INTERSIL ISL28194

ISL28194, ISL28195
®
Data Sheet
October 9, 2007
Ultra-Small, 330nA and 1µA Single Supply,
Rail-to-Rail Input/Output (RRIO) Op Amps
The ISL28194 and ISL28195 are micropower op amps
optimized for low-power applications. The parts are
designed for single-supply operation from 1.8V to 5.5V,
making them suitable for applications with two 1.5V alkaline
batteries. The ISL28194 consumes typically 330nA of supply
current and the ISL28195 consumes typically 1µA of supply
current. Both parts feature rail-to-rail input and output swing
(RRIO), allowing for maximum battery usage.
Equipped with a shutdown pin, both parts draw typically 2nA
when off. The combination of small footprint, low power,
single supply, and rail-to-rail operation make them ideally
suited for all battery operated devices.
FN6236.3
Features
• Typical Supply Current 330nA (ISL28194)
• Typical Supply Current 1µA (ISL28195)
• Ultra-Low Single-Supply Operation Down to +1.8V
• Rail-to-Rail Input/Output Voltage Range (RRIO)
• Maximum 2mV Offset Voltage
• Maximum 60pA Input Bias Current
• 3.5kHz Gain Bandwidth Product (ISL28194)
• 10kHz Gain Bandwidth Product (ISL28195)
• ENABLE Pin Feature
• -40°C to +125°C Operation
• Pb-Free (RoHS Compliant)
Pinouts
ISL28194, ISL28195
(6 LD SOT-23)
TOP VIEW
OUT 1
V- 2
+ -
IN+ 3
Applications
• 2-Cell Alkaline Battery-Powered/Portable Systems
6 V+
• Window Comparators
5 EN
• Threshold Detectors/Discriminators
4 IN-
• Mobile Communications
• Low Power Sensors
ISL28194, ISL28195
(6 LD 1.6X1.6X0.5 µTDFN)
TOP VIEW
6 V+
V- 2
5 EN
+ -
IN- 1
IN+ 3
4 OUT
Ordering Information
PART NUMBER
(Note)
ISL28194FHZ-T7*
PART
MARKING
GABK
PACKAGE
(Pb-free)
6 Ld SOT-23
Tape and Reel
PKG.
DWG. #
MDP0038
Coming Soon
c
ISL28194FRUZ-T7*
6 Ld 1.6x1.6x0.5 µTDFN L6.1.6x1.6A
Tape and Reel
ISL28195FHZ-T7*
6 Ld SOT-23
Tape and Reel
GABL
Coming Soon
d
ISL28195FRUZ-T7*
MDP0038
6 Ld 1.6x1.6x0.5 µTDFN L6.1.6x1.6A
Tape and Reel
*Please refer to TB347 for details on reel specifications.
NOTE: These Intersil Pb-free plastic packaged products employ
special Pb-free material sets; molding compounds/die attach materials
and 100% matte tin plate PLUS ANNEAL - e3 termination finish, which
is RoHS compliant and compatible with both SnPb and Pb-free
soldering operations. Intersil Pb-free products are MSL classified at Pbfree peak reflow temperatures that meet or exceed the Pb-free
requirements of IPC/JEDEC J STD-020.
1
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.
1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc.
Copyright © Intersil Americas Inc. 2007. All Rights Reserved.
All other trademarks mentioned are the property of their respective owners.
ISL28194, ISL28195
Absolute Maximum Ratings (TA = +25°C)
Thermal Information
Supply Voltage (V+, V-) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.75V
Supply Turn On Voltage Slew Rate . . . . . . . . . . . . . . . . . . . . . 1V/μs
Differential Input Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5mA
Differential Input Voltage . . . . . . . . . . . . . . . . V- - 0.5V to V+ + 0.5V
ESD Rating
Human Body Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3kV
Machine Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .300V
Thermal Resistance (Typical, Note 1)
θJA (°C/W)
6 Ld SOT-23. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
230
6 Ld µTDFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
117.52
Output Short-Circuit Duration . . . . . . . . . . . . . . . . . . . . . . .Indefinite
Ambient Operating Temperature Range . . . . . . . . .-40°C to +125°C
Storage Temperature Range . . . . . . . . . . . . . . . . . .-65°C to +150°C
Operating Junction Temperature . . . . . . . . . . . . . . . . . . . . . +125°C
Pb-free reflow profile . . . . . . . . . . . . . . . . . . . . . . . . . .see link below
http://www.intersil.com/pbfree/Pb-FreeReflow.asp
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and
result in failures not covered by warranty.
NOTE:
1. θJA is measured with the component mounted on a high effective thermal conductivity test board in free air. See Tech Brief TB379 for details.
IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typical values are for information purposes only. Unless otherwise noted, all tests
are at the specified temperature and are pulsed tests, therefore: TJ = TC = TA
Electrical Specifications
PARAMETER
V+ = 5V, V- = 0V, VCM = 2.5V, TA = +25°C, Unless Otherwise Specified.
