IRF IRLZ44ZPBF

PD - 95539
IRLZ44ZPbF
IRLZ44ZSPbF
IRLZ44ZLPbF
AUTOMOTIVE MOSFET
Features
l
l
l
l
l
l
l
Logic Level
Advanced Process Technology
Ultra Low On-Resistance
175°C Operating Temperature
Fast Switching
Repetitive Avalanche Allowed up to Tjmax
Lead-Free
HEXFET® Power MOSFET
D
RDS(on) = 13.5mΩ
G
Description
Specifically designed for Automotive applications,
this HEXFET® Power MOSFET utilizes the latest
processing techniques to achieve extremely low onresistance per silicon area. Additional features of
this design are a 175°C junction operating temperature, fast switching speed and improved repetitive
avalanche rating . These features combine to make
this design an extremely efficient and reliable device
for use in Automotive applications and a wide variety
of other applications.
VDSS = 55V
ID = 51A
S
D2Pak
IRLZ44ZS
TO-220AB
IRLZ44Z
TO-262
IRLZ44ZL
Absolute Maximum Ratings
Parameter
ID @ TC = 25°C
ID @ TC = 100°C
IDM
PD @TC = 25°C
Max.
Continuous Drain Current, VGS @ 10V (Silicon Limited)
Continuous Drain Current, VGS @ 10V
Pulsed Drain Current
c
Power Dissipation
VGS
EAS (Thermally limited)
EAS (Tested )
IAR
EAR
Linear Derating Factor
Gate-to-Source Voltage
Single Pulse Avalanche Energy
Single Pulse Avalanche Energy Tested Value
Avalanche Current
Repetitive Avalanche Energy
TJ
TSTG
Operating Junction and
Storage Temperature Range
d
c
g
i
Parameter
RθJC
Junction-to-Case
RθCS
Case-to-Sink, Flat Greased Surface
RθJA
Junction-to-Ambient
RθJA
Junction-to-Ambient (PCB Mount)
www.irf.com
W
0.53
± 16
78
110
See Fig.12a, 12b, 15, 16
W/°C
V
mJ
A
mJ
°C
Thermal Resistance
ik
A
-55 to + 175
Soldering Temperature, for 10 seconds
Mounting Torque, 6-32 or M3 screw
k
h
Units
51
36
204
80
ik
jk
300 (1.6mm from case )
10 lbf in (1.1N m)
y
y
Typ.
Max.
Units
–––
1.87
°C/W
0.50
–––
–––
62
–––
40
1
7/21/04
IRLZ44Z/S/LPbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
V(BR)DSS
∆V(BR)DSS/∆TJ
RDS(on)
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
VGS(th)
Gate Threshold Voltage
Forward Transconductance
Drain-to-Source Leakage Current
Min. Typ. Max. Units
Qg
Qgs
Qgd
td(on)
tr
td(off)
tf
LD
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain ("Miller") Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Internal Drain Inductance
–––
0.05
11
–––
–––
–––
–––
–––
–––
–––
–––
24
7.5
12
14
160
25
42
4.5
–––
–––
13.5
20
22.5
3.0
–––
20
250
200
-200
36
–––
–––
–––
–––
–––
–––
–––
LS
Internal Source Inductance
–––
7.5
–––
6mm (0.25in.)
from package
Ciss
Coss
Crss
Coss
Coss
Coss eff.
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Output Capacitance
Output Capacitance
Effective Output Capacitance
–––
–––
–––
–––
–––
–––
1620
230
130
860
180
280
–––
–––
–––
–––
–––
–––
S
and center of die contact
VGS = 0V
VDS = 25V
ƒ = 1.0MHz
VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz
VGS = 0V, VDS = 44V, ƒ = 1.0MHz
VGS = 0V, VDS = 0V to 44V
gfs
IDSS
IGSS
V
V/°C
mΩ
mΩ
mΩ
Conditions
55
–––
–––
–––
–––
1.0
27
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
V
V
µA
nA
nC
ns
nH
pF
VGS = 0V, ID = 250µA
Reference to 25°C, ID = 1mA
VGS = 10V, ID = 31A
VGS = 5.0V, ID = 30A
VGS = 4.5V, ID = 15A
VDS = VGS, ID = 250µA
VDS = 25V, ID = 31A
VDS = 55V, VGS = 0V
VDS = 55V, VGS = 0V, TJ = 125°C
VGS = 16V
VGS = -16V
ID = 31A
VDS = 44V
VGS = 5.0V
VDD = 50V
ID = 31A
RG = 7.5 Ω
VGS = 5.0V
D
Between lead,
e
e
e
e
e
G
f
Source-Drain Ratings and Characteristics
Parameter
Min. Typ. Max. Units
IS
Continuous Source Current
–––
–––
51
ISM
(Body Diode)
Pulsed Source Current
–––
–––
204
VSD
trr
Qrr
ton
(Body Diode)
Diode Forward Voltage
Reverse Recovery Time
Reverse Recovery Charge
Forward Turn-On Time
–––
–––
–––
–––
21
16
1.3
32
24
2
c
Conditions
MOSFET symbol
A
V
ns
nC
showing the
integral reverse
p-n junction diode.
