PD - 96897 AUTOMOTIVE MOSFET IRFR1010Z IRFU1010Z Features HEXFET® Power MOSFET Advanced Process Technology Ultra Low On-Resistance l175°C Operating Temperature lFast Switching lRepetitive Avalanche Allowed up to Tjmax l l D VDSS = 55V RDS(on) = 7.5mΩ G Description Specifically designed for Automotive applications, this HEXFET® Power MOSFET utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this design are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating . These features combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications. Absolute Maximum Ratings ID = 42A S D-Pak IRFR1010Z Parameter Max. ID @ T C = 25°C Continuous Drain Current, V GS @ 10V (Silicon Limited) ID @ T C = 100°C Continuous Drain Current, V GS @ 10V ID @ T C = 25°C IDM 42 c d E AS (Thermally limited) Single Pulse Avalanche Energy Single Pulse Avalanche Energy Tested Value E AS (Tested ) c IAR Avalanche Current E AR TJ Repetitive Avalanche Energy T STG Storage Temperature Range 360 h Parameter Junction-to-Ambient (PCB mount) Junction-to-Ambient www.kersemi.com j 110 mJ A °C Mounting Torque, 6-32 or M3 screw R θJA W/°C V -55 to + 175 300 (1.6mm from case ) y ij y 10 lbf in (1.1N m) Thermal Resistance R θJA 0.9 ± 20 mJ Soldering Temperature, for 10 seconds j W 220 Operating Junction and Junction-to-Case 140 See Fig.12a, 12b, 15, 16 g R θJC A 65 Continuous Drain Current, V GS @ 10V (Package Limited) Pulsed Drain Current Linear Derating Factor Gate-to-Source Voltage Units 91 P D @T C = 25°C Power Dissipation V GS I-Pak IRFU1010Z Typ. Max. ––– 1.11 ––– 40 ––– 110 Units °C/W 1 9/29/04 IRFR/U1010Z Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Min. Typ. Max. Units V Conditions V(BR)DSS Drain-to-Source Breakdown Voltage 55 ––– ––– VGS = 0V, ID = 250µA ∆V(BR)DSS/∆TJ Breakdown Voltage Temp. Coefficient ––– 0.051 ––– V/°C Reference to 25°C, ID = 1mA RDS(on) Static Drain-to-Source On-Resistance ––– 5.8 7.5 mΩ VGS(th) Gate Threshold Voltage 2.0 ––– 4.0 V VDS = VGS, ID = 100µA VGS = 10V, ID = 42A gfs Forward Transconductance 31 ––– ––– S VDS = 25V, ID = 42A IDSS Drain-to-Source Leakage Current ––– ––– 20 µA VDS = 55V, VGS = 0V ––– ––– 250 Gate-to-Source Forward Leakage ––– ––– 200 Gate-to-Source Reverse Leakage ––– ––– -200 Qg Total Gate Charge ––– 63 95 Qgs Gate-to-Source Charge ––– 17 ––– Qgd Gate-to-Drain ("Miller") Charge ––– 23 ––– td(on) Turn-On Delay Time ––– 17 ––– VDD = 28V tr Rise Time ––– 76 ––– ID = 42A td(off) Turn-Off Delay Time ––– 42 ––– tf Fall Time ––– 48 ––– VGS = 10V LD Internal Drain Inductance ––– 4.5 ––– Between lead, LS Internal Source Inductance ––– 7.5 ––– IGSS e VDS = 55V, VGS = 0V, TJ = 125°C nA VGS = 20V VGS = -20V ID = 42A nC VDS = 44V VGS = 10V ns nH RG = 7.6 Ω e e D 6mm (0.25in.) G from package S and center of die contact Ciss Input Capacitance ––– 2840 ––– VGS = 0V Coss Output Capacitance ––– 470 ––– Crss Reverse Transfer Capacitance ––– 250 ––– Coss Output Capacitance ––– 1630 ––– VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz Coss Output Capacitance ––– 360 ––– VGS = 0V, VDS = 44V, ƒ = 1.0MHz Coss eff. Effective Output Capacitance ––– 560 ––– VGS = 0V, VDS = 0V to 44V VDS = 25V pF ƒ = 1.0MHz f Source-Drain Ratings and Characteristics Parameter Min. Typ. Max. Units Conditions IS Continuous Source Current ––– ––– 42 ISM (Body Diode) Pulsed Source Current ––– ––– 360 VSD (Body Diode) Diode Forward Voltage ––– ––– 1.3 V p-n junction diode. TJ = 25°C, IS = 42A, VGS = 0V trr Reverse Recovery Time ––– 24 36 ns TJ = 25°C, IF = 42A, VDD = 28V Qrr Reverse Recovery Charge ––– 20 30 nC di/dt = 100A/µs ton Forward Turn-On Time 2 c MOSFET symbol A showing the integral reverse e e Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) www.kersemi.com IRFR/U1010Z 1000 1000 VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V 100 BOTTOM 10 4.5V 1 0.1 100 BOTTOM 4.5V 10 ≤60µs PULSE WIDTH ≤60µs PULSE WIDTH Tj = 25°C 1 Tj = 175°C 1 10 0.1 100 1 10 100 VDS, Drain-to-Source Voltage (V) VDS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics 1000 120 Gfs , Forward Transconductance (S) ID, Drain-to-Source Current(Α) VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP 100 TJ = 175°C 10 TJ = 25°C 1 VDS = 25V ≤60µs PULSE WIDTH 0.1 2 4 6 8 VGS, Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics www.kersemi.com 10 TJ = 25°C 100 80 TJ = 175°C 60 40 20 VDS = 10V 380µs PULSE WIDTH 0 0 20 40 60 80 100 ID,Drain-to-Source Current (A) Fig 4. Typical Forward Transconductance vs. Drain Current 3 IRFR/U1010Z 5000 VGS, Gate-to-Source Voltage (V) 4000 C, Capacitance(pF) 20 VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd Coss = Cds + Cgd Ciss 3000 2000 Coss 1000 Crss VDS = 44V VDS= 28V VDS= 11V 16 12 8 4 0 0 1 ID= 42A 10 0 100 10000 ID, Drain-to-Source Current (A) ISD , Reverse Drain Current (A) 1000.00 100.00 TJ = 175°C 10.00 TJ = 25°C VGS = 0V 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 VSD , Source-to-Drain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage 4 60 80 100 Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage Fig 5. Typical Capacitance vs. Drain-to-Source Voltage 0.10 40 QG Total Gate Charge (nC) VDS , Drain-to-Source Voltage (V) 1.00 20 OPERATION IN THIS AREA LIMITED BY R DS (on) 1000 100 100µsec 10 1msec 10msec 1 Tc = 25°C Tj = 175°C Single Pulse DC 0.1 1 10 100 VDS , Drain-toSource Voltage (V) Fig 8. Maximum Safe Operating Area www.kersemi.com IRFR/U1010Z 100 RDS(on) , Drain-to-Source On Resistance (Normalized) 2.5 LIMITED BY PACKAGE ID , Drain Current (A) 80 60 40 20 0 25 50 75 100 125 150 ID = 42A VGS = 10V 2.0 1.5 1.0 0.5 175 -60 -40 -20 TC , Case Temperature (°C) 0 20 40 60 80 100 120 140 160 180 TJ , Junction Temperature (°C) Fig 10. Normalized On-Resistance vs. Temperature Fig 9. Maximum Drain Current vs. Case Temperature Thermal Response ( Z thJC ) 10 1 D = 0.50 0.20 0.10 0.1 0.05 τJ 0.02 0.01 0.01 R1 R1 τJ τ1 R2 R2 τ2 τ1 τ2 Ci= τi/Ri Ci τi/Ri SINGLE PULSE ( THERMAL RESPONSE ) R3 R3 τ3 τC