ISL28194, ISL28195 ® Data Sheet October 9, 2007 Ultra-Small, 330nA and 1µA Single Supply, Rail-to-Rail Input/Output (RRIO) Op Amps The ISL28194 and ISL28195 are micropower op amps optimized for low-power applications. The parts are designed for single-supply operation from 1.8V to 5.5V, making them suitable for applications with two 1.5V alkaline batteries. The ISL28194 consumes typically 330nA of supply current and the ISL28195 consumes typically 1µA of supply current. Both parts feature rail-to-rail input and output swing (RRIO), allowing for maximum battery usage. Equipped with a shutdown pin, both parts draw typically 2nA when off. The combination of small footprint, low power, single supply, and rail-to-rail operation make them ideally suited for all battery operated devices. FN6236.3 Features • Typical Supply Current 330nA (ISL28194) • Typical Supply Current 1µA (ISL28195) • Ultra-Low Single-Supply Operation Down to +1.8V • Rail-to-Rail Input/Output Voltage Range (RRIO) • Maximum 2mV Offset Voltage • Maximum 60pA Input Bias Current • 3.5kHz Gain Bandwidth Product (ISL28194) • 10kHz Gain Bandwidth Product (ISL28195) • ENABLE Pin Feature • -40°C to +125°C Operation • Pb-Free (RoHS Compliant) Pinouts ISL28194, ISL28195 (6 LD SOT-23) TOP VIEW OUT 1 V- 2 + - IN+ 3 Applications • 2-Cell Alkaline Battery-Powered/Portable Systems 6 V+ • Window Comparators 5 EN • Threshold Detectors/Discriminators 4 IN- • Mobile Communications • Low Power Sensors ISL28194, ISL28195 (6 LD 1.6X1.6X0.5 µTDFN) TOP VIEW 6 V+ V- 2 5 EN + - IN- 1 IN+ 3 4 OUT Ordering Information PART NUMBER (Note) ISL28194FHZ-T7* PART MARKING GABK PACKAGE (Pb-free) 6 Ld SOT-23 Tape and Reel PKG. DWG. # MDP0038 Coming Soon c ISL28194FRUZ-T7* 6 Ld 1.6x1.6x0.5 µTDFN L6.1.6x1.6A Tape and Reel ISL28195FHZ-T7* 6 Ld SOT-23 Tape and Reel GABL Coming Soon d ISL28195FRUZ-T7* MDP0038 6 Ld 1.6x1.6x0.5 µTDFN L6.1.6x1.6A Tape and Reel *Please refer to TB347 for details on reel specifications. NOTE: These Intersil Pb-free plastic packaged products employ special Pb-free material sets; molding compounds/die attach materials and 100% matte tin plate PLUS ANNEAL - e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations. Intersil Pb-free products are MSL classified at Pbfree peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020. 1 CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. 1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc. Copyright © Intersil Americas Inc. 2007. All Rights Reserved. All other trademarks mentioned are the property of their respective owners. ISL28194, ISL28195 Absolute Maximum Ratings (TA = +25°C) Thermal Information Supply Voltage (V+, V-) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.75V Supply Turn On Voltage Slew Rate . . . . . . . . . . . . . . . . . . . . . 1V/μs Differential Input Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5mA Differential Input Voltage . . . . . . . . . . . . . . . . V- - 0.5V to V+ + 0.5V ESD Rating Human Body Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3kV Machine Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .300V Thermal Resistance (Typical, Note 1) θJA (°C/W) 6 Ld SOT-23. