PD - 94645A IRF1405Z IRF1405ZS IRF1405ZL AUTOMOTIVE MOSFET HEXFET® Power MOSFET Features l l l l l Advanced Process Technology Ultra Low On-Resistance 175°C Operating Temperature Fast Switching Repetitive Avalanche Allowed up to Tjmax D VDSS = 55V RDS(on) = 4.9mΩ G Description ID = 75A S Specifically designed for Automotive applications, this HEXFET® Power MOSFET utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this design are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating . These features combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications. D2Pak IRF1405ZS TO-220AB IRF1405Z TO-262 IRF1405ZL Absolute Maximum Ratings Parameter Max. Units ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Silicon Limited) ID @ TC = 100°C Continuous Drain Current, VGS @ 10V 150 ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Package Limited) IDM Pulsed Drain Current 75 600 PD @TC = 25°C Power Dissipation 230 W 1.5 ± 20 W/°C V 270 mJ c Linear Derating Factor VGS Gate-to-Source Voltage EAS (Thermally limited) Single Pulse Avalanche Energy EAS (Tested ) Single Pulse Avalanche Energy Tested Value d c IAR Avalanche Current EAR Repetitive Avalanche Energy TJ Operating Junction and TSTG Storage Temperature Range A 110 h 420 See Fig.12a, 12b, 15, 16 g A mJ -55 to + 175 °C Soldering Temperature, for 10 seconds 300 (1.6mm from case ) y Mounting Torque, 6-32 or M3 screw y 10 lbf in (1.1N m) Thermal Resistance Typ. Max. RθJC Junction-to-Case Parameter ––– 0.65 RθCS Case-to-Sink, Flat, Greased Surface 0.50 ––– RθJA Junction-to-Ambient ––– 62 RθJA Junction-to-Ambient (PCB Mount, steady state) ––– 40 i Units °C/W HEXFET® is a registered trademark of International Rectifier. www.irf.com 1 08/29/03 IRF1405Z/S/L Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Min. Typ. Max. Units V(BR)DSS Drain-to-Source Breakdown Voltage 55 ––– ––– ∆V(BR)DSS/∆TJ Breakdown Voltage Temp. Coefficient ––– 0.049 ––– RDS(on) Static Drain-to-Source On-Resistance ––– 3.7 4.9 VGS(th) Gate Threshold Voltage 2.0 ––– 4.0 gfs IDSS Forward Transconductance 88 ––– Drain-to-Source Leakage Current ––– ––– ––– ––– 250 ––– ––– 200 IGSS Gate-to-Source Forward Leakage V Conditions VGS = 0V, ID = 250µA V/°C Reference to 25°C, ID = 1mA mΩ VGS = 10V, ID = 75A e V VDS = VGS, ID = 250µA ––– S VDS = 25V, ID = 75A 20 µA VDS = 55V, VGS = 0V VDS = 55V, VGS = 0V, TJ = 125°C nA VGS = 20V Gate-to-Source Reverse Leakage ––– ––– -200 Qg Total Gate Charge ––– 120 180 VGS = -20V Qgs Gate-to-Source Charge ––– 31 ––– Qgd Gate-to-Drain ("Miller") Charge ––– 46 ––– VGS = 10V td(on) Turn-On Delay Time ––– 18 ––– VDD = 25V tr Rise Time ––– 110 ––– td(off) Turn-Off Delay Time ––– 48 ––– tf Fall Time ––– 82 ––– VGS = 10V LD Internal Drain Inductance ––– 4.5 ––– Between lead, LS Internal Source Inductance ––– 7.5 ––– 6mm (0.25in.) from package Ciss Input Capacitance ––– 4780 ––– and center of die contact VGS = 0V Coss Output Capacitance ––– 770 ––– Crss Reverse Transfer Capacitance ––– 410 ––– Coss Output Capacitance ––– 2730 ––– VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz Coss Output Capacitance ––– 600 ––– VGS = 0V, VDS = 44V, ƒ = 1.0MHz Coss eff. Effective Output Capacitance ––– 910 ––– VGS = 0V, VDS = 0V to 44V ID = 75A nC VDS = 44V e ID = 75A ns nH RG = 4.4Ω e D G S VDS = 25V pF ƒ = 1.0MHz f Source-Drain Ratings and Characteristics Parameter Min. Typ. Max. Units IS Continuous Source Current ISM (Body Diode) Pulsed Source Current ––– ––– 600 VSD (Body Diode) Diode Forward Voltage ––– ––– 1.3 V trr Reverse Recovery Time ––– 30 46 ns Qrr Reverse Recovery Charge ––– 30 45 nC ton Forward Turn-On Time c ––– ––– Conditions MOSFET symbol 75 A D showing the integral reverse G p-n junction diode. TJ = 25°C, IS = 75A, VGS = 0V S e TJ = 25°C, IF = 75A, VDD = 25V di/dt = 100A/µs e Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) Notes: Repetitive rating; pulse width limited by Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical