reference to 25°C, ID = 1mA
mΩ VGS = 10V, ID = 75A
e
V
VDS = VGS, ID = 250µA
–––
S
VDS = 25V, ID = 75A
20
µA
VDS = 55V, VGS = 0V
VDS = 55V, VGS = 0V, TJ = 125°C
nA
VGS = 20V
Gate-to-Source Reverse Leakage
–––
–––
-200
Qg
Total Gate Charge
–––
120
180
VGS = -20V
Qgs
Gate-to-Source Charge
–––
31
–––
Qgd
Gate-to-Drain ("Miller") Charge
–––
46
–––
VGS = 10V
td(on)
Turn-On Delay Time
–––
18
–––
VDD = 25V
tr
Rise Time
–––
110
–––
td(off)
Turn-Off Delay Time
–––
48
–––
tf
Fall Time
–––
82
–––
VGS = 10V
LD
Internal Drain Inductance
–––
4.5
–––
Between lead,
LS
Internal Source Inductance
–––
7.5
–––
6mm (0.25in.)
from package
Ciss
Input Capacitance
–––
4780
–––
and center of die contact
VGS = 0V
Coss
Output Capacitance
–––
770
–––
Crss
Reverse Transfer Capacitance
–––
410
–––
Coss
Output Capacitance
–––
2730
–––
VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz
Coss
Output Capacitance
–––
600
–––
VGS = 0V, VDS = 44V, ƒ = 1.0MHz
Coss eff.
Effective Output Capacitance
–––
910
–––
VGS = 0V, VDS = 0V to 44V
ID = 75A
nC
VDS = 44V
e
ID = 75A
ns
nH
RG = 4.4Ω
e
D
G
S
VDS = 25V
pF
ƒ = 1.0MHz
f
Source-Drain Ratings and Characteristics
Parameter
Min. Typ. Max. Units
IS
Continuous Source Current
ISM
(Body Diode)
Pulsed Source Current
–––
–––
600
VSD
(Body Diode)
Diode Forward Voltage
–––
–––
1.3
V
trr
Reverse Recovery Time
–––
30
46
ns
Qrr
Reverse Recovery Charge
–––
30
45
nC
ton
Forward Turn-On Time
c
–––
–––
Conditions
MOSFET symbol
75
A
D
showing the
integral reverse
G
p-n junction diode.
TJ = 25°C, IS = 75A, VGS = 0V
S
e
TJ = 25°C, IF = 75A, VDD = 25V
di/dt = 100A/µs
e
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
Notes:
 Repetitive rating; pulse width limited by
… Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical
max. junction temperature. (See fig. 11).
repetitive avalanche performance.
‚ Limited by TJmax, starting TJ = 25°C, L = 0.10mH
† This value determined from sample failure population.
RG = 25Ω, IAS = 75A, VGS =10V. Part not
100% tested to this value in production.
recommended for use above this value.
‡ This is applied to D2Pak, when mounted on 1" square PCB
ƒ Pulse width ≤ 1.0ms; duty cycle ≤ 2%.
( FR-4 or G-10 Material ). For recommended footprint and
„ Coss eff. is a fixed capacitance that gives the same
soldering techniques refer to application note #AN-994.
charging time as Coss while VDS is rising from 0 to 80%
VDSS .
2
www.irf.com
IRF1405Z/S/L
1000
1000
100
BOTTOM
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
TOP
10
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
4.5V
100
BOTTOM
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
4.5V
10
20µs PULSE WIDTH
Tj = 175°C
20µs PULSE WIDTH
Tj = 25°C
1
1
0.1
1
10
100
0.1
VDS, Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
10
100
Fig 2. Typical Output Characteristics
200
Gfs, Forward Transconductance (S)
1000
ID, Drain-to-Source Current (Α)
1
VDS, Drain-to-Source Voltage (V)
T J = 150°C
100
T J = 25°C
10
VDS = 25V
20µs PULSE WIDTH
175
150
T J = 25°C
125
100
T J = 175°C
75
50
25
0
1
4
6
8
10
VGS, Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
www.irf.com
12
0
25
50
75
100 125 150 175 200
ID,Drain-to-Source Current (A)
Fig 4. Typical Forward Transconductance
vs. Drain Current
3
IRF1405Z/S/L
100000
12.0
VGS = 0V,
f = 1 MHZ
C iss = C gs + C gd, C ds SHORTED
C rss = C gd
VGS, Gate-to-Source Voltage (V)
ID= 75A
C, Capacitance(pF)
C oss = C ds + C gd
10000
Ciss
Coss
1000
Crss
VDS= 44V
VDS= 28V
10.0
8.0
6.0
4.0
2.0
0.0
100
1
10
100
0
60
80
100
120
Fig 6. Typical Gate Charge vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance vs.