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230 6 Ld µTDFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117.52 Output Short-Circuit Duration . . . . . . . . . . . . . . . . . . . . . . .Indefinite Ambient Operating Temperature Range . . . . . . . . .-40°C to +125°C Storage Temperature Range . . . . . . . . . . . . . . . . . .-65°C to +150°C Operating Junction Temperature . . . . . . . . . . . . . . . . . . . . . +125°C Pb-free reflow profile . . . . . . . . . . . . . . . . . . . . . . . . . .see link below http://www.intersil.com/pbfree/Pb-FreeReflow.asp CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and result in failures not covered by warranty. NOTE: 1. θJA is measured with the component mounted on a high effective thermal conductivity test board in free air. See Tech Brief TB379 for details. IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typical values are for information purposes only. Unless otherwise noted, all tests are at the specified temperature and are pulsed tests, therefore: TJ = TC = TA Electrical Specifications PARAMETER V+ = 5V, V- = 0V, VCM = 2.5V, TA = +25°C, Unless Otherwise Specified. Boldface limits apply over -40°C to +125°C. DESCRIPTION CONDITIONS MIN (Note 2) TYP MAX (Note 2) UNIT 2 2.5 mV mV VOS Input Offset Voltage ΔV OS --------------ΔT Input Offset Voltage vs Temperature IOS Input Offset Current -60 -100 10 60 100 pA pA IB Input Bias Current -80 -150 15 80 150 pA pA eN Input Noise Voltage Peak-to-Peak Input Noise Voltage Density iN Input Noise Current Density -2 -2.5 -0.1 1.5 µV/°C ISL28194; f = 0.1Hz to 10Hz 10 µVPP ISL28195; f = 0.1Hz to 10Hz 4 µVPP ISL28194 fo = 100Hz 265 nV/√Hz ISL28195 fo = 1kHz 150 nV/√Hz ISL28194 fo = 100Hz 0.7 pA/√Hz ISL28195 fo = 1kHz 0.42 pA/√Hz CMIR Common Mode Input Range Established by CMRR test 0 CMRR Common-Mode Rejection Ratio VCM = 0.5V to 3.5V 70 70 VCM = 0V to 5V PSRR Power Supply Rejection Ratio V+ = 1.8V to 5.0V AVOL Large Signal Voltage Gain VO = 0.5V to 3.5V, RL = 100kΩ, RL = 10kΩ VOUT Maximum Output Voltage Swing RL terminated to V+/2 Output low, RL = 100kΩ 25 40 mV Output low, RL = 10kΩ 50 70 mV SR GBW 5 V 100 dB 55 90 dB 70 70 100 dB 75 115 dB Output high, RL = 100kΩ 4.96 4.975 Output high, RL = 10kΩ 4.93 4.94 V 1.2 V/ms ISL28195 4.2 V/ms Gain Bandwidth Product ISL28194; AV = 101; RL = 10kΩ 3.5 kHz Gain Bandwidth Product ISL28195; AV = 101; RL = 10kΩ 10 kHz Slew Rate ISL28194 2 ±1.5V, AV = 2 V FN6236.3 October 9, 2007 ISL28194, ISL28195 Electrical Specifications PARAMETER IS,ON V+ = 5V, V- = 0V, VCM = 2.5V, TA = +25°C, Unless Otherwise Specified. Boldface limits apply over -40°C to +125°C. DESCRIPTION MIN (Note 2) CONDITIONS Supply Current, Enabled TYP MAX (Note 2) UNIT ISL28194 330 450 500 nA ISL28195 1 1.3 1.5 µA 2 20 50 nA nA IS,OFF Supply Current, Disabled EN = 0.4V ISC+ Short Circuit Sourcing Capability RL = 10Ω 9 11 mA ISC- Short Circuit Sinking Capability RL terminated to V+/2 RL = 10Ω 11 12 mA V+ Supply Voltage Range 1.8 VINH Enable Pin High Level (V+)x(0.8) VINL Enable Pin Low Level IENH Enable Pin Input Current VEN = 5V IENL Enable Pin Input Current VEN = 0V 5.5 V ENABLE INPUT V 0.4 V 30 150 200 nA 30 150 200 nA NOTE: 2. Parts are 100% tested at +25°C. Over-temperature limits established by characterization and are not production tested. Typical Performance Curves V+ = 5V, V- = 0V, VCM = 2.5V, Unless Otherwise Specified. 