PD - 95425A IRFR4104PbF IRFU4104PbF AUTOMOTIVE MOSFET HEXFET® Power MOSFET Features l l l l l l Advanced Process Technology Ultra Low On-Resistance 175°C Operating Temperature Fast Switching Repetitive Avalanche Allowed up to Tjmax Lead-Free D VDSS = 40V RDS(on) = 5.5mΩ G ID = 42A S Description Specifically designed for Automotive applications, this HEXFET® Power MOSFET utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this design are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating . These features combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications. D-Pak IRFR4104 I-Pak IRFU4104 Absolute Maximum Ratings Parameter Max. Units ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Silicon Limited) ID @ TC = 100°C Continuous Drain Current, VGS @ 10V 119 ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Package Limited) Pulsed Drain Current IDM 42 480 PD @TC = 25°C Power Dissipation 140 W Linear Derating Factor VGS Gate-to-Source Voltage EAS (Thermally limited) Single Pulse Avalanche Energy Single Pulse Avalanche Energy Tested Value EAS (Tested ) 0.95 ± 20 W/°C V 145 mJ 84 c d c IAR Avalanche Current EAR Repetitive Avalanche Energy TJ Operating Junction and TSTG Storage Temperature Range h 310 See Fig.12a, 12b, 15, 16 g -55 to + 175 °C Mounting Torque, 6-32 or M3 screw 300 (1.6mm from case ) y Parameter RθJA RθJA Junction-to-Ambient www.kersemi.com i y 10 lbf in (1.1N m) Thermal Resistance Junction-to-Case Junction-to-Ambient (PCB mount) A mJ Soldering Temperature, for 10 seconds RθJC A Typ. Max. ––– 1.05 ––– 40 ––– 110 Units °C/W 1 12/06/04 IRFR/U4104PbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter V(BR)DSS Drain-to-Source Breakdown Voltage Min. Typ. Max. Units 40 ––– ––– ∆V(BR)DSS/∆TJ Breakdown Voltage Temp. Coefficient ––– 0.032 ––– RDS(on) Static Drain-to-Source On-Resistance ––– 4.3 5.5 VGS(th) Gate Threshold Voltage 2.0 ––– 4.0 gfs IDSS Forward Transconductance IGSS V Conditions VGS = 0V, ID = 250µA V/°C Reference to 25°C, ID = 1mA mΩ VGS = 10V, ID = 42A e V VDS = VGS, ID = 250µA 58 ––– ––– S VDS = 10V, ID = 42A ––– ––– 20 µA VDS = 40V, VGS = 0V ––– ––– 250 Gate-to-Source Forward Leakage ––– ––– 200 nA VGS = 20V ––– -200 Drain-to-Source Leakage Current VDS = 40V, VGS = 0V, TJ = 125°C Gate-to-Source Reverse Leakage ––– Qg VGS = -20V Total Gate Charge ––– 59 89 Qgs Gate-to-Source Charge ––– 19 ––– Qgd Gate-to-Drain ("Miller") Charge ––– 24 ––– VGS = 10V td(on) Turn-On Delay Time ––– 17 ––– VDD = 20V tr Rise Time ––– 69 ––– td(off) Turn-Off Delay Time ––– 37 ––– tf Fall Time ––– 36 ––– VGS = 10V LD Internal Drain Inductance ––– 4.5 ––– Between lead, LS Internal Source Inductance ––– 7.5 ––– 6mm (0.25in.) from package Ciss Input Capacitance ––– 2950 ––– and center of die contact VGS = 0V Coss Output Capacitance ––– 660 ––– Crss Reverse Transfer Capacitance ––– 370 ––– Coss Output Capacitance ––– 2130 ––– VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz Coss Output Capacitance ––– 590 ––– VGS = 0V, VDS = 32V, ƒ = 1.0MHz Coss eff. Effective Output Capacitance ––– 850 ––– VGS = 0V, VDS = 0V to 32V ID = 42A nC VDS = 32V e ID = 42A ns nH RG = 6.8 Ω e VDS = 25V pF ƒ = 1.0MHz f Source-Drain Ratings and Characteristics Parameter Min. Typ. Max. Units IS Continuous Source Current ––– ––– 42 ISM (Body Diode) Pulsed Source Current ––– ––– 480 VSD (Body Diode) Diode Forward Voltage ––– ––– 1.3 V trr Reverse Recovery Time ––– 28 42 ns Qrr Reverse Recovery Charge ––– 24 36 nC ton Forward Turn-On Time 2 c Conditions MOSFET symbol A showing the integral reverse p-n junction