Boldface limits apply over -40°C to +125°C.
DESCRIPTION
CONDITIONS
MIN
(Note 2)
TYP
MAX
(Note 2)
UNIT
2
2.5
mV
mV
VOS
Input Offset Voltage
ΔV OS
--------------ΔT
Input Offset Voltage vs Temperature
IOS
Input Offset Current
-60
-100
10
60
100
pA
pA
IB
Input Bias Current
-80
-150
15
80
150
pA
pA
eN
Input Noise Voltage Peak-to-Peak
Input Noise Voltage Density
iN
Input Noise Current Density
-2
-2.5
-0.1
1.5
µV/°C
ISL28194; f = 0.1Hz to 10Hz
10
µVPP
ISL28195; f = 0.1Hz to 10Hz
4
µVPP
ISL28194
fo = 100Hz
265
nV/√Hz
ISL28195
fo = 1kHz
150
nV/√Hz
ISL28194
fo = 100Hz
0.7
pA/√Hz
ISL28195
fo = 1kHz
0.42
pA/√Hz
CMIR
Common Mode Input Range
Established by CMRR test
0
CMRR
Common-Mode Rejection Ratio
VCM = 0.5V to 3.5V
70
70
VCM = 0V to 5V
PSRR
Power Supply Rejection Ratio
V+ = 1.8V to 5.0V
AVOL
Large Signal Voltage Gain
VO = 0.5V to 3.5V, RL = 100kΩ, RL = 10kΩ
VOUT
Maximum Output Voltage Swing
RL terminated to V+/2
Output low, RL = 100kΩ
25
40
mV
Output low, RL = 10kΩ
50
70
mV
SR
GBW
5
V
100
dB
55
90
dB
70
70
100
dB
75
115
dB
Output high, RL = 100kΩ
4.96
4.975
Output high, RL = 10kΩ
4.93
4.94
V
1.2
V/ms
ISL28195
4.2
V/ms
Gain Bandwidth Product
ISL28194; AV = 101; RL = 10kΩ
3.5
kHz
Gain Bandwidth Product
ISL28195; AV = 101; RL = 10kΩ
10
kHz
Slew Rate
ISL28194
2
±1.5V, AV = 2
V
FN6236.3
October 9, 2007
ISL28194, ISL28195
Electrical Specifications
PARAMETER
IS,ON
V+ = 5V, V- = 0V, VCM = 2.5V, TA = +25°C, Unless Otherwise Specified.
Boldface limits apply over -40°C to +125°C.
DESCRIPTION
MIN
(Note 2)
CONDITIONS
Supply Current, Enabled
TYP
MAX
(Note 2)
UNIT
ISL28194
330
450
500
nA
ISL28195
1
1.3
1.5
µA
2
20
50
nA
nA
IS,OFF
Supply Current, Disabled
EN = 0.4V
ISC+
Short Circuit Sourcing Capability
RL = 10Ω
9
11
mA
ISC-
Short Circuit Sinking Capability
RL terminated to V+/2
RL = 10Ω
11
12
mA
V+
Supply Voltage Range
1.8
VINH
Enable Pin High Level
(V+)x(0.8)
VINL
Enable Pin Low Level
IENH
Enable Pin Input Current
VEN = 5V
IENL
Enable Pin Input Current
VEN = 0V
5.5
V
ENABLE INPUT
V
0.4
V
30
150
200
nA
30
150
200
nA
NOTE:
2. Parts are 100% tested at +25°C. Over-temperature limits established by characterization and are not production tested.
Typical Performance Curves V+ = 5V, V- = 0V, VCM = 2.5V, Unless Otherwise Specified.
1
1
0
0
-2
GAIN (dB)
GAIN (dB)
-2
-3
-4
-5
-7
-8
-4
-5
V+ = 5V
RL = 10k
AV = +1
VOUT = 10mVP-P
-7
-8
-9
-9
10
-3
-6
V+ = 5V
RL = 10k
AV = +1
VOUT = 10mVP-P
-6
100
1k
10k
10
100
1k
10k
100k
FREQUENCY (Hz)
FREQUENCY (Hz)
FIGURE 1. ISL28194 CLOSE LOOP GAIN vs FREQUENCY
FIGURE 2. ISL28195 CLOSE LOOP GAIN vs FREQUENCY
10
-10
10
V+ = 5V
RL = 10k
AV = +1
VSOURCE = 1VP-P
0
CMRR
-10
CMRR (dB)
0
CMRR (dB)
GAIN
-1
GAIN
-1
-20
-30
-30
-40
-50
-50
10
100
1k
FREQUENCY (Hz)
FIGURE 3. ISL28194 CMRR vs FREQUENCY
3
10k
CMRR
-20
-40
-60
V+ = 5V
RL = 10k
AV = +1
VSOURCE = 1VP-P
-60
10
100
1k
FREQUENCY (Hz)
10k
100k
FIGURE 4. ISL28195 CMRR vs FREQUENCY
FN6236.3
October 9, 2007
ISL28194, ISL28195
Typical Performance Curves V+ = 5V, V- = 0V, VCM = 2.5V, Unless Otherwise Specified.
