INTERSIL ISL35822LP

ISL35822
®
Data Sheet
June 29, 2005
FN6165.0.0
Octal 2.488Gbps to 3.187Gbps/
Lane Retimer
• 0.13mm Pure-Digital CMOS Technology
Features
• Clock Compensation
• 8 Lanes of Clock & Data Recovery and Retiming; 4 in
Each Direction
• Tx/Rx Rate Matching via IDLE Insertion/Deletion up to
±100ppm Clock Difference
• Differential Input/Output
• Receive Signal Detect and 16 Levels of Receiver
Equalization for Media Compensation
• 1.5V Core Supply, Control I/O 2.5V Tolerant
• Wide Operating Data Rate Range: 2.488Gbps to
3.1875Gbps, and 1.244Gbps to 1.59325Gbps
• CML CX4 Transmission Output with 16 Settable Levels of
Pre-Emphasis, Eight on XAUI Side
• Ultra Low-Power Operation (163mW typical per lane,
1300mW typical total consumption, LX4 mode)
• Single-Ended or Differential Input Lower-Speed Reference
Clock
• Low Power Version Available for LX4 Applications
• Ease of Testing
• 17mm Square Low Profile 192 pin 1.0mm Pitch EBGA-B
Package
• Complete Suite of Ingress-Egress Loopbacks
• Compliant to the IEEE 802.3 10GBASE-LX4(WWDM),
10GBASE-CX4, and XAUI Specifications
• Full 802.3ae Pattern Generation and Test, including
CJPAT & CRPAT
• Reset Jitter Domain
• PRBS (both 223-1 and 13458 byte) Built-In Self Tests,
Error Flags and Count Output
• Meets 802.3ae and 802.3ak Jitter Requirements with
Significant Margin
• JTAG and AC-JTAG Boundary Scan
• Received Data Aligned to Local Reference Clock for
Retransmission
• Long Run Length (512 bit) Frequency Lock Ideal for
Proprietary Encoding Schemes
• Increase Driving Distance
• Extensive Configuration and Status Reporting via 802.3
Clause 45 Compliant MDC/MDIO Serial Interface
• LX4: Up to 40 inches of FR-4 Traces or 500 Meters of
MMF Fiber at 3.1875Gbps
• Automatic Load of ISL35822 Control and all XENPAK
Registers from EEPROM or DOM Circuit
• CX4: Over 15 meters of Compatible Cable
• Deskewing and Lane-to-Lane Alignment
Figure 1. FUNCTIONAL BLOCK DIAGRAM
Egress 3
Egress 2
Egress 1
Egress 0
Ingress 3
Ingress 2
Ingress 1
Ingress 0
RX0N
Clock &
Data
Recovery
RX0P
RFCP
Deserializer
and Comma
Detector
8B/10B
Decoder
Receive
FIFO
Receive
Parallel
Data
MDIO MDC
RFCN
Clock Multiplier
3.125G
1
TX0N
8B/10B
Encoder
& Mux
TX0P
SCL
MDIO/MDC
Register File
SDA
I2C Interface
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.
1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc.
Copyright Intersil Americas Inc. 2005. All Rights Reserved
All other trademarks mentioned are the property of their respective owners.
ISL35822
Table of Contents
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2
List of Figures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9
Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9
Receiver Operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9
Loss of Signal Detection, Termination & Equalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9
Clock and Data Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10
Byte Alignment (Code-Group Alignment) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10
8b/10b Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10
Receive FIFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10
Deskew (Lane to Lane) Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10
Clock Compensation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11
Transmitter Operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11
8b/10b Encoding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11
Pre-Emphasis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11
8b/10b Coding and Decoding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12
8 Bit Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12
10 Bit Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
13
Error Indications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
13
Loss of Signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
13
Byte or Lane Synchronization Failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
13
Channel Fault Indications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
13
Coding Violation, Disparity & FIFO Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
13
Loopback Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
13
PMA Loopback (1.0.0 & 1.C004.[11:8]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
13
PHY XS (Serial) Loopback (4.0.14 & 4.C004.[11:8]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14
PCS Parallel Network Loopback (3.C004.[3:0]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14
PCS (Parallel) Loopback (4.C004.[3:0] & Optionally 3.0.14) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14
Serial Test Loopbacks (1.C004.12 & 4.C004.12) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
15
Serial Management Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
15
MDIO Register Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
15
I2C Space Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
16
NVR Registers & EEPROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
16
Auto-Configuring Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
16
DOM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
16
General Purpose (GPIO) Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
17
LASI Registers & I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
17
Reading Additional EEPROM Space Via the I2C Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
17
Writing EEPROM Space through the I2C Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
19
2
ISL35822
Block Writes to EEPROM Space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Byte Writes to EEPROM Space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
19
19
MDIO Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
19
PMA/PMD DEVICE 1 MDIO REGISTERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
IEEE PMA/PMD Registers (1.0 to 1.15/1.000F’h). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
XENPAK-Defined Registers (1.8000’h to 1.8106’h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
XENPAK LASI and DOM Registers (1.9000’h to 1.9007’h & 1.A000’h to 1.A100’h). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Vendor-Specific PMA/PMD and GPIO Registers (1.C001’h to 1.C01D’h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
19
21
24
27
33
PCS DEVICE 3 MDIO REGISTERS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
IEEE PCS Registers (3.0 to 3.25/3.0019’h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Vendor-Specific PCS Registers (3.C000’h to 3.C00E’h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
38
39
41
PHY XS DEVICE 4 MDIO REGISTERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
IEEE PHY XS Registers (4.0 to 4.25/4.0019’h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Vendor-Specific PHY XS Registers (4.C000’h to 4.C00B’h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
45
46
47
Auto-Configure Register List. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
51
JTAG & AC-JTAG Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
53
BIST Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
53
Pin Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
55
Pin Diagram 17x17mm (16*16 Ball Matrix) 192-pin EBGA-B Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
58
Package Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
59
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
60
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
60
Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
60
DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
61
AC and Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
63
Timing Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
65
Applications Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
70
CX4/LX4/XAUI Re-timer Setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
70
Recommended Analog Power and Ground Plane Splits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
70
Recommended Power Supply Decoupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
71
XENPAK/XPAK/X2 Interfacing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
71
CX4 Interfacing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
72
LX4 Interfacing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
72
MDIO/MDC Interfacing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
72
I2C Interfacing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
72
DOM Interfacing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
73
LASI Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
73
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
75
Intersil Corporation Contact Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
75
3
ISL35822
List of Figures
Figure 1. FUNCTIONAL BLOCK DIAGRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1
Figure 2. DETAILED FUNCTIONAL BLOCK DIAGRAM (BIST OMITTED) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8
Figure 3. PRE-EMPHASIS OUTPUT ILLUSTRATION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11
Figure 4. IEEE AND VENDOR SPECIFIC FAULT AND STATUS REGISTERS (EQUIVALENT SCHEMATIC). . . . . . . . . . . . . .
14
Figure 5. LASI EQUIVALENT SCHEMATIC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
18
Figure 6. BLOCK DIAGRAM OF BIST OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
54
Figure 7. TOP VIEW OF PINOUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
58
Figure 8. EBGA-192 PACKAGE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
59
Figure 9. DIFFERENTIAL OUTPUT SIGNAL TIMING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
65
Figure 10. LANE TO LANE DIFFERENTIAL SKEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
65
Figure 11. EYE DIAGRAM DEFINITION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
65
Figure 12. BYTE SYNCHRONIZATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
66
Figure 13. LANE-LANE ALIGNMENT OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
66
Figure 14. RETRANSMIT LATENCY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
66
Figure 15. MDIO FRAME AND REGISTER TIMING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
67
Figure 16. MDIO INTERFACE TIMING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
67
Figure 17. MDIO TIMING AFTER SOFT RESET (D.0.15). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
68
Figure 18. BEGINNING I2C NVR READ AT THE END OF RESET. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
68
Figure 19. I2C BUS INTERFACE PROTOCOL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
68
Figure 20. NVR/DOM SEQUENTIAL READ OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
69
Figure 21. NVR SEQUENTIAL WRITE ONE PAGE OPERATION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
69
Figure 22. I2C SINGLE BYTE READ OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
69
Figure 23. SINGLE BYTE WRITE OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
69
Figure 24. I2C OPERATION TIMING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
70
Figure 25. VDDPR CLAMP CIRCUIT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
74
Figure 26. RESISTIVE DIVIDER CIRCUITS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
74
4
ISL35822
List of Tables
Table 1. VALID 10b/8b DECODER & ENCODER PATTERNS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12
Table 2. DEVAD DEVICE ADDRESS TABLE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
15
Table 3. MDIO MANAGEMENT FRAME FORMATS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
15
Table 4. MDIO PMA/PMD DEVAD 1 REGISTERS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
19
Table 5. IEEE PMA/PMD CONTROL 1 REGISTER. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
21
Table 6. IEEE PMA/PMD STATUS 1 REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
21
Table 7. IEEE PMA/PMD, PCS, PHY XS, SPEED ABILITY REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
21
Table 8. IEEE DEVICES IN PACKAGE REGISTERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
22
Table 9. IEEE PMA/PMD TYPE SELECT REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
22
Table 10. IEEE PMA/PMD STATUS 2 DEVICE PRESENT & FAULT SUMMARY REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . .
22
Table 11. IEEE TRANSMIT DISABLE REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
23
Table 12. IEEE PMD SIGNAL DETECT REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
23
Table 13. IEEE EXTENDED PMA/PMD CAPABILITY REGISTER(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
23
Table 14. IEEE PACKAGE IDENTIFIER REGISTERS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
24
Table 15. XENPAK NVR CONTROL & STATUS REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
24
Table 16. I2C ONE-BYTE OPERATION DEVICE ADDRESS REGISTER. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
24
Table 17. I2C ONE-BYTE OPERATION MEMORY ADDRESS REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
24
Table 18. I2C ONE-BYTE OPERATION READ DATA REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
24
Table 19. I2C ONE-BYTE OPERATION WRITE DATA REGISTER. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
25
Table 20. NVR I2C OPERATION CONTROL REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
25
Table 21. NVR I2C OPERATION STATUS REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
25
Table 22. XENPAK NVR REGISTER COPY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
26
Table 23. XENPAK DIGITAL OPTICAL MONITORING (DOM) CAPABILITY REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
26
Table 24. XENPAK LASI RX_ALARM CONTROL REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
27
Table 25. XENPAK LASI TX_ALARM CONTROL REGISTER. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
27
Table 26. XENPAK LASI CONTROL REGISTER. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
27
Table 27. XENPAK LASI RX_ALARM STATUS REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
28
Table 28. XENPAK LASI TX_ALARM STATUS REGISTER. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
28
Table 29. XENPAK LASI STATUS REGISTER. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
29
Table 30. XENPAK DOM TX_FLAG CONTROL REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
29
Table 31. XENPAK DOM RX_FLAG CONTROL REGISTER. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
29
Table 32. XENPAK DOM ALARM & WARNING THRESHOLD REGISTERS COPY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
Table 33. XENPAK DOM MONITORED A/D VALUES REGISTER COPY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
Table 34. XENPAK OPTIONAL DOM STATUS BITS REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
Table 35. XENPAK DOM EXTENDED CAPABILITY REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
Table 36. XENPAK DOM ALARM FLAGS REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
Table 37. XENPAK DOM WARNING FLAGS REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
Table 38. XENPAK DOM OPERATION CONTROL AND STATUS REGISTER. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
Table 39. PMA CONTROL 2 REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
Table 40. PMA SERIAL LOOP BACK CONTROL REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
Table 41. PMA PRE-EMPHASIS CONTROL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
Table 42. PMA PRE-EMPHASIS CONTROL SETTINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
Table 43. PMA/PMD EQUALIZATION CONTROL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
35
Table 44. PMA SIG_DET AND LOS DETECTOR STATUS REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
35
Table 45. PMA/PMD MISCELLANEOUS ADJUSTMENT REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
35
Table 46. PMA/PMD/PCS/PHY XS SOFT RESET REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
35
5
ISL35822
Table 47. GPIO PIN DIRECTION CONFIGURE REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
36
Table 48. GPIO PIN INPUT STATUS REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
36
Table 49. TX_FAULT & GPIO PIN TO LASI CONFIGURE REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
36
Table 50. GPIO PIN OUTPUT REGISTER. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
36
Table 51. DOM CONTROL REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
37
Table 52. DOM PERIODIC UPDATE WAITING TIME VALUES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
37
Table 53. DOM INDIRECT MODE START ADDRESS REGISTERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
37
Table 54. DOM INDIRECT MODE DEVICE ADDRESS REGISTERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
37
Table 55. OPTICAL STATUS & CONTROL PIN POLARITY REGISTER. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
38
Table 56. MDIO PCS DEVAD 3 REGISTERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
38
Table 57. IEEE PCS CONTROL 1 REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
39
Table 58. IEEE PCS STATUS 1 REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
39
Table 59. IEEE PCS TYPE SELECT REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
39
Table 60. IEEE PCS STATUS 2 DEVICE PRESENT & FAULT SUMMARY REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
40
Table 61. IEEE 10GBASE-X PCS STATUS REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
40
Table 62. IEEE 10GBASE-X PCS TEST CONTROL REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
40
Table 63. PCS CONTROL REGISTER 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
41
Table 64. PCS CONTROL REGISTER 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
41
Table 65. PCS or PHY XS XAUI_EN CONTROL OVERRIDE FUNCTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
42
Table 66. PCS INTERNAL ERROR CODE REGISTER. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
42
Table 67. PCS INTERNAL IDLE CODE REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
42
Table 68. PCS PARALLEL NETWORK LOOP BACK CONTROL REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
43
Table 69. PCS RECEIVE PATH TEST AND STATUS FLAGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
43
Table 70. PMA/PCS OUTPUT CONTROL & TEST FUNCTION REGISTER. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
43
Table 71. PCS/PHY XS HALF RATE CLOCK CONTROL REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
44
Table 72. BIST CONTROL REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
44
Table 73. BIST ERROR COUNTER REGISTERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
45
Table 74. MDIO PHY XS DEVAD 4 REGISTERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
45
Table 75. IEEE PHY XS CONTROL 1 REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
46
Table 76. IEEE PHY XS STATUS 1 REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
46
Table 77. IEEE PHY XS STATUS 2 DEVICE PRESENT & FAULT SUMMARY REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . .
46
Table 78. IEEE 10GBASE-X PHY XGXS STATUS REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
47
Table 79. IEEE 10GBASE-X PHY XGXS TEST CONTROL REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
47
Table 80. PHY XS CONTROL REGISTER 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
47
Table 81. PHY XS CONTROL REGISTER 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
48
Table 82. PHY XS INTERNAL ERROR CODE REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
49
Table 83. PHY XS INTERNAL IDLE CODE REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
49
Table 84. PHY XS MISCELLANEOUS LOOP BACK CONTROL REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
49
Table 85. PHY XS PRE-EMPHASIS CONTROL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
50
Table 86. PHY XS XAUI PRE-EMPHASIS CONTROL SETTINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
50
Table 87. PHY XS EQUALIZATION CONTROL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
50
Table 88. PHY XS RECEIVE PATH TEST AND STATUS FLAGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
50
Table 89. PHY XS OUTPUT AND TEST FUNCTION CONTROL REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
51
Table 90. PHY XS STATUS 4 LOS DETECTOR REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
51
Table 91. PHY XS CONTROL REGISTER 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
51
Table 92. Auto-CONFIGURE REGISTERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
51
Table 93. JTAG OPERATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
53
Table 94. CLOCK PINS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
55
6
ISL35822
Table 95. XAUI (XENPAK/XPAK/X2) SIDE SERIAL DATA PINS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
55
Table 96. PMA/PMD (CX4/LX4) SIDE SERIAL DATA PINS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
55
Table 97. JTAG INTERFACE PINS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
55
Table 98. MANAGEMENT DATA INTERFACE PINS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
56
Table 99. MISCELLANEOUS PINS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
56
Table 100. I2C 2-WIRE SERIAL DATA INTERFACE PINS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
57
Table 101. VOLTAGE SUPPLY PINS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
57
Table 102. ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
60
Table 103. RECOMMENDED OPERATING CONDITIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
60
Table 104. POWER DISSIPATION AND THERMAL RESISTANCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
60
Table 105. PMA SERIAL PIN I/O ELECTRICAL SPECIFICATIONS, CX4 MODE (3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
61
Table 106. PMA SERIAL PIN I/O ELECTRICAL SPECIFICATIONS, LX4 MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
61
Table 107. PHY XS SERIAL PIN I/O ELECTRICAL SPECIFICATIONS, XAUI MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
61
Table 108. EXTERNAL 1.2V CMOS OPEN DRAIN I/O ELECTRICAL SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
61
Table 109. 1.5V CMOS INPUT/OUTPUT ELECTRICAL SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
62
Table 110. 2.5V TOLERANT OPEN DRAIN CMOS INPUT/OUTPUT ELECTRICAL SPECIFICATIONS . . . . . . . . . . . . . . . . . .
62
Table 111. OTHER DC ELECTRICAL SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
62
Table 112. REFERENCE CLOCK REQUIREMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
63
Table 113. TRANSMIT SERIAL DIFFERENTIAL OUTPUTS (SEE Figure 9, Figure 10 AND Figure 11). . . . . . . . . . . . . . . . . . .
63
Table 114. RECEIVE SERIAL DIFFERENTIAL INPUT TIMING REQUIREMENTS (SEE Figure 11) . . . . . . . . . . . . . . . . . . . . .
63
Table 115. MDIO INTERFACE TIMING (FROM IEEE802.3AE) (SEE Figure 15 TO Figure 17) . . . . . . . . . . . . . . . . . . . . . . . . .
64
Table 116. RESET AND MDIO TIMING (SEE Figure 17). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
64
Table 117. RESET AND I2C SERIAL INTERFACE TIMING (SEE Figure 18 AND Figure 24). . . . . . . . . . . . . . . . . . . . . . . . . . .
64
7
ISL35822
XAUI
Egress
RXP2P/N
RXP3P/N
Equalizer
Signal
Detect
Equalizer
Signal
Detect
TXFIFO &
Error and
Orderset
Detector
8B/10B
Encoder,
AKR
Generator
TXFIFO &
Error and
Orderset
Detector
8B/10B
Encoder,
AKR
Generator
TXFIFO &
Error and
Orderset
Detector
8B/10B
Encoder,
AKR
Generator
TXFIFO &
Error and
Orderset
Detector
8B/10B
Encoder,
AKR
Generator
TXFIFO &
Error and
Orderset
Detector
8B/10B
Encoder,
AKR
Generator
TXFIFO &
Error and
Orderset
Detector
8B/10B
Encoder,
AKR
Generator
TXFIFO &
Error and
Orderset
Detector
8B/10B
Encoder,
AKR
Generator
RX FIFO
Deskew
RX FIFO
Deskew
10B/8B
Decoder
8
Serializer
Serializer
RX FIFO
Deskew
10B/8B
Decoder
10B/8B
Decoder
D e se ria liz e r &
C om m a
D e te ctor
Device Address 4 PHY XGXS
RX FIFO
Deskew
D e se ria liz e r &
C om m a
D e te ctor
TXP3 P/N
BIST_ENA
10B/8B
Decoder
Device Address 3 PCS
TCX0 P/N
TCX1 P/N
Egress
TCX2 P/N
TCX3 P/N
PMA
Loop
back
PCS // Network
Loopback
Ingress
TXP2 P/N
WRTP
SDC
SDA
MDC
MDIO
PADR[4:0]
GPIO[4:0]
TX_FAULT
TX_ENA[3:0]
OPRxxx(5 pins)
OPTxxx(3 pins)
TX_ENC
RX FIFO
Deskew
PCS //
(PHY XS)
Loopback
8B/10B
Encoder,
AKR
Generator
LASI
XP_ENA
MF[3:0]
RSTN
TRSTN
TCLK
TMS
TDO
LX4_MODE
RX FIFO
Deskew
TXFIFO &
Error and
Orderset
Detector
D e se ria liz e r &
C om m a
D e te ctor
Serializer
RX FIFO
Deskew
LX4/CX4
BIST
D e se ria liz e r &
C om m a
D e te ctor
TXP1 P/N
Serializer
PHY XS
(Serial)
Loopback
TXP0 P/N
TDI
Deserializer &
Comma
Detector
Deserializer &
Comma
Detector
CDR
10B/8B
Decoder
CDR
RX FIFO
Deskew
I2C
S e ria liz e r
CDR
10B/8B
Decoder
CDR
MDIO
Engine
MDIO Register, LASI & Common Logic
S e ria lize r
10B/8B
Decoder
Deserializer &
Comma
Detector
Equalizer
Signal
Detect
10B/8B
Decoder
Deserializer &
Comma
Detector
Equalizer
Signal
Detect
JTAG
S e ria liz e r
RXP1P/N
20X or 10X
Clock
S e ria liz e r
RXP0P/N
TXCK20
RFC P/N
FIGURE 2. DETAILED FUNCTIONAL BLOCK DIAGRAM (BIST OMITTED)
(See also Figure 4 & Figure 5 for MDIO and LASI blocks and Figure 6 for BIST operation)
CDR
CDR
Equalizer
Signal
Detect
RCX0 P/N
Equalizer,
Signal
Detect
RCX1 P/N
Ingress
CDR
CDR
Equalizer,
Signal
Detect
RCX2 P/N
Equalizer,
Signal
Detect
RCX3 P/N
Device Address 1 PMA/PMD
ISL35822
General Description
The ISL35822 is a fully integrated octal 2.488Gbps to
3.1875Gbps Clock and Data Recovery (CDR) circuit and
Retimer ideal for high bandwidth serial electrical or optical
communications systems. It extracts timing information and
data from serial inputs at 2.488Gbps to 3.1875Gbps,
covering 10 Gigabit Fiber Channel (10GFC) and IEEE 802.3
specified 10 Gigabit Ethernet eXtended Attachment Unit
Interface (XAUI) rates.
Each ISL35822 accepts two sets of four high-speed
differential serial signals, re-times them with a local
Reference Clock, reduces jitter, and delivers eight clean
high-speed signals. The ISL35822 provides a full-function
XAUI-to-10GBASE-CX4 PMA/PMD (compatible with the
IEEE 802.3ak specification), and also can be configured to
provide the electrical portion of a XAUI-to-10GBASE-LX4
PMA/PMD, needing only laser drivers and photo detectors to
be added. In both these applications, the XAUI side can be
configured to implement the XENPAK MSA_R3.0
specification, including full NVR and DOM support. The
XPAK and X2 specifications currently all reference the
XENPAK specification, and are supported in exactly the
same manner. The ISL35822 can also be used to enhance a
single full-duplex 10 Gigabit XAUI link, extending the driving
distance of the high-speed (2.488Gbps to 3.1875Gbps)
differential traces to 40 inches of FR4 PCB (assuming a
proper impedance-controlled layout).
Each lane can operate independently with a data transfer
rate of within ±100ppm of either 20x or 10x the local
Reference Clock. The reference clock should be 156.25MHz
for 10 Gigabit Ethernet XAUI applications, and 159.375MHz
for 10 Gigabit Fiber Channel. Other reference frequencies
can be used for proprietary rates. For other applications,
each of the 8 lanes can be operated independently, within
the same data rate and clock restrictions.
The ISL35822 contains eight clock & data recovery units,
8B/10B decoders and encoders, and elastic buffers which
provide the user with a simple interface for transferring data
serially and recovering it on the receive side. When
recovering an 8B/10B stream, a receive FIFO aligns all
incoming serial data to the local reference clock domain,
adding or removing IDLE sequences as required. This
simplifies implementation of an upstream ASIC by removing
the requirement to deal with multiple clock domains. The
Retimer can also be configured to operate as eight nonencoded 10-bit Retimers. Allowing long strings of
consecutive 1’s or 0’s (up to 512 bits), the ISL35822 has the
capacity to accommodate proprietary encoded data links at
any data rate between 2.488Gbps and 3.1875Gbps (and for
half rate operation from 1.244Gbps to 1.59375Gbps).
The device configuration can be done through the use of the
two line Management Data Input/Output (MDIO) Interface
specified in IEEE 802.3 Clause 45. The ISL35822 supports a
9
5-bit Port Address, and DEVice ADdresses (DEVAD) 1, 3 & 4.
The initial values of the registers default to values controlled,
where appropriate, by external configuration pins, and set to
optimize the initial configuration for XAUI, CX4, and
XENPAK/XPAK/X2 use. Optionally, the ISL35822
configuration can be loaded at power-on or reset from the
NVR EEPROM or DOM used for the XENPAK/XPAK/X2
registers.
A full suite of loopback configurations is provided, including
the (802.3ae required) XAUI-transmit to XAUI-receive
loopback, and also the (802.3ae optional) PHY XGXS
loopback (effectively CX4/LX4-receive to CX4/LX4 transmit).
Lane-by-lane diagnostic loopback is available through
vendor-specific MDIO registers.
The ISL35822 is a version of the BBT3821 for operation as a
lower-power LX4 device. Power consumption can be
reduced further at lowered supply voltages.
Functions
The ISL35822 serves three main functions:
• Pre-emphasize the output and equalize the input in order
to “re-open” the data eye, thus allowing CX4 operation,
and also increasing the available driving distance of the
high-speed traces in XAUI links.
• Clock compensation by insertion and deletion of IDLE
characters when 8B/10B encoding and decoding is
enabled.
• Automatic Byte and Lane Alignment, using both disparities
of /K/ for Byte alignment and either ||A|| or IDLE to DATA
transitions for lane alignment.
Receiver Operations
Loss of Signal Detection, Termination &
Equalization
Each receiver lane detects and recovers the serial clock
from the received data stream. An equalizer has been added
to each receiver input buffer, which boosts high frequency
edge response. The boost factor can be selected from 16
values (none to full) through the MDIO Registers, (see
Table 43 for the PMA/PMD and Table 87 for the PHY XS).
A nominally 100Ω on-chip transmission line terminating
resistor is integrated with the input equalizer. This eliminates
the requirement of external termination resistors. It greatly
improves the effectiveness of the termination, providing the
best signal integrity possible.
There are also signal detect functions on each input lane,
whose “Loss Of Signal” (LOS) and “Signal Detect”
(SIG_DET) outputs appear in the MDIO Vendor-Specific
registers at address 1.C00A’h (Table 44) and 4.C00A’h
(Table 90). The LOS indication reflects the standard XAUI
specification, while the SIG_DET indication (CX4 inputs
only) implements the CX4 function. These signals can also
ISL35822
be routed to the MF[3:0] pins (see Table 81 and Table 99).
The PMA configuration determines which of these signals
will be reflected in the IEEE PMD Receive signal detect
register at 1.10 (see Table 12), and contribute to the
RX_FAULT bit in the IEEE Status Register 2 at address 1.8
(see Table 10) and the LOCAL_FLT bit in the IEEE
PMA/PMD Status 1 Register, at address 1.1, (see Table 6).
The PHY XGXS LOS will be reflected in the IEEE Status
Registers at addresses 4.8 and 4.1 (see Table 77 and
Table 76). The threshold of the LOS detectors is controlled
via the 'LOS_TH' bits in the MDIO registers at 1.C001'h, see
Table 39, for the PMA/PMD, and for the PHY XS at
4.C001'h, see Table 81.
Clock and Data Recovery
When the 8B/10B coding is used, the line rate receive clock
is extracted from the transition rich 10-bit coded serial data
stream independently on each lane. When 8B/10B coding is
not used, longer run length (up to 512 1’s and 0’s) can be
supported. The data rate of the received serial bit stream
must be within ±100ppm of the nominal bit rate (strictly
within ±200 ppm of the multiplied local reference clock) to
guarantee proper reception. The receive clock locks to the
input within 2µs after a valid input data stream is applied.
The received data is de-serialized and byte aligned.
Byte Alignment (Code-Group Alignment)
Unless the CDET bits of the MDIO Registers at address
3.C000’h (for PCS, see Table 63) or 4.C000’h (for PHY XS,
see Table 80) are turned off, the respective Byte Alignment
Units are activated. Each Byte Alignment Unit searches the
coded incoming serial stream for a sequence defined in
IEEE 802.3-2002 Clause 36 as a “comma”. A comma is the
sequence “0011111” or “1100000” depending on disparity,
and is uniquely located in a valid 8B/10B coded data stream,
appearing as the start of some control symbols, including the
/K/ IDLE (K28.5). Comma disparity action can be controlled
via the same CDET bits of the registers [3:4].C000’h (see
Table 63 and Table 80). Any proprietary encoding scheme
used should either incorporate these codes, or arrange byte
alignment differently.
Upon detection of a comma, the Byte Alignment Unit shifts
the incoming data to align the received data properly in the
10-bit character field. Two possible algorithms may be used
for byte alignment. The default is that specified in the
IEEE802.3ae-2002 clause 48 specification, and is very
robust. This algorithm relies on the 10b/8b decoder, and
should not be used with proprietary encoding/decoding
schemes. The alternative is to byte-align on any comma
pattern. Although quick to align, and normally quite reliable,
this method is susceptible to realignment on certain single bit
errors or on successive K28.7 characters, but could be
preferable for proprietary coding schemes, or during debug.
The algorithm selection is controlled via MDIO register
PCS_SYNC_EN bits, for the PCS at address 3.C000’h
(Table 63), for the PHY XS at address 4.C000’h (Table 80),
10
unless overridden by the respective XAUI_EN bits in the
[3,4].C001’h registers (Table 64 and Table 81). Up to a full
code group may be deleted or modified while aligning the
“comma” code group correctly to the edges of the RefClock.
A comma received at any odd or even byte location, but at
the proper byte boundary, will not cause any byte realignment.
8b/10b Decoding
The internal 10b decoding specified in the IEEE802.3-2002
specification, section 36.2.4 in Tables 36-1 & 36-2, and
discussed in more detail in “8b/10b Coding and Decoding”
page 12, is enabled by default in the PCS and PHY XS
through the setting of the respective CODECENA bits to 1’b,
and may be disabled through the MDIO registers
[3,4].C000’h (Table 63 and Table 80) by setting the
respective bit to 0’b. Note that the transmit encoding will also
be disabled. Although Comma detection will still operate
normally, the PCS_SYNC engine (see above) may not
operate correctly on a proprietary coding scheme, unless
byte sync is performed on K28.5 characters, and no code
violations are to be expected in the proprietary data, and so
should normally be disabled if the 8b/10b coding is turned
off. The ‘fallback’ byte sync operations described above can
still be used, if the encoding scheme meets the “comma”
rules; otherwise they should be disabled also via the CDET
bits, and the user should expect unsynchronized 10-bit data
to be forwarded to the transmitter. No clock compensation is
then possible, and a synchronous reference clock should be
used throughout.