1 1 0 0 -2 GAIN (dB) GAIN (dB) -2 -3 -4 -5 -7 -8 -4 -5 V+ = 5V RL = 10k AV = +1 VOUT = 10mVP-P -7 -8 -9 -9 10 -3 -6 V+ = 5V RL = 10k AV = +1 VOUT = 10mVP-P -6 100 1k 10k 10 100 1k 10k 100k FREQUENCY (Hz) FREQUENCY (Hz) FIGURE 1. ISL28194 CLOSE LOOP GAIN vs FREQUENCY FIGURE 2. ISL28195 CLOSE LOOP GAIN vs FREQUENCY 10 -10 10 V+ = 5V RL = 10k AV = +1 VSOURCE = 1VP-P 0 CMRR -10 CMRR (dB) 0 CMRR (dB) GAIN -1 GAIN -1 -20 -30 -30 -40 -50 -50 10 100 1k FREQUENCY (Hz) FIGURE 3. ISL28194 CMRR vs FREQUENCY 3 10k CMRR -20 -40 -60 V+ = 5V RL = 10k AV = +1 VSOURCE = 1VP-P -60 10 100 1k FREQUENCY (Hz) 10k 100k FIGURE 4. ISL28195 CMRR vs FREQUENCY FN6236.3 October 9, 2007 ISL28194, ISL28195 Typical Performance Curves V+ = 5V, V- = 0V, VCM = 2.5V, Unless Otherwise Specified. 10 10 V+ = 5V 0 RL = 10k -10 AV = +1 VSOURCE = 1VP-P -20 PSRR- PSRR (dB) V+ = 5V 0 R = 10k L -10 AV = +1 VSOURCE = 1VP-P -20 PSRR (dB) (Continued) -30 -40 -50 PSRR+ -60 PSRR- -30 -40 -50 PSRR+ -60 -70 -70 -80 10 100 1k FREQUENCY (Hz) -80 10 10k 100 1k 10k 100k FREQUENCY (Hz) FIGURE 5. ISL28194 PSRR vs FREQUENCY FIGURE 6. ISL28195 PSRR vs FREQUENCY 3 5 4 2 INPUT NOISE (µV) INPUT NOISE (µV) 3 2 1 0 -1 -2 V+ = 5V RL = 10k AV = 1000 -3 -4 1 2 3 4 5 6 TIME (s) 7 8 9 10 FIGURE 7. ISL28194 0.1Hz TO 10Hz INPUT VOLTAGE NOISE V+ = 5V RL = 10k AV = 1000 0 1 2 3 4 5 6 TIME (s) 7 8 9 10 FIGURE 8. ISL28195 0.1Hz TO 10Hz INPUT VOLTAGE NOISE 240 770 V+ = 5V RL = INF AV = +1 SUPPLY CURRENT (nA) SUPPLY CURRENT (nA) -1 -3 0 230 0 -2 -5 235 1 225 220 215 210 205 200 195 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 SUPPLY VOLTAGE (V) FIGURE 9. ISL28194 SUPPLY CURRENT vs SUPPLY VOLTAGE 4 V+ = 5V 760 RL = INF AV = +1 750 740 730 720 710 700 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 SUPPLY VOLTAGE (V) FIGURE 10. ISL28195 SUPPLY CURRENT vs SUPPLY VOLTAGE FN6236.3 October 9, 2007 ISL28194, ISL28195 Typical Performance Curves V+ = 5V, V- = 0V, VCM = 2.5V, Unless Otherwise Specified. 20 V+ = 5V 18 R = 10Ω L 16 AV = +1 V+ = 5V RL = 10Ω AV = +1 18 OUTPUT CURRENT (mA) OUTPUT CURRENT (mA) 20 14 12 SINK 10 8 SOURCE 6 4 2 16 14 12 SINK 10 8 SOURCE 6 4 2 0 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 0 1.0 5.0 1.5 2.0 SUPPLY VOLTAGE (V) 3.5 4.0 4.5 5.0 0.006 OUTPUT VOLTAGE (mV) 0.005 INPUT 0.003 OUTPUT 0.001 -0.001 V+, V- = ±2.5V RL = 10k AV = +1 -0.003 -0.005 0.004 INPUT OUTPUT 0.002 0.000 -0.002 V+, V- = ±2.5V RL = 10k AV = +1 -0.004 VOUT = 10mVP-P -0.007 -3.00E-04 -1.00E-04 1.00E-04 3.00E-04 VOUT = 10mVP-P 5.00E-04 7.00E-04 9.00E-04 -0.006 3.50E-04 4.50E-04 5.50E-04 TIME (ms) 6.50E-04 7.50E-04 8.50E-04 TIME (ms) FIGURE 13. ISL28194 SMALL SIGNAL TRANSIENT RESPONSE FIGURE 14. ISL28195 SMALL SIGNAL TRANSIENT RESPONSE 3 3 V+, V- = ±2.5V RL = 10k AV = +1 LARGE SIGNAL 1 0 -1 -2 -3 -2.0 -10 0 V+, V- = ±2.5V RL = 10k AV = +1 2 OUTPUT VOLTAGE (V) OUTPUT VOLTAGE (V) 3.0 FIGURE 12. ISL28195 OUTPUT SHORT CIRCUIT CURRENT 0.007 OUTPUT VOLTAGE (mV) 2.5 SUPPLY VOLTAGE (V) FIGURE 11. ISL28194 OUTPUT SHORT CIRCUIT CURRENT 2 (Continued) 10 20 30 40 50 60 70 80 LARGE SIGNAL 1 0 -1 -2 -3 -8 -6 -4 -2 0 2 4 TIME (ms) TIME (ms) FIGURE 15. ISL28194 LARGE SIGNAL TRANSIENT RESPONSE FIGURE 16. ISL28195 LARGE SIGNAL TRANSIENT RESPONSE 5 FN6236.3 October 9, 2007 ISL28194, ISL28195 6 6 5 5 ENABLE/OUTPUT (V) ENABLE/OUTPUT (V) Typical Performance Curves V+ = 5V, V- = 0V, VCM = 2.5V, Unless Otherwise Specified. 