10
10
V+ = 5V
0 RL = 10k
-10 AV = +1
VSOURCE = 1VP-P
-20
PSRR-
PSRR (dB)
V+ = 5V
0 R = 10k
L
-10 AV = +1
VSOURCE = 1VP-P
-20
PSRR (dB)
(Continued)
-30
-40
-50
PSRR+
-60
PSRR-
-30
-40
-50
PSRR+
-60
-70
-70
-80
10
100
1k
FREQUENCY (Hz)
-80
10
10k
100
1k
10k
100k
FREQUENCY (Hz)
FIGURE 5. ISL28194 PSRR vs FREQUENCY
FIGURE 6. ISL28195 PSRR vs FREQUENCY
3
5
4
2
INPUT NOISE (µV)
INPUT NOISE (µV)
3
2
1
0
-1
-2
V+ = 5V
RL = 10k
AV = 1000
-3
-4
1
2
3
4
5
6
TIME (s)
7
8
9
10
FIGURE 7. ISL28194 0.1Hz TO 10Hz INPUT VOLTAGE NOISE
V+ = 5V
RL = 10k
AV = 1000
0
1
2
3
4
5
6
TIME (s)
7
8
9
10
FIGURE 8. ISL28195 0.1Hz TO 10Hz INPUT VOLTAGE NOISE
240
770
V+ = 5V
RL = INF
AV = +1
SUPPLY CURRENT (nA)
SUPPLY CURRENT (nA)
-1
-3
0
230
0
-2
-5
235
1
225
220
215
210
205
200
195
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
SUPPLY VOLTAGE (V)
FIGURE 9. ISL28194 SUPPLY CURRENT vs SUPPLY VOLTAGE
4
V+ = 5V
760 RL = INF
AV = +1
750
740
730
720
710
700
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
SUPPLY VOLTAGE (V)
FIGURE 10. ISL28195 SUPPLY CURRENT vs SUPPLY VOLTAGE
FN6236.3
October 9, 2007
ISL28194, ISL28195
Typical Performance Curves V+ = 5V, V- = 0V, VCM = 2.5V, Unless Otherwise Specified.
20
V+ = 5V
18 R = 10Ω
L
16 AV = +1
V+ = 5V
RL = 10Ω
AV = +1
18
OUTPUT CURRENT (mA)
OUTPUT CURRENT (mA)
20
14
12
SINK
10
8
SOURCE
6
4
2
16
14
12
SINK
10
8
SOURCE
6
4
2
0
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
0
1.0
5.0
1.5
2.0
SUPPLY VOLTAGE (V)
3.5
4.0
4.5
5.0
0.006
OUTPUT VOLTAGE (mV)
0.005
INPUT
0.003
OUTPUT
0.001
-0.001
V+, V- = ±2.5V
RL = 10k
AV = +1
-0.003
-0.005
0.004
INPUT
OUTPUT
0.002
0.000
-0.002
V+, V- = ±2.5V
RL = 10k
AV = +1
-0.004
VOUT = 10mVP-P
-0.007
-3.00E-04 -1.00E-04 1.00E-04
3.00E-04
VOUT = 10mVP-P
5.00E-04 7.00E-04
9.00E-04
-0.006
3.50E-04
4.50E-04
5.50E-04
TIME (ms)
6.50E-04
7.50E-04
8.50E-04
TIME (ms)
FIGURE 13. ISL28194 SMALL SIGNAL TRANSIENT RESPONSE
FIGURE 14. ISL28195 SMALL SIGNAL TRANSIENT RESPONSE
3
3
V+, V- = ±2.5V
RL = 10k
AV = +1
LARGE SIGNAL
1
0
-1
-2
-3
-2.0
-10
0
V+, V- = ±2.5V
RL = 10k
AV = +1
2
OUTPUT VOLTAGE (V)
OUTPUT VOLTAGE (V)
3.0
FIGURE 12. ISL28195 OUTPUT SHORT CIRCUIT CURRENT
0.007
OUTPUT VOLTAGE (mV)
2.5
SUPPLY VOLTAGE (V)
FIGURE 11. ISL28194 OUTPUT SHORT CIRCUIT CURRENT
2
(Continued)
10
20
30
40
50
60
70
80
LARGE SIGNAL
1
0
-1
-2
-3
-8
-6
-4
-2
0
2
4
TIME (ms)
TIME (ms)
FIGURE 15. ISL28194 LARGE SIGNAL TRANSIENT RESPONSE
FIGURE 16. ISL28195 LARGE SIGNAL TRANSIENT RESPONSE
5
FN6236.3
October 9, 2007
ISL28194, ISL28195
6
6
5
5
ENABLE/OUTPUT (V)
ENABLE/OUTPUT (V)
Typical Performance Curves V+ = 5V, V- = 0V, VCM = 2.5V, Unless Otherwise Specified.
