PD - 95513A IRFR3710ZPbF IRFU3710ZPbF AUTOMOTIVE MOSFET HEXFET® Power MOSFET Features l l l l l l Advanced Process Technology Ultra Low On-Resistance 175°C Operating Temperature Fast Switching Repetitive Avalanche Allowed up to Tjmax Lead-Free D VDSS = 100V RDS(on) = 18mΩ G ID = 42A S Description Specifically designed for Automotive applications, this HEXFET® Power MOSFET utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this design are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating . These features combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications. D-Pak IRFR3710Z I-Pak IRFU3710Z Absolute Maximum Ratings Parameter Max. Units ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Silicon Limited) ID @ TC = 100°C Continuous Drain Current, VGS @ 10V 56 ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Package Limited) Pulsed Drain Current IDM 42 220 PD @TC = 25°C Power Dissipation 140 W Linear Derating Factor VGS Gate-to-Source Voltage EAS (Thermally limited) Single Pulse Avalanche Energy Single Pulse Avalanche Energy Tested Value EAS (Tested ) 0.95 ± 20 W/°C V 150 mJ c d c IAR Avalanche Current EAR Repetitive Avalanche Energy TJ Operating Junction and TSTG Storage Temperature Range h 200 See Fig.12a, 12b, 15, 16 g -55 to + 175 °C Mounting Torque, 6-32 or M3 screw 300 (1.6mm from case ) y Parameter RθJA RθJA Junction-to-Ambient i y 10 lbf in (1.1N m) Thermal Resistance Junction-to-Case Junction-to-Ambient (PCB mount) A mJ Soldering Temperature, for 10 seconds RθJC A 39 Typ. Max. ––– 1.05 ––– 40 ––– 110 Units °C/W HEXFET® is a registered trademark of International Rectifier. www.irf.com 1 12/03/04 IRFR/U3710ZPbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter V(BR)DSS Drain-to-Source Breakdown Voltage ∆V(BR)DSS/∆TJ RDS(on) Min. Typ. Max. Units ––– ––– Breakdown Voltage Temp. Coefficient ––– 0.088 ––– Static Drain-to-Source On-Resistance ––– 15 18 VGS(th) Gate Threshold Voltage 2.0 ––– 4.0 V VDS = VGS, ID = 250µA gfs IDSS Forward Transconductance 39 ––– ––– S VDS = 25V, ID = 33A ––– ––– 20 µA ––– ––– 250 Gate-to-Source Forward Leakage ––– ––– 200 Gate-to-Source Reverse Leakage ––– ––– -200 Qg Total Gate Charge ––– 69 100 Qgs Gate-to-Source Charge ––– 15 ––– Qgd Gate-to-Drain ("Miller") Charge ––– 25 ––– VGS = 10V td(on) Turn-On Delay Time ––– 14 ––– VDD = 50V tr Rise Time ––– 43 ––– td(off) Turn-Off Delay Time ––– 53 ––– tf Fall Time ––– 42 ––– VGS = 10V LD Internal Drain Inductance ––– 4.5 ––– Between lead, LS Internal Source Inductance ––– 7.5 ––– 6mm (0.25in.) from package and center of die contact VGS = 0V IGSS Drain-to-Source Leakage Current V Conditions 100 VGS = 0V, ID = 250µA V/°C Reference to 25°C, ID = 1mA mΩ VGS = 10V, ID = 33A e VDS = 100V, VGS = 0V VDS = 100V, VGS = 0V, TJ = 125°C nA VGS = 20V VGS = -20V ID = 33A nC VDS = 80V e ID = 33A ns nH RG = 6.8 Ω e D G S Ciss Input Capacitance ––– 2930 ––– Coss Output Capacitance ––– 290 ––– Crss Reverse Transfer Capacitance ––– 180 ––– Coss Output Capacitance ––– 1200 ––– VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz Coss Output Capacitance ––– 180 ––– VGS = 0V, VDS = 80V, ƒ = 1.0MHz Coss eff. Effective Output Capacitance ––– 430 ––– VGS = 0V, VDS = 0V to 80V VDS = 25V pF ƒ = 1.0MHz f Source-Drain Ratings and Characteristics Parameter Min. Typ. Max. Units Conditions IS Continuous Source Current ––– ––– 56 ISM (Body Diode) Pulsed Source Current ––– ––– 220 showing the integral reverse VSD (Body Diode) Diode Forward Voltage ––– ––– 1.3 V p-n junction diode. TJ = 25°C, IS = 33A, VGS = 0V trr Reverse Recovery Time ––– 35 53 ns Qrr Reverse Recovery Charge ––– 41 62 nC ton Forward Turn-On Time 2 c