4 EN PIN 3 OUTPUT 2 1 V+ = 5V RL = 10k AV = +1 VIN = 3.5V 0 -4 -2 0 2 4 6 8 (Continued) EN PIN 4 3 OUTPUT 2 1 V+ = 5V RL = 10k AV = +1 VIN = 3.5V 0 -0.5 10 0 0.5 1.0 1.5 2.0 TIME (ms) TIME (ms) FIGURE 17. ISL28194 ENABLE TO OUTPUT DELAY TIME FIGURE 18. ISL28195 ENABLE to OUTPUT DELAY TIME 3.5 EN PIN V+ = 5V RL = 10k AV = +1 VIN = 3.5V ENABLE/OUTPUT (V) 5 4 EN PIN V+ = 5V RL = 10k AV = +1 VIN = 3.5V 2.5 ENABLE/OUTPUT (V) 6 3 2 OUTPUT 1 0 1.5 0.5 OUTPUT -0.5 -1.5 -2.5 -1.0 -0.5 0 0.5 1.0 1.5 2.0 2.5 3.0 -3.5 -0.5 3.5 0 0.5 1.0 1.5 2.0 TIME (µs) FIGURE 19. ISL28194 DISABLE TO OUTPUT DELAY TIME FIGURE 20. ISL28195 DISABLE TO OUTPUT DELAY TIME 2.6 2.6 2.4 2.4 ENABLE THRESHOLD (V) ENABLE THRESHOLD (V) TIME (µs) 2.2 2.0 1.8 1.6 1.4 2.2 2.0 1.8 1.6 1.4 1.2 1.2 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 SUPPLY VOLTAGE (V) FIGURE 21. ISL28194 ENABLE THRESHOLD VOLTAGE vs SUPPLY VOLTAGE 6 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 SUPPLY VOLTAGE (V) FIGURE 22. ISL28195 ENABLE THRESHOLD VOLTAGE vs SUPPLY VOLTAGE FN6236.3 October 9, 2007 ISL28194, ISL28195 Typical Performance Curves V+ = 5V, V- = 0V, VCM = 2.5V, Unless Otherwise Specified. 60 ENABLE TO OUTPUT DELAY (ms) ENABLE TO OUTPUT DELAY (ms) 70 60 50 40 30 20 10 1.5 2.0 2.5 3.0 3.5 4.0 4.5 50 40 30 20 10 0 1.5 0 5.0 2.0 2.5 FIGURE 23. ISL28194 ENABLE TO OUTPUT DELAY TIME vs SUPPLY VOLTAGE 3.5 4.0 4.5 5.0 FIGURE 24. ISL28195 ENABLE TO OUTPUT DELAY TIME vs SUPPLY VOLTAGE 25000 DISABLE TO OUTPUT DELAY (ns) 50000 DISABLE TO OUTPUT DELAY (ns) 3.0 SUPPLY VOLTAGE (V) SUPPLY VOLTAGE (V) 45000 40000 35000 30000 25000 20000 15000 10000 5000 20000 15000 10000 5000 0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 0 1.5 5.0 2.0 SUPPLY VOLTAGE (V) FIGURE 25. ISL28194 ENABLE LOW TO OUTPUT TURN-OFF TIME vs SUPPLY VOLTAGE 1.4 N = 1000 MAX SUPPLY CURRENT (µA) 350 MEDIAN 300 200 -40 MIN -20 0 20 40 60 80 TEMPERATURE (°C) 5.0 N = 1000 MAX 1.2 1.1 1.0 MEDIAN 0.9 0.8 MIN 0.7 100 120 FIGURE 27. ISL28194 SUPPLY CURRENT ENABLED vs TEMPERATURE, V+ = 5V, V- = 0V 7 4.5 1.3 400 250 2.5 3.0 3.5 4.0 SUPPLY VOLTAGE (V) FIGURE 26. ISL28195 ENABLE LOW TO OUTPUT TURN-OFF TIME vs SUPPLY VOLTAGE 450 SUPPLY CURRENT (nA) (Continued) 0.6 -40 -20 0 20 40 60 80 TEMPERATURE (°C) 100 120 FIGURE 28. ISL28195 SUPPLY CURRENT ENABLED vs TEMPERATURE, V+ = 5V, V- = 0V FN6236.3 October 9, 2007 ISL28194, ISL28195 Typical Performance Curves V+ = 5V, V- = 0V, VCM = 2.5V, Unless Otherwise Specified. 