Previous Datasheet Index Next Data Sheet PD - 9.1131A IRGBC20M-S INSULATED GATE BIPOLAR TRANSISTOR Features Short Circuit Rated Fast IGBT C • Short circuit rated - 10µs @ 125°C, V GE = 15V • Switching-loss rating includes all "tail" losses • Optimized for medium operating frequency (1 to 10kHz) See Fig. 1 for Current vs. Frequency curve VCES = 600V VCE(sat) ≤ 2.3V G @VGE = 15V, I C = 8.0A E n-channel Description Insulated Gate Bipolar Transistors (IGBTs) from International Rectifier have higher usable current densities than comparable bipolar transistors, while at the same time having simpler gate-drive requirements of the familiar power MOSFET. They provide substantial benefits to a host of high-voltage, highcurrent applications. These new short circuit rated devices are especially suited for motor control and other applications requiring short circuit withstand capability. SMD-220 Absolute Maximum Ratings Parameter VCES IC @ T C = 25°C IC @ T C = 100°C ICM ILM tsc VGE EARV PD @ T C = 25°C PD @ T C = 100°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current Clamped Inductive Load Current Short Circuit Withstand Time Gate-to-Emitter Voltage Reverse Voltage Avalanche Energy Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec. Mounting torque, 6-32 or M3 screw. Max. Units 600 13 8.0 26 26 10 ±20 5.0 60 24 -55 to +150 V A µs V mJ W °C 300 (0.063 in. (1.6mm) from case) 10 lbf•in (1.1N•m) Thermal Resistance Parameter RθJC RθJA RθJA Wt Junction-to-Case Junction-to-Ambient, (PCB mount)** Junction-to-Ambient, typical socket mount Weight Min. Typ. Max. — — — — — — — 2 (0.07) 2.1 40 80 — Units °C/W g (oz) ** When mounted on 1" square PCB (FR-4 or G-10 Material) For recommended footprint and soldering techniques refer to application note #AN-994. C-335 To Order Revision 1 Previous Datasheet Index Next Data Sheet IRGBC20M-S Electrical Characteristics @ T J = 25°C (unless otherwise specified) VCE(on) Parameter Collector-to-Emitter Breakdown Voltage Emitter-to-Collector Breakdown Voltage Temperature Coeff. of Breakdown Voltage Collector-to-Emitter Saturation Voltage VGE(th) ∆VGE(th)/∆TJ gfe ICES Gate Threshold Voltage Temperature Coeff. of Threshold Voltage Forward Transconductance Zero Gate Voltage Collector Current IGES Gate-to-Emitter Leakage Current V(BR)CES V(BR)ECS ∆V(BR)CES/∆TJ Switching Characteristics @ T J Qg Qge Qgc td(on) tr td(off) tf Eon Eoff Ets tsc Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Short Circuit Withstand Time td(on) tr td(off) tf Ets LE Cies Coes Cres Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Switching Loss Internal Emitter Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Min. Typ. Max. Units Conditions 600 — — V VGE = 0V, I C = 250µA 20 — — V VGE = 0V, IC = 1.0A — 0.42 — V/°C VGE = 0V, I C = 1.0mA — 2.0 2.3 IC = 8.0A V GE = 15V — 2.7 — V IC = 13A See Fig. 2, 5 — 2.5 — IC = 8.0A, T J = 150°C 3.0 — 5.5 VCE = VGE, IC = 250µA — -11 — mV/°C VCE = VGE, IC = 250µA 2.7 3.8 — S VCE = 100V, I C = 8.0A — — 250 µA VGE = 0V, V CE = 600V — — 1000 VGE = 0V, V CE = 600V, T J = 150°C — — ±100 nA VGE = ±20V = 25°C (unless otherwise specified) Min. Typ. Max. Units Conditions — 7.9 16 IC = 8.0A — 3.6 5.2 nC VCC = 400V See Fig. 8 — 6.0 9.0 VGE = 15V — 29 — TJ = 25°C — 22 — ns IC = 8.0A, V CC = 480V — 270 400 VGE = 15V, R G = 50Ω — 280 510 Energy losses include "tail" — 0.14 — — 0.86 — mJ See Fig. 9, 10, 11, 14 — 1.0 2.0 10 — — µs VCC = 360V, T J = 125°C VGE = 15V, R G = 50Ω, VCPK < 500V — 27 — TJ = 150°C, — 21 — ns IC = 8.0A, V CC = 480V — 370 — VGE = 15V, R G = 50Ω — 420 — Energy losses include "tail" — 1.4 — mJ See Fig. 10, 14 — 7.5 — nH Measured 5mm from package — 365 — VGE = 0V — 47 — pF VCC = 30V See Fig. 7 — 4.8 — ƒ = 