IRF IRGBC20M-S

Previous Datasheet
Index
Next Data Sheet
PD - 9.1131A
IRGBC20M-S
INSULATED GATE BIPOLAR TRANSISTOR
Features
Short Circuit Rated
Fast IGBT
C
• Short circuit rated - 10µs @ 125°C, V GE = 15V
• Switching-loss rating includes all "tail" losses
• Optimized for medium operating frequency (1 to
10kHz) See Fig. 1 for Current vs. Frequency curve
VCES = 600V
VCE(sat) ≤ 2.3V
G
@VGE = 15V, I C = 8.0A
E
n-channel
Description
Insulated Gate Bipolar Transistors (IGBTs) from International Rectifier have
higher usable current densities than comparable bipolar transistors, while at
the same time having simpler gate-drive requirements of the familiar power
MOSFET. They provide substantial benefits to a host of high-voltage, highcurrent applications.
These new short circuit rated devices are especially suited for motor control
and other applications requiring short circuit withstand capability.
SMD-220
Absolute Maximum Ratings
Parameter
VCES
IC @ T C = 25°C
IC @ T C = 100°C
ICM
ILM
tsc
VGE
EARV
PD @ T C = 25°C
PD @ T C = 100°C
TJ
TSTG
Collector-to-Emitter Voltage
Continuous Collector Current
Continuous Collector Current
Pulsed Collector Current
Clamped Inductive Load Current
Short Circuit Withstand Time
Gate-to-Emitter Voltage
Reverse Voltage Avalanche Energy
Maximum Power Dissipation
Maximum Power Dissipation
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 sec.
Mounting torque, 6-32 or M3 screw.
Max.
Units
600
13
8.0
26
26
10
±20
5.0
60
24
-55 to +150
V
A
µs
V
mJ
W
°C
300 (0.063 in. (1.6mm) from case)
10 lbf•in (1.1N•m)
Thermal Resistance
Parameter
RθJC
RθJA
RθJA
Wt
Junction-to-Case
Junction-to-Ambient, (PCB mount)**
Junction-to-Ambient, typical socket mount
Weight
Min.
Typ.
Max.
—
—
—
—
—
—
—
2 (0.07)
2.1
40
80
—
Units
°C/W
g (oz)
** When mounted on 1" square PCB (FR-4 or G-10 Material)
For recommended footprint and soldering techniques refer to application note #AN-994.
C-335
To Order
Revision 1
Previous Datasheet
Index
Next Data Sheet
IRGBC20M-S
Electrical Characteristics @ T
J
= 25°C (unless otherwise specified)
VCE(on)
Parameter
Collector-to-Emitter Breakdown Voltage
Emitter-to-Collector Breakdown Voltage
Temperature Coeff. of Breakdown Voltage
Collector-to-Emitter Saturation Voltage
VGE(th)
∆VGE(th)/∆TJ
gfe
ICES
Gate Threshold Voltage
Temperature Coeff. of Threshold Voltage
Forward Transconductance
Zero Gate Voltage Collector Current
IGES
Gate-to-Emitter Leakage Current
V(BR)CES
V(BR)ECS
∆V(BR)CES/∆TJ
Switching Characteristics @ T
J
Qg
Qge
Qgc
td(on)
tr
td(off)
tf
Eon
Eoff
Ets
tsc
Parameter
Total Gate Charge (turn-on)
Gate - Emitter Charge (turn-on)
Gate - Collector Charge (turn-on)
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Turn-On Switching Loss
Turn-Off Switching Loss
Total Switching Loss
Short Circuit Withstand Time
td(on)
tr
td(off)
tf
Ets
LE
Cies
Coes
Cres
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Total Switching Loss
Internal Emitter Inductance
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Min. Typ. Max. Units
Conditions
600
—
—
V
VGE = 0V, I C = 250µA
20
—
—
V
VGE = 0V, IC = 1.0A
— 0.42 —
V/°C VGE = 0V, I C = 1.0mA
—
2.0
2.3
IC = 8.0A
V GE = 15V
—
2.7
—
V
IC = 13A
See Fig. 2, 5
—
2.5
—
IC = 8.0A, T J = 150°C
3.0
—
5.5
VCE = VGE, IC = 250µA
—
-11
— mV/°C VCE = VGE, IC = 250µA
2.7 3.8
—
S
VCE = 100V, I C = 8.0A
—
—
250
µA
VGE = 0V, V CE = 600V
—
— 1000
VGE = 0V, V CE = 600V, T J = 150°C
—
— ±100 nA
VGE = ±20V
= 25°C (unless otherwise specified)
Min. Typ. Max. Units
Conditions
—
7.9
16
IC = 8.0A
—
3.6
5.2
nC
VCC = 400V
See Fig. 8
—
6.0
9.0
VGE = 15V
—
29
—
TJ = 25°C
—
22
—
ns
IC = 8.0A, V CC = 480V
—
270 400
VGE = 15V, R G = 50Ω
—
280 510
Energy losses include "tail"
— 0.14 —
— 0.86 —
mJ
See Fig. 9, 10, 11, 14
—
1.0
2.0
10
—
—
µs
VCC = 360V, T J = 125°C
VGE = 15V, R G = 50Ω, VCPK < 500V
—
27
—
TJ = 150°C,
—
21
—
ns
IC = 8.0A, V CC = 480V
—
370
—
VGE = 15V, R G = 50Ω
—
420
—
Energy losses include "tail"
—
1.4
—
mJ
See Fig. 10, 14
—
7.5
—
nH
Measured 5mm from package
—
365
—
VGE = 0V
—
47
—
pF
VCC = 30V
See Fig. 7
—
4.8
—
ƒ = 1.0MHz
Notes:
Repetitive rating; V GE=20V, pulse width
limited by max. junction temperature.