4
EN PIN
3
OUTPUT
2
1
V+ = 5V
RL = 10k
AV = +1
VIN = 3.5V
0
-4
-2
0
2
4
6
8
(Continued)
EN PIN
4
3
OUTPUT
2
1
V+ = 5V
RL = 10k
AV = +1
VIN = 3.5V
0
-0.5
10
0
0.5
1.0
1.5
2.0
TIME (ms)
TIME (ms)
FIGURE 17. ISL28194 ENABLE TO OUTPUT DELAY TIME
FIGURE 18. ISL28195 ENABLE to OUTPUT DELAY TIME
3.5
EN PIN
V+ = 5V
RL = 10k
AV = +1
VIN = 3.5V
ENABLE/OUTPUT (V)
5
4
EN PIN
V+ = 5V
RL = 10k
AV = +1
VIN = 3.5V
2.5
ENABLE/OUTPUT (V)
6
3
2
OUTPUT
1
0
1.5
0.5
OUTPUT
-0.5
-1.5
-2.5
-1.0
-0.5
0
0.5
1.0
1.5
2.0
2.5
3.0
-3.5
-0.5
3.5
0
0.5
1.0
1.5
2.0
TIME (µs)
FIGURE 19. ISL28194 DISABLE TO OUTPUT DELAY TIME
FIGURE 20. ISL28195 DISABLE TO OUTPUT DELAY TIME
2.6
2.6
2.4
2.4
ENABLE THRESHOLD (V)
ENABLE THRESHOLD (V)
TIME (µs)
2.2
2.0
1.8
1.6
1.4
2.2
2.0
1.8
1.6
1.4
1.2
1.2
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
SUPPLY VOLTAGE (V)
FIGURE 21. ISL28194 ENABLE THRESHOLD VOLTAGE vs
SUPPLY VOLTAGE
6
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
SUPPLY VOLTAGE (V)
FIGURE 22. ISL28195 ENABLE THRESHOLD VOLTAGE vs
SUPPLY VOLTAGE
FN6236.3
October 9, 2007
ISL28194, ISL28195
Typical Performance Curves V+ = 5V, V- = 0V, VCM = 2.5V, Unless Otherwise Specified.
60
ENABLE TO OUTPUT DELAY (ms)
ENABLE TO OUTPUT DELAY (ms)
70
60
50
40
30
20
10
1.5
2.0
2.5
3.0
3.5
4.0
4.5
50
40
30
20
10
0
1.5
0
5.0
2.0
2.5
FIGURE 23. ISL28194 ENABLE TO OUTPUT DELAY TIME vs
SUPPLY VOLTAGE
3.5
4.0
4.5
5.0
FIGURE 24. ISL28195 ENABLE TO OUTPUT DELAY TIME vs
SUPPLY VOLTAGE
25000
DISABLE TO OUTPUT DELAY (ns)
50000
DISABLE TO OUTPUT DELAY (ns)
3.0
SUPPLY VOLTAGE (V)
SUPPLY VOLTAGE (V)
45000
40000
35000
30000
25000
20000
15000
10000
5000
20000
15000
10000
5000
0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
0
1.5
5.0
2.0
SUPPLY VOLTAGE (V)
FIGURE 25. ISL28194 ENABLE LOW TO OUTPUT TURN-OFF
TIME vs SUPPLY VOLTAGE
1.4
N = 1000
MAX
SUPPLY CURRENT (µA)
350
MEDIAN
300
200
-40
MIN
-20
0
20
40
60
80
TEMPERATURE (°C)
5.0
N = 1000
MAX
1.2
1.1
1.0
MEDIAN
0.9
0.8
MIN
0.7
100
120
FIGURE 27. ISL28194 SUPPLY CURRENT ENABLED vs
TEMPERATURE, V+ = 5V, V- = 0V
7
4.5
1.3
400
250
2.5
3.0
3.5
4.0
SUPPLY VOLTAGE (V)
FIGURE 26. ISL28195 ENABLE LOW TO OUTPUT TURN-OFF
TIME vs SUPPLY VOLTAGE
450
SUPPLY CURRENT (nA)
(Continued)
0.6
-40
-20
0
20
40
60
80
TEMPERATURE (°C)
100
120
FIGURE 28. ISL28195 SUPPLY CURRENT ENABLED vs
TEMPERATURE, V+ = 5V, V- = 0V
FN6236.3
October 9, 2007
ISL28194, ISL28195
Typical Performance Curves V+ = 5V, V- = 0V, VCM = 2.5V, Unless Otherwise Specified.