35 40 N = 1000 30 IBIAS + (pA) 25 IBIAS + (pA) N = 1000 35 30 MAX 20 15 MEDIAN 10 25 MAX 20 MEDIAN 15 10 MIN 5 0 -40 MIN -20 0 20 40 60 80 100 5 0 -40 120 -20 0 FIGURE 29. ISL28194 IBIAS + vs TEMPERATURE, V+ = 5V 40 N=1000 N = 1000 60 80 100 120 N = 1000 35 25 MAX 30 IBIAS - (pA) 20 IBIAS - (pA) 40 FIGURE 30. ISL28195 IBIAS + vs TEMPERATURE, V+ = 5V 30 15 MEDIAN 10 5 MAX 25 20 MEDIAN 15 10 MIN 0 MIN 5 -20 0 20 40 60 80 TEMPERATURE (°C) 100 0 -40 120 FIGURE 31. ISL28194 IBIAS vs TEMPERATURE, V+ = 2.4V -20 0 20 40 60 80 TEMPERATURE (°C) 100 120 FIGURE 32. ISL28195 IBIAS vs TEMPERATURE, V+ = 2.4V 30 6 N = 1000 4 20 N = 1000 2 MAX 0 10 MAX -2 IOS (pA) IOS (pA) 20 TEMPERATURE (°C) TEMPERATURE (°C) -5 -40 (Continued) 0 MEDIAN -4 -6 MEDIAN -8 -10 -10 -20 -30 -40 -12 MIN -20 0 20 40 60 80 100 120 TEMPERATURE (°C) FIGURE 33. ISL28194 IOS vs TEMPERATURE, V+ = 5V 8 MIN -14 -16 -40 -20 0 20 40 60 80 TEMPERATURE (°C) 100 120 FIGURE 34. ISL28195 IOS vs TEMPERATURE, V+ = 5V FN6236.3 October 9, 2007 ISL28194, ISL28195 Typical Performance Curves V+ = 5V, V- = 0V, VCM = 2.5V, Unless Otherwise Specified. -30 25 N = 1000 -75 MEDIAN VIN = 2.5V -90 -110 -130 VOS (µV) VOS (µV) -70 -175 -225 MEDIAN VIN = 4.7V -325 -20 0 20 40 60 80 TEMPERATURE (°C) 100 -375 -40 120 FIGURE 35. ISL28194 VOS vs TEMPERATURE, V+ = 5V VIN = 2.5V, 4.7V 0 MEDIAN VIN = 2.5V -125 -275 MEDIAN VIN = 4.7V -150 -20 N = 1000 -25 -50 -170 -40 -20 0 N = 1000 -80 -100 -120 -215 -255 MEDIAN VIN = 0.3V -295 MEDIAN VIN = 0.3V -160 MEDIAN VIN = 1.5V -175 MEDIAN VIN = 1.5V VOS (µV) VOS (µV) 120 -135 -140 -335 -180 -20 0 20 40 60 80 100 -375 -40 120 -20 0 TEMPERATURE (°C) 20 40 60 80 100 120 TEMPERATURE (°C) FIGURE 37. ISL28194 VOS vs TEMPERATURE, V+ = 1.8V, VIN = 1.5V, 0.3V FIGURE 38. ISL28195 VOS vs TEMPERATURE, V+ = 1.8V, VIN = 1.5V, 0.3V 100 100 N = 1000 N = 1000 98 98 96 96 MEDIAN VCM: +1.0V TO -2.0V 94 CMRR (dB) CMRR (dB) 100 -95 N = 1000 -60 92 90 MEDIAN VCM: +5.1V TO -0.1V 92 90 88 86 86 -20 0 20 40 60 80 TEMPERATURE (°C) 100 FIGURE 39. ISL28194 CMRR vs TEMPERATURE, VCM = +1.0V TO -2.0V, +5.1V TO -0.1V 9 120 MEDIAN VCM: +1.0V TO -2.0V 94 88 84 -40 20 40 60 80 TEMPERATURE (°C) FIGURE 36. ISL28195 VOS vs TEMPERATURE, V+ = 5V VIN = 2.5V, 4.7V -40 -200 -40 (Continued) 84 -40 MEDIAN VCM: +5.1V TO -0.1V -20 0 20 40 60 80 TEMPERATURE (°C) 100 120 FIGURE 40. ISL28195 CMRR vs TEMPERATURE, VCM = +1.0V TO -2.0V, +5.1V TO -0.1V FN6236.3 October 9, 2007 ISL28194, ISL28195 Typical Performance Curves V+ = 5V, V- = 0V, VCM = 2.5V, Unless Otherwise Specified. 140 N = 1000 130 MAX 110 MEDIAN PSRR (dB) PSRR (dB) 120 100 90 80 MIN 70 60 50 -40 -20 0 20 40 60 80 TEMPERATURE (°C) 100 120 FIGURE 41. ISL28194 PSRR vs TEMPERATURE, V+, V- = ±0.9V TO ±2.5V 118 MAX MEDIAN MIN 0 20 40 60 80 TEMPERATURE (°C) 100 120 FIGURE 42. ISL28195 PSRR vs TEMPERATURE, V+, V- = ±0.9V TO ±2.5V 123.0 N = 1000 122.5 116 N = 1000 122.0 121.5 114 MEDIAN RL = 100k 112 110 AVOL (dB) AVOL (dB) 180 170 N = 1000 160 150 140 130 120 110 100 90 80 70 60 -40 -20 (Continued) MEDIAN RL = 10k MEDIAN RL = 100k 121.0 120.5 120.0 119.5 MEDIAN RL = 10k 119.0 108 118.5 106 -40 -20 0 20 40 60 80 TEMPERATURE (°C) 100 20 40 60 80 100 120 MEDIAN RL = 100k N = 1000 95.5 95.0 88 MEDIAN RL = 10k 86 AVOL (dB) AVOL (dB) 96.0 MEDIAN RL = 100k 90 0 FIGURE 44. ISL28195 AVOL vs TEMPERATURE, V+ = 5V N = 1000 92 -20 TEMPERATURE (°C) FIGURE 43. ISL28194 AVOL vs TEMPERATURE, V+ = 5V 94 118.0 -40 120 84 82 MEDIAN RL = 10k 94.5 94.0 93.5 80 93.0 78 76 92.5 -40 -20 0 20 40 60 80 TEMPERATURE (°C) 100 120 FIGURE 45. ISL28194 AVOL vs TEMPERATURE, V+ = 1.8V 10 -40 -20 0 20 40 60 80 TEMPERATURE (°C) 100 120 FIGURE 46. ISL28195 AVOL vs TEMPERATURE, V+ = 1.8V FN6236.3 October 9, 2007 ISL28194, ISL28195 Typical Performance Curves V+ = 5V, V- = 0V, VCM = 2.5V, Unless Otherwise Specified. 