τ τ3 Ri (°C/W) τi (sec) 0.3854 0.000251 0.3138 0.001092 0.4102 0.015307 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.kersemi.com 5 IRFR/U1010Z D.U.T RG VGS 20V DRIVER L VDS + V - DD IAS tp A 0.01Ω Fig 12a. Unclamped Inductive Test Circuit V(BR)DSS tp EAS, Single Pulse Avalanche Energy (mJ) 500 15V ID 7.6A 11A BOTTOM 42A TOP 400 300 200 100 0 25 50 75 100 125 150 175 Starting TJ, Junction Temperature (°C) I AS Fig 12c. Maximum Avalanche Energy vs. Drain Current Fig 12b. Unclamped Inductive Waveforms QG QGS QGD 4.0 VG Charge Fig 13a. Basic Gate Charge Waveform L DUT 0 1K VGS(th) Gate threshold Voltage (V) 10 V ID = 1.0mA 3.5 ID = 250µA ID = 100µA 3.0 2.5 2.0 1.5 VCC 1.0 -75 -50 -25 0 25 50 75 100 125 150 175 TJ , Temperature ( °C ) Fig 13b. Gate Charge Test Circuit 6 Fig 14. Threshold Voltage vs. Temperature www.kersemi.com IRFR/U1010Z 1000 Avalanche Current (A) Duty Cycle = Single Pulse 100 Allowed avalanche Current vs avalanche pulsewidth, tav assuming ∆Tj = 25°C due to avalanche losses 0.01 0.05 10 0.10 1 0.1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 15. Typical Avalanche Current vs.Pulsewidth EAR , Avalanche Energy (mJ) 120 TOP Single Pulse BOTTOM 1% Duty Cycle ID = 42A 100 80 60 40 20 0 25 50 75 100 125 150 Starting TJ , Junction Temperature (°C) Fig 16. Maximum Avalanche Energy vs. Temperature www.kersemi.com Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 15, 16). tav = Average time in avalanche. 175 D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see figure 11) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav 7 IRFR/U1010Z D.U.T Driver Gate Drive + • • • • D.U.T. ISD Waveform Reverse Recovery Current + dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test P.W. Period * RG D= VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer - - Period P.W. + VDD + Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage - Body Diode VDD Forward Drop Inductor Curent Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs VDS VGS RG RD D.U.T. + -VDD 10V Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % Fig 18a. Switching Time Test Circuit VDS 90% 10% VGS td(on) tr t d(off) tf Fig 18b. Switching Time Waveforms 8 www.kersemi.com IRFR/U1010Z D-Pak (TO-252AA) Package Outline Dimensions are shown in millimeters (inches) 2.38 (.094) 2.19 (.086) 6.73 (.265) 6.35 (.250) 1.14 (.045) 0.89 (.035) -A1.27 (.050) 0.88 (.035) 5.46 (.215) 5.21 (.205) 0.58 (.023) 0.46 (.018) 4 6.45 (.245) 5.68 (.224) 6.22 (.245) 5.97 (.235) 1.02 (.040) 1.64 (.025) 1 2 10.42 (.410) 9.40 (.370) 3 LEAD ASSIGNMENTS 1 - GATE 0.51 (.020) MIN. -B1.52 (.060) 1.15 (.045) 4 - DRAIN 3X 2X 2 - DRAIN 3 - SOURCE 1.14 (.045) 0.76 (.030) 0.89 (.035) 0.64 (.025) 0.25 (.010) 0.58 (.023) 0.46 (.018) M A M B NOTES: 2.28 (.090) 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982. 