max. junction temperature. (See fig. 11). repetitive avalanche performance. Limited by TJmax, starting TJ = 25°C, L = 0.10mH This value determined from sample failure population. RG = 25Ω, IAS = 75A, VGS =10V. Part not 100% tested to this value in production. recommended for use above this value. This is applied to D2Pak, when mounted on 1" square PCB Pulse width ≤ 1.0ms; duty cycle ≤ 2%. ( FR-4 or G-10 Material ). For recommended footprint and Coss eff. is a fixed capacitance that gives the same soldering techniques refer to application note #AN-994. charging time as Coss while VDS is rising from 0 to 80% VDSS . 2 www.irf.com IRF1405Z/S/L 1000 1000 100 BOTTOM VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V TOP 10 ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP 4.5V 100 BOTTOM VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V 4.5V 10 20µs PULSE WIDTH Tj = 175°C 20µs PULSE WIDTH Tj = 25°C 1 1 0.1 1 10 100 0.1 VDS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics 10 100 Fig 2. Typical Output Characteristics 200 Gfs, Forward Transconductance (S) 1000 ID, Drain-to-Source Current (Α) 1 VDS, Drain-to-Source Voltage (V) T J = 150°C 100 T J = 25°C 10 VDS = 25V 20µs PULSE WIDTH 175 150 T J = 25°C 125 100 T J = 175°C 75 50 25 0 1 4 6 8 10 VGS, Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics www.irf.com 12 0 25 50 75 100 125 150 175 200 ID,Drain-to-Source Current (A) Fig 4. Typical Forward Transconductance vs. Drain Current 3 IRF1405Z/S/L 100000 12.0 VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd VGS, Gate-to-Source Voltage (V) ID= 75A C, Capacitance(pF) C oss = C ds + C gd 10000 Ciss Coss 1000 Crss VDS= 44V VDS= 28V 10.0 8.0 6.0 4.0 2.0 0.0 100 1 10 100 0 60 80 100 120 Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage Fig 5. Typical Capacitance vs. Drain-to-Source Voltage 1000.00 10000 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 40 QG Total Gate Charge (nC) VDS, Drain-to-Source Voltage (V) T J = 175°C 100.00 OPERATION IN THIS AREA LIMITED BY R DS(on) 1000 10.00 100 T J = 25°C 1.00 100µsec 10 Tc = 25°C Tj = 175°C Single Pulse VGS = 0V 0.10 1msec 10msec 1 0.0 0.5 1.0 1.5 2.0 VSD, Source-to-Drain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage 4 20 2.5 1 10 100 1000 VDS, Drain-to-Source Voltage (V) Fig 8. Maximum Safe Operating Area www.irf.com IRF1405Z/S/L 150 Limited By Package 125 ID, Drain Current (A) RDS(on) , Drain-to-Source On Resistance (Normalized) 2.5 100 75 50 25 0 ID = 75A VGS = 10V 2.0 1.5 1.0 0.5 25 50 75 100 125 150 175 -60 -40 -20 0 T C , Case Temperature (°C) 20 40 60 80 100 120 140 160 180 T J , Junction Temperature (°C) Fig 10. Normalized On-Resistance vs. Temperature Fig 9. Maximum Drain Current vs. Case Temperature 1 Thermal Response ( Z thJC ) D = 0.50 0.20 0.1 0.10 0.05 0.02 0.01 0.01 SINGLE PULSE ( THERMAL RESPONSE ) Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 10 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5 IRF1405Z/S/L 500 DRIVER L VDS D.U.T RG + V - DD IAS VGS 20V A 0.01Ω tp Fig 12a. Unclamped Inductive Test Circuit V(BR)DSS tp EAS , Single Pulse Avalanche Energy (mJ) 15V ID TOP 31A 53A BOTTOM 75A 400 300 200 100 0 25 50 75 100 125 150 175 Starting T J , Junction Temperature (°C) I AS Fig 12c. Maximum Avalanche Energy vs. Drain Current Fig 12b. Unclamped Inductive Waveforms QG 10 V QGS QGD VG Charge Fig 13a. Basic Gate Charge Waveform Current Regulator Same Type as D.U.T. 50KΩ 12V .2µF .3µF D.U.T. + V - DS VGS(th) Gate threshold Voltage (V) 4.0 3.5 3.0 2.5 ID = 250µA 2.0 1.5 1.0 -75 -50 -25 0 25 50 75 100 125 150 175 200 VGS T J , Temperature ( °C ) 3mA IG ID Current Sampling Resistors Fig 13b. Gate Charge Test Circuit 6 Fig 14. Threshold Voltage vs. Temperature www.irf.com IRF1405Z/S/L 10000 Avalanche Current (A) Duty Cycle = Single Pulse 1000 Allowed avalanche Current vs avalanche pulsewidth, tav assuming ∆ Tj = 25°C due to avalanche losses 0.01 100 0.05 0.10 10 1 1.0E-08 1.0E-07 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 15. Typical Avalanche Current vs.Pulsewidth EAR , Avalanche Energy (mJ) 300 TOP Single Pulse BOTTOM 10% Duty Cycle ID = 75A 250 200 150 100 50 0 25 50 75 100 125 150 Starting T J , Junction Temperature (°C) Fig 16. Maximum Avalanche Energy vs. Temperature www.irf.com 175 Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 15, 16). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see figure 11) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav 7 IRF1405Z/S/L D.U.T Driver Gate Drive + + - - P.W. Period * D.U.T. ISD Waveform Reverse Recovery Current + V DD • dv/dt controlled by RG • Driver same type as D.U.T. • ISD controlled by Duty Factor "D" • D.U.T. - Device Under Test D= VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer RG Period P.W. + Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage - Body Diode VDD Forward Drop Inductor Curent ISD Ripple ≤ 5% * VGS = 5V for Logic Level Devices Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V DS VGS RG RD D.U.T. + -V DD 10V Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % Fig 18a. Switching Time Test Circuit VDS 90% 10% VGS td(on) tr t d(off) tf Fig 18b. Switching Time Waveforms 8 www.irf.com IRF1405Z/S/L TO-220AB Package Outline Dimensions are shown in millimeters (inches) 2.87 (.113) 2.62 (.103) 10.54 (.415) 10.29 (.405) -B- 3.78 (.149) 3.54 (.139) 4.69 (.185) 4.20 (.165) -A- 1.32 (.052) 1.22 (.048) 6.47 (.255) 6.10 (.240) 4 15.24 (.600) 14.84 (.584) 1.15 (.045) MIN 1 2 LEAD ASSIGNMENTS 1 - GATE 2 - DRAIN 3 - SOURCE 4 - DRAIN 3 14.09 (.555) 13.47 (.530) 4.06 (.160) 3.55 (.140) 3X 1.40 (.055) 3X 1.15 (.045) 0.93 (.037) 0.69 (.027) 0.36 (.014) 3X M B A M 0.55 (.022) 0.46 (.018) 2.92 (.115) 2.64 (.104) 2.54 (.100) 2X NOTES: 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982. 3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB. 2 CONTROLLING DIMENSION : INCH 4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS. TO-220AB Part Marking Information EXAMPLE : THIS IS AN IRF1010 WITH ASSEMBLY LOT CODE 9B1M A INTERNATIONAL RECTIFIER LOGO ASSEMBLY LOT CODE www.irf.com PART NUMBER IRF1010 9246 9B 1M DATE CODE (YYWW) YY = YEAR WW = WEEK 9 IRF1405Z/S/L D2Pak Package Outline Dimensions are shown in millimeters (inches) D2Pak Part Marking Information T HIS IS AN IRF530S WIT H LOT CODE 8024 AS S EMBLED ON WW 02, 2000 IN T HE AS S EMBLY LINE "L" INT ERNAT IONAL RECT IFIER LOGO AS S EMBLY LOT CODE 10 PART NUMBER F530S DAT E CODE YEAR 0 = 2000 WEEK 02 LINE L www.irf.com IRF1405Z/S/L TO-262 Package Outline Dimensions are shown in millimeters (inches) IGBT 1- GATE 2- COLLECTOR 3- EMITTER TO-262 Part Marking Information EXAMPLE: THIS IS AN IRL3103L LOT CODE 1789 AS SEMBLED ON WW 19, 1997 IN T HE AS S EMBLY LINE "C" INT ERNAT IONAL RECTIFIER LOGO AS SEMBLY LOT CODE www.irf.com PART NUMBER DAT E CODE YEAR 7 = 1997 WEEK 19 LINE C 11 IRF1405Z/S/L D2Pak Tape & Reel Information Dimensions are shown in millimeters (inches) TRR 1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153) FEED DIRECTION 1.85 (.073) 1.65 (.065) 1.60 (.063) 1.50 (.059) 11.60 (.457) 11.40 (.449) 0.368 (.0145) 0.342 (.0135) 15.42 (.609) 15.22 (.601) 24.30 (.957) 23.90 (.941) TRL 10.90 (.429) 10.70 (.421) 1.75 (.069) 1.25 (.049) 4.72 (.136) 4.52 (.178) 16.10 (.634) 15.90 (.626) FEED DIRECTION 13.50 (.532) 12.80 (.504) 27.40 (1.079) 23.90 (.941) 4 330.00 (14.173) MAX. NOTES : 1. COMFORMS TO EIA-418. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION MEASURED @ HUB. 4. INCLUDES FLANGE DISTORTION @ OUTER EDGE. 60.00 (2.362) MIN. 26.40 (1.039) 24.40 (.961) 3 30.40 (1.197) MAX. 4 TO-220AB packages are not recommended for Surface Mount Application. Data and specifications subject to change without notice. This product has been designed and qualified for the Automotive [Q101] market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 08/03 12 www.irf.com