Receive FIFO
The Receive FIFO performs two functions:
1. Lane to Lane Alignment
2. Clock Compensation
Deskew (Lane to Lane) Alignment
Trunking, also known as deskewing, means the alignment of
packet data across multiple lanes. 8 bytes of RXFIFO are
dedicated for this lane to lane alignment in each direction.
During high-speed transmission, different active and passive
elements in the links may impart varying delays in the four
lanes. In trunking mode, multiple lanes share the same clock
(the local reference clock), which is used to transfer data for
output on the serial transmitter.
Deskewing is accomplished by monitoring the contents of
the FIFOs to detect either an /A/ code-group on every lane
(an ||A|| Ordered_Set), or the boundary between IDLE
sequences and any non-IDLE data (see Table 1); the latter
boundary defines the beginning of the packet. The choice of
which alignment markers to use can be controlled by the
A_ALIGN_DIS bits in MDIO [3,4].C000’h (see for PCS
Table 63 and for PHY XS Table 80), unless overridden by
the respective XAUI_EN bits in the [3,4].C001’h registers
(Table 64 and Table 81) to align on ||A||. When this alignment
ISL35822
data is detected in all four lanes within the span of the
Alignment FIFO, the deskewing (lane to lane) alignment
operation is performed, and will be held until another ||A|| or
IDLE-to- non-IDLE transition is detected again on the lanes.
During this alignment, up to four code groups may be
deleted on any lane. For correct operation, the XAUI Lane 0
signals should be connected to the ISL35822 Lane 0 pins.
The deskew algorithm state machines (each implemented
according to IEEE 802.3ae) are enabled by setting the
DSKW_SM_EN bits (Address [3,4].C000’h, see Table 63
and/or Table 80) to 1 or overriding them with the respective
XAUI_EN bits in the [3,4].C001’h registers (Table 64 and
Table 81). Note that when one side’s DSKW_SM_EN is set
to 1, the same side CAL_EN bit (Address [3,4].C000’h,
Table 63/Table 80) is ignored. When a DSKW_SM_EN bit is
set to 0, lane deskew can still be enabled by setting
CAL_EN, but the deskew action will be carried out without
hysteresis.
The user has the option to disable trunking, or to enable
trunking across each set of 4 lanes, in the PCS (device 3)
and PHY XGXS (device 4), under control of the respective
PSYNC bits in registers [3,4].C000h. In trunking mode, the
lanes may have phase differences, but they are expected to
be frequency synchronous. In non-trunking mode, each
received serial stream need only be within ±100ppm of the
nominal bit rate (2.488Gbps to 3.1875Gbps in full-speed
mode or 1.244Gbps to 1.59375Gbps in half-speed mode).
Setting the PSYNC bits high will enable the trunking mode,
so that all transmitted data will be synchronized to the same
clock. Note that trunking mode is only possible if 8B/10B
Coding is activated, and all lanes have the same half-rate
setting (See Table 71).
Clock Compensation
In addition to deskew, the Receive FIFOs also compensate
for clock differences. Since the received serial streams can,
under worst case conditions, be off by up to ±200ppm from
the local clock domain, the received data must be adjusted
to the local reference clock frequency.
Another 8 bytes of RXFIFO are dedicated for clock
compensation. The FIFOs achieve clock tolerance by
identifying any of the IDLE patterns (/K/, /A/ or /R/ as defined
by the IEEE 802.3ae standard) in the received data and then
adding or dropping IDLEs as needed. The Receive FIFO
does not store the actual IDLE sequences received but
generates the number of IDLEs needed to compensate for
clock tolerance differences. The IDLE patterns retransmitted
will be determined according to the IEEE 802.3ae algorithm
if the appropriate AKR_SM_EN bit is set in Registers
[3,4].C001’h (see Table 64 and Table 81).
Transmitter Operations
8b/10b Encoding
The internal 10b encoding specified in the IEEE802.3-2002
specification, section 36.2.4 in Tables 36-1 & 36-2, and
discussed in more detail in “8b/10b Coding and Decoding”
page 12, is enabled by default in the PCS and PHY XS
through the setting of the respective CODECENA bits to 1’b,
and may be disabled through the MDIO registers
[3,4].C000’h (see Table 63 and Table 80) by setting the
respective bit to 0’b. Note that the receive decoding will also
be disabled. The (decoded, synchronized and aligned) data
is transferred via the transmit FIFOs, (normally) encoded,
serialized and re-transmitted on the Serial Output pins,
whose effective output impedance is nominally 100Ω
differential.
Pre-Emphasis
In order to compensate for the loss of the high frequency
signal component through PCB traces or the CX4 Cable
Assembly, sixteen levels of programmable pre-emphasis
have been provided on the CX4/LX4 PMA serial transmit
lanes, and eight levels on the XAUI PHY XS serial transmit
lanes. The output signal is boosted immediately after any
transition (see Figure 3). This maximizes the data eye
opening at the receiver inputs and enhances the bit error
rate performance of the system. The MDIO Registers at
Addresses [1,4].C005’h (see Table 41 and Table 85) control
the level of pre-emphasis for the PMA/PMD (sixteen levels)
and PHY XGXS (eight levels) respectively, settable from
none to the maximum. The initial default values of the
PMA/PMD register depend on the LX4_MODE configuration
pin, and are set to the optimum values for CX4 or XAUI
(assumed best for LX4 drivers). The PMA side has an
additional set of Pre-emphasis enabling bits, in 1.C00B.5:2
that enable or disable the predriver/pre-emphasis. In LX4
mode these default to disabled, to reduce the power
consumption. All these three registers may be auto-loaded
(see Auto-Configuring Control Registers page 16) from an
NVR EEPROM on start-up or RESET.
FIGURE 3. PRE-EMPHASIS OUTPUT ILLUSTRATION
1
0
0
VLOW-pp
Bit
Time
11
1
Bit
Time
Bit
Time
VHI-pp
ISL35822
8b/10b Coding and Decoding
another column containing a non-idle is received. If in
addition either of the AKR_SM_EN or XAUI_EN bits in the
respective MDIO registers at Addresses [3,4].C001’h is set
(see Table 64 and Table 81, these IDLEs will be sequenced
on transmission into a pseudo-random pattern of ||A||, ||K||,
and ||R|| codes according to the IEEE 802.3ae specified
algorithm. If neither of the AKR_SM_EN and XAUI_EN bits
are set, the internal IDLEs will all be transmitted as /K/
codes. Elasticity will be achieved by adding or deleting
columns of internal IDLEs.
8 Bit Mode
If 8B/10B encoding/decoding is turned on, the ISL35822
expects to receive a properly encoded serial bit stream. The
serial bit stream must be ordered “abcdeifghj” with “a” being
the first bit received and “j” the last. If the received data
contains an error, the Retimer will re-transmit it as an
ERROR or /E/ character. The character transmitted may be
controlled via the ERROR code Registers [3,4].C002’h,
Table 66 and Table 82. The internal decoding into, and
encoding from, the FIFOs is listed in Table 1 below. If the
TRANS_EN bit or XAUI_EN bit (MDIO Registers at
addresses [3,4].C001’h, see Table 64 and Table 81 are set,
all incoming XAUI or CX4/LX4 IDLE patterns will be
converted to the (internal) XGMII IDLE pattern set by the
respective PCS or PHY XS control registers at addresses
[3,4].C003’h, with a default value 107’h, the standard XGMII
IDLE code (see Table 67 and Table 83) in the internal FIFOs.
The first full column of IDLES after any column containing a
non-IDLE will be stored in the respective elasticity FIFO, and
all subsequent full IDLE columns will repeat this pattern, until
If neither the TRANS_EN bit nor the XAUI_EN bit is set (for
either the PCS or the PHY XS), the incoming XAUI IDLE
codes will all be decoded to the appropriate XGMII control
code values in the respective internal FIFO. If the AKR_EN
or XAUI_EN bits are set, they will be sequenced into a
pseudo-random pattern of ||A||, ||K||, and ||R|| codes and
retransmitted, if not, the Inter Packet Gap (IPG) will be
retransmitted as the same XAUI codes as in the first full
IDLE column.
For most applications, the XAUI_EN bit high configuration is
the most desirable, and is the default.
Table 1. VALID 10b/8b DECODER & ENCODER PATTERNS
RECEIVING SERDES
INTERNAL DATA
TRANSMITTING SERDES
NOTES
TRANS_EN
BIT(4)
E-BIT
K-BIT
Valid Data
X
0
0
0-FF’h
X
See 802.3
Table
/K/ (Sync) K28.5
1
0
1
07’h (2)
1
/A/ /K/ /R/
1
BC (1)
0
/K/
1
07’h (2)
1
/A/ /K/ /R/
1
7C (1)
0
/A/
1
07’h (2)
1
/A/ /K/ /R/
0
/R/
K28.0
Alternate Idle (Skip)
SERIAL CODE,
CHARACTER
0
/A/ (Align) K28.3
0
1
0
0
/R/ (Skip) K28.0
0
1
0
SERIAL
INTERNAL AKR_SM_
CHARACTER
FIFO DATA
EN(4)
SERIAL
CODE
Valid Data
DESCRIPTION
Same Data Value as Received
IEEE802.3ae algorithm
K28.5
Comma (Sync)
IEEE802.3ae algorithm
K28.3
Align
IEEE802.3ae algorithm
0
0
1
1C (1)
/S/ K27.7
X
0
1
FB
1
/S/
K27.7
Start
/T/ K29.7
X
0
1
FD
0
/T/
K29.7
Terminate
K28.1
X
0
1
3C
X
K28.1
Extra comma
/F/ K28.2
X
0
1
5C
X
/F/
K28.2
Signal Ordered_Set
/Q/ K28.4
X
0
1
9C
X
/Q/
K28.4
Sequence Ordered_Set
K28.6
X
0
1
DC
X
K28.6
K28.7
X
0
1
FC
X
K28.7
K23.7
X
0
1
F7
X
K23.7
/E/ K30.7
X
1
1
FE
X
/E/
X
Invalid code
Any other
Note (1):
Note (2):
Note (3):
Note (4):
X
1
= ERROR reg.(3)
K30.7
Repeat has False Comma
Error Code
Error Code
First incoming IDLE only, subsequent IDLEs in that block repeat first received code.
Default value, actually set by ‘Internal Idle’ register, [3:4].C003’h, see Table 67 and Table 83.
Value set by ‘ERROR Code’ register, [3:4].C002’h, see Table 66 and Table 66. The XAUI_EN bit forces it to 1FE’h.
If the XAUI_EN bit is set, the ISL35822 acts as though both the TRANS_EN and AKR_EN bits are set.
12
ISL35822
10 Bit Mode
Channel Fault Indications
If a PCS or PHY XS 8B/10B codec is inactive (the respective
XAUI_EN AND CODECENA bits are disabled, see
Table 63/Table 64 & Table 80/Table 81), no 8b/10b coding or
decoding is performed. The incoming bits will be arbitrarily split
into 10 bit bundles in the internal FIFO, optionally based on any
commas received, but otherwise not checked, and must be
retransmitted in the same clock domain, since no elasticity is
possible. Therefore the local reference clock must be frequency
synchronous with the data source. Only the jitter domain will be
reset. System designers must ensure that the data stream is
adequately DC-balanced and contains sufficient transition
density for proper operation, including synchronization.
Any of the above faults (LOS/SIG_DET, Byte Sync, or Lane
Align), will (by default) cause a local fault in the relevant
receiver. If the PCS_SYNC_EN bit at address [3,4]C000’h (or
the XAUI_EN bit at [3:4].C001’h) (see Table 63 to
Table 65 and/or Table 80 to Table 81) is set, the internal FIFOs
will propagate the local fault indication specified in the
IEEE802.3ae-2002 specification (Sections 46.3.4 and 48.2.4.2)
as the Sequence Ordered_Set ||LF|| (see Table 48-4),
/K28.4/D0.0/D0.0/D1.0/, which will be transmitted as the
appropriate XAUI or LX4/CX4 TX output. The ISL35822 lanes
0-3 must be connected to XAUI and LX4/CX4 lanes 0-3 in strict
order. Any Sequence Ordered_Set (including ||LF|| and ||RF||)
received on an input channel will be retransmitted unchanged
on the appropriate output channel.
Error Indications
An equivalent schematic of the various IEEE-defined and
Vendor Specific Fault and Status registers in the ISL35822 is
shown in Figure 4. Those register signals that also contribute to
the LASI system are indicated (see Figure 5).
Loss of Signal
If the reference clock is missing or at an out-of-range frequency,
the PLL in the CMU will fail to lock. This is the only possible
internal cause of a PMA ‘TX Local Fault ‘ indication in bit 1.8.11
(Table 10), and will cause ‘RX Local Fault’ in bit 1.8.10 and
other consequent fault indications (see Table 6, Table 27 and
Table 28).
Loss of the input signal may be caused by poor connections,
insufficient voltage swings, or excessive channel loss. If any of
these conditions occurs, the Loss Of Signal (LOS) and (CX4)
SIG_DET detector outputs on the lane will indicate the fault,
and may be monitored via the MDIO system (see Table 6,
Table 10, Table 27, Table 28, Table 76 and Table 77). See also
the section on “Loss of Signal Detection, Termination &
Equalization“ on page 9 above. In addition, the MDIO MF_SEL
and MF_CTRL register bits (address 4.C001’h, see Table 81)
may be set to provide the LOS/SIG_DET indication on the
MF[3:0] pins.
Coding Violation, Disparity & FIFO Errors
The 8b/10b decoder will detect any code violation, and replace
the invalid character by the error character /E/. In the case of a
disparity error, the error may be propagated and only flagged at
the end of a packet (according to the IEEE 802.3 rules). The
ISL35822 will handle this according to those rules. In addition,
the MDIO system includes a flag, in registers [3,4].C007’h on
bits 11:8 (see Table 69 and Table 88). Similarly, an error in the
PCS or PHY XS Elastic (clock compensation) FIFOs will be
flagged in bits 7:4 of the same registers. The FIFO errors may
also be flagged on the MF[3:0] pins via the MDIO MF_SEL and
MF_CTRL register bits (address 4.C001’h, see Table 81).
If a PCS or PHY XS 8B/10B codec is inactive, disparity error
and coding violation errors do not apply, and the FIFOs have no
active error source.
Loopback Modes
In addition to the IEEE 802.3ae-required loopback modes,
the ISL35822 provides a number of additional modes. Each
mode is described in detail below, by reference to the
Detailed Functional Block Diagram in Figure 2, together with
the register bits controlling it.
Byte or Lane Synchronization Failure
PMA Loopback (1.0.0 & 1.C004.[11:8])
The MDIO system can indicate a failure to achieve Byte
Synchronization on any lane, in the PCS register bits 3.24.3:0
(Table 61) or in the PHY XS register bits 4.24.3:0 (Table 78),
which shows the lane-by-lane Byte Sync status. A failure here,
if not caused by any of the above ‘Loss of Signal’ conditions,
would normally reflect a very high bit error rate, or incorrectly
coded data.