( See fig. 13b )
Repetitive rating; pulse width limited
by maximum junction temperature.
VCC=80%(V CES), VGE=20V, L=10µH,
R G= 50Ω, ( See fig. 13a )
Pulse width ≤ 80µs; duty factor ≤ 0.1%.
C-336
To Order
Pulse width 5.0µs,
single shot.
Previous Datasheet
Index
Next Data Sheet
IRGBC20M-S
20
F o r b o th :
16
Loa d C urre nt (A )
Triangular wave:
D u ty c ycle : 5 0 %
TJ = 1 2 5 °C
T s ink = 9 0 °C
G a te d rive a s sp ec ified
Pow er D issipation = 1 4W
C lamp voltage:
80% of rated
12
S quare w ave:
60% of rated
voltage
8
4
Ide al d iod es
A
0
0.1
1
10
100
f, F re quency (kH z)
Fig. 1 - Typical Load Current vs. Frequency
(For square wave, I=I RMS of fundamental; for triangular wave, I=I PK)
100
IC , Collector-to-Emitter Current (A)
IC , Collector-to-Emitter Current (A)
100
TJ = 25°C
TJ = 150°C
10
VGE = 15V
20µs PULSE WIDTH A
1
1
TJ = 150°C
10
TJ = 25°C
VCC = 100V
5µs PULSE WIDTH A
1
5
10
10
15
VGE, Gate-to-Emitter Voltage (V)
VCE , Collector-to-Emitter Voltage (V)
Fig. 3 - Typical Transfer Characteristics
Fig. 2 - Typical Output Characteristics
C-337
To Order
20
Previous Datasheet
Index
Next Data Sheet
IRGBC20M-S
5.0
VGE = 15V
VCE , Collector-to-Emitter Voltage (V)
Maximum DC Collector Current (A)
14
12
10
8
6
4
2
A
0
25
50
75
100
125
VGE = 15V
80µs PULSE WIDTH
4.0
I C = 16A
3.0
I C = 8.0A
2.0
IC = 4.0A
1.0
A
0.0
-60
150
TC , Case Temperature (°C)
-40
-20
0
20
40
60
80
100 120 140 160
TC, Case Temperature (°C)
Fig. 5 - Collector-to-Emitter Voltage vs.
Case Temperature
Fig. 4 - Maximum Collector Current vs.
Case Temperature
T herm al Response (Z thJ C )
10
1
D = 0.50
0 .2 0
0 .10
PD M
0.0 5
0.1
0.0 2
0 .01
t
SIN G LE P U LS E
(TH ER M AL R E SP O N SE )
t2
N o te s :
1 . D u ty fa c to r D = t
0.01
0.00001
1
1
/ t
2
2 . P e a k TJ = P D M x Z th J C + T C
0.0001
0.001
0.01
0.1
1
t 1 , R ectangular Pulse D uration (sec)
Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
C-338
To Order
10
Previous Datasheet
Index
Next Data Sheet
IRGBC20M-S
20
V GE = 0V,
f = 1MHz
C ies = C ge + C gc , Cce SHORTED
C res = C gc
C oes = C ce + C gc
VGE , Gate-to-Emitter Voltage (V)
C, Capacitance (pF)
600
Cies
400
Coes
200
Cres
16
12
8
4
A
0
1
10
VCE = 400V
I C = 8.0A
A
0
0
100
4
Fig. 7 - Typical Capacitance vs.
Collector-to-Emitter Voltage
Total Sw itching Losses (m J)
0 .8 9 6
16
10
= 48 0 V
= 15 V
= 25 °C
= 8.0A
0 .8 9 2
0 .8 8 8
0 .8 8 4
R G = 50 Ω
V G E = 15 V
V C C = 4 80 V
I C = 16 A
I C = 8.0A
1
I C = 4.0A
A
0.1
0 .8 8 0
10
20
30
40
20
Fig. 8 - Typical Gate Charge vs.
Gate-to-Emitter Voltage
T o tal S w itc hing Los se s (m J)
VCC
VG E
TC
IC
12
Qg , Total Gate Charge (nC)
VCE, Collector-to-Emitter Voltage (V)
0 .9 0 0
8
50
-60
60
R G , G ate R esistance (Ω )
-40
-20
0
20
40
60
80
100 120 140 160
TC , C ase Tem perature (°C )
W
Fig. 9 - Typical Switching Losses vs. Gate
Resistance
Fig. 10 - Typical Switching Losses vs.
Case Temperature
C-339
To Order
Previous Datasheet
Index
Next Data Sheet
IRGBC20M-S
RG
TC
V CC
VGE
= 50 Ω
= 150 °C
= 4 80 V
= 15 V
100
IC , Collector-to-Emitter Current (A)
Total S w itching Losses (m J)
4.0
3.0
2.0
1.0
SAFE OPERATING AREA
10
A
0.0
0
4
8
12
16
VGE = 20V
TJ = 125°C
A
1
20
1
I C , C o llector-to -E m itte r Current (A )
10
VCE , Collector-to-Emitter Voltage (V)
Fig. 11 - Typical Switching Losses vs.
Collector-to-Emitter Current
Fig. 12 - Turn-Off SOA
Refer to Section D for the following:
Appendix C: Section D - page D-5
Fig. 13a - Clamped Inductive Load Test Circuit
Fig. 13b - Pulsed Collector Current Test Circuit
Fig. 14a - Switching Loss Test Circuit
Fig. 14b - Switching Loss Waveform
Package Outline 2 - SMD-220
100
Section D - page D-12
C-340
To Order
1000