4.981 4.995 4.980 4.985 VOUT (V) VOUT (V) 4.975 MAX 4.979 MAX 4.980 MEDIAN 4.970 4.965 4.978 4.977 MEDIAN 4.976 4.975 4.960 MIN 4.950 -40 -20 0 MIN 4.974 4.955 20 40 60 80 TEMPERATURE (°C) 100 4.973 -40 120 FIGURE 47. ISL28194 VOUT HIGH vs TEMPERATURE, V+ = 5V, RL = 100k 20 40 60 80 TEMPERATURE (°C) 100 120 4.946 MAX 4.940 0 N = 1000 N = 1000 4.942 -20 FIGURE 48. ISL28195 VOUT HIGH vs TEMPERATURE, V+ = 5V, RL = 100k 4.948 4.944 4.944 4.938 MEDIAN 4.936 VOUT (V) VOUT (V) N = 1000 N = 1000 4.990 (Continued) 4.934 MEDIAN MAX 4.942 4.940 4.932 MIN MIN 4.930 4.938 4.928 4.926 -40 -20 0 20 40 60 80 TEMPERATURE (°C) 100 FIGURE 49. ISL28194 VOUT HIGH vs TEMPERATURE, V+ = 5V, RL = 10k 35 4.936 -40 120 0 20 40 60 80 TEMPERATURE (°C) 100 120 FIGURE 50. ISL28195 VOUT HIGH vs TEMPERATURE, V+ = 5V, RL = 10k 23 N = 1000 N = 1000 21 MAX 30 -20 MAX VOUT (mV) VOUT (mV) 19 25 MEDIAN 20 MIN 17 MEDIAN 15 13 MIN 15 11 10 -40 -20 0 20 40 60 80 100 120 TEMPERATURE (°C) FIGURE 51. ISL28194 VOUT LOW vs TEMPERATURE, V+, V- = ±2.5V, RL = 100k 11 9 -40 -20 0 20 40 60 80 TEMPERATURE (°C) 100 120 FIGURE 52. ISL28195 VOUT LOW vs TEMPERATURE, V+, V- = ±2.5V, RL = 100k FN6236.3 October 9, 2007 ISL28194, ISL28195 Typical Performance Curves V+ = 5V, V- = 0V, VCM = 2.5V, Unless Otherwise Specified. 57 56 N = 1000 59 54 MAX VOUT (mV) VOUT (mV) N = 1000 57 55 53 52 MEDIAN 51 MIN 50 (Continued) MAX 55 53 51 MEDIAN 49 MIN 49 47 48 47 -40 -20 0 20 40 60 80 TEMPERATURE (°C) 100 45 -40 120 FIGURE 53. ISL28194 VOUT LOW vs TEMPERATURE V+, V- = ±2.5V, RL = 10k -20 0 20 40 60 80 TEMPERATURE (°C) 100 120 FIGURE 54. ISL28195 VOUT LOW vs TEMPERATURE V+, V- = ±2.5V, RL = 10k Pin Descriptions ISL28194, ISL28194, ISL28195 ISL28195 (6 LD SOT-23) (6 LD µTDFN) PIN NAME EQUIVALENT CIRCUIT DESCRIPTION 1 4 OUT_A Circuit 3 Amplifier output 2 2 V- Circuit 4 Negative power supply 3 3 IN+ Circuit 1 Amplifier non-inverting input 4 1 IN- Circuit 1 Amplifier inverting input 5 5 EN Circuit 2 Amplifier enable pin; Logic “1” selects the enabled state, Logic “0” selects the disabled state. 6 6 V+ Circuit 4 Positive power supply V+ V+ V+ IN- V+ 100Ω IN+ LOGIC PIN V- V- V- CIRCUIT 1 CIRCUIT 2 12 CAPACITIVELY COUPLED ESD CLAMP OUT VCIRCUIT 3 CIRCUIT 4 FN6236.3 October 9, 2007 ISL28194, ISL28195 A.C. Test Circuits 1k 5V 5V 10 - - VOUT + VOUT + 10k VIN VIN EN 10k EN VCM = V+/2 V+/2 FIGURE 55. TEST CIRCUIT FOR AV = +1 Applications Information Introduction The ISL28194 and ISL28195 are CMOS rail-to-rail input and output (RRIO) micropower operational amplifiers. These devices are designed to operate from single supply (1.8V to 5.5V) and have an input common mode range that extends to the positive rail and to the negative supply rail for true rail-to-rail performance. The CMOS output can swing within tens of millivolts to the rails. Featuring worst-case maximum supply currents of 0.5µA and 1.5µA