The PMA loopback is implemented from the output of the
TCX[3:0] serializers to the input multiplexers in front of the
RCX[3:0] CDRs. All four lanes are controlled by bit 1.0.0,
while the individual lanes can be controlled (one at a time)
by the 1.C004’h.[11:8] bits. Assuming that this is the only
loopback enabled, and that the BIST and test pattern
generation features are not enabled, the signal flow is from
the RXP[3:0][P/N] pins through almost all the ‘egress’
channel to the input of the (still active) TCX[3:0] output
drivers, then (bypassing the RCX[3:0][P/N] inputs, the
equalizers and LOS detectors) back from the CDRs through
almost all the ‘ingress’ channel to the TXP[3:0][P/N] pins.
Failure of Lane Synchronization is indicated for the PCS by
register bit 3.24.12 (Table 61) or for the PHY XS by register bit
4.24.12 (Table 78), and can be caused by failure to detect /A/
characters on every lane of a channel, by excessive skew
between /A/s on the lanes of a channel, or by inconsistent
skews.
13
ISL35822
FIGURE 4. IEEE AND VENDOR SPECIFIC FAULT AND STATUS REGISTERS (EQUIVALENT SCHEMATIC)
TXFAULT
level
PMA/PMD
SIGNAL
DETECT
REG
1.C001.10:8
IEEE REG
1.8.11
REG
1.C00A.3:0
REG
1.C012h.13
POLARITY
CX4
SIGNAL_
DETECT
PLL LOCK
FAIL
IEEE REG
1.1.7
IEEE REG
1.1.2
CX4
LX4
REG
1.C00A.7:4
REG
1.C01D.6
CX4
LX4
See LASI
IEEE REG
1.10.4:1
IEEE REG
1.10.0
IEEE REG
1.8.10
See LASI
IEEE REG
3.8.11
See LASI
See LASI
OPRLOS
[3:0]
PCS
BYTE
SYNC
IEEE REG
3.24.3:0
PCS
LANE
ALIGN
IEEE REG
3.24.12
IEEE REG
3.1.7
IEEE REG
3.1.2
IEEE REG
3.8.10
See LASI
IEEE REG
4.8.11
See LASI
See LASI
PHY XS
LANE
ALIGN
IEEE REG
4.24.12
PHY XS
BYTE
SYNC
IEEE REG
4.24.3:0
IEEE REG
4.1.2
IEEE REG
4.1.7
IEEE REG
4.8.10
REG
3.C001.10:8 level
PHY XS
SIGNAL
DETECT
See LASI
REG
4.C00A.3:0
PHY XS (Serial) Loopback (4.0.14 & 4.C004.[11:8])
The PHY XS loopback is implemented from the output of the
TXP[3:0] serializers to the input multiplexers in front of the
RXP[3:0] CDRs. All four lanes are controlled by bit 4.0.14,
while the individual lanes can be controlled (one at a time) by
the 4.C004’h.[11:8] bits. Assuming that this is the only
loopback enabled, and that the BIST and test pattern
generation features are not enabled, the signal flow is from
the RCX[3:0][P/N] pins through almost all the ‘ingress’
channel to the input of the (still active) TXP[3:0] output drivers,
then (bypassing the RXP[3:0][P/N] inputs, the equalizers and
LOS detectors) back from the CDRs through almost all the
‘egress’ channel to the TCX[3:0][P/N] pins.
PCS Parallel Network Loopback (3.C004.[3:0])
This loopback is implemented (at the internal XGMII-like level)
from the output of the RXFIFOs in the ‘ingress’ channel to the
input of the TXFIFOs in the ‘egress’ channel. The individual
lanes can be controlled (one at a time) by the 3.C004’h.[3:0]
bits. Assuming that this is the only loopback enabled, and that
the BIST and test pattern generation features are not enabled,
the signal flow is from the RCX[3:0][P/N] pins through the
PMA/PMD and PCS and again PMA/PMD to the
TCX[3:0][P/N] pins. This could also be seen as a ‘short’
loopback at the XGMII input of the PHY XS.
14
PCS (Parallel) Loopback (4.C004.[3:0] & Optionally
3.0.14)
This loopback is implemented (at the internal XGMII-like level)
from the output of the RXFIFOs in the ‘egress’ channel to the
input of the TXFIFOs in the ‘ingress’ channel. The individual
lanes can be controlled (one at a time) by the 4.C004’h.[3:0]
bits. If the enable bit in 3.C001.7 (Table 64) is set, all four
lanes can be controlled by bit 3.0.14. Since the latter is
specifically excluded by subclause 45.2.3.1.2 of the IEEE
802.3ae-2002 specification for a 10GBASE-X PCS, the
default is to NOT enable this loopback bit, and if it is enabled,
the ISL35822 does not conform to the IEEE specification. A
maintenance request has been submitted to the IEEE to
enable this loopback bit as optional, and to allow a ‘PCS
Loopback Capability’ bit in register bit 3.24.10 (see
http://www.ieee802.org/3/maint/requests/maint_1113.pdf), but
this has so far been rejected, and may never be approved.
Assuming that this is the only loopback enabled, and that the
BIST and test pattern generation features are not enabled, the
signal flow is from the RXP[3:0][P/N] pins through the full PHY
XS via the internal XGMII to the TXP[3:0][P/N] pins. This
could also be seen as a ‘short’ loopback at the XGMII input of
the PCS.
ISL35822
Serial Test Loopbacks (1.C004.12 & 4.C004.12)
MDIO Register Addressing
In addition to the above loopbacks, the ISL35822 also offers
two serial loopbacks directly between the serial inputs and
outputs. These loopbacks use the recovered clock as the
timing for the outputs (instead of the multiplied reference
clock), so do not reset the jitter or clock domains, and in
addition do NOT provide any pre-emphasis on the outputs.
Furthermore, on the PMA/PMD side (1.C004.12) the lanes
are internally swapped (so the Lane 3 output is from the
Lane 0 input, etc.). Because of their limited utility, they are
not illustrated in Figure 2 or Figure 6. They are mainly useful
for debugging an otherwise intractable system problem. The
reference clock still needs to be within locking range of the
input frequency. The remainder of the signal path will remain
active (as normal), so that if for example 1.C004.12 is set,
data coming in on RCX[3:0], in addition to emerging on
TCX[0:3] without retiming, etc., will also emerge from
TXP[3:0] retimed, as usual.
The PADR[4..0] hardware address pins control the PRTAD
(Port Address) value, each port normally consisting of a
series of MDIO Managed Devices (MMDs). Each Port may
include up to 31 different devices, of which the current
specification defines 8 types, and allows vendor
specification of two others. The ISL35822 device
corresponds to the PMA/PMD, PCS and PHY XGXS defined
types, so responds to DEVAD values of 1, 3 and 4
respectively. The Clause 45-accessible registers are listed
for each Device Address in the tables referenced in Table 2.
Many of these register addresses are IEEE-defined; the
‘Vendor Defined’ registers are arranged to be as DEVAD
independent as possible.
DEVAD = 1 (00001’b) PMA/PMD Device
Table 4, page 19
Serial Management Interface
DEVAD = 3 (00011’b) PCS Device
Table 56, page 38
The ISL35822 implements the MMD Management Interface
defined in IEEE 802.3-2002 Clauses 22 & enhanced in IEEE
802.3ae-2002 Clause 45. This two-pin interface allows serial
read/write of the internal control registers and consists of the
MDC clock and MDIO data terminals. The PADR[4..0] pins
are used to select the ‘Port address’ to which a given
ISL35822 device responds. The ISL35822 will ignore Clause
22 format frames (on a frame-by-frame basis), based on the
second ST (start) bit value. The two formats are shown in
Table 3, together with the references to the respective IEEE
802.3 specifications.
DEVAD = 4 (00100’b) PHY XS (XGXS) Device Table 74, page 45
Table 2. DEVAD DEVICE ADDRESS TABLE
DEVAD VALUE
IEEE DEFINITION
REGISTER LIST
TABLE
Each individual device may have up to 216 (65,536)
registers. The ISL35822 implements all the defined registers
for 10GBASE PMA/PMD, 10GBASE-X PCS and PHY XS
devices, and a few Vendor Specific registers for each
DEVAD respectively. The latter have been placed in the
blocks beginning at D.C000’h so as to avoid the areas
currently defined as for use by the XENPAK module and
similar MSA devices, to facilitate use of the ISL35822 in
such modules and systems.
Table 3. MDIO MANAGEMENT FRAME FORMATS
CLAUSE 22 FORMAT (FROM TABLE 22-10 IN IEEE STD 802.3-2002 EDITION, FOR REFERENCE)
OPERN
PRE
ST
OP
PHYAD
REGAD
TA
DATA
IDLE
Read
1….1
01
10
PPPPP
RRRRR
Z0
DDDDDDDDDDDDDDDD
Z
Write
1….1
01
01
PPPPP
RRRRR
10
DDDDDDDDDDDDDDDD
Z
CLAUSE 45 FORMAT (FROM TABLE 45-64 IN IEEE 802.3.ae-2002)
OPERN
PRE(1)
ST
OP
PRTAD
DEVAD
TA
ADDRESS/DATA
IDLE
Addrs
1….1
00
00
PPPPP
DDDDD
10
AAAAAAAAAAAAAAAA
Z
Write
1….1
00
01
PPPPP
DDDDD
10
DDDDDDDDDDDDDDDD
Z(2)
Read
1….1
00
11
PPPPP
DDDDD
Z0
DDDDDDDDDDDDDDDD
Z
Read Inc
1….1
00
10
PPPPP
DDDDD
Z0
DDDDDDDDDDDDDDDD
Z
Note (1): The ‘Preamble’ consists of at least 32 bits. After a software reset, a few extra preamble bits may be needed, depending on the MDC clock rate. See timing
diagrams in Figure 15 and Figure 17.
Note (2): The actual register will not be updated until up to three additional MDC cycles have been received. See Figure 15.
15
ISL35822
I2C Space Interface
Auto-Configuring Control Registers
In addition to the standard MDIO registers discussed above,
the ISL35822 implements the register addresses specified in
the XENPAK MSA specification for the NVR, DOM and LASI
blocks. The built-in I2C controller can be configured to load
these registers with the MSA-specified data on start-up or
reset or on demand from an I2C EEPROM (frequently
included as part of a DOM circuit) and/or one or four DOM
circuits (see below). Optionally, a portion of the NVR space
may be used to autoload the various ISL35822 control
registers at start-up or reset. These operations are
discussed in more detail below.
NVR Registers & EEPROM
If the XP_ENA pin is asserted enabled (high), at the end of
hardware RESET or power-up the ISL35822 will attempt to
load the NVR area by initiating a NVR-block read through
the 1.32768 (1.8000’h) control register (Table 15). See
Figure 18. The same will occur if the appropriate command
value is written into this register. The I2C interface will
attempt to read the A0.00:FF’h I2C space into the
1.8007:8106’h MDIO register space. The Command Status
bits in the 1.32768 (1.8000’h) Control register will reflect the
status of this operation. Failure may occur if the expected
ACK is not received from any address after the number of
attempts set in control register 1.32273 (1.8005’h), default
63 (Table 20), or if a collision is detected on the I2C bus. The
timing sequence of this Block Read operation is shown in
Figure 20. The host can check the checksums against the
values at 1.807D, and optionally 1.80AD and 1.8106, and
take appropriate action. As soon as the XENPAK MDIO
space is loaded, the STA MDIO device may interrogate it.
Note that the ISL35822 merely stores the values read from
the EEPROM or other device at A0.00-FF’h, and, with a few
exceptions, does not interpret them in any way. The
exceptions are listed explicitly in Table 22, together with the
other uninterpreted groups, and are:
• The Package OUI at 1.32818:32821 (1.8032:5’h), which
will be mirrored in the IEEE-defined 1.14:15 (1.E:F’h)
space, as required by section 10.8.2 of the XENPAK spec;
the allowable values here are specified by the XENPAK,
XPAK and X2 specifications;
• The DOM Capability byte at 1.32890 (1.807A), see the
DOM Registers section, page 16;
• The Auto-configure size and pointer bytes at
1.33028:9(1.8104:5); (see Auto-Configuring Control
Registers, page 16).
• If the Auto-configure operation is enabled, the block of
bytes so specified will be written into the ISL35822 control
registers, (see Auto-Configuring Control Registers on
page 16 and Table 92).
Other registers may be interpreted in future versions of the
ISL35822.
16
If the XP_ENA pin is asserted, and the I2C controller can
successfully read the I2C NVR space into the MDIO NVR
space, the ISL35822 will examine the Auto-configure Pointer
value at 1.33029 (1.8105’h). If this is neither 00’h or FF’h,
the ISL35822 will use that value (S below) as an offset
pointer into the A0.00:FF’h I2C space already copied into the
MDIO NVR space, and the number of bytes given in the
Auto-configure Size register 1.33028 (1.8104) value (N
below) to load N bytes from the NVR data starting from
location S into the various ISL35822 configuration control
registers. The loading sequence and the correspondence
between the NVR block and the control registers is listed in
Table 92. The auto-configure engine will behave benignly if
the S and N values are misconfigured, so that if S + N ≥ 252
(for example), the auto-configure block will stop at an S + N
value of 252, and not use S, N , or the Checksum value to
load a configuration control register. (Hence the exclusion of
FF’h as a value for S is no limitation). Similarly, values of N >
40 will be ignored.
Note that in a XENPAK/XPAK/X2 module, the value of S should
not be between 00’h and 76’h, since this would start the loading
from within the MSA-defined region. (Hence the exclusion of
00’h as a value for S is normally no limitation). If the value of S
lies between 77’h and A6’h, that portion of the auto-configure
data within that band can be overwritten as part of the
Customer Writable area defined by the MSA specifications; if
this is undesirable, that range of values should also be
excluded. On the other hand, this could be used to allow some
customization for specific end-user configuration values. If the
block overlaps the boundary between the ‘Customer Writable’
and ‘Vendor Specific’ areas, the first part would be customerwritable, and the second part not. The order of the configuration
registers has been arranged to place those most likely to be
useful in such a customer-configuration environment at the
beginning of the block. The ‘Customer Area Checksum’ would
be part of the auto-configure block, and some other byte in the
‘Customer Writeable Area’ would need to be adjusted to make
the Checksum and the desired configuration value coincide.
The Command Status bits in the NVR Command register
(Table 15) at 1.32768.3:2 (1.8000’h.3:2) will reflect the success
of both the NVR and (if called for) the auto-configure loading
operations.
DOM Registers
If the NVR load operation succeeds, the (newly read-in)
XENPAK register at 1.32890 (1.807A’h) is examined, and if the
DOM Capability bit is set (bit 6, see Table 23), the I2C interface
will attempt to read the DOM values from the I2C device
address space specified in the same register (bits 2:0),
normally 001’b pointing to A2’h. See Note (2) to Table 23 for
details. A full block of data will be read from this space (normally
A2.00:FF’h) into the 1.40960:41215 (1.A000: A0FF’h) MDIO
register DOM space. See Figure 18 and Figure 20 for details.