TJ = 25°C, IS = 31A, VGS = 0V
TJ = 25°C, IF = 31A, VDD = 28V
di/dt = 100A/µs
e
e
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
www.irf.com
IRLZ44Z/S/LPbF
1000
1000
ID, Drain-to-Source Current (A)
TOP
100
BOTTOM
10
3.0V
1
≤ 60µs PULSE WIDTH
Tj = 25°C
TOP
ID, Drain-to-Source Current (A)
VGS
15V
10V
8.0V
5.0V
4.5V
4.0V
3.5V
3.0V
0.1
100
BOTTOM
10
3.0V
≤ 60µs PULSE WIDTH
Tj = 175°C
1
0.1
1
10
100
0.1
VDS, Drain-to-Source Voltage (V)
1
10
100
VDS, Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
Fig 2. Typical Output Characteristics
1000.0
60
Gfs, Forward Transconductance (S)
ID, Drain-to-Source Current (Α)
VGS
15V
10V
8.0V
5.0V
4.5V
4.0V
3.5V
3.0V
T J = 25°C
100.0
T J = 175°C
10.0
VDS = 20V
≤ 60µs PULSE WIDTH
T J = 175°C
40
T J = 25°C
20
VDS = 10V
380µs PULSE WIDTH
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
VGS, Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
www.irf.com
10.0
0
0
10
20
30
40
50
ID, Drain-to-Source Current (A)
Fig 4. Typical Forward Transconductance
Vs. Drain Current
3
IRLZ44Z/S/LPbF
2500
VGS, Gate-to-Source Voltage (V)
2000
C, Capacitance (pF)
12
VGS = 0V,
f = 1 MHZ
C iss = C gs + C gd, C ds SHORTED
C rss = C gd
C oss = C ds + C gd
Ciss
1500
1000
500
Coss
Crss
VDS= 44V
VDS= 28V
VDS= 11V
10
8
6
4
2
0
0
1
ID= 31A
10
0
100
30
40
50
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
1000
ID, Drain-to-Source Current (A)
1000.0
ISD, Reverse Drain Current (A)
20
QG Total Gate Charge (nC)
VDS, Drain-to-Source Voltage (V)
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100
100.0
T J = 175°C
10.0
T J = 25°C
1.0
VGS = 0V
0.2
0.6
1.0
1.4
VSD, Source-to-Drain Voltage (V)
Fig 7. Typical Source-Drain Diode
Forward Voltage
100µsec
10
1msec
1
Tc = 25°C
Tj = 175°C
Single Pulse
10msec
0.1
0.1
4
10
1.8
1
10
100
1000
VDS , Drain-toSource Voltage (V)
Fig 8. Maximum Safe Operating Area
www.irf.com
IRLZ44Z/S/LPbF
2.5
RDS(on) , Drain-to-Source On Resistance
(Normalized)
60
ID , Drain Current (A)
50
40
30
20
10
0
ID = 30A
VGS = 5.0V
2.0
1.5
1.0
0.5
25
50
75
100
125
150
175
-60 -40 -20
T J , Junction Temperature (°C)
0
20 40 60 80 100 120 140 160 180
T J , Junction Temperature (°C)
Fig 10. Normalized On-Resistance
Vs. Temperature
Fig 9. Maximum Drain Current Vs.