diode. TJ = 25°C, IS = 42A, VGS = 0V e TJ = 25°C, IF = 42A, VDD = 20V di/dt = 100A/µs e Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) www.kersemi.com IRFR/U4104PbF ID, Drain-to-Source Current (A) TOP 1000 VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V 100 10 4.5V 60µs PULSE WIDTH Tj = 25°C VGS TOP ID, Drain-to-Source Current (A) 1000 1 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V 100 4.5V 10 60µs PULSE WIDTH Tj = 175°C 1 0.1 0 1 10 100 100 0.1 0 VDS, Drain-to-Source Voltage (V) 10 100 100 VDS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics 1000 120 Gfs, Forward Transconductance (S) T J = 25°C ID, Drain-to-Source Current (Α) 1 T J = 175°C 100 10 VDS = 20V 60µs PULSE WIDTH T J = 175°C 100 80 60 TJ = 25°C 40 20 VDS = 10V 380µs PULSE WIDTH 1 4 6 8 VGS, Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics www.kersemi.com 10 0 0 20 40 60 80 100 ID, Drain-to-Source Current (A) Fig 4. Typical Forward Transconductance Vs. Drain Current 3 IRFR/U4104PbF 5000 ID= 42A VGS, Gate-to-Source Voltage (V) 4000 C, Capacitance (pF) 20 VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd C oss = C ds + C gd Ciss 3000 2000 Coss 1000 VDS= 32V VDS= 20V 16 12 8 4 Crss 0 0 1 10 0 100 20 40 60 80 100 QG Total Gate Charge (nC) VDS, Drain-to-Source Voltage (V) Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage 10000 1000.0 100.0 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) OPERATION IN THIS AREA LIMITED BY R DS(on) T J = 175°C 10.0 T J = 25°C 1.0 1000 100 100µsec 10 1msec 1 VGS = 0V 0.1 0.1 0.0 0.5 1.0 1.5 VSD, Source-toDrain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage 4 10msec Tc = 25°C Tj = 175°C Single Pulse 2.0 0 1 10 100 1000 VDS , Drain-toSource Voltage (V) Fig 8. Maximum Safe Operating Area www.kersemi.com IRFR/U4104PbF 2.0 RDS(on) , Drain-to-Source On Resistance (Normalized) 120 LIMITED BY PACKAGE ID , Drain Current (A) 100 80 60 40 20 0 ID = 42A VGS = 10V 1.5 1.0 0.5 25 50 75 100 125 150 175 -60 -40 -20 T C , Case Temperature (°C) 0 20 40 60 80 100 120 140 160 180 T J , Junction Temperature (°C) Fig 10. Normalized On-Resistance Vs. Temperature Fig 9. Maximum Drain Current Vs. Case Temperature Thermal Response ( Z thJC ) 10 1 D = 0.50 0.20 0.10 0.1 τJ 0.05 0.02 0.01 0.01 R1 R1 τJ τ1 R2 R2 τC τ2 τ1 τ2 τ Ri (°C/W) 0.5067 τi (sec) 0.000414 0.5428 0.004081 Ci= τi/Ri Ci= i/Ri Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.kersemi.com 5 IRFR/U4104PbF DRIVER L VDS D.U.T RG + V - DD IAS 20V VGS A 0.01Ω tp Fig 12a. Unclamped Inductive Test Circuit V(BR)DSS tp EAS, Single Pulse Avalanche Energy (mJ) 600 15V ID 9.2A 13A BOTTOM 42A TOP 500 400 300 200 100 0 25 50 75 100 125 150 175 Starting T J, Junction Temperature (°C) I AS Fig 12c. Maximum Avalanche Energy Vs. Drain Current Fig 12b. Unclamped Inductive Waveforms QG 10 V QGD 4.0 VG Charge Fig 13a. Basic Gate Charge Waveform Current Regulator Same Type as D.U.T. 50KΩ 12V .2µF .3µF D.U.T. VGS(th) Gate threshold Voltage (V) QGS ID = 250µA 3.0 2.0 + V - DS 1.0 -75 -50 -25 VGS 0 25 50 75 100 125 150 175 T J , Temperature ( °C ) 3mA IG ID Current Sampling Resistors Fig 13b. Gate Charge Test Circuit 6 Fig 14. Threshold Voltage Vs. Temperature www.kersemi.com IRFR/U4104PbF 1000 Avalanche Current (A) Duty Cycle = Single Pulse Allowed avalanche Current vs avalanche pulsewidth, tav assuming ∆ Tj = 25°C due to avalanche losses. Note: In no case should Tj be allowed to exceed Tjmax 100 0.01 0.05 10 0.10 1 0.1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 tav (sec) Fig 15. Typical Avalanche Current Vs.Pulsewidth EAR , Avalanche Energy (mJ) 160 TOP Single Pulse BOTTOM 1% Duty Cycle ID = 42A 120 80 40 0 25 50 75 100 125 150 Starting T J , Junction Temperature (°C) Fig 16. Maximum Avalanche Energy Vs. Temperature www.kersemi.com Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of T jmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b. 4. P D (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. I av = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 15, 16). tav = Average time in avalanche. 