The DOM control register is implemented in the ISL35822 at
ISL35822
1.41216 (1.A100’h), so that one-time or (by default) periodic
updates of the DOM information can be loaded into the MDIO
DOM space by writing the appropriate values into it, as shown
in Table 38, page 33. The actual automatic update rates
selectable in this XENPAK-defined register are controlled by
the DOM Control register in the ISL35822 vendor-specific
register space at 1.49176 (1.C018’h), which also controls other
actions of the DOM interface (see Table 51). In particular, since
many available DOM circuits can handle only one lane, bit 2
enables or disables indirect access to separate DOM circuits on
the four lanes. If the bit is 0’b, the DOM circuit is directly
addressed at Ax.00:FF’h, and is assumed to provide the full
four lane data, including the determination of which data is to be
treated as the ‘furthest out of range’ or the ‘representative
value’, as specified in Note 1 to Table 27 in section 11.2.6 of the
XENPAK R3.0 specification, to be returned in the XENPAKdefined 1.A060:A06D’h space for a WDM module. If bit 2 of
1.C018’h is set to 1’b, the DOM data is polled from four devices
attached to the I2C serial bus, getting 10 bytes from each of
them. The 40 bytes of data are stored in the four lane register
blocks starting from 1.A0C0’h, 1.A0D0’h, 1.A0E0’h and
1.A0F0’h respectively. The device addresses of these four
DOM devices on the 2-wire bus are configured by registers
1.C01B’h and 1.C01C’h (Table 54); the starting memory
addresses by registers 1.C019’h and 1.C01A’h (Table 53).
Since the ISL35822 has no mechanism to determine out-ofrange data, it chooses one of these four 10-byte long groups of
data to copy into 1.A060’h:A069’h according to bits 1:0 of
1.C018’h (the ‘representative’ lane per the above-mentioned
XENPAK Note). In addition, the Alarm and Status flags
(Table 36 and Table 37) will be loaded from this lane into
1.A070:A075’h.
The ISL35822 assumes that the DOM circuit(s) will have
these A/D values and flags at the same relative offsets as
those specified in the XENPAK R3.0 and the SFF-8472
specifications.
General Purpose (GPIO) Pins
The ISL35822 includes some flexibly configurable General
Purpose Input-Output (GPIO) pins, which may be configured
to be inputs or outputs. As inputs, their level may be read
directly via the MDIO system, but also they may be
configured (again via MDIO registers, see Table 47 through
Table 50) to optionally trigger the LASI on either a high or
low level. The GPIO pins may also individually be used as
outputs, and set high or low, under MDIO control. The GPIO
control registers are among those that can be autoconfigured on start-up.
LASI Registers & I/O
The ISL35822 implements the Link Alarm Status Interrupt
(LASI) interface defined in section 10.13 of the XENPAK
specification. The source and nature of these is described
above under “Error Indications” on page 13 and in Figure 4.
In addition to these specification-defined inputs, the
ISL35822 incorporates a number of additional inputs, related
17
to the possible byte alignment and 8b/10b code violations,
which may be used to trigger a LASI. The available inputs
depend on the LX4/CX4 select LX4_MODE pin (Table 99),
and are detailed in Table 27 and Table 28, and include:
1. Various status bits within the ISL35822, derived from its
operations; in particular, the LOS indications, Byte Sync
and EFIFO errors, the Fault bits [1,3,4].8.10:11, etc.
2. The Optical Interface Status pins (in LX4 mode), see
Table 99.
3. The Alarm flags in 1.A070:1 (Table 36). These bits
are gated with the enable bits in 1.9006:7 (Table 30 and
Table 31) and the LX4/CX4 LX4_MODE pin (Table 99) to
drive bits 1.9004.1 & 1.9003.1 (Table 28 & Table 27).
4. The GPIO pins (Table 100). If configured as inputs, they
may be used to optionally trigger the LASI on either a
high or low level. See above.
These status inputs can all be read via the LASI Status
registers (1.9003 to 1.9005, see Table 27 to Table 29). Any of
these inputs, if enabled via the LASI Control Registers, 1.9000
to 1.9002 (Table 24 to Table 26), can drive the LASI pin.
Figure 5 shows an equivalent schematic for the LASI system
(an expansion of Figure 21 in the XENPAK specification).
Reading Additional EEPROM Space Via the I2C
Interface
The I2C interface will allow single-byte reads from any
possible I2C address. The device address and memory
address are written into the 1.32769 (1.8001’h) and
1.32770 (1.8002’h) registers respectively (see Table 16 and
Table 17), and on issuing a ‘Read one byte’ command (write
0002’h to 1.32768 = 1.8000’h) the data will be read from the
I2C space in the MDIO register at 1.32771 (1.8003’h, see
Table 18). For timing sequence, see Figure 22. Note that a
16-bit addressable EEPROM (or equivalent) device on the
I2C bus may be read by setting the Long Memory bit
1.32773.8 (1.8005.8’h) to a ‘1’, and writing a full 16-bit
memory address value into 1.32770 (1.8002’h). This in
principle allows access to almost a full 8MB of I2C space,
excluding only the NVR and (optional) DOM device address
portions. This 16-bit operation MUST NOT be used on an
8-bit device, since the register address setting operation will
attempt to write the low byte of the address into the register
at the high byte address. Such a 16-bit memory address
device should be located at a device address not used by
the NVR or DOM system.
These one-byte operations could be used to read other
types of data from (multiple) DOM devices (such as limit
lookup tables), or for expanded informational areas. It also
facilitates the use of I2C-based DCP (Digital Control
Potentiometer) devices for Laser Current control, and other
similar setup and monitoring uses.
FIGURE 5. LASI EQUIVALENT SCHEMATIC
(See Also Figure 4)
OPTX
LBC
REG.
4.C00Ah.
3:0
OPT
TEMP
OPTX
LOP
TX_
FAULT
REG.
4.C007h.
11:8
REG.
4.24.3:0
REG
1.C012h.13
POLARITY
REG 1.C01Dh.2:0
ALARM PIN POLARITY
REG 1.9005h[3:0]
LASI STATUS
REG.
4.C007h.
7:4
LINK
STATUS
REG. 1.10.0
PHY XS
FIFO
ERROR
PHY XS
BYTE
SYNCH
PHY XS
CODE
ERROR
REG. 4.24.12
LS ALARM
Masked
CLR
REG 1.A070h[7:0]
TX_FLAG
REG 4.8.11
REG 3.8.11
LX4
CX4
LX4
CX4
CX4
LX4
LX4
CX4
CX4
LX4
LX4
CX4
LX4
CX4
REGISTER 1.9004h.[10:0] TX_ALARM_STATUS
Q
D
LS_ALARM
CLK
REG 1.9006h[7:0]
TX_FLAG CONTROL
TX_FLAG
Clear on read
Clock on
any
change
Clear on Read of 1.9005
See IEEE
REG 1.8.11
18
PHY XS
LOS
(SIG DET)
Change
REG. 3.24.12
Latch on high
LASI
REGISTER 1.9000h[6:0] RX_ALARM CONTROL
RX_ALARM
RX ALARM
Masked
Clear on read
REGISTER 1.9003h.[6:0] RX_ALARM_STATUS
Latch on high
REG 1.C012h.[4:0]
GPIO-LASI EN
Latch
hi
GPIO->LASI
REG 1.C011h.[12:8]
GPIO INPUT
REG 4.8.10
PCS
CODE
ERROR
LX4
CX4
REG 3.8.10
REG 1.10.0
REG
3.24
[3:0]
REG 1.8.10
LX4
CX4
PCS
BYTE
SYNCH
REG 1.C012h.[12:8]
GPIO POLARITY
GPIO
[4:0]
REG 1.9002h[3:0]
LASI CONTROL
OPRX
OP
REG.
3.C007h.
7:4
REG.
3.C007h.
11:8
RX_FLAG
CX4
Selector for
CX4 vs LX4
LASI
External Pad
LX4
PCS
FIFO
ERROR
REG 1.9007h[7:6]
RX_FLAG CONTROL
REG
1.C01Dh.3
GPIO
ALARM
Masked
REG 1.A074h[7:6]
RX_FLAG
Legend
ISL35822
TX ALARM
Masked
TX_ALARM
REGISTER 1.9001h[10:0] TX_ALARM CONTROL
ISL35822
Writing EEPROM Space through the I2C Interface
The ISL35822 permits two methods for writing the requisite
values into EEPROM or other I2C devices from the MDIO
space into the I2C register space. Many DOM circuits protect
their important internal data through some form of password
protection, and in general the ISL35822 will allow this to be
done without a problem.
BLOCK WRITES TO EEPROM SPACE
The first method is applicable only to the NVR space (I2C
address space A0.00:FF’h). If the WRTP (Write Protect) pin is
inactive (low), and the NVR Write Size bit (1.32773.7 =
1.8005.7’h) is set to a ‘1’, then issuing a ‘Write All NVR’
command (write 0023’h to 1.32768 = 1.8000’h) will write the
current contents of MDIO registers 1.8007:8106’h into the NVR
space. The ‘NVR Write Page Size’ bits in 1.32773.1:0
(1.8005.1:0’h) control the block size used for the write
operation. See Figure 21 for the sequence timing. Normally this
operation is only useful for initialization of a module EEPROM
space, but it could be used for field upgrades or the like. If the
WRTP (Write Protect) pin is high (active, normal condition), OR
the Write Size bit (1.32773.7 = 1.8005.7’h) is cleared to a ‘0’,
then issuing a ‘Write All NVR’ command (write 0023’h to
1.32768 = 1.8000’h) will write only the current contents of the
MDIO register block within 1.807F:80AE’h to the XENPAKdefined Customer Area, A0.77:A6’h. The actual block write will
occur one byte at a time. The block write size controls cannot
be used here, since the Customer Area block boundaries do
not lie on page-write boundaries of the EEPROM, a feature of
the XENPAK specification.
BYTE WRITES TO EEPROM SPACE
The second method is applicable to any part of the I2C space.
The write operation is performed one byte at a time. The device
address and memory address are written into the 1.32769
(1.8001’h) and 1.32770 (1.8002’h) registers respectively (see
Table 16 and Table 17), and the data to be written into the
1.32772 (1.8004’h) register. On issuing a ‘Write one byte’
command (write 0022’h to 1.32768 = 1.8000’h) the data will be
written into the I2C space. See Figure 23 for the timing
sequence. Note that if the WRTP (Write Protect) pin is high, or
the Write Size bit (1.32773.7 = 1.8005.7’h) is cleared to a ‘0’,
writes to any part of the basic NVR space outside the XENPAKdefined Customer Area will be ignored. Also note that a 16-bit
addressable EEPROM (or equivalent) device on the I2C bus
may be written by setting the Long Memory bit 1.32773.8
(1.8005.8’h) to a ‘1’, and writing a full 16-bit memory address
value into 1.32770 (1.8002’h). Note that this 16-bit operation
MUST NOT be used on an 8-bit device.
These one-byte operations could be used to load modified
Device Address values or protective passwords into multiple
DOM devices, or for loading other types of data into them. They
are also useful for writing data into I2C interface DCP devices
for setting laser currents, etc.
MDIO Registers
In the following tables, the addresses are given in the table
headers both in decimal (as used in the IEEE 802.3ae and
802.3ak documents) and in hexadecimal form. Where the
registers coincide in structure and meaning, but the Device
Addresses differ, the underlying register bits are the same, and
may be read or written indiscriminately via any relevant Device
Address. For instance a full RESET may be initiated by writing
any one of 1.0.15, 3.0.15, or 4.0.15. While the reset is active,
reading any of these bits would return a ‘1’ (except that the
reset lasts less than the MDIO preamble plus frame time).
When the reset operation is complete, reading any of them will
return a ‘0’. Note that extra preambles may be required after
such a software RESET (see Figure 17).
Table 4. MDIO PMA/PMD DEVAD 1 REGISTERS
PMA/PMD DEVICE 1 MDIO REGISTERS
ADDRESS
DEC
1.0
NAME
HEX
1.0
DESCRIPTION
DEFAULT
AC (5)
R/W
DETAILS
PMA/PMD Control 1 Reset, Enable serial loop back mode.
2040’h
R/W
Table 5
RO/LL
Table 6
1.1
1.1
PMA/PMD Status 1
Local Fault and Link Status
0004’h (2)
1.2:3
1.2:3
ID Code
Manufacturer OUI & Device ID
01839C6V’h
RO
See (1)
1.4
1.4
Speed Ablty
PMA/PMD Speed Ability
0001’h
RO
Table 7
1.5
1.5
Dev in Pkg.
Devices in Package, Clause 22.
001A’h
RO
Table 8
1.6
1.6
Vend Sp Dev
Vendor Specific Devices in Package
0000’h
RO
Table 8
1.7
1.7
PMA/PMD Control 2 PMA/PMD type Selection
P (4)
RO (6)
Table 9
RO
(LH)
Table 10
1.8
1.8
PMA/PMD Status 2
Fault Summary, Device Ability
B311’h (2)
1.9
1.9
PMD TX Dis
Disable PMD Transmit
0000’h
R/W
Table 11
PMD Signal Detect
001F’h (2)
RO
Table 12
1.10
1.A
PMD Sig Det
19
ISL35822
Table 4. MDIO PMA/PMD DEVAD 1 REGISTERS (Continued)
PMA/PMD DEVICE 1 MDIO REGISTERS
ADDRESS
DEC
NAME
HEX
DESCRIPTION
DEFAULT
AC (5)
R/W
DETAILS
1.11
1.B
PMD Ext Ca
PMD Extended Capability
0001’h
RO
Table 13
1.14:15
1E:F
Pkg OUI
PMD Package OUI, etc.
00000000’h (3)
R/W
Table 14
1.32768
1.8000
NVR Cntrl
NVR Control & Status Register
0003’h
R/W
Table 15
1.8001
I2C Dev Ad
1-Byte Operation Device Addr.
A2’h
R/W
Table 16
1.8002
I2C Mem Ad
1-Byte Operation Memory Addr.
0000’h
R/W
Table 17
1.8003
I2C RD Data
1-Byte Operation Read Data
0000’h
RO
Table 18
1.8004
I2C WR Data
1-Byte Operation Write Data
0000’h
R/W
Table 19
I2C Operation Control
1.32769
1.32770
1.32771
1.32772
1.32773
1.8005
I2C Op Ctl
004D’h
R/W
Table 20
1.32774
1.8006
I2C Op Stts
I2C Operation Status
0000’h
RO/LH
Table 21
1.32775:
33030
1.8007:
8106
NVR Copy
Registers
XENPAK NVR Register Copies
Set by
EEPROM
R/W
Table 22
1.36864
1.9000
RX Al Ctrl
RX ALARM Control
See Table (4)
R/W
Table 24
A
R/W
Table 25
A
R/W
Table 26
A
1.36865
1.9001
TX Al Ctrl
TX ALARM Control
See Table (4)
1.36866
1.9002
LASI Ctrl
LASI Control
0000’h
1.36867
1.9003
RX Al Stts
RX ALARM Status
0000’h (2)
RO
Table 27
TX ALARM Status
0000’h (2)
RO
Table 28
RO
Table 29
1.36868
1.9004
TX Al Stts
1.36869
1.9005
LASI Stts
LASI Status
0000’h (2)
1.36870
1.9006
DOM TX
DOM TX_Flag Control
0000’h
A
R/W
Table 30
1.36871
1.9007
DOM RX
DOM RX_Flag Control
0000’h
A
R/W
Table 31
1.40960:
41215
1.A000
:A0FF
DOM Copy
Registers
Alarm & Warning Thresholds, A/D
Values, (cf SFF-8472)
Set by DOM
devices
RO
Table 32:
Table 37
1.41216
1.A100
DOM Ctrl
DOM Control & Status
0000’h
R/W
Table 38
1.49153
1.C001
PMA Ctrl2
PMA Control 2
0000’h
A
R/W
Table 39
1.49156
1.C004
PMA LB
PMA Loopback Control
0000’h
A
R/W
Table 40
PMA Pre-emphasis Control
See Table (4)
A
R/W
Table 41
A
R/W
Table 43
RO
Table 44
R/W
Table 45
R/W
Table 46
1.49157
1.C005
PMA Pre
1.49158
1.C006
PMA Eql
PMA Equalizer Boost Control
See Table (4)
1.49162
1.C00A
SIG_DET
Signal Detect Flags
0000’h (2)
1.49163
1.C00B
Fine Tune
Adjust pre-emphasis, amplitude
See Table (4)
1.49167
1.C00F
Soft RST
Soft RESET
0000’h
A
R/W
Table 47:
Table 50
A
1.49168:
49171
1.C010
:C013
GPIO Cnfg
GPIO Config, Status & Alarm Registers
0000’h (2)
1.49176
1.C018
DOM Control
DOM Control Register
0000’h
A
R/W
Table 51
1.49177:8
1.C019:A
DOM Mem
DOM Indirect Start Addresses
6060’h
A
R/W
Table 53
1.49179:80
1.C01B:C
DOM Dev
DOM Indirect Device Addresses
See Tables
A
R/W
Table 54
1.49181
1.C01D
StatusPolrty
LASI Alarm Pin Polarity
0000’h
A
R/W
Table 55
Note (1):
Note (2):
Note (3):
Note (4):
Note (5):
V’ is a version number. See “JTAG & AC-JTAG Operations” on page 53 for a note about the version number.