Case Temperature
Thermal Response ( Z thJC )
10
1
D = 0.50
0.20
0.10
0.1
τJ
0.05
0.02
0.01
R1
R1
τJ
τ1
R2
R2
τ2
τ1
τ2
Ci= τi/Ri
Ci τi/Ri
0.01
R3
R3
τ3
τC
τ
τ3
Ri (°C/W) τi (sec)
0.736
0.000345
0.687
0.00147
0.449
0.007058
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
SINGLE PULSE
( THERMAL RESPONSE )
0.001
1E-006
1E-005
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5
IRLZ44Z/S/LPbF
D.U.T
RG
VGS
20V
DRIVER
L
VDS
+
V
- DD
IAS
tp
A
0.01Ω
Fig 12a. Unclamped Inductive Test Circuit
V(BR)DSS
tp
EAS, Single Pulse Avalanche Energy (mJ)
320
15V
ID
3.7A
5.7A
BOTTOM 31A
TOP
240
160
80
0
25
50
75
100
125
150
175
Starting T J, Junction Temperature (°C)
I AS
Fig 12c. Maximum Avalanche Energy
Vs. Drain Current
Fig 12b. Unclamped Inductive Waveforms
QG
QGS
QGD
3.0
VG
Charge
Fig 13a. Basic Gate Charge Waveform
L
DUT
0
1K
VCC
VGS(th) Gate threshold Voltage (V)
10 V
2.5
ID = 250µA
2.0
1.5
1.0
0.5
-75
-50
-25
0
25
50
75
100 125 150 175
T J , Temperature ( °C )
Fig 13b. Gate Charge Test Circuit
6
Fig 14. Threshold Voltage Vs. Temperature
www.irf.com
IRLZ44Z/S/LPbF
1000
Avalanche Current (A)
Duty Cycle = Single Pulse
100
Allowed avalanche Current vs
avalanche pulsewidth, tav
assuming ∆ Tj = 25°C due to
avalanche losses. Note: In no
case should Tj be allowed to
exceed Tjmax
0.01
10
0.05
0.10
1
0.1
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
Fig 15. Typical Avalanche Current Vs.Pulsewidth
EAR , Avalanche Energy (mJ)
100
TOP
Single Pulse
BOTTOM 1% Duty Cycle
ID = 31A
80
60
40
20
0
25
50
75
100
125
150
Starting T J , Junction Temperature (°C)
Fig 16. Maximum Avalanche Energy
Vs. Temperature
www.irf.com
Notes on Repetitive Avalanche Curves , Figures 15, 16:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a
temperature far in excess of Tjmax. This is validated for
every part type.
2. Safe operation in Avalanche is allowed as long asTjmax is
not exceeded.
3. Equation below based on circuit and waveforms shown in
Figures 12a, 12b.
4. PD (ave) = Average power dissipation per single
avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for
voltage increase during avalanche).
6. Iav = Allowable avalanche current.
7. ∆T = Allowable rise in junction temperature, not to exceed
Tjmax (assumed as 25°C in Figure 15, 16).
tav = Average time in avalanche.
175
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav) = Transient thermal resistance, see figure 11)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC
Iav = 2DT/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
7
IRLZ44Z/S/LPbF
D.U.T
Driver Gate Drive
ƒ
+
„
-
-
D.U.T. ISD Waveform
Reverse
Recovery
Current
+
di/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
P.W.
Period
*

•
•
•
•
D=
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
‚
RG
Period
P.W.
+
VDD
+
-
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
VDD
Forward Drop
Inductor
Current
Inductor Curent
ISD
Ripple ≤ 5%
* VGS = 5V for Logic Level Devices
Fig 17. Diode Reverse Recovery Test Circuit for N-Channel
HEXFET® Power MOSFETs
VDS
VGS
RG
RD
D.U.T.
+
-VDD
10V
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
Fig 18a. Switching Time Test Circuit
VDS
90%
10%
VGS
td(on)
tr
t d(off)
tf
Fig 18b. Switching Time Waveforms
8
www.irf.com
IRLZ44Z/S/LPbF
TO-220AB Package Outline
Dimensions are shown in millimeters (inches)
2.87 (.113)
2.62 (.103)
10.54 (.415)
10.29 (.405)
-B-
3.78 (.149)
3.54 (.139)
4.69 (.185)
4.20 (.165)
-A-
1.32 (.052)
1.22 (.048)
6.47 (.255)
6.10 (.240)
4
15.24 (.600)
14.84 (.584)
LEAD ASSIGNMENTS
1.15 (.045)
MIN
1
2
3
4- DRAIN
14.09 (.555)
13.47 (.530)
1.40 (.055)
1.15 (.045)
4- COLLECTOR
4.06 (.160)
3.55 (.140)
3X
3X
LEAD ASSIGNMENTS
IGBTs, CoPACK
1 - GATE
2 - DRAIN
1- GATE
1- GATE
3 - SOURCE 2- COLLECTOR
2- DRAIN
3- SOURCE
3- EMITTER
4 - DRAIN
HEXFET
0.93 (.037)
0.69 (.027)
0.36 (.014)
3X
M
B A M
0.55 (.022)
0.46 (.018)
2.92 (.115)
2.64 (.104)
2.54 (.100)
2X
NOTES:
1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982.
2 CONTROLLING DIMENSION : INCH
3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB.
4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS.