2 CONTROLLING DIMENSION : INCH. 3 CONFORMS TO JEDEC OUTLINE TO-252AA. 4.57 (.180) 4 DIMENSIONS SHOWN ARE BEFORE SOLDER DIP, SOLDER DIP MAX. +0.16 (.006). D-Pak (TO-252AA) Part Marking Information EXAMPLE: THIS IS AN IRFR120 WITH AS SEMBLY LOT CODE 1234 ASS EMBLED ON WW 16, 1999 IN THE AS SEMBLY LINE "A" INTERNATIONAL RECTIFIER LOGO PART NUMBER IRFR120 12 N ote: "P" in ass embly line pos ition indicates "Lead-Free" AS SEMBLY LOT CODE 916A 34 DAT E CODE YEAR 9 = 1999 WEEK 16 LINE A OR INTERNAT IONAL RECT IFIER LOGO PART NUMBER IRFR120 12 ASS EMBLY LOT CODE www.kersemi.com P916A 34 DATE CODE P = DES IGNAT ES LEAD-FREE PRODUCT (OPTIONAL) YEAR 9 = 1999 WEEK 16 A = ASS EMBLY SITE CODE 9 IRFR/U1010Z I-Pak (TO-251AA) Package Outline Dimensions are shown in millimeters (inches) 6.73 (.265) 6.35 (.250) 2.38 (.094) 2.19 (.086) -A- 0.58 (.023) 0.46 (.018) 1.27 (.050) 0.88 (.035) 5.46 (.215) 5.21 (.205) LEAD ASSIGNMENTS 4 6.22 (.245) 5.97 (.235) 1.52 (.060) 1.15 (.045) 1 2 1 - GATE 2 - DRAIN 6.45 (.245) 5.68 (.224) 3 - SOURCE 4 - DRAIN 3 -B- NOTES: 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982. 2.28 (.090) 1.91 (.075) 9.65 (.380) 8.89 (.350) 2 CONTROLLING DIMENSION : INCH. 3 CONFORMS TO JEDEC OUTLINE TO-252AA. 4 DIMENSIONS SHOWN ARE BEFORE SOLDER DIP, SOLDER DIP MAX. +0.16 (.006). 3X 1.14 (.045) 0.76 (.030) 3X 0.25 (.010) 2.28 (.090) 1.14 (.045) 0.89 (.035) 0.89 (.035) 0.64 (.025) M A M B 0.58 (.023) 0.46 (.018) 2X I-Pak (TO-251AA) Part Marking Information EXAMPLE: T HIS IS AN IRFU120 WIT H AS S EMBLY LOT CODE 5678 AS S EMBLED ON WW 19, 1999 IN T HE AS SEMBLY LINE "A" INT ERNAT IONAL RECT IFIER LOGO PART NUMBER IRFU120 919A 56 78 AS S EMBLY LOT CODE Note: "P" in ass embly line pos ition indicates "Lead-Free" DAT E CODE YEAR 9 = 1999 WEEK 19 LINE A OR INT ERNAT IONAL RECT IFIER LOGO PART NUMBER IRFU120 56 AS S EMBLY LOT CODE 10 78 DAT E CODE P = DES IGNAT ES LEAD-FREE PRODUCT (OPT IONAL) YEAR 9 = 1999 WEEK 19 A = AS S EMBLY S ITE CODE www.kersemi.com IRFR/U1010Z D-Pak (TO-252AA) Tape & Reel Information Dimensions are shown in millimeters (inches) TR TRR 16.3 ( .641 ) 15.7 ( .619 ) 12.1 ( .476 ) 11.9 ( .469 ) FEED DIRECTION TRL 16.3 ( .641 ) 15.7 ( .619 ) 8.1 ( .318 ) 7.9 ( .312 ) FEED DIRECTION NOTES : 1. CONTROLLING DIMENSION : MILLIMETER. 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS ( INCHES ). 3. OUTLINE CONFORMS TO EIA-481 & EIA-541. 13 INCH 16 mm NOTES : 1. OUTLINE CONFORMS TO EIA-481. Notes: Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS . max. junction temperature. (See fig. 11). Limited by TJmax, starting TJ = 25°C, L = 0.13mH Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive RG = 25Ω, IAS = 42A, VGS =10V. Part not avalanche performance. recommended for use above this value. This value determined from sample failure population. 100% Pulse width ≤ 1.0ms; duty cycle ≤ 2%. tested to this value in production. When mounted on 1" square PCB (FR-4 or G-10 Material) . For recommended footprint and soldering techniques refer to application note #AN-994 Rθ is measured at TJ approximately 90°C Repetitive rating; pulse width limited by www.kersemi.com 11