35
40
N = 1000
30
IBIAS + (pA)
25
IBIAS + (pA)
N = 1000
35
30
MAX
20
15
MEDIAN
10
25
MAX
20
MEDIAN
15
10
MIN
5
0
-40
MIN
-20
0
20
40
60
80
100
5
0
-40
120
-20
0
FIGURE 29. ISL28194 IBIAS + vs TEMPERATURE, V+ = 5V
40
N=1000
N
= 1000
60
80
100
120
N = 1000
35
25
MAX
30
IBIAS - (pA)
20
IBIAS - (pA)
40
FIGURE 30. ISL28195 IBIAS + vs TEMPERATURE, V+ = 5V
30
15
MEDIAN
10
5
MAX
25
20
MEDIAN
15
10
MIN
0
MIN
5
-20
0
20
40
60
80
TEMPERATURE (°C)
100
0
-40
120
FIGURE 31. ISL28194 IBIAS vs TEMPERATURE, V+ = 2.4V
-20
0
20
40
60
80
TEMPERATURE (°C)
100
120
FIGURE 32. ISL28195 IBIAS vs TEMPERATURE, V+ = 2.4V
30
6
N = 1000
4
20
N = 1000
2
MAX
0
10
MAX
-2
IOS (pA)
IOS (pA)
20
TEMPERATURE (°C)
TEMPERATURE (°C)
-5
-40
(Continued)
0
MEDIAN
-4
-6
MEDIAN
-8
-10
-10
-20
-30
-40
-12
MIN
-20
0
20
40
60
80
100
120
TEMPERATURE (°C)
FIGURE 33. ISL28194 IOS vs TEMPERATURE, V+ = 5V
8
MIN
-14
-16
-40
-20
0
20
40
60
80
TEMPERATURE (°C)
100
120
FIGURE 34. ISL28195 IOS vs TEMPERATURE, V+ = 5V
FN6236.3
October 9, 2007
ISL28194, ISL28195
Typical Performance Curves V+ = 5V, V- = 0V, VCM = 2.5V, Unless Otherwise Specified.
-30
25
N = 1000
-75
MEDIAN VIN = 2.5V
-90
-110
-130
VOS (µV)
VOS (µV)
-70
-175
-225
MEDIAN VIN = 4.7V
-325
-20
0
20
40
60
80
TEMPERATURE (°C)
100
-375
-40
120
FIGURE 35. ISL28194 VOS vs TEMPERATURE, V+ = 5V
VIN = 2.5V, 4.7V
0
MEDIAN VIN = 2.5V
-125
-275
MEDIAN VIN = 4.7V
-150
-20
N = 1000
-25
-50
-170
-40
-20
0
N = 1000
-80
-100
-120
-215
-255
MEDIAN VIN = 0.3V
-295
MEDIAN VIN = 0.3V
-160
MEDIAN VIN = 1.5V
-175
MEDIAN VIN = 1.5V
VOS (µV)
VOS (µV)
120
-135
-140
-335
-180
-20
0
20
40
60
80
100
-375
-40
120
-20
0
TEMPERATURE (°C)
20
40
60
80
100
120
TEMPERATURE (°C)
FIGURE 37. ISL28194 VOS vs TEMPERATURE, V+ = 1.8V,
VIN = 1.5V, 0.3V
FIGURE 38. ISL28195 VOS vs TEMPERATURE, V+ = 1.8V,
VIN = 1.5V, 0.3V
100
100
N = 1000
N = 1000
98
98
96
96
MEDIAN VCM: +1.0V TO -2.0V
94
CMRR (dB)
CMRR (dB)
100
-95
N = 1000
-60
92
90
MEDIAN VCM: +5.1V TO -0.1V
92
90
88
86
86
-20
0
20
40
60
80
TEMPERATURE (°C)
100
FIGURE 39. ISL28194 CMRR vs TEMPERATURE,
VCM = +1.0V TO -2.0V, +5.1V TO -0.1V
9
120
MEDIAN VCM: +1.0V TO -2.0V
94
88
84
-40
20
40
60
80
TEMPERATURE (°C)
FIGURE 36. ISL28195 VOS vs TEMPERATURE, V+ = 5V
VIN = 2.5V, 4.7V
-40
-200
-40
(Continued)
84
-40
MEDIAN VCM: +5.1V TO -0.1V
-20
0
20
40
60
80
TEMPERATURE (°C)
100
120
FIGURE 40. ISL28195 CMRR vs TEMPERATURE,
VCM = +1.0V TO -2.0V, +5.1V TO -0.1V
FN6236.3
October 9, 2007
ISL28194, ISL28195
Typical Performance Curves V+ = 5V, V- = 0V, VCM = 2.5V, Unless Otherwise Specified.