TO-220AB Part Marking Information
E XAMPL E : T HIS IS AN IR F 1010
L OT CODE 1789
AS S E MB L E D ON WW 19, 1997
IN T H E AS S E MB L Y L INE "C"
Note: "P" in assembly line
position indicates "Lead-Free"
INT E R NAT IONAL
R E CT IF IE R
L OGO
AS S E MB L Y
L OT CODE
www.irf.com
PAR T NU MB E R
DAT E CODE
YE AR 7 = 1997
WE E K 19
L INE C
9
IRLZ44Z/S/LPbF
D2Pak Package Outline
Dimensions are shown in millimeters (inches)
D2Pak Part Marking Information (Lead-Free)
T H IS IS AN IR F 5 3 0 S W IT H
L OT COD E 8 0 24
AS S E M B L E D O N W W 0 2 , 2 0 0 0
IN T H E AS S E M B L Y L IN E "L "
IN T E R N AT IO N AL
R E C T IF IE R
L O GO
N ote: "P " in as s em bly line
pos ition in dicates "L ead-F ree"
P AR T N U M B E R
F 530S
AS S E M B L Y
L O T CO D E
D AT E C O D E
Y E AR 0 = 2 0 0 0
WE E K 02
L IN E L
OR
IN T E R N AT IO N AL
R E C T IF IE R
L OGO
AS S E M B L Y
L O T COD E
10
P AR T N U M B E R
F 530S
D AT E C O D E
P = D E S IG N AT E S L E AD -F R E E
P R O D U CT (O P T IO N AL )
Y E AR 0 = 2 0 0 0
WE E K 02
A = AS S E M B L Y S IT E C O D E
www.irf.com
IRLZ44Z/S/LPbF
TO-262 Package Outline
TO-262 Part Marking Information
E X AMP L E :
T H IS IS AN IR L 31 03 L
L OT COD E 17 89
AS S E MB L E D ON W W 1 9, 19 97
IN T H E AS S E MB L Y L IN E "C"
N ote: "P " in as s em bly line
pos ition indicates "L ead-F ree"
IN T E R N AT ION AL
R E CT IF IE R
L OGO
AS S E MB L Y
L OT COD E
P AR T N U MB E R
D AT E COD E
Y E AR 7 = 1 99 7
W E E K 19
L IN E C
OR
IN T E R N AT ION AL
R E CT IF IE R
L OGO
AS S E MB L Y
L OT COD E
www.irf.com
P AR T N U MB E R
D AT E COD E
P = D E S IGN AT E S L E AD -F R E E
P R OD U CT (OP T ION AL )
Y E AR 7 = 19 97
WE E K 19
A = AS S E MB L Y S IT E COD E
11
IRLZ44Z/S/LPbF
D2Pak Tape & Reel Infomation
TRR
1.60 (.063)
1.50 (.059)
4.10 (.161)
3.90 (.153)
FEED DIRECTION 1.85 (.073)
1.65 (.065)
1.60 (.063)
1.50 (.059)
11.60 (.457)
11.40 (.449)
0.368 (.0145)
0.342 (.0135)
15.42 (.609)
15.22 (.601)
24.30 (.957)
23.90 (.941)
TRL
10.90 (.429)
10.70 (.421)
1.75 (.069)
1.25 (.049)
4.72 (.136)
4.52 (.178)
16.10 (.634)
15.90 (.626)
FEED DIRECTION
13.50 (.532)
12.80 (.504)
27.40 (1.079)
23.90 (.941)
4
330.00
(14.173)
MAX.
NOTES :
1. COMFORMS TO EIA-418.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION MEASURED @ HUB.
4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.
60.00 (2.362)
MIN.
26.40 (1.039)
24.40 (.961)
3
30.40 (1.197)
MAX.
4
Notes:
… Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive
max. junction temperature. (See fig. 11).
avalanche performance.
‚ Limited by TJmax, starting TJ = 25°C, L = 0.166mH † This value determined from sample failure population. 100%
RG = 25Ω, IAS = 31A, VGS =10V. Part not
tested to this value in production.
recommended for use above this value.
‡ This is only applied to TO-220AB pakcage.
ƒ Pulse width ≤ 1.0ms; duty cycle ≤ 2%.
ˆ This is applied to D2Pak, when mounted on 1" square PCB (FR„ Coss eff. is a fixed capacitance that gives the
4 or G-10 Material). For recommended footprint and soldering
same charging time as Coss while VDS is rising
techniques refer to application note #AN-994.
from 0 to 80% VDSS .
‰ Rθ is measured at TJ approximately 90°C
 Repetitive rating; pulse width limited by
TO-220AB package is not recommended for Surface Mount Application.
Data and specifications subject to change without notice.
This product has been designed and qualified for the Automotive [Q101]market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 7/04
12
www.irf.com
Note: For the most current drawings please refer to the IR website at:
http://www.irf.com/package/