for the ISL28194 and ISL28195 respectively, these amplifiers are ideally suited for solar and battery-powered applications. Input Protection All input terminals have internal ESD protection diodes to both positive and negative supply rails, limiting the input voltage to within one diode beyond the supply rails. Both the ISL28194 and ISL28195 have a maximum input differential voltage that includes the rails (-V -0.5V to +V +0.5V). Rail-to-Rail Output A pair of complementary MOSFET devices are used to achieve the rail-to-rail output swing. The NMOS sinks current to swing the output in the negative direction. The PMOS sources current to swing the output in the positive direction. The ISL28194 and ISL28195 will typically swing to within 40mV or less to either rail with a 100kΩ load (reference Figures 49 through 52). Enable/Disable Feature FIGURE 56. TEST CIRCUIT FOR AV = +101 In the disabled state (output in a high impedance state), the supply current is reduced to typical of only 2nA. By disabling the devices, multiple parts can be connected together as a MUX. In this configuration, the outputs are tied together in parallel and a channel can be selected by the EN pin. The EN pin should never be left floating. The EN pin should be connected directly to the V+ supply when not in use. The loading effects of the feedback resistors of the disabled amplifier must be considered when multiple amplifier outputs are connected together. Proper Layout Maximizes Performance To achieve the maximum performance of the high input impedance, care should be taken in the circuit board layout. The PC board surface must remain clean and free of moisture to avoid leakage currents between adjacent traces. Surface coating of the circuit board will reduce surface moisture and provide a humidity barrier, reducing parasitic resistance on the board. When input leakage current is a concern, the use of guard rings around the amplifier inputs will further reduce leakage currents. Figure 57 shows a guard ring example for a unity gain amplifier that uses the low impedance amplifier output at the same voltage as the high impedance input to eliminate surface leakage. The guard ring does not need to be a specific width, but it should form a continuous loop around both inputs. For further reduction of leakage currents, components can be mounted to the PC board using Teflon standoff insulators. HIGH IMPEDANCE INPUT Both parts offer an EN pin that enables the device when pulled high. The enable threshold is referenced to the -V terminal and has a level proportional to the total supply voltage (reference Figures 21 and 22 for EN threshold vs supply voltage). The enable circuit has a delay time that changes as a function of supply voltage. Figures 23 through 26 show the effect of supply voltage on the enable and disable times. For supply voltages less than 3V, it is recommended that the user account for the increase enable/disable delay time. 13 V+ IN FIGURE 57. GUARD RING EXAMPLE FOR UNITY GAIN AMPLIFIER FN6236.3 October 9, 2007 ISL28194, ISL28195 Power Dissipation It is possible to exceed the +150°C maximum junction temperatures under certain load and power-supply