140
N = 1000
130
MAX
110
MEDIAN
PSRR (dB)
PSRR (dB)
120
100
90
80
MIN
70
60
50
-40
-20
0
20
40
60
80
TEMPERATURE (°C)
100
120
FIGURE 41. ISL28194 PSRR vs TEMPERATURE,
V+, V- = ±0.9V TO ±2.5V
118
MAX
MEDIAN
MIN
0
20
40
60
80
TEMPERATURE (°C)
100
120
FIGURE 42. ISL28195 PSRR vs TEMPERATURE,
V+, V- = ±0.9V TO ±2.5V
123.0
N = 1000
122.5
116
N = 1000
122.0
121.5
114
MEDIAN RL = 100k
112
110
AVOL (dB)
AVOL (dB)
180
170 N = 1000
160
150
140
130
120
110
100
90
80
70
60
-40
-20
(Continued)
MEDIAN RL = 10k
MEDIAN RL = 100k
121.0
120.5
120.0
119.5
MEDIAN RL = 10k
119.0
108
118.5
106
-40
-20
0
20
40
60
80
TEMPERATURE (°C)
100
20
40
60
80
100
120
MEDIAN RL = 100k
N = 1000
95.5
95.0
88
MEDIAN RL = 10k
86
AVOL (dB)
AVOL (dB)
96.0
MEDIAN RL = 100k
90
0
FIGURE 44. ISL28195 AVOL vs TEMPERATURE, V+ = 5V
N = 1000
92
-20
TEMPERATURE (°C)
FIGURE 43. ISL28194 AVOL vs TEMPERATURE, V+ = 5V
94
118.0
-40
120
84
82
MEDIAN RL = 10k
94.5
94.0
93.5
80
93.0
78
76
92.5
-40
-20
0
20
40
60
80
TEMPERATURE (°C)
100
120
FIGURE 45. ISL28194 AVOL vs TEMPERATURE, V+ = 1.8V
10
-40
-20
0
20
40
60
80
TEMPERATURE (°C)
100
120
FIGURE 46. ISL28195 AVOL vs TEMPERATURE, V+ = 1.8V
FN6236.3
October 9, 2007
ISL28194, ISL28195
Typical Performance Curves V+ = 5V, V- = 0V, VCM = 2.5V, Unless Otherwise Specified.
4.981
4.995
4.980
4.985
VOUT (V)
VOUT (V)
4.975
MAX
4.979
MAX
4.980
MEDIAN
4.970
4.965
4.978
4.977
MEDIAN
4.976
4.975
4.960
MIN
4.950
-40
-20
0
MIN
4.974
4.955
20
40
60
80
TEMPERATURE (°C)
100
4.973
-40
120
FIGURE 47. ISL28194 VOUT HIGH vs TEMPERATURE, V+ = 5V,
RL = 100k
20
40
60
80
TEMPERATURE (°C)
100
120
4.946
MAX
4.940
0
N = 1000
N = 1000
4.942
-20
FIGURE 48. ISL28195 VOUT HIGH vs TEMPERATURE, V+ = 5V,
RL = 100k
4.948
4.944
4.944
4.938
MEDIAN
4.936
VOUT (V)
VOUT (V)
N = 1000
N = 1000
4.990
(Continued)
4.934
MEDIAN
MAX
4.942
4.940
4.932
MIN
MIN
4.930
4.938
4.928
4.926
-40
-20
0
20
40
60
80
TEMPERATURE (°C)
100
FIGURE 49. ISL28194 VOUT HIGH vs TEMPERATURE, V+ = 5V,
RL = 10k
35
4.936
-40
120
0
20
40
60
80
TEMPERATURE (°C)
100
120
FIGURE 50. ISL28195 VOUT HIGH vs TEMPERATURE, V+ = 5V,
RL = 10k
23
N = 1000
N = 1000
21
MAX
30
-20
MAX
VOUT (mV)
VOUT (mV)
19
25
MEDIAN
20
MIN
17
MEDIAN
15
13
MIN
15
11
10
-40
-20
0
20
40
60
80
100
120
TEMPERATURE (°C)
FIGURE 51. ISL28194 VOUT LOW vs TEMPERATURE,
V+, V- = ±2.5V, RL = 100k
11
9
-40
-20
0
20
40
60
80
TEMPERATURE (°C)
100
120
FIGURE 52. ISL28195 VOUT LOW vs TEMPERATURE,
V+, V- = ±2.5V, RL = 100k
FN6236.3
October 9, 2007
ISL28194, ISL28195
Typical Performance Curves V+ = 5V, V- = 0V, VCM = 2.5V, Unless Otherwise Specified.
57
56
N = 1000
59
54
MAX
VOUT (mV)
VOUT (mV)
N = 1000
57
55
53
52
MEDIAN
51
MIN
50
(Continued)
MAX
55
53
51
MEDIAN
49
MIN
49
47
48
47
-40
-20
0
20
40
60
80
TEMPERATURE (°C)
100
45
-40
120
FIGURE 53. ISL28194 VOUT LOW vs TEMPERATURE
V+, V- = ±2.5V, RL = 10k
-20
0
20
40
60
80
TEMPERATURE (°C)
100
120
FIGURE 54. ISL28195 VOUT LOW vs TEMPERATURE
V+, V- = ±2.5V, RL = 10k
Pin Descriptions
ISL28194,
ISL28194,
ISL28195
ISL28195
(6 LD SOT-23) (6 LD µTDFN)
PIN NAME
EQUIVALENT
CIRCUIT
DESCRIPTION
1
4
OUT_A
Circuit 3
Amplifier output
2
2
V-
Circuit 4
Negative power supply
3
3
IN+
Circuit 1
Amplifier non-inverting input
4
1
IN-
Circuit 1
Amplifier inverting input
5
5
EN
Circuit 2
Amplifier enable pin; Logic “1” selects the enabled state, Logic “0” selects the
disabled state.
6
6
V+
Circuit 4
Positive power supply
V+
V+
V+
IN-
V+
100Ω
IN+
LOGIC
PIN
V-
V-
V-
CIRCUIT 1
CIRCUIT 2
12
CAPACITIVELY
COUPLED
ESD CLAMP
OUT
VCIRCUIT 3
CIRCUIT 4
FN6236.3
October 9, 2007
ISL28194, ISL28195
A.C. Test Circuits
1k
5V
5V
10
-
-
VOUT
+
VOUT
+
10k
VIN
VIN
EN
10k
EN
VCM = V+/2
V+/2
FIGURE 55. TEST CIRCUIT FOR AV = +1
Applications Information
Introduction
The ISL28194 and ISL28195 are CMOS rail-to-rail input and
output (RRIO) micropower operational amplifiers. These
devices are designed to operate from single supply (1.8V to
5.5V) and have an input common mode range that extends to
the positive rail and to the negative supply rail for true rail-to-rail
performance. The CMOS output can swing within tens of
millivolts to the rails. Featuring worst-case maximum supply
currents of 0.5µA and 1.5µA for the ISL28194 and ISL28195
respectively, these amplifiers are ideally suited for solar and
battery-powered applications.
Input Protection
All input terminals have internal ESD protection diodes to
both positive and negative supply rails, limiting the input
voltage to within one diode beyond the supply rails. Both the
ISL28194 and ISL28195 have a maximum input differential
voltage that includes the rails (-V -0.5V to +V +0.5V).
Rail-to-Rail Output
A pair of complementary MOSFET devices are used to
achieve the rail-to-rail output swing. The NMOS sinks current
to swing the output in the negative direction. The PMOS
sources current to swing the output in the positive direction.
The ISL28194 and ISL28195 will typically swing to within
40mV or less to either rail with a 100kΩ load (reference
Figures 49 through 52).
Enable/Disable Feature
FIGURE 56. TEST CIRCUIT FOR AV = +101
In the disabled state (output in a high impedance state), the
supply current is reduced to typical of only 2nA. By disabling
the devices, multiple parts can be connected together as a
MUX. In this configuration, the outputs are tied together in
parallel and a channel can be selected by the EN pin. The
EN pin should never be left floating. The EN pin should be
connected directly to the V+ supply when not in use.
The loading effects of the feedback resistors of the disabled
amplifier must be considered when multiple amplifier outputs
are connected together.
Proper Layout Maximizes Performance
To achieve the maximum performance of the high input
impedance, care should be taken in the circuit board layout.
The PC board surface must remain clean and free of moisture
to avoid leakage currents between adjacent traces. Surface
coating of the circuit board will reduce surface moisture and
provide a humidity barrier, reducing parasitic resistance on the
board. When input leakage current is a concern, the use of
guard rings around the amplifier inputs will further reduce
leakage currents. Figure 57 shows a guard ring example for a
unity gain amplifier that uses the low impedance amplifier
output at the same voltage as the high impedance input to
eliminate surface leakage. The guard ring does not need to be
a specific width, but it should form a continuous loop around
both inputs. For further reduction of leakage currents,
components can be mounted to the PC board using Teflon
standoff insulators.
HIGH IMPEDANCE INPUT
Both parts offer an EN pin that enables the device when pulled
high. The enable threshold is referenced to the -V terminal and
has a level proportional to the total supply voltage (reference
Figures 21 and 22 for EN threshold vs supply voltage). The
enable circuit has a delay time that changes as a function of
supply voltage. Figures 23 through 26 show the effect of
supply voltage on the enable and disable times. For supply
voltages less than 3V, it is recommended that the user
account for the increase enable/disable delay time.
13
V+
IN
FIGURE 57. GUARD RING EXAMPLE FOR UNITY GAIN
AMPLIFIER
FN6236.3
October 9, 2007
ISL28194, ISL28195
Power Dissipation
It is possible to exceed the +150°C maximum junction
temperatures under certain load and power-supply
conditions. It is therefore important to calculate the
maximum junction temperature (TJMAX) for all applications
to determine if power supply voltages, load conditions, or
package type need to be modified to remain in the safe
operating area. These parameters are related in Equation 1:
T JMAX = T MAX + ( θ JA xPD MAXTOTAL )
(EQ. 1)
where:
• PDMAXTOTAL is the sum of the maximum power
dissipation of each amplifier in the package (PDMAX)
• PDMAX for each amplifier can be calculated as shown in
Equation 2:
V OUTMAX
PD MAX = 2*V S × I SMAX + ( V S - V OUTMAX ) × ---------------------------RL
(EQ. 2)
where:
• TMAX = Maximum ambient temperature
• θJA = Thermal resistance of the package
• PDMAX = Maximum power dissipation of 1 amplifier
• VS = Supply voltage (Magnitude of V+ and V-)
• IMAX = Maximum supply current of 1 amplifier
• VOUTMAX = Maximum output voltage swing of the
application
• RL = Load resistance
14
FN6236.3
October 9, 2007
ISL28194, ISL28195
Ultra Thin Dual Flat No-Lead Plastic Package (UTDFN)
A
A
E
6
B
6 LEAD ULTRA THIN DUAL FLAT NO-LEAD PLASTIC PACKAGE
4
MILLIMETERS
D
PIN 1
REFERENCE
2X
0.15 C
1
2X
L6.1.6x1.6A
3
MIN
NOMINAL
MAX
NOTES
A
0.45
0.50
0.55
-
A1
-
-
0.05
-
A3
0.15 C
A1
TOP VIEW
e
1.00 REF
4
6
L
CO.2
D2
SYMBOL
0.127 REF
-
b
0.15
0.20
0.25
-
D
1.55
1.60
1.65
4
D2
0.40
0.45
0.50
-
E
1.55
1.60
1.65
4
E2
0.95
1.00
1.05
-
e
0.50 BSC
-
DAP SIZE 1.30 x 0.76
L
3
1
b 6X
0.10 M C A B
E2
0.25
0.30
0.35
Rev. 1 6/06
NOTES:
1. Dimensions are in MM. Angles in degrees.
BOTTOM VIEW
2. Coplanarity applies to the exposed pad as well as the terminals.
Coplanarity shall not exceed 0.08mm.
DETAIL A
6X
0.10 C
3. Warpage shall not exceed 0.10mm.
0.08 C
4. Package length/package width are considered as special
characteristics.
5. JEDEC Reference MO-229.
A3
SIDE VIEW
C
SEATING
PLANE
6. For additional information, to assist with the PCB Land Pattern
Design effort, see Intersil Technical Brief TB389.
0.127±0.008
0.127 +0.058
-0.008
TERMINAL THICKNESS
A1
DETAIL A
0.25
0.50
1.00
0.45
1.00
2.00
0.30
1.25
LAND PATTERN
15
6
FN6236.3
October 9, 2007
ISL28194, ISL28195
SOT-23 Package Family
MDP0038
e1
D
SOT-23 PACKAGE FAMILY
A
MILLIMETERS
6
N
SYMBOL
4
E1
2
E
3
0.15 C D
1
2X
2
3
0.20 C
5
2X
e
0.20 M C A-B D
B
b
NX
0.15 C A-B
1
3
SOT23-5
SOT23-6
TOLERANCE
A
1.45
1.45
MAX
A1
0.10
0.10
±0.05
A2
1.14
1.14
±0.15
b
0.40
0.40
±0.05
c
0.14
0.14
±0.06
D
2.90
2.90
Basic
E
2.80
2.80
Basic
E1
1.60
1.60
Basic
e
0.95
0.95
Basic
e1
1.90
1.90
Basic
L
0.45
0.45
±0.10
L1
0.60
0.60
Reference
N
5
6
Reference
D
2X
Rev. F 2/07
NOTES:
C
A2
SEATING
PLANE
2. Plastic interlead protrusions of 0.25mm maximum per side are not
included.
A1
0.10 C
1. Plastic or metal protrusions of 0.25mm maximum per side are not
included.
3. This dimension is measured at Datum Plane “H”.
NX
4. Dimensioning and tolerancing per ASME Y14.5M-1994.
5. Index area - Pin #1 I.D. will be located within the indicated zone
(SOT23-6 only).
(L1)
6. SOT23-5 version has no center lead (shown as a dashed line).
H
A
GAUGE
PLANE
c
L
0.25
0° +3°
-0°
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see www.intersil.com
16
FN6236.3
October 9, 2007