PD - 94245 IRFR15N20D IRFU15N20D SMPS MOSFET HEXFET® Power MOSFET Applications High frequency DC-DC converters l Benefits Low Gate-to-Drain Charge to Reduce Switching Losses l Fully Characterized Capacitance Including Effective COSS to Simplify Design, (See App. Note AN1001) l Fully Characterized Avalanche Voltage and Current VDSS 200V RDS(on) max ID 0.165Ω 17A l D-Pak IRFR15N20D I-Pak IRFU15N20D Absolute Maximum Ratings Parameter ID @ TC = 25°C ID @ TC = 100°C IDM PD @TC = 25°C PD @TA = 25°C VGS dv/dt TJ TSTG Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current Power Dissipation Power Dissipation* Linear Derating Factor Gate-to-Source Voltage Peak Diode Recovery dv/dt Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds Max. Units 17 12 68 140 3.0 0.96 ± 30 8.3 -55 to + 175 A W W/°C V V/ns °C 300 (1.6mm from case ) Thermal Resistance Parameter RθJC RθJA RθJA Junction-to-Case Junction-to-Ambient (PCB mount)* Junction-to-Ambient Typ. Max. Units ––– ––– ––– 1.04 50 110 °C/W Notes through are on page 10 www.irf.com 1 7/25/01 IRFR/U15N20D Static @ TJ = 25°C (unless otherwise specified) Parameter Drain-to-Source Breakdown Voltage ∆V(BR)DSS/∆TJ Breakdown Voltage Temp. Coefficient RDS(on) Static Drain-to-Source On-Resistance VGS(th) Gate Threshold Voltage V(BR)DSS IDSS Drain-to-Source Leakage Current IGSS Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Min. 200 ––– ––– 3.0 ––– ––– ––– ––– Typ. ––– 0.26 ––– ––– ––– ––– ––– ––– Max. Units Conditions ––– V VGS = 0V, ID = 250µA ––– V/°C Reference to 25°C, ID = 1mA 0.165 Ω VGS = 10V, ID = 10A 5.5 V VDS = VGS, ID = 250µA 25 VDS = 200V, VGS = 0V µA 250 VDS = 160V, VGS = 0V, TJ = 150°C 100 VGS = 30V nA -100 VGS = -30V Dynamic @ TJ = 25°C (unless otherwise specified) gfs Qg Qgs Qgd td(on) tr td(off) tf Ciss Coss Crss Coss Coss Coss eff. Parameter Forward Transconductance Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Output Capacitance Output Capacitance Effective Output Capacitance Min. 4.0 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Typ. ––– 27 6.9 14 9.7 32 17 8.9 910 170 31 1380 67 150 Max. Units Conditions ––– S VDS = 50V, ID = 10A 41 ID = 10A 10 nC VDS = 160V 21 VGS = 10V, ––– VDD = 100V ––– ID = 10A ns ––– RG = 6.8Ω ––– VGS = 10V ––– VGS = 0V ––– VDS = 25V ––– pF ƒ = 1.0MHz ––– VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz ––– VGS = 0V, VDS = 160V, ƒ = 1.0MHz ––– VGS = 0V, VDS = 0V to 160V Avalanche Characteristics Parameter EAS IAR EAR Single Pulse Avalanche Energy Avalanche Current Repetitive Avalanche Energy Typ. Max. Units ––– ––– ––– 260 10 14 mJ A mJ Diode Characteristics IS ISM VSD trr Qrr ton 2 Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse RecoveryCharge Forward Turn-On Time Min. Typ. Max. Units Conditions D MOSFET symbol 17 ––– ––– showing the A G integral reverse ––– ––– 68 S p-n junction diode. ––– ––– 1.5 V TJ = 25°C, IS = 10A, VGS = 0V ––– 130 200 ns TJ = 25°C, IF = 10A ––– 610 920 nC di/dt = 100A/µs Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) www.irf.com IRFR/U15N20D 100 100 VGS 15V 12V 10V 8.0V 7.0V 6.0V 5.5V BOTTOM 5.0V VGS 15V 12V 10V 8.0V 7.0V 6.0V 5.5V BOTTOM 5.0V 10 TOP I D , Drain-to-Source Current (A) I D , Drain-to-Source Current (A) TOP 1 0.1 5.0V 20µs PULSE WIDTH TJ = 25 °C 0.01 0.1 1 10 10 5.0V 1 100 3.5 RDS(on) , Drain-to-Source On Resistance (Normalized) I D , Drain-to-Source Current (A) 100 