conditions. It is therefore important to calculate the maximum junction temperature (TJMAX) for all applications to determine if power supply voltages, load conditions, or package type need to be modified to remain in the safe operating area. These parameters are related in Equation 1: T JMAX = T MAX + ( θ JA xPD MAXTOTAL ) (EQ. 1) where: • PDMAXTOTAL is the sum of the maximum power dissipation of each amplifier in the package (PDMAX) • PDMAX for each amplifier can be calculated as shown in Equation 2: V OUTMAX PD MAX = 2*V S × I SMAX + ( V S - V OUTMAX ) × ---------------------------RL (EQ. 2) where: • TMAX = Maximum ambient temperature • θJA = Thermal resistance of the package • PDMAX = Maximum power dissipation of 1 amplifier • VS = Supply voltage (Magnitude of V+ and V-) • IMAX = Maximum supply current of 1 amplifier • VOUTMAX = Maximum output voltage swing of the application • RL = Load resistance 14 FN6236.3 October 9, 2007 ISL28194, ISL28195 Ultra Thin Dual Flat No-Lead Plastic Package (UTDFN) A A E 6 B 6 LEAD ULTRA THIN DUAL FLAT NO-LEAD PLASTIC PACKAGE 4 MILLIMETERS D PIN 1 REFERENCE 2X 0.15 C 1 2X L6.1.6x1.6A 3 MIN NOMINAL MAX NOTES A 0.45 0.50 0.55 - A1 - - 0.05 - A3 0.15 C A1 TOP VIEW e 1.00 REF 4 6 L CO.2 D2 SYMBOL 0.127 REF - b 0.15 0.20 0.25 - D 1.55 1.60 1.65 4 D2 0.40 0.45 0.50 - E 1.55 1.60 1.65 4 E2 0.95 1.00 1.05 - e 0.50 BSC - DAP SIZE 1.30 x 0.76 L 3 1 b 6X 0.10 M C A B E2 0.25 0.30 0.35 Rev. 1 6/06 NOTES: 1. Dimensions are in MM. Angles in degrees. BOTTOM VIEW 2. Coplanarity applies to the exposed pad as well as the terminals. Coplanarity shall not exceed 0.08mm. DETAIL A 6X 0.10 C 3. Warpage shall not exceed 0.10mm. 0.08 C 4. Package length/package width are considered as special characteristics. 5. JEDEC Reference MO-229. A3 SIDE VIEW C SEATING PLANE 6. For additional information, to assist with the PCB Land Pattern Design effort, see Intersil Technical Brief TB389. 0.127±0.008 0.127 +0.058 -0.008 TERMINAL THICKNESS A1 DETAIL A 0.25 0.50 1.00 0.45 1.00 2.00 0.30 1.25 LAND PATTERN 15 6 FN6236.3 October 9, 2007 ISL28194, ISL28195 SOT-23 Package Family MDP0038 e1 D SOT-23 PACKAGE FAMILY A MILLIMETERS 6 N SYMBOL 4 E1 2 E 3 0.15 C D 1 2X 2 3 0.20 C 5 2X e 0.20 M C A-B D B b NX 0.15 C A-B 1 3 SOT23-5 SOT23-6 TOLERANCE A 1.45 1.45 MAX A1 0.10 0.10 ±0.05 A2 1.14 1.14 ±0.15 b 0.40 0.40 ±0.05 c 0.14 0.14 ±0.06 D 2.90 2.90 Basic E 2.80 2.80 Basic E1 1.60 1.60 Basic e 0.95 0.95 Basic e1 1.90 1.90 Basic L 0.45 0.45 ±0.10 L1 0.60 0.60 Reference N 5 6 Reference D 2X Rev. F 2/07 NOTES: C A2 SEATING PLANE 2. Plastic interlead protrusions of 0.25mm maximum per side are not included. A1 0.10 C 1. Plastic or metal protrusions of 0.25mm maximum per side are not included. 3. This dimension is measured at Datum Plane “H”. NX 4. Dimensioning and tolerancing per ASME Y14.5M-1994. 5. Index area - Pin #1 I.D. will be located within the indicated zone (SOT23-6 only). (L1) 6. SOT23-5 version has no center lead (shown as a dashed line). H A GAUGE PLANE c L 0.25 0° +3° -0° All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems. Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see www.intersil.com 16 FN6236.3 October 9, 2007