Drain-to-Source Voltage
1000.00
10000
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
40
QG Total Gate Charge (nC)
VDS, Drain-to-Source Voltage (V)
T J = 175°C
100.00
OPERATION IN THIS AREA
LIMITED BY R DS(on)
1000
10.00
100
T J = 25°C
1.00
100µsec
10
Tc = 25°C
Tj = 175°C
Single Pulse
VGS = 0V
0.10
1msec
10msec
1
0.0
0.5
1.0
1.5
2.0
VSD, Source-to-Drain Voltage (V)
Fig 7. Typical Source-Drain Diode
Forward Voltage
4
20
2.5
1
10
100
1000
VDS, Drain-to-Source Voltage (V)
Fig 8. Maximum Safe Operating Area
www.irf.com
IRF1405Z/S/L
150
Limited By Package
125
ID, Drain Current (A)
RDS(on) , Drain-to-Source On Resistance
(Normalized)
2.5
100
75
50
25
0
ID = 75A
VGS = 10V
2.0
1.5
1.0
0.5
25
50
75
100
125
150
175
-60 -40 -20 0
T C , Case Temperature (°C)
20 40 60 80 100 120 140 160 180
T J , Junction Temperature (°C)
Fig 10. Normalized On-Resistance
vs. Temperature
Fig 9. Maximum Drain Current vs.
Case Temperature
1
Thermal Response ( Z thJC )
D = 0.50
0.20
0.1
0.10
0.05
0.02
0.01
0.01
SINGLE PULSE
( THERMAL RESPONSE )
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.001
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
10
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5
IRF1405Z/S/L
500
DRIVER
L
VDS
D.U.T
RG
+
V
- DD
IAS
VGS
20V
A
0.01Ω
tp
Fig 12a. Unclamped Inductive Test Circuit
V(BR)DSS
tp
EAS , Single Pulse Avalanche Energy (mJ)
15V
ID
TOP
31A
53A
BOTTOM 75A
400
300
200
100
0
25
50
75
100
125
150
175
Starting T J , Junction Temperature (°C)
I AS
Fig 12c. Maximum Avalanche Energy
vs. Drain Current
Fig 12b. Unclamped Inductive Waveforms
QG
10 V
QGS
QGD
VG
Charge
Fig 13a. Basic Gate Charge Waveform
Current Regulator
Same Type as D.U.T.
50KΩ
12V
.2µF
.3µF
D.U.T.
+
V
- DS
VGS(th) Gate threshold Voltage (V)
4.0
3.5
3.0
2.5
ID = 250µA
2.0
1.5
1.0
-75 -50 -25
0
25
50
75 100 125 150 175 200
VGS
T J , Temperature ( °C )
3mA
IG
ID
Current Sampling Resistors
Fig 13b. Gate Charge Test Circuit
6
Fig 14. Threshold Voltage vs. Temperature
www.irf.com
IRF1405Z/S/L
10000
Avalanche Current (A)
Duty Cycle = Single Pulse
1000
Allowed avalanche Current vs
avalanche pulsewidth, tav
assuming ∆ Tj = 25°C due to
avalanche losses
0.01
100
0.05
0.10
10
1
1.0E-08
1.0E-07
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
Fig 15. Typical Avalanche Current vs.Pulsewidth
EAR , Avalanche Energy (mJ)
300
TOP
Single Pulse
BOTTOM 10% Duty Cycle
ID = 75A
250
200
150
100
50
0
25
50
75
100
125
150
Starting T J , Junction Temperature (°C)
Fig 16. Maximum Avalanche Energy
vs. Temperature
www.irf.com
175
Notes on Repetitive Avalanche Curves , Figures 15, 16:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a
temperature far in excess of Tjmax. This is validated for
every part type.
2. Safe operation in Avalanche is allowed as long asTjmax is
not exceeded.
3. Equation below based on circuit and waveforms shown in
Figures 12a, 12b.
4. PD (ave) = Average power dissipation per single
avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for
voltage increase during avalanche).
6. Iav = Allowable avalanche current.
7. ∆T = Allowable rise in junction temperature, not to exceed
Tjmax (assumed as 25°C in Figure 15, 16).
tav = Average time in avalanche.
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav) = Transient thermal resistance, see figure 11)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC
Iav = 2DT/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
7
IRF1405Z/S/L
D.U.T
Driver Gate Drive
+
ƒ
+
‚
-
„
-
P.W.