TJ = 175 ° C 10 1 TJ = 25 ° C 0.1 V DS = 50V 20µs PULSE WIDTH 6 7 8 9 10 11 VGS , Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics www.irf.com 10 100 Fig 2. Typical Output Characteristics Fig 1. Typical Output Characteristics 5 1 VDS , Drain-to-Source Voltage (V) VDS , Drain-to-Source Voltage (V) 0.01 20µs PULSE WIDTH TJ = 175 °C 0.1 0.1 12 ID = 17A 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -60 -40 -20 VGS = 10V 0 20 40 60 80 100 120 140 160 180 TJ , Junction Temperature ( °C) Fig 4. Normalized On-Resistance Vs. Temperature 3 IRFR/U15N20D 10000 C, Capacitance(pF) Coss = Cds + Cgd 1000 Ciss 100 Coss Crss VGS , Gate-to-Source Voltage (V) 20 VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd , Cds SHORTED Crss = Cgd ID = 10A VDS = 160V VDS = 100V VDS = 40V 16 12 8 4 FOR TEST CIRCUIT SEE FIGURE 13 10 1 10 100 1000 0 0 VDS , Drain-to-Source Voltage (V) 100 30 40 1000 OPERATION IN THIS AREA LIMITED BY R DS (on) TJ = 175 ° C ID, Drain-to-Source Current (A) ISD , Reverse Drain Current (A) 20 Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage 100 10 TJ = 25 ° C 1 0.1 0.0 V GS = 0 V 0.4 0.8 1.2 1.6 2.0 VSD ,Source-to-Drain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage 4 10 Q G , Total Gate Charge (nC) 2.4 100µsec 10 1msec 1 Tc = 25°C Tj = 175°C Single Pulse 0.1 1 10msec 10 100 1000 VDS , Drain-toSource Voltage (V) Fig 8. Maximum Safe Operating Area www.irf.com IRFR/U15N20D 20 VDS I D , Drain Current (A) VGS RD D.U.T. RG 15 + -VDD VGS Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % 10 Fig 10a. Switching Time Test Circuit 5 VDS 90% 0 25 50 75 100 125 TC , Case Temperature 150 175 ( °C) 10% VGS Fig 9. Maximum Drain Current Vs. Case Temperature td(on) tr t d(off) tf Fig 10b. Switching Time Waveforms Thermal Response (Z thJC ) 10 1 D = 0.50 0.20 P DM 0.10 0.1 t1 0.05 0.02 0.01 0.01 0.00001 t2 SINGLE PULSE (THERMAL RESPONSE) 0.0001 Notes: 1. Duty factor D = t 1 / t 2 2. Peak T J = P DM x Z thJC + TC 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5 IRFR/U15N20D L VD S D .U .T RG IA S 2V0GS V tp D R IV E R + - VD D A 0 .0 1 Ω Fig 12a. Unclamped Inductive Test Circuit V (B R )D SS tp EAS , Single Pulse Avalanche Energy (mJ) 600 1 5V TOP 500 BOTTOM ID 4.2A 7.2A 10A 400 300 200 100 0 25 50 75 100 125 150 175 Starting TJ , Junction Temperature ( °C) Fig 12c. Maximum Avalanche Energy Vs. Drain Current IAS Fig 12b. Unclamped Inductive Waveforms Current Regulator Same Type as D.U.T. 50KΩ QG 12V .2µF .3µF VGS QGS D.U.T. QGD + V - DS VGS VG 3mA IG Charge Fig 13a. Basic Gate Charge Waveform 6 ID Current Sampling Resistors Fig 13b. Gate Charge Test Circuit www.irf.com IRFR/U15N20D Peak Diode Recovery dv/dt Test Circuit + D.U.T Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer + - - + • • • • RG dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test Driver Gate Drive P.W. D= Period + - VDD P.W. Period VGS=10V * D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Curent Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 14. For N-Channel HEXFET® Power MOSFETs www.irf.com 7 IRFR/U15N20D D-Pak (TO-252AA) Package Outline Dimensions are shown in millimeters (inches) 2 .3 8 (.0 9 4 ) 2 .1 9 (.0 8 6 ) 6 .7 3 (.2 6 5 ) 6 .3 5 (.2 5 0 ) 1 .1 4 (.0 4 5 ) 0 .8 9 (.0 3 5 ) -A 1 .2 7 (.0 5 0 ) 0 .8 8 (.0 3 5 ) 5 .4 6 (.2 1 5 ) 5 .2 1 (.2 0 5 ) 0 .5 8 (.0 2 3 ) 0 .4 6 (.0 1 8 ) 4 6 .4 5 (.2 4 5 ) 