1.0MHz Notes: Repetitive rating; V GE=20V, pulse width limited by max. junction temperature. ( See fig. 13b ) Repetitive rating; pulse width limited by maximum junction temperature. VCC=80%(V CES), VGE=20V, L=10µH, R G= 50Ω, ( See fig. 13a ) Pulse width ≤ 80µs; duty factor ≤ 0.1%. C-336 To Order Pulse width 5.0µs, single shot. Previous Datasheet Index Next Data Sheet IRGBC20M-S 20 F o r b o th : 16 Loa d C urre nt (A ) Triangular wave: D u ty c ycle : 5 0 % TJ = 1 2 5 °C T s ink = 9 0 °C G a te d rive a s sp ec ified Pow er D issipation = 1 4W C lamp voltage: 80% of rated 12 S quare w ave: 60% of rated voltage 8 4 Ide al d iod es A 0 0.1 1 10 100 f, F re quency (kH z) Fig. 1 - Typical Load Current vs. Frequency (For square wave, I=I RMS of fundamental; for triangular wave, I=I PK) 100 IC , Collector-to-Emitter Current (A) IC , Collector-to-Emitter Current (A) 100 TJ = 25°C TJ = 150°C 10 VGE = 15V 20µs PULSE WIDTH A 1 1 TJ = 150°C 10 TJ = 25°C VCC = 100V 5µs PULSE WIDTH A 1 5 10 10 15 VGE, Gate-to-Emitter Voltage (V) VCE , Collector-to-Emitter Voltage (V) Fig. 3 - Typical Transfer Characteristics Fig. 2 - Typical Output Characteristics C-337 To Order 20 Previous Datasheet Index Next Data Sheet IRGBC20M-S 5.0 VGE = 15V VCE , Collector-to-Emitter Voltage (V) Maximum DC Collector Current (A) 14 12 10 8 6 4 2 A 0 25 50 75 100 125 VGE = 15V 80µs PULSE WIDTH 4.0 I C = 16A 3.0 I C = 8.0A 2.0 IC = 4.0A 1.0 A 0.0 -60 150 TC , Case Temperature (°C) -40 -20 0 20 40 60 80 100 120 140 160 TC, Case Temperature (°C) Fig. 5 - Collector-to-Emitter Voltage vs. Case Temperature Fig. 4 - Maximum Collector Current vs. Case Temperature T herm al Response (Z thJ C ) 10 1 D = 0.50 0 .2 0 0 .10 PD M 0.0 5 0.1 0.0 2 0 .01 t SIN G LE P U LS E (TH ER M AL R E SP O N SE ) t2 N o te s : 1 . D u ty fa c to r D = t 0.01 0.00001 1 1 / t 2 2 . P e a k TJ = P D M x Z th J C + T C 0.0001 0.001 0.01 0.1 1 t 1 , R ectangular Pulse D uration (sec) Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case C-338 To Order 10 Previous Datasheet Index Next Data Sheet IRGBC20M-S 20 V GE = 0V, f = 1MHz C ies = C ge + C gc , Cce SHORTED C res = C gc C oes = C ce + C gc VGE , Gate-to-Emitter Voltage (V) C, Capacitance (pF) 600 Cies 400 Coes 200 Cres 16 12 8 4 A 0 1 10 VCE = 400V I C = 8.0A A 0 0 100 4 Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage Total Sw itching Losses (m J) 0 .8 9 6 16 10 = 48 0 V = 15 V = 25 °C = 8.0A 0 .8 9 2 0 .8 8 8 0 .8 8 4 R G = 50 Ω V G E = 15 V V C C = 4 80 V I C = 16 A I C = 8.0A 1 I C = 4.0A A 0.1 0 .8 8 0 10 20 30 40 20 Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage T o tal S w itc hing Los se s (m J) VCC VG E TC IC 12 Qg , Total Gate Charge (nC) VCE, Collector-to-Emitter Voltage (V) 0 .9 0 0 8 50 -60 60 R G , G ate R esistance (Ω ) -40 -20 0 20 40 60 80 100 120 140 160 TC , C ase Tem perature (°C ) W Fig. 9 - Typical Switching Losses vs. Gate Resistance Fig. 10 - Typical Switching Losses vs. Case Temperature C-339 To Order Previous Datasheet Index Next Data Sheet IRGBC20M-S RG TC V CC VGE = 50 Ω = 150 °C = 4 80 V = 15 V 100 IC , Collector-to-Emitter Current (A) Total S w itching Losses (m J) 4.0 3.0 2.0 1.0 SAFE OPERATING AREA 10 A 0.0 0 4 8 12 16 VGE = 20V TJ = 125°C A 1 20 1 I C , C o llector-to -E m itte r Current (A ) 10 VCE , Collector-to-Emitter Voltage (V) Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current Fig. 12 - Turn-Off SOA Refer to Section D for the following: Appendix C: Section D - page D-5 Fig. 13a - Clamped Inductive Load Test Circuit Fig. 13b - Pulsed Collector Current Test Circuit Fig. 14a - Switching Loss Test Circuit Fig. 14b - Switching Loss Waveform Package Outline 2 - SMD-220 100 Section D - page D-12 C-340 To Order 1000