Period
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
+
V DD
• dv/dt controlled by RG
• Driver same type as D.U.T.
• ISD controlled by Duty Factor "D"
• D.U.T. - Device Under Test
D=
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer

RG
Period
P.W.
+
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
-
Body Diode
VDD
Forward Drop
Inductor Curent
ISD
Ripple ≤ 5%
* VGS = 5V for Logic Level Devices
Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
V DS
VGS
RG
RD
D.U.T.
+
-V DD
10V
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
Fig 18a. Switching Time Test Circuit
VDS
90%
10%
VGS
td(on)
tr
t d(off)
tf
Fig 18b. Switching Time Waveforms
8
www.irf.com
IRF1405Z/S/L
TO-220AB Package Outline
Dimensions are shown in millimeters (inches)
2.87 (.113)
2.62 (.103)
10.54 (.415)
10.29 (.405)
-B-
3.78 (.149)
3.54 (.139)
4.69 (.185)
4.20 (.165)
-A-
1.32 (.052)
1.22 (.048)
6.47 (.255)
6.10 (.240)
4
15.24 (.600)
14.84 (.584)
1.15 (.045)
MIN
1
2
LEAD ASSIGNMENTS
1 - GATE
2 - DRAIN
3 - SOURCE
4 - DRAIN
3
14.09 (.555)
13.47 (.530)
4.06 (.160)
3.55 (.140)
3X
1.40 (.055)
3X
1.15 (.045)
0.93 (.037)
0.69 (.027)
0.36 (.014)
3X
M
B A M
0.55 (.022)
0.46 (.018)
2.92 (.115)
2.64 (.104)
2.54 (.100)
2X
NOTES:
1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982.
3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB.
2 CONTROLLING DIMENSION : INCH
4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS.
TO-220AB Part Marking Information
EXAMPLE : THIS IS AN IRF1010
WITH ASSEMBLY
LOT CODE 9B1M
A
INTERNATIONAL
RECTIFIER
LOGO
ASSEMBLY
LOT CODE
www.irf.com
PART NUMBER
IRF1010
9246
9B 1M
DATE CODE
(YYWW)
YY = YEAR
WW = WEEK
9
IRF1405Z/S/L
D2Pak Package Outline
Dimensions are shown in millimeters (inches)
D2Pak Part Marking Information
T HIS IS AN IRF530S WIT H
LOT CODE 8024
AS S EMBLED ON WW 02, 2000
IN T HE AS S EMBLY LINE "L"
INT ERNAT IONAL
RECT IFIER
LOGO
AS S EMBLY
LOT CODE
10
PART NUMBER
F530S
DAT E CODE
YEAR 0 = 2000
WEEK 02
LINE L
www.irf.com
IRF1405Z/S/L
TO-262 Package Outline
Dimensions are shown in millimeters (inches)
IGBT
1- GATE
2- COLLECTOR
3- EMITTER
TO-262 Part Marking Information
EXAMPLE: THIS IS AN IRL3103L
LOT CODE 1789
AS SEMBLED ON WW 19, 1997
IN T HE AS S EMBLY LINE "C"
INT ERNAT IONAL
RECTIFIER
LOGO
AS SEMBLY
LOT CODE
www.irf.com
PART NUMBER
DAT E CODE
YEAR 7 = 1997
WEEK 19
LINE C
11
IRF1405Z/S/L
D2Pak Tape & Reel Information
Dimensions are shown in millimeters (inches)
TRR
1.60 (.063)
1.50 (.059)
4.10 (.161)
3.90 (.153)
FEED DIRECTION 1.85 (.073)
1.65 (.065)
1.60 (.063)
1.50 (.059)
11.60 (.457)
11.40 (.449)
0.368 (.0145)
0.342 (.0135)
15.42 (.609)
15.22 (.601)
24.30 (.957)
23.90 (.941)
TRL
10.90 (.429)
10.70 (.421)
1.75 (.069)
1.25 (.049)
4.72 (.136)
4.52 (.178)
16.10 (.634)
15.90 (.626)
FEED DIRECTION
13.50 (.532)
12.80 (.504)
27.40 (1.079)
23.90 (.941)
4
330.00
(14.173)
MAX.
NOTES :
1. COMFORMS TO EIA-418.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION MEASURED @ HUB.
4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.
60.00 (2.362)
MIN.
26.40 (1.039)
24.40 (.961)
3
30.40 (1.197)
MAX.
4
TO-220AB packages are not recommended for Surface Mount Application.
Data and specifications subject to change without notice.
This product has been designed and qualified for the Automotive [Q101] market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 08/03
12
www.irf.com