Read values depend on status signal values. Values shown indicate ‘normal’ operation.
If NVR load operation succeeds, will be overwritten by value loaded, see Table 22
Default value depends on CX4/LX4 select LX4_MODE Pin Value. IEEE 802.3ae shows as R/W, but cannot write any other value.
For rows with “A”, the default value may be overwritten by the Auto-Configure operation (See “Auto-Configuring Control Registers” on page 16 and Table 92
for details).
Note (6): IEEE 802.3 shows as R/W, but cannot write any other value than that set by LX4_MODE Pin.
20
ISL35822
IEEE PMA/PMD REGISTERS (1.0 TO 1.15/1.000F’H)
Table 5. IEEE PMA/PMD CONTROL 1 REGISTER
MDIO REGISTER ADDRESS = 1.0 (1.0000’h)
BIT(S)
NAME
SETTING
1.0.15
3.0.15
4.0.15
Reset
1 = reset
0 = reset done, normal
operation
1.0.14
Reserved
1.0.13
Speed Select
1.0.12
Reserved
1.0.11
LOPOWER
1.0.10:7
Reserved
1.0.6
Speed Select
1 = 10Gbps
1.0.5:2
Speed Select
0000 = 10Gbps
1.0.1
Reserved
1.0.0
PMA Loopback
DEFAULT
0’b
R/W
DESCRIPTION
R/W SC
Writing 1 to this bit will reset the whole chip,
including the MDIO registers. (1)
RO
1 = bits 5:2 select speed
R/W
No Low Power Mode, writes ignored
1’b
RO
1 = bits 5:2 select speed
0’h
RO
Operates at 10Gbps
R/W
Enable serial loop back mode on all four lanes,
XAUI in to XAUI out.
0’b
1 = 10Gbps
1’b
0’b
0 = Normal Power
0’b
0’h
0’b
1 = Enable loopback
0 = Normal operation
0’b
Note (1): After this RESET bit is written, the ISL35822 will not begin counting PREAMBLE bits immediately. See Figure 17 for details.
Table 6. IEEE PMA/PMD STATUS 1 REGISTER
MDIO REGISTER ADDRESS = 1.1 (1.0001’h)
BIT
NAME
SETTING
1.1.15:8
Reserved
1.1.7
Local Fault
1.1.6:3
Reserved
1.1.2
Rx Link Up
1 = PMA Rx Link Up
0 = PMA/D Rx Link Down
1.1.1
LoPwrAble
Low Power Ability
1.1.0
Reserved
DEFAULT
R/W
DESCRIPTION
00’h
1 = PMA Local Fault
0’b
RO
Derived from Register 1.8.11:10
1’b (1)
RO LL(1)
‘Up’ means CX4/LX4 signal level is OK, and the
PLL locked
0’b
RO
Device does not support a low power mode
0’h
0’b
Note (1): This bit is latched low on a detected Fault condition. It is set high on being read.
Table 7. IEEE PMA/PMD, PCS, PHY XS, SPEED ABILITY REGISTER
MDIO REGISTER ADDRESSES = 1.4, 3.4 & 4.4 ([1,3,4].0004’h)
BIT
NAME
SETTING
DEFAULT
R/W
DESCRIPTION
1.4.15:3
3.4.15:2
4.4.15:1
Reserved for future
speeds
1.4.2:1
3.4.1
10PASS-T2/
2BASE-TL
EFM Ability
00’b
RO
Device cannot operate @ 2BASE-TL or 10PASST2
1.4.0
3.4.0
4.4.0
10GbpsAble
10Gbps Ablility
1’b
RO
Device Able to operate @ 10Gbps
21
000’h
ISL35822
Table 8. IEEE DEVICES IN PACKAGE REGISTERS
MDIO REGISTER ADDRESSES = 1.5, 3.5, 4.5 ([1,3:4].0005’h)
BIT
NAME
SETTING
DEFAULT
R/W
DESCRIPTION
[1,3:4].5.15:8
Reserved
000’h
[1,3,4].5.7
Link Partner
Link Partner PMA/PMD present 0’b
RO
Device has no Link Partner
[1,3,4].5.6
10PASS-TS tone table
10PASS-TS tone table present
0’b
RO
Device has no 10PASS-TS tone table
[1,3:4].5.5
DTE XS
DTE XS Present
0’b
RO
Device ignores DEVAD 5
[1,3:4].5.4
PHY XS
PHY XS Present
1’b
RO
Device responds to DEVAD 4
[1,3:4].5.3
PCS
PCS Present
1’b
RO
Device responds to DEVAD 3
[1,3:4].5.2
WIS
WIS Present
0’b
RO
Device ignores DEVAD 2
[1,3:4].5.1
PMD_PMA
PMD/PMA Present
1’b
RO
Device responds to DEVAD 1
[1,3:4].5.0
Cls_22
Clause 22 registers
0’b
RO
Device ignores Clause 22
MDIO REGISTER ADDRESSES = 1.6, 3.6, 4.6 ([1,3:4].0006’h)
[1,3:4].6.15
VndrDEV2
Vendor Specific DEV2
0’b
RO
Device ignores DEVAD 31
[1,3:4].6.14
VndrDEV1
Vendor Specific DEV1
0’b
RO
Device ignores DEVAD 30
[1,3,4].6.13
Clause 22 extn.
Clause 22 extension
0’b
RO
Device has no Clause 22 extension
[1,3:4].6.12:0
Reserved
000’h
Table 9. IEEE PMA/PMD TYPE SELECT REGISTER
MDIO REGISTER ADDRESSES = 1.7 (1.0007’h)
BIT
NAME
1.7.15:4
Reserved
1.7.3:0
PMA/PMD Type
SETTING
DEFAULT
R/W
DESCRIPTION
000’h
P’b(1)
0100 = 10GBASE-LX4
0000 = 10GBASE-CX4
RO
LX4_MODE select pin high is LX4 value,
low is CX4 value
Note (1): Value depends on the current state of the LX4/CX4 select LX4_MODE pin. Although IEEE 802.3ae specifies R/W bits, only valid values may be written; since
the pin controls the available valid value, no meaningful write is possible.
Table 10. IEEE PMA/PMD STATUS 2 DEVICE PRESENT & FAULT SUMMARY REGISTER
MDIO REGISTER ADDRESSES = 1.8 (1.0008’h)
BIT
NAME
SETTING
1.8.15:14
Device present
10 = Device present
10’b
RO
When read as “10”, it indicates that a device is
present at this device address
1.8.13
TXLocalFlt Ability
1 = PMA/PMD can detect TX
Fault
1’b
RO
PMA/PMD has the ability to detect a Local Fault
on Transmit Path
1.8.12
RXLocalFlt Ability
1 = PMA/PMD can detect RX
Fault
1’b
RO
PMA/PMD has the ability to detect a Local Fault
on Receive Path
1.8.11
TXLocalFlt
1 = TX Local Fault; on Egress 0’b
channel
RO LH(1)
PLL lock fail (missing REFCLK) or TX_FAULT pin
active
1.8.10
RXLocalFlt
1 = RX Local Fault; on Ingress 0’b
channel
RO
LH(1,2)
PLL lock fail (missing REFCLK), or Loss of Signal
in 1.10 (1.000A’h)
1.8.9
Ext Ability
1 = Extended Ability Register
present.
1’b
RO
Device has Extended Ability Register in 1.11
(1.000B’h)
1.8.8
TX Disable
1 = Can Disable TX
1’b
RO
Device can Disable Transmitter
1.8.7
10GBASE-SR
0 = cannot perform
0’b
RO
Device cannot be 10GBASE-SR
1.8.6
10GBASE-LR
0 = cannot perform
0’b
RO
Device cannot be 10GBASE-LR
22
DEFAULT
R/W
DESCRIPTION
ISL35822
Table 10. IEEE PMA/PMD STATUS 2 DEVICE PRESENT & FAULT SUMMARY REGISTER (Continued)
MDIO REGISTER ADDRESSES = 1.8 (1.0008’h)
BIT
NAME
SETTING
DEFAULT
R/W
DESCRIPTION
1.8.5
10GBASE-ER
0 = cannot perform
0’b
RO
Device cannot be 10GBASE-ER
1.8.4
10GBASE-LX4
1 = can perform
1’b
RO
Device can be 10GBASE-LX4
1.8.3
10GBASE-SW
0 = cannot perform
0’b
RO
Device cannot be 10GBASE-SW
1.8.2
10GBASE-LW
0 = cannot perform
0’b
RO
Device cannot be 10GBASE-LW
1.8.1
10GBASE-EW
0 = cannot perform
0’b
RO
Device cannot be 10GBASE-EW
1.8.0
PMA Loopback
1 = can perform
1’b
RO
Device can perform PMA loopback
Note (1): These bits are latched high on any Fault condition detected. They are reset low (cleared) on being read. They will also be reset low on reading the LASI
registers 1.9003’h (bit 10, see Table 27) or 1.9004’h (bit 11, see Table 28).
Note (2): The source of ‘Loss of Signal’ depends on the LX4/CX4 select LX4_MODE pin (see register 1.10, 12, note (1) below).
Table 11. IEEE TRANSMIT DISABLE REGISTER
MDIO REGISTER ADDRESS = 1.9 (1.0009’h)
BIT
NAME
SETTING
DEFAULT
R/W
1.9.15:5
Reserved
1.9.4
PMD Dis 3
Disable TX on Lane 3(1)
0’b
R/W
1.9.3
PMD Dis 2
Disable TX on Lane 2(1)
0’b
R/W
1.9.2
PMD Dis 1
Disable TX on Lane 1(1)
0’b
R/W
1.9.1
PMD Dis 0
Disable TX on Lane 0(1)
0’b
R/W
1.9.0
PMD Dis All
Disable TX on all 4 Lanes
0’b
R/W
DESCRIPTION
1 = Disable PMD Transmit on respective Lane(1)
0 = Enable PMD Transmit on respective Lane
(unless TXON/OFF pin is Low)
Note (1): In CX4 mode the TCXnP/N pin outputs will be disabled; in LX4 Mode only TX_ENA[n] pin is disabled.
Table 12. IEEE PMD SIGNAL DETECT REGISTER
MDIO REGISTER ADDRESS = 1.10 (1.000A’h)
BIT
NAME
1.10.15:5
Reserved
1.10.4
PMD Rx Ln 3
1.10.3
SETTING
PMD Rx Ln 2
1.10.2
PMD Rx Ln 1
1.10.1
PMD Rx Ln 0
1.10.0
PMD Rx Glob
DEFAULT
R/W
PMD Signal Det’d
1’b(1)
RO
PMD Signal Det’d
1’b(1)
RO
PMD Signal Det’d
1’b(1)
RO
PMD Signal Det’d
1’b(1)
RO
PMD Signal Det’d
1’b(1)
RO
DESCRIPTION
1 = PMD Signal Detected on respective Lane
(Global, all Lanes)
0 = PMD Signal not detected on respective Lane
(Global, any
Lane)
Note (1): These bits reflect the OPRLOS[3:0] pins (Table 99) in LX4 mode, or the CX4 SIGNAL_DETECT function in CX4 mode, depending on the LX4_MODE select pin.
Table 13. IEEE EXTENDED PMA/PMD CAPABILITY REGISTER(1)
MDIO Register Addresses = 1.11 (1.000B’h)
BIT
NAME
1.11.15:1
Reserved
1.11.0(1)
10GBASE-CX4
SETTING
1 = can perform
DEFAULT
0000’h
RO
1’b
RO
Note (1): These values reflect the IEEE 802.3ak 10GBASE-CX4 specification.
23
R/W
DESCRIPTION
Device can be 10GBASE-CX4
ISL35822
Table 14. IEEE PACKAGE IDENTIFIER REGISTERS
MDIO REGISTER ADDRESSES = 1.14:15 (1.000E:F’h)
BIT
NAME
1.14.15:0
Package ID
1.15.15:0
Package ID
SETTING
DEFAULT
Package OUI bits 3:24 &
etc.
R/W
00’h
R/W
00’h
R/W
DESCRIPTION
If NVR is loaded, these are copies of
1.32818:32819 (1.8032:8033’h) & 1.32820:32821
(1.8034:8035’h)
XENPAK-DEFINED REGISTERS (1.8000’H TO 1.8106’H)
Table 15. XENPAK NVR CONTROL & STATUS REGISTER
MDIO (XENPAK) REGISTER ADDRESS = 1.32768 (1.8000’h)
BIT
NAME
SETTING
DEFAULT
R/W
DESCRIPTION
1.32768.15:6
Reserved
000’h
R/W
1.32768.5
NVR Command(1)
0’b(2)
R/W
1.32768.4
Reserved
0’b
RO
1.32768.3:2
NVR Command
Status(3)
Current Status of
NVR Command
00’b
RO
11 = Command failed
10 = Command in progress/Queued
01 = Command completed with success
00 = Idle
1.32768.1:0
Extended NVR
Command
NVR operation to be 11’b(2)
performed
R/W
10 = read/write one byte(3)
11 = read/write all NVR contents(3)
Other values = reserved
1 = Write NVR
0 = Read NVR
Write/Read Control for I2C operation
Note (1): User writes to these bits are not valid unless the Command Status is Idle. The Command Status will not return to Idle until read after command completion
(either Succeed or Failed).
Note (2): At the end of a hardware RESET via the RSTN pin, on powerup, or on a register [1,3,4].0.15 RESET operation, and if the XP_ENA pin is asserted, the
ISL35822 will automatically begin an ‘all NVR read’ operation.
Note (3): The single byte commands are controlled through the bits of the registers at 1.32769:32774 (1.8001:8006’h). The ‘block write/read’ commands are affected by
register 1.32773 (1.8005’h). Additional status is available in 1.327743 (1.8006’h)
Table 16. I2C ONE-BYTE OPERATION DEVICE ADDRESS REGISTER
MDIO REGISTER ADDRESS = 1.32769 (1.8001’h)
BIT
1.32769.15:8
1.32769.7:0
NAME
SETTING
Reserved
I2C Device address to
Device
Address
DEFAULT
R/W
00’h
RO
A2’h
R/W
DESCRIPTION
All I2C Device addresses are even. Bit 0 cannot be set.
access
Table 17. I2C ONE-BYTE OPERATION MEMORY ADDRESS REGISTER
MDIO REGISTER, ADDRESS = 1.32770 (1.8002’h)
BIT
1.32770.15:0
NAME
SETTING
I2C Memory address to
Memory
Address
DEFAULT
R/W
0000’h(2)
R/W
access
DESCRIPTION
I2C Memory Address within Device address of 1.32769
(1.8001’h)
Note (1): 8-bit-addressed I2C devices are addressed using bits 7:0. Never set bit 1.32773.8 (1.8005’h.8) for 16-bit address operation with an 8-bit address I2C device.