175 D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see figure 11) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav 7 IRFR/U4104PbF D.U.T Driver Gate Drive + - • • • • D.U.T. ISD Waveform Reverse Recovery Current + dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test P.W. Period * RG D= VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer - Period P.W. + VDD + Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage - Body Diode VDD Forward Drop Inductor Curent Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V DS VGS RG RD D.U.T. + -VDD 10V Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % Fig 18a. Switching Time Test Circuit VDS 90% 10% VGS td(on) tr t d(off) tf Fig 18b. Switching Time Waveforms 8 www.kersemi.com IRFR/U4104PbF D-Pak (TO-252AA) Package Outline D-Pak (TO-252AA) Part Marking Information EXAMPLE: THIS IS AN IRFR120 WITH ASS EMBLY LOT CODE 1234 AS SEMBLED ON WW 16, 1999 IN T HE ASS EMBLY LINE "A" PART NUMBER INTERNATIONAL RECT IFIER LOGO Note: "P" in as sembly line pos ition indicates "Lead-F ree" IRFU120 12 916A 34 ASS EMBLY LOT CODE DAT E CODE YEAR 9 = 1999 WEEK 16 LINE A OR PART NUMBER INT ERNAT IONAL RECT IF IER LOGO IRFU120 12 AS SEMBLY LOT CODE www.kersemi.com 34 DATE CODE P = DESIGNAT ES LEAD-FREE PRODUCT (OPTIONAL) YEAR 9 = 1999 WEEK 16 A = AS SEMBLY S ITE CODE 9 IRFR/U4104PbF I-Pak (TO-251AA) Package Outline Dimensions are shown in millimeters (inches) I-Pak (TO-251AA) Part Marking Information EXAMPLE: T HIS IS AN IRFU120 WIT H ASS EMBLY LOT CODE 5678 ASS EMBLED ON WW 19, 1999 IN T HE AS SEMB LY LINE "A" INT ERNAT IONAL RECT IFIER LOGO PART NUMBER IRFU120 919A 56 78 AS SEMBLY LOT CODE Note: "P" in ass embly line pos ition indicates "Lead-Free" DAT E CODE YEAR 9 = 1999 WEEK 19 LINE A OR INTERNATIONAL RECTIFIER LOGO PART NUMBER IRFU120 56 AS S EMBLY LOT CODE 10 78 DAT E CODE P = DESIGNATES LEAD-FREE PRODUCT (OPTIONAL) YEAR 9 = 1999 WEEK 19 A = ASS EMBLY SITE CODE www.kersemi.com IRFR/U4104PbF D-Pak (TO-252AA) Tape & Reel Information Dimensions are shown in millimeters (inches) TR TRR 16.3 ( .641 ) 15.7 ( .619 ) 12.1 ( .476 ) 11.9 ( .469 ) FEED DIRECTION TRL 16.3 ( .641 ) 15.7 ( .619 ) 8.1 ( .318 ) 7.9 ( .312 ) FEED DIRECTION NOTES : 1. CONTROLLING DIMENSION : MILLIMETER. 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS ( INCHES ). 3. OUTLINE CONFORMS TO EIA-481 & EIA-541. 13 INCH 16 mm NOTES : 1. OUTLINE CONFORMS TO EIA-481. Notes: Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS . max. junction temperature. (See fig. 11). Limited by TJmax, starting TJ = 25°C, L = 0.16mH Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive RG = 25Ω, IAS = 42A, VGS =10V. Part not avalanche performance. recommended for use above this value. This value determined from sample failure population. 100% Pulse width ≤ 1.0ms; duty cycle ≤ 2%. tested to this value in production. When mounted on 1" square PCB (FR-4 or G-10 Material) . For recommended footprint and soldering techniques refer to application note #AN-994 Repetitive rating; pulse width limited by www.kersemi.com 11