MOSFET symbol A D G S e TJ = 25°C, IF = 33A, VDD = 50V di/dt = 100A/µs e Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) www.irf.com IRFR/U3710ZPbF 1000 1000 100 BOTTOM VGS 15V 10V 6.0V 5.0V 4.8V 4.5V 4.3V 4.0V TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP 100 10 4.0V 0.1 1 10 4.0V 10 1 60µs PULSE WIDTH Tj = 175°C 60µs PULSE WIDTH Tj = 25°C 1 BOTTOM 0.1 100 0.1 V DS, Drain-to-Source Voltage (V) 1 10 100 V DS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics 1000 100 T J = 175°C 100 10 TJ = 25°C VDS = 25V 60µs PULSE WIDTH 1.0 Gfs, Forward Transconductance (S) ID, Drain-to-Source Current (Α) VGS 15V 10V 6.0V 5.0V 4.8V 4.5V 4.3V 4.0V T J = 25°C 80 60 T J = 175°C 40 20 V DS = 10V 0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 VGS, Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics www.irf.com 0 10 20 30 40 50 60 70 80 ID,Drain-to-Source Current (A) Fig 4. Typical Forward Transconductance vs. Drain Current 3 IRFR/U3710ZPbF 100000 VGS, Gate-to-Source Voltage (V) ID= 33A C oss = C ds + C gd 10000 C, Capacitance(pF) 12.0 VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd Ciss 1000 Coss Crss 100 10.0 VDS= 80V VDS= 50V 8.0 VDS= 20V 6.0 4.0 2.0 0.0 10 1 10 100 0 VDS, Drain-to-Source Voltage (V) 10 20 30 40 50 60 70 80 QG Total Gate Charge (nC) Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage Fig 5. Typical Capacitance vs. Drain-to-Source Voltage 1000 1000.00 100.00 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) OPERATION IN THIS AREA LIMITED BY R DS(on) 100 T J = 175°C 10.00 T J = 25°C 1.00 100µsec 10 1msec 1 Tc = 25°C Tj = 175°C Single Pulse VGS = 0V 0.1 0.10 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 VSD, Source-to-Drain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage 4 10msec 1.8 1 10 100 1000 VDS, Drain-to-Source Voltage (V) Fig 8. Maximum Safe Operating Area www.irf.com IRFR/U3710ZPbF 60 Limited By Package 50 ID, Drain Current (A) RDS(on) , Drain-to-Source On Resistance (Normalized) 3.0 40 30 20 10 0 ID = 56A VGS = 10V 2.5 2.0 1.5 1.0 0.5 25 50 75 100 125 150 -60 -40 -20 0 175 T C , Case Temperature (°C) 20 40 60 80 100 120 140 160 180 T J , Junction Temperature (°C) Fig 10. Normalized On-Resistance vs. Temperature Fig 9. Maximum Drain Current vs. Case Temperature Thermal Response ( Z thJC ) 10 1 D = 0.50 0.20 0.10 0.05 0.02 0.01 0.1 0.01 τJ R1 R1 τJ τ1 R2 R2 τ2 τ1 τ2 Ci= τi/Ri Ci= i/Ri SINGLE PULSE ( THERMAL RESPONSE ) 0.001 R3 R3 τ3 τC τ τ3 Ri (°C/W) τi (sec) 0.576 0.000540 0.249 0.001424 0.224 0.007998 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.0001 1E-006 1E-005 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5 IRFR/U3710ZPbF DRIVER L VDS D.U.T RG + V - DD IAS 20V VGS tp A 0.01Ω Fig 12a. Unclamped Inductive Test Circuit V(BR)DSS tp EAS , Single Pulse Avalanche Energy (mJ) 700 15V ID 3.4A 4.8A BOTTOM 33A TOP 600 500 400 300 200 100 0 25 50 75 100 125 150 175 Starting T J , Junction Temperature (°C) I AS Fig 12c. Maximum Avalanche Energy vs. Drain Current Fig 12b. Unclamped Inductive Waveforms QG 10 V QGD 4.0 VG Charge Fig 13a. Basic Gate Charge Waveform L DUT 0 1K VCC VGS(th) Gate threshold Voltage (V) QGS 3.0 ID = 250µA 2.0 1.0 -75 -50 -25 0 25 50 75 100 125 150 175 200 T J , Temperature ( °C ) Fig 13b. Gate Charge Test Circuit 6 Fig 14. Threshold Voltage vs. Temperature www.irf.com IRFR/U3710ZPbF 1000 Avalanche Current (A) Duty Cycle = Single Pulse 100 Allowed avalanche Current vs avalanche pulsewidth, tav assuming ∆ Tj = 25°C due to avalanche losses 0.01 10 0.05 0.10 1 0.1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 15. Typical Avalanche Current vs.Pulsewidth EAR , Avalanche Energy (mJ) 200 TOP Single Pulse BOTTOM 1% Duty Cycle ID = 33A 150 100 50 0 25 50 75 100 125 150 Starting T J , Junction Temperature (°C) Fig 16. Maximum Avalanche Energy vs. Temperature www.irf.com 175 Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of T jmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. I av = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 15, 16). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav ) = Transient thermal resistance, see figure 11) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav 7 IRFR/U3710ZPbF D.U.T Driver Gate Drive + - • • • • D.U.T. ISD Waveform Reverse Recovery Current + dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test P.W. Period * RG D= VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer - Period P.W. + VDD + Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage - Body Diode VDD Forward Drop Inductor Curent Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V DS VGS RG RD D.U.T. + -VDD 10V Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % Fig 18a. Switching Time Test Circuit VDS 90% 10% VGS td(on) tr t d(off) tf Fig 18b. Switching Time Waveforms 8 www.irf.com IRFR/U3710ZPbF D-Pak (TO-252AA) Package Outline D-Pak (TO-252AA) Part Marking Information EXAMPLE: T HIS IS AN IRFR120 WIT H AS SEMBLY LOT CODE 1234 ASS EMBLED ON WW 16, 1999 IN T HE ASS EMBLY LINE "A" PART NUMBER INTERNAT IONAL RECT IF IER LOGO Note: "P" in ass embly line pos ition indicates "Lead-F ree" IRFU120 12 916A 34 ASS EMBLY LOT CODE DAT E CODE YEAR 9 = 1999 WEEK 16 LINE A OR PART NUMBER INT ERNAT IONAL RECTIF IER LOGO IRFU120 12 AS SEMBLY LOT CODE www.irf.com 34 DAT E CODE P = DESIGNAT ES LEAD-FREE PRODUCT (OPT IONAL) YEAR 9 = 1999 WEEK 16 A = AS SEMBLY S ITE CODE 9 IRFR/U3710ZPbF I-Pak (TO-251AA) Package Outline (Dimensions are shown in millimeters (inches) ) I-Pak (TO-251AA) Part Marking Information EXAMPLE: T HIS IS AN IRFU120 WIT H AS SEMBLY LOT CODE 5678 AS S EMBLED ON WW 19, 1999 IN T HE AS S EMBLY LINE "A" INT ERNAT IONAL RECT IFIER LOGO PART NUMBER IRFU120 919A 56 78 ASS EMBLY LOT CODE Note: "P" in assembly line pos ition indicates "Lead-Free" DAT E CODE YEAR 9 = 1999 WEEK 19 LINE A OR PART NUMBER INTERNATIONAL RECTIFIER LOGO IRFU120 56 ASS EMBLY LOT CODE 10 78 DATE CODE P = DES IGNATES LEAD-FREE PRODUCT (OPTIONAL) YEAR 9 = 1999 WEEK 19 A = AS S EMBL Y S ITE CODE www.irf.com IRFR/U3710ZPbF D-Pak (TO-252AA) Tape & Reel Information Dimensions are shown in millimeters (inches) TR TRR 16.3 ( .641 ) 15.7 ( .619 ) 12.1 ( .476 ) 11.9 ( .469 ) FEED DIRECTION TRL 16.3 ( .641 ) 15.7 ( .619 ) 8.1 ( .318 ) 7.9 ( .312 ) FEED DIRECTION NOTES : 1. CONTROLLING DIMENSION : MILLIMETER. 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS ( INCHES ). 3. OUTLINE CONFORMS TO EIA-481 & EIA-541. 13 INCH 16 mm NOTES : 1. OUTLINE CONFORMS TO EIA-481. Notes: Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS . max. junction temperature. (See fig. 11). Limited by TJmax, starting TJ = 25°C, L = 0.28mH Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive RG = 25Ω, IAS = 33A, VGS =10V. Part not avalanche performance. recommended for use above this value. This value determined from sample failure population. 100% Pulse width ≤ 1.0ms; duty cycle ≤ 2%. tested to this value in production. When mounted on 1" square PCB (FR-4 or G-10 Material) . For recommended footprint and soldering techniques refer to application note #AN-994. Repetitive rating; pulse width limited by Data and specifications subject to change without notice. This product has been designed and qualified for the Automotive [Q101] market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.12/04 www.irf.com 11