Table 18. I2C ONE-BYTE OPERATION READ DATA REGISTER
MDIO REGISTER ADDRESS = 1.32771 (1.8003’h)
BIT
NAME
1.32771.15:8
Reserved
1.32771.7:0
Read Data
SETTING
I2C Read Data
24
DEFAULT
R/W
00’h
RO
00’h
RO
DESCRIPTION
Result of I2C 1-byte Read operation
ISL35822
Table 19. I2C ONE-BYTE OPERATION WRITE DATA REGISTER
MDIO Register Address = 1.32772 (1.8004’h)
BIT
1.32772.15:8
1.32772.7:0
NAME
SETTING
DEFAULT
Reserved
I2C Write Data
Write Data
R/W
00’h
RO
00’h
R/W
DESCRIPTION
Data to be written by 1-byte Write Operation
Table 20. NVR I2C OPERATION CONTROL REGISTER
MDIO REGISTER ADDRESS = 1.32773 (1.8005’h)
BIT
NAME
1.32773.15:9
Reserved
1.32773.8
Long Memory(1)
1.32773.7
NVR Write Size
1.32773.6:4
I2C Bus Speed
1.32773.3:2
1.32773.1:0
SETTING
DEFAULT
R/W
DESCRIPTION
00’h
RO
0’b
R/W
Length of address for I2C device selected
0’b
R/W
1 = Block write all 256 bytes to NVR(2)
0 = Write only 1.807F:AE’h to NVR(3)
Speed of I2C SCL
clock(4) (derived
from REF_CLOCK)
100’b
R/W
111 = 400kHz
110 = 200kHz
101 = 150kHz
100 = 100kHz
NVR ACK Error
Count
11 = 63
10 = 16
01 = 4
00 = 1
11’b
R/W
Number of ACK failures at any address before I2C
Operation failure is reported
NVR Write Page
Size(2)
11 = 32 bytes
10 = 16 bytes
01 = 8 bytes
00 = 4 byte
01’b
R/W
The I2C interface block write operation will issue a
STOP and wait for the EEPROM every time after this
number of bytes are sent out
1 =16 bit
0 = 8 bit
011 = 40kHz
010 = 20kHz
001 = 10kHz
000 = 4kHz
Note (1): This bit should only be set if an I2C device which needs a 16-bit address is to be addressed. The NVR and DOM spaces are all 8-bit address sections, and for
these areas, this bit should be 0’b.
Note (2): Block 256-byte NVR writes will not occur unless the WRTP pin is set Low. NVR Write Page Size controls Page size for Block operations only.
Note (3): This area corresponds to the XENPAK-defined Customer Area; see XENPAK Spec R3.0 Section 10.12.22. Writes will be performed one byte at a time.
Note (4): The I2C clock speeds listed are approximate. They are derived by division from the CMU, locked to the RFCP/N inputs. At 156.25MHz, the nominal 100kHz
clock will actually be 156.25/1.6kHz, just over 97.5kHz. See also the notes to Table 117.
Table 21. NVR I2C OPERATION STATUS REGISTER
MDIO REGISTER ADDRESS = 1.32774 (1.8006’h)
BIT
NAME
1.32774.15
XP_ENA
1.32774.14:4
Reserved
1.32774.3
Vendor Specific
Area EXOR sum check
1.32774.2
Customer Write Area
EXOR sum check
1.32774.1
Reserved
1.32774.0
NVR Area EXOR sum
check
SETTING
DEFAULT
XP_ENA pin
R/W
RO
DESCRIPTION
1 = XP_ENA pin high, 0 = low
0000’h
RO
Error Flag
0’b
RO LH
1 = 1.8106 ! = EXOR(1.80AE:8105)
0 = 1.8106 = EXOR(1.80AE:8105) (2)
Error Flag
0’b
RO LH
1 = 1.80AD ! = EXOR(1.807E:80AC)
0 = 1.80AD = EXOR(1.807E:80AC) (2)
0’b
RO
LH(1)
0’b
RO LH
Error Flag
1 = 1.807D ! = EXOR(1.8007:807C)
0 = 1.807D = EXOR(1.8007:807C) (2)
Note (1): These bits are latched high on any internal error condition detected. They are reset low (cleared) on being read.
Note (2): These bits are set if the EXOR sum calculated from the indicated range is not the same as the value read into the listed checksum register. Note that this is
NOT the same as the XENPAK-defined checksum calculation. Contact Intersil for a method of reconciling these two checksum calculations.
25
ISL35822
Table 22. XENPAK NVR REGISTER COPY
MDIO XENPAK/XPAK/X2 NVR REGISTER ADDRESSES = 1.32775:33030 (1.8007:8106’h)
BYTE ADDRESS
DEC
DESCRIPTION(1)
NAME
HEX
SUGGESTED VALUE
R/W
1.32775 to 1.8007 to
1.32817
1.8031
NVR Register
Copy
XENPAK NVR Register Copies
R/W(2)
1.32818 to 1.8032 to
1.32821
1.8035
PKG OUI
XENPAK/XPAK/X2 Package OUI (bits 3 to Xenpak = 0008BE
24)
XPAK = 000ACB
X2 = 000C64
R/W(2)
1.32822 to 1.8036 to
1.32889
1.8079
NVR Register
Copy
XENPAK NVR Register Copies
R/W(2)
1.32890
1.807A
DOM Ctrl
DOM Capability Bits
R/W(2)
1.32891
1.32892
1.807B
1.807C
NVR Reg Copy
XENPAK NVR Register Copies
R/W(2)
1.32893
1.807D
Basic Chksm
Basic Field Checksum(3)
1.32894 to 1.807E to
1.32940
1.80AC
NVR Register
Copy
Customer Writable Area(4)
1.32941
Cstm Chksm
Customer Area Checksum(5)
1.80AD
1.32942 to 1.80AE to NVR Register
1.33027
1.8103
Copy
Vendor Specific Area
1.33028
1.8104
A/C Size
Auto-configure Size (N)
1.33029
1.8105
A/C Pointer
Auto-configure Pointer (S)
1.33030
1.8106
Vndr Chksm
Vendor Specific Checksum(6)
DETAILS
Mirrored to 1.14:15
(1.E:F’h)
Table 23
Σ(1.8007:807C)
R/W(2)
Σ(1.807E:80AC)
R/W(2)
See page 16
(or 00 or FF’h)
See Table 92
Σ(1.80AE:8105)
Note (1): Only register values operated on by the ISL35822 are individually listed. The others are merely copied from the I2C NVR space.
Note (2): Although data can be written to these registers, it will be volatile, unless the ‘Write NVR’ operation as specified in “Writing EEPROM Space through the I2C
Interface” on page 19 is performed.
Note (3): Checksum to be calculated from 1.8007’h to 1.807C’h. Host can check for validity.
Note (4): If WRTP pin is high, this is the only area that can be written by the user. See also Note (2) above.
Note (5): Checksum to be calculated from 1.807E’h to 1.80AC’h.
Note (6): Checksum to be calculated from 1.80AE’h to 1.8105’h.
Table 23. XENPAK DIGITAL OPTICAL MONITORING (DOM) CAPABILITY REGISTER
MDIO (XENPAK) REGISTER, ADDRESS = 1. 32890 (1. 807A’h)
BIT
NAME
1.32890.15:8
Reserved
1.32890.7
DOM Ctrl Reg
1.32890.6
DOM system
1.32890.5
Lane-by Lane
1.32890.4
LBC Scale
1.32890.3
Reserved
1.32890.2:0
DOM Address
SETTING
SUGGESTED
VALUE(1)
R/W(3)
DESCRIPTION
000’h
1 = Implemented
0 = Not
implemented
1’b
R/W
DOM Control/Status Register 1.A100’h
1’b
R/W
DOM Implemented
1’b
R/W
WDM Lane-by-Lane DOM; registers 1.A0C0:A0FF’h
valid
R/W
Laser Bias Scale Factor
R/W
I2C Device Address of (initial) DOM IC(2)
1 = 10µA
0 = 2µA
001’b
Note (1): Suggested values are given, for a full LX4 module with four individual-lane DOM circuits, at least one having the DOM data at Device Address A2’h.
Note (2): Last three significant bits of the (default) DOM I2C Device Address (NB LSB is a read/write flag). Upper bits are assumed to be ‘1010’b, Device address will be
(A0’h + 2*(<1.32890.2:0>). A device MUST be present at this address for correct operation if bit 6 is set.
Note (3): Although data can be written to this register, it should only be done for writing the NVR, using the ‘Write NVR’ operation as specified in “Writing EEPROM Space
through the I2C Interface” on page 19. The values here should normally only be loaded from the NVR, since they could affect the operation of the ISL35822 if
incorrect.
26
ISL35822
XENPAK LASI AND DOM REGISTERS (1.9000’H TO 1.9007’H & 1.A000’H TO 1.A100’H)
Table 24. XENPAK LASI RX_ALARM CONTROL REGISTER
MDIO REGISTER, ADDRESS = 1.36864 (1.9000’h)
BIT
NAME
1.36864.15:7
Reserved
1.36864.6
PCS Byte S
1.36864.5
RX Power
1.36864.4
PMA LF
1.36864.3
PCS LF
1.36864.2
DEFAULT(1)
SETTING
R/W
DESCRIPTION
000’h
0’b
R/W
PCS Byte Sync Fail LASI Enable
1’b
R/W
Receive Laser Pwr/Sig Det LASI Enable
1’b
R/W
PMA RX Local Fault LASI Enable
1’b
R/W
PCS RX Local Fault LASI Enable
PCS Code
0’b/1’b
R/W
8b/10b Code Violation LASI Enable
1.36864.1
DOM RX
1’b
R/W
DOM RX or RX EFIFO Fault LASI Enable
1.36864.0
PHY RX LF
1’b
R/W
PHY RX Local Fault LASI Enable
1 = trigger LASI by
corresponding bit of
1.36867 (1.9003’h)
0 = LASI ignores
corresponding bit of
1.36867 (1.9003’h)
Note (1): Where two values are given, Default depends on LX4/CX4 select LX4_MODE pin. First value is LX4 value. The value may be overwritten by the AutoConfigure operation (See “Auto-Configuring Control Registers” on page 16 and Table 92 for details).
Table 25. XENPAK LASI TX_ALARM CONTROL REGISTER
MDIO REGISTER, ADDRESS = 1.36865 (1.9001’h)
BIT
NAME
1.36865.15:11
Reserved
1.36865.10
PHY S_D
1.36865.9
LBC
1.36865.8
LTEMP
1.36865.7
LOP
1.36865.6
SETTING
DEFAULT(1)
R/W
DESCRIPTION
000’h
0’b/1’b
R/W
PHY XS Signal Detect LASI Enable
1’b/0’b
R/W
Laser Bias Current Fault LASI Enable
1’b/0’b
R/W
Laser Temperature Fault LASI Enable
1’b/0’b
R/W
Laser Output Power Fault LASI Enable
TX LF
1’b/0’b
R/W
Transmit Local Fault LASI Enable
1.36865.5
Byte Sync
0’b/1’b
R/W
PHY XS Byte Sync Fail LASI Enable
1.36865.4
PMA LF
1’b
R/W
PMA TX Local Fault LASI Enable
1.36865.3
PCS LF
1’b/0’b
R/W
PCS TX Local Fault LASI Enable
1.36865.2
TX EFIFO
0’b/1’b
R/W
Transmit EFIFO Error LASI Enable
1.36865.1
DOM TX/
PHY Code
1’b
R/W
DOM TX or PHY XS 8b/10b Code Violation Fault LASI
Enable
1.36865.0
PHY TX LF
1’b
R/W
PHY TX Local Fault LASI Enable
1 = trigger LASI from
corresponding bit of
1.36868 (1.9004’h)
0 = LASI ignores
corresponding bit of
1.36868 (1.9004’h)
Note (1): Where two values are given, Default depends on LX4/CX4 select LX4_MODE pin. First value is LX4 value. The value may be overwritten by the AutoConfigure operation (See “Auto-Configuring Control Registers” on page 16 and Table 92 for details).
Table 26. XENPAK LASI CONTROL REGISTER
MDIO REGISTER, ADDRESS = 1.36866 (1.9002’h)
BIT
NAME
1.36866.15:4
Reserved
1.36866.3
GPIO
1.36866.2
RX_Alarm
1.36866.1
1.36866.0
SETTING
DEFAULT(1)
R/W
DESCRIPTION
000’h
0’b
R/W
Enable GPIO pins to trigger LASI(2)
0’b
R/W
Enable RX_Alarm to trigger LASI
TX_Alarm
0’b
R/W
Enable TX_Alarm to trigger LASI
LS_Alarm
0’b
R/W
Enable Link Status change to trigger LASI
1 = trigger LASI via bit in
1.36869 (1.9005’h)
0 = LASI ignores bit
Note (1): The default values may be overwritten by the Auto-Configure operation (See “Auto-Configuring Control Registers” on page 16 and Table 92 for details). Since
on Power up or RESET several LASI contributors will initially be in the ‘fault’ condition (in particular, Byte Synch and Lane Alignment, and their derivatives), it
may be advisable for a host to clear these before enabling these to trigger LASI.
Note (2): See description of the General Purpose Input/Output (GPIO) pins and bits for a description of how they contribute to the LASI system.
27
ISL35822
Table 27. XENPAK LASI RX_ALARM STATUS REGISTER
MDIO REGISTER, ADDRESS = 1.36867 (1.9003’h)
BIT
NAME
1.36867.15:6
Reserved
1.36867.6
PCS Byte Synch
1.36867.5
RX Receive
Power/Level
SETTING
DEFAULT
DESCRIPTION(1)
R/W
000’h
1 = Alarm Condition is
Detected
0’b
RO/LH
PCS Byte Sync Fail (logical NAND of bits 3.24.[3:0])
0’b
RO/LH
LX4: Receive Laser Power from OPRXOP pin (for
polarity see 1.49181)
CX4: Loss of Signal Detect(3)
0 = No Alarm Condition
is Detected
1.36867.4
PMA LF
0’b
RO/LH
PMA/PMD RX Local Fault: mirror to bit 1.8.10(2)
1.36867.3
PCS LF
0’b
RO/LH
PCS RX Local Fault: mirror to bit 3.8.10(2)
1.36867.2
PCS Code
0’b
RO/LH
PCS 8b/10b Code Violation in any lane of PCS
1.36867.1
DOM RXFlg/
RX EFIFO
0’b
RO/LH
LX4: DOM RX_Flag (from polling)
CX4: RX EFIFO over/underflow Fault
1.36867.0
PHY RX LF
0’b
RO/LH
PHY RX Local Fault Status: mirror to bit 4.8.10(2)
Note (1): Where two descriptions are given, depends on LX4/CX4 select LX4_MODE pin. First value is LX4 value
Note (2): These mirrored bits will be cleared on a read of either this register or of their respective mirroring registers.