5 .6 8 (.2 2 4 ) 6 .2 2 (.2 4 5 ) 5 .9 7 (.2 3 5 ) 1.0 2 (.0 4 0 ) 1.6 4 (.0 2 5 ) 1 0 .4 2 (.4 1 0 ) 9 .4 0 (.3 7 0 ) 1 2 L E A D A S S IG N M E N T S 3 1 - GATE 0 .5 1 (.0 2 0 ) M IN . -B 1 .5 2 (.0 6 0 ) 1 .1 5 (.0 4 5 ) 3X 2X 1 .1 4 (.0 4 5 ) 0 .7 6 (.0 3 0 ) 0 .8 9 (.0 3 5 ) 0 .6 4 (.0 2 5 ) 0 .2 5 ( .0 1 0 ) 2 - D R A IN 3 - S OU R CE 4 - D R A IN 0 .5 8 (.0 2 3 ) 0 .4 6 (.0 1 8 ) M A M B N O TE S : 2 .2 8 ( .0 9 0 ) 1 D IM E N S IO N IN G & T O L E R A N C IN G P E R A N S I Y 1 4 .5 M , 1 9 8 2 . 4 .5 7 ( .1 8 0 ) 2 C O N T R O L L IN G D IM E N S IO N : IN C H . 3 C O N F O R M S T O J E D E C O U T L IN E T O -2 5 2 A A . 4 D IM E N S IO N S S H O W N A R E B E F O R E S O L D E R D IP , S O L D E R D IP M A X. + 0 .1 6 (.0 0 6 ) . D-Pak (TO-252AA) Part Marking Information EXAMPLE: T HIS IS AN IRFR120 WIT H AS S EMBLY LOT CODE 1234 AS S EMBLED ON WW 16, 1999 IN T HE AS S EMBLY LINE "A" PART NUMBER INT ERNATIONAL RECT IFIER LOGO 12 AS S EMBLY LOT CODE 8 IRF U120 916A 34 DAT E CODE YEAR 9 = 1999 WEEK 16 LINE A www.irf.com IRFR/U15N20D I-Pak (TO-251AA) Package Outline Dimensions are shown in millimeters (inches) 6 .7 3 (.26 5 ) 6 .3 5 (.25 0 ) 2 .3 8 (.0 9 4 ) 2 .1 9 (.0 8 6 ) -A - 0 .5 8 (.0 2 3 ) 0 .4 6 (.0 1 8 ) 1 .2 7 ( .0 5 0 ) 0 .8 8 ( .0 3 5 ) 5 .4 6 (.2 1 5 ) 5 .2 1 (.2 0 5 ) 4 6 .4 5 (.2 4 5 ) 5 .6 8 (.2 2 4 ) 6 .2 2 ( .2 4 5 ) 5 .9 7 ( .2 3 5 ) 1 .5 2 (.0 6 0 ) 1 .1 5 (.0 4 5 ) 1 2 L E A D A S S IG N M E N T S 1 - GATE 2 - D R A IN 3 - SOURCE 4 - D R A IN 3 -B - N O TE S : 1 D IM E N S IO N IN G & TO L E R A N C IN G P E R A N S I Y 1 4 .5M , 19 8 2 . 2.2 8 (.0 9 0) 1.9 1 (.0 7 5) 2 C O N T R O L L IN G D IM E N S IO N : IN C H . 3 C O N F O R MS TO J E D E C O U T L IN E TO -2 5 2 A A . 9 .6 5 ( .3 8 0 ) 8 .8 9 ( .3 5 0 ) 4 D IM E N S IO N S S H O W N A R E B E F O R E S O L D E R D IP , S O L D E R D IP M A X. + 0.1 6 (.0 0 6 ). 3X 1 .1 4 (.0 45 ) 0 .7 6 (.0 30 ) 2 .28 (.0 9 0 ) 3X 1 .1 4 ( .0 4 5 ) 0 .8 9 ( .0 3 5 ) 0 .8 9 (.0 35 ) 0 .6 4 (.0 25 ) 0 .2 5 (.0 1 0 ) M A M B 2X 0 .5 8 (.0 2 3 ) 0 .4 6 (.0 1 8 ) I-Pak (TO-251AA) Part Marking Information EXAMPLE: T HIS IS AN IRFR120 WIT H AS S EMBLY LOT CODE 5678 AS S EMBLED ON WW 19, 1999 IN T HE AS S EMBLY LINE "A" PART NUMBER INT ERNAT IONAL RECT IFIER LOGO IRFU120 919A 56 78 DAT E CODE YEAR 9 = 1999 WEEK 19 LINE A AS S EMBLY LOT CODE www.irf.com 9 IRFR/U15N20D D-Pak (TO-252AA) Tape & Reel Information Dimensions are shown in millimeters (inches) TR TRR 16.3 ( .641 ) 15.7 ( .619 ) 12.1 ( .47 6 ) 11.9 ( .46 9 ) F E E D D IR E C T IO N TRL 16 .3 ( .641 ) 15 .7 ( .619 ) 8.1 ( .318 ) 7.9 ( .312 ) FE E D D IR E C T IO N N O T ES : 1 . C O N T R O LLIN G D IME N S IO N : M ILL IM ET E R . 2 . A LL D IM EN S IO N S A R E SH O W N IN M ILLIM ET E R S ( IN C H E S ). 3 . O U TL IN E C O N FO R MS T O E IA -481 & E IA -54 1. 1 3 IN C H 16 m m N O TE S : 1. O U TL IN E C O N F O R M S T O E IA -481 . Notes: Repetitive rating; pulse width limited by max. junction temperature. Starting TJ = 25°C, L = 4.9mH Pulse width ≤ 400µs; duty cycle ≤ 2%. Coss eff. is a fixed capacitance that gives the same charging time RG = 25Ω, IAS = 10A. as Coss while VDS is rising from 0 to 80% VDSS ISD ≤ 10A, di/dt ≤ 170A/µs, VDD ≤ V(BR)DSS, TJ ≤ 175°C * When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994. Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.7/01 10 www.irf.com