Note (3): This bit is derived from the OR of the LOS bits (1.C00A.3:0). In the case of a signal which is close to the LOS threshold value, so that LOS is changing over
time for one or more lanes, this bit may give a “FAIL” indication even though the SIGNAL_DETECT function declares the signal “GOOD”, and Byte Synch and
Lane Align all indicate a “GOOD” signal.
Table 28. XENPAK LASI TX_ALARM STATUS REGISTER
MDIO REGISTER, ADDRESS = 1.36868 (1.9004’h)
BIT
NAME
1.36868.15:11
Reserved
1.36868.10
PHY S_D
1.36868.9
LBC
1.36868.8
SETTING
DEFAULT
DESCRIPTION(1)
R/W
000’h
1 = Alarm Condition is 0’b
Detected
RO/ LH
LX4: No fail detected
CX4: PHY XS Signal Detect Fail (XAUI)
0’b
RO LH
LX4: Laser Bias Current Fault (from OPTXLBC pin, for
polarity see 1.49181)
CX4: No failure detectable
LTEMP
0’b
RO LH
LX4: Laser Temperature Fault (from OPTTEMP pin, for
polarity see 1.49181)
CX4: No failure detectable
1.36868.7
LOP
0’b
RO LH
LX4: Laser Output Power Fault (from OPTXLOP pin, for
polarity see 1.49181)
CX4: No failure detectable
1.36868.6
TX LF
0’b
RO LH
Transmit Local Fault (from TX_FAULT pin, for polarity
see 1.49170)
1.36868.5
Byte Sync
0’b
RO LH
LX4: No fail detected
CX4: PHY XS Byte Sync Fail Status
1.36868.4
PMA LF
0’b
RO LH
PMA TX Local Fault Status: mirror to bit 1.8.11(2)
1.36868.3
PCS LF
0’b
RO LH
LX4: PCS TX Local Fault Status: mirror to bit 3.8.11(2)
CX4: No failure detectable
1.36868.2
TX EFIFO
0’b
RO LH
LX4: No fail detected
CX4: Transmit EFIFO Error Status
1.36868.1
DOM TX/
PHY Code
0’b
RO LH
LX4: DOM TX_Flag (from polling)
CX4: PHY XS 8b/10b Code Violation
1.36868.0
PHY TX LF
0’b
RO LH
PHY TX Local Fault Status: mirror to bit 4.8.11(2)
0 = No Alarm
Condition is Detected
Note (1): Where two descriptions are given, depends on LX4/CX4 select LX4_MODE pin. First value is LX4 value
Note (2): These mirrored bits will be cleared on read of either this register or their respective registers.
28
ISL35822
Table 29. XENPAK LASI STATUS REGISTER
MDIO REGISTER, ADDRESS = 1.36869 (1.9005’h)
BIT
NAME
1.36869.15:4
Reserved
1.36869.3
GPIO Alarm
1.36869.2
SETTING
DEFAULT
R/W
DESCRIPTION
000’h
1 = Alarm Condition is
Detected
0’b
RO
Logic OR of signals in register
1.49169.[15:8] (1.C011h), which come
from GPIO pins.
RX_ALARM
0 = No Alarm Condition is
0’b
Detected
RO
Logic OR of signals in register
1.36867 RX_ALARM Status register
1.36869.1
TX_ALARM
0’b
RO
Logic OR of signals in register
1.36868 TX_ALARM Status register
1.36869.0
LS_ALARM
0’b
RO
LH(1)
Link Status Logic change in AND of “PMD Signal
OK” (1.10.0), “PCS Lane
Alignment” (3.24.12), and “PHY XS
Lane Alignment” (4.24.12)
Note (1): This bit is latched high on any change in the condition detected. It is reset low (cleared) on being read.
Table 30. XENPAK DOM TX_FLAG CONTROL REGISTER
MDIO REGISTER, ADDRESS = 1.36870 (1.9006’h)
BIT(1)
NAME
1.36870.15:8
Reserved
1.36870.7
TTmp_Hi
1.36870.6
TTmp_Lo
1.36870.5:4
Reserved
1.36870.3
LBC_Hi
1.36870.2
LBC_Lo
1.36870.1
1.36870.0
SETTING
DEFAULT(2)
R/W
DESCRIPTION
000’h
1 = Enable Alarm
0 = Disable Alarm
0’b
R/W
Transceiver Temp High Alarm Enable
0’b
R/W
Transceiver Temp Low Alarm Enable
0’h
R/W
0’b
R/W
Laser Bias Current High AlarmEnable
0’b
R/W
Laser Bias Current Low Alarm Enable
LOP_Hi
0’b
R/W
Laser Output Power High Alarm Enable
LOP_Lo
0’b
R/W
Laser Output Power Low Alarm Enable
1 = Enable Alarm
0 = Disable Alarm
Note (1): These bits control (select) alarm signals (bits) in register 1.41072 (1.A070’h) to generate the TX_Flag bit of register 1.36868 (1.9004’h) to trigger TX_ALARM
and hence LASI.
Note (2): The default values may be overwritten by the Auto-Configure operation (See “Auto-Configuring Control Registers” on page 16 and Table 92 for details).
Table 31. XENPAK DOM RX_FLAG CONTROL REGISTER
MDIO REGISTER, ADDRESS = 1.36871 (1.9007’h)
BIT(1)
NAME
1.36871.15:8
Reserved
1.36871.7
ROP_Hi
1.36871.6
1.36871.5:0
SETTING
DEFAULT(2)
R/W
DESCRIPTION
000’h
1 = Enable Alarm
0 = Disable Alarm
0’b
R/W
Receive Optical Power High Alarm
Enable
ROP_Lo
0’b
R/W
Receive Optical Power Low Alarm
Enable
Reserved
00’h
Note (1): These bits control (select) alarm signals (bits) in register 1.41073 (1.A071’h) to generate the RX_Flag bit of register 1.36867 (1.9003’h) to trigger RX_ALARM
and hence LASI.
Note (2): The default value may be overwritten by the Auto-Configure operation (See “Auto-Configuring Control Registers” on page 16 and Table 92 for details).
29
ISL35822
Table 32. XENPAK DOM ALARM & WARNING THRESHOLD REGISTERS COPY
XENPAK/XPAK/X2 DOM REGISTERS = 1.40960:40999 & 41032:41055 (1.A000:A027’h & A048:A05F’h) (1)
BYTE ADDRESS
DEC
MEMORY
ADDRESS
HEX
DESCRIPTION
DEFAULT
R/W
1.40960 to 1.A000 to
1.40967
1.A007
00 to 07
Transceiver Temp High & Low Alarm & Warning
Thresholds
RO
1.40968 to 1.A008 to
1.40975
1.A00F
08 to15
Reserved
RO
1.40976 to 1.A010 to
1.40983
1.A017
16 to 23
Laser Bias Current High & Low Alarm & Warning
Thresholds (Lane 0 or common to all lanes)
RO
1.40984 to 1.A018 to
1.40991
1.A01F
24 to 31
Laser Output Power High & Low Alarm &
Warning Thresholds
RO
1.40992to
1.40099
32-39
Receive Optical Power High & Low Alarm &
Warning Thresholds
RO
72 to 95
Lane-by-Lane Laser Bias Current High & Low
Alarm & Warning Thresholds (or Zero)
RO
1.A020 to
1.A027
1.41032 to 1.A048 to
1.41055
1.A05F
DETAILS
Byte Order: High
Alarm MSB:LSB
Low Alarm MSB:LSB
High Warning
MSB:LSB
Low Warning
MSB:LSB
Order: Lane 1 to
Lane 3
Note (1): These1-byte register values are merely copied by the ISL35822 from the I2C address space on Power-up or RESET, or on a periodic direct DOM update
operation (i.e. with Register bit 1.C018’h.2 Table 51 not set) under the control of Register 1.A100’h (Table 38). For further details see Table 27 in the XENPAK
MSA Rev 3.0 specification, especially Note 2. If it is desired to write this data into a DOM device through the MDIO interface, it will need to be written one byte
at a time via the methods discussed in “MDIO Register Addressing” on page 15.
Table 33. XENPAK DOM MONITORED A/D VALUES REGISTER COPY
MDIO XENPAK/XPAK/X2 DOM REGISTER ADDRESSES = 1.41056:41069 & 1.41152:41215 (1.A060:A06D’h & 1.A0C0:A0FF)
BYTE ADDRESS
DEC
HEX
MEMORY
ADDRESS
DESCRIPTION(1)
DEFAULT
R/W
DETAILS
RO
MSB:LSB
“Farthest out of range/Representative” Laser Bias
Current(2)
RO
MSB:LSB
102 & 103
“Farthest out of range/Representative” Laser
Output Power(2)
RO
MSB:LSB
1.A068
1.A069
104 & 105
“Farthest out of range/Representative” Receive
Optical Power(2)
RO
MSB:LSB
1.41066 1.41069
1.A06A to
1.406D
106 to 109
Reserved
1.41070 to
1.41077
1.A06E to
1.A075
110 to 117
DOM Status, Capability, and Alarm Flags(2). See
Table 34 to Table 37
1.41078 to
1.41151
1.A076 to
1.A0BF
118 to 191
Reserved
1.41152:3
1.A0C0:1
192:193
Lane 0 Transceiver Temperature (3)
RO
MSB:LSB
1.41154:5
1.A0C2:3
194:195
Reserved
RO
MSB:LSB
196:197
Lane 0 Laser Bias Current(3)
RO
MSB:LSB
RO
MSB:LSB
RO
MSB:LSB
RO
MSB:LSB
1.41056
1.41057
1.A060
1.A061
96 & 97
“Farthest out of range/Representative” Transceiver
Temperature (2)
1.41058
1.41059
1.A062
1.A063
98 & 99
Reserved
1.41060
1.41061
1.A064
1.A065
100 & 101
1.41062
1.41063
1.A066
1.A067
1.41064
1.41065
1.41156:7
1.A0C4:5
1.41158:9
1.A0C6:7
198:199
Lane 0 Laser Output Power(3)
1.41160:1
1.A0C8:9
200:201
Lane 0 Receive Optical Power(3)
1.41162:7
1.A0CA:F
202:207
Reserved
1.41168:9
1.A0D0:1
208:209
Lane 1 Transceiver Temperature (3)
30
RO
ISL35822
Table 33. XENPAK DOM MONITORED A/D VALUES REGISTER COPY (Continued)
MDIO XENPAK/XPAK/X2 DOM REGISTER ADDRESSES = 1.41056:41069 & 1.41152:41215 (1.A060:A06D’h & 1.A0C0:A0FF)
BYTE ADDRESS
DEC
MEMORY
ADDRESS
HEX
DESCRIPTION(1)
DEFAULT
R/W
DETAILS
1.41170:1
1.A0D2:3
210:211
Reserved
RO
MSB:LSB
1.41172:3
1.A0D4:5
212:213
Lane 1 Laser Bias Current(3)
RO
MSB:LSB
1.41174:5
1.A0D6:7
214:215
Lane 1 Laser Output Power(3)
RO
MSB:LSB
RO
MSB:LSB
1.41176:7
1.A0D8:9
216:217
Lane 1 Receive Optical Power(3)
1.41178:83
1.A0DA:F
218:223
Reserved
1.41184:5
1.A0E0:1
224:225
Lane 2 Transceiver Temperature (3)
RO
MSB:LSB
1.41186:7
1.A0E2:3
226:227
Reserved
RO
MSB:LSB
228:229
Lane 2 Laser Bias Current(3)
RO
MSB:LSB
RO
MSB:LSB
RO
MSB:LSB
1.41188:9
1.A0E4:5
1.41190:1
1.A0E6:7
230:231
Lane 2 Laser Output Power(3)
1.41192:3
1.A0E8:9
232:233
Lane 2 Receive Optical Power(3)
1.41194:9
1.A0EA:F
234:239
Reserved
1.41200:1
1.A0F0:1
240:241
Lane 3 Transceiver Temperature (3)
RO
MSB:LSB
1.41202:3
1.A0F2:3
242:243
Reserved
RO
MSB:LSB
244:245
Lane 3 Laser Bias Current(3)
RO
MSB:LSB
246:247
Lane 3 Laser Output Power(3)
RO
MSB:LSB
RO
MSB:LSB
1.41204:5
1.41206:7
1.A0F4:5
1.A0F6:7
1.41208:9
1.A0F8:9
228:249
Lane 3 Receive Optical Power(3)
1.41210:5
1.A0FA:F
250:255
Reserved
Note (1): These 1-byte register values are merely copied by the ISL35822 from the I2C address space on RESET (if enabled), on demand, or periodically under the
control of Register 1.A100’h (Table 38).
Note (2): If the ‘Indirect DOM Enable’ bit (Register bit 1.C018’h.2 Table 51) is not set, a four-lane external DOM device is expected to determine the “Farthest out of
range” or “Representative” values for these registers, according to the rules of Note 1 to Table 28 in the XENPAK MSA Rev 3.0 specification. A single onelane DOM device system will provide the values from the single DOM device here only. If the ‘Indirect DOM Enable’ bit is set, “Representative” is defined by
Register bits 1.C018’h.1:0 (Table 51), and the values from the specified lane’s DOM are entered here also.
Note (3): If the ‘Indirect DOM Enable’ bit (Register bit 1.C018’h.2 Table 51) is not set, a four-lane external DOM device is expected to provide the Lane-by-Lane data.
For a single one-lane DOM device system these values are 00’h. The Lane-by-Lane data is obtained from the I2C address space via the pointers defined in
Registers 1.C019:C’h (Table 53 & Table 54), if the ‘Indirect DOM Enable’ bit is set (Register 1.C018’h Table 51).
Table 34. XENPAK OPTIONAL DOM STATUS BITS REGISTER
MDIO REGISTER, ADDRESS = 1.41070 (1.A06E’h)
BIT
NAME
1.41070.15:1
Reserved
1.41070.0
Data_Ready_Bar
SETTING
DEFAULT
R/W
DESCRIPTION(1)
0000’h
1 = Not Ready
0 = Ready
0’b(2)
RO
High during power-up and first
NVR/DOM read. After that set low.
Note (1): This 1-byte register value is merely copied by the ISL35822 from the I2C address space on Power-up or RESET, or on a periodic or on-demand direct DOM
update operation (i.e. with Register bit 1.C018’h.2 Table 51 not set) under the control of Register 1.A100’h (Table 38). The ISL35822 takes no action as a
result of the values copied.
Note (2): Assumes NVR/DOM read succeeds
31
ISL35822
Table 35. XENPAK DOM EXTENDED CAPABILITY REGISTER
MDIO REGISTER, ADDRESS = 1.41071 (1.A06F’h)
BIT
NAME
1.41071.15:8
Reserved
1.41071.7
TT_Able
1.41071.6
LBC_Able
SETTING
DEFAULT
DESCRIPTION(1)
R/W
00’h(1)
1 = Indicates
Capability
Implemented
0 = Not
Implemented
RO
Transceiver Temp Monitoring Capable
RO
Laser Bias Current Monitoring Capable
RO
Laser Output Power Monitoring Capable
RO
Receive Optical Power Monitoring Capable
1.41071.5
LOP_Able
1.41071.4
ROP_Able
1.41071.3
AL_Able
RO
Alarm Flags for Monitored Quantities
1.41071.2
WN_Able
RO
Warning Flags for Monitored Quantities
1.41071.1
MON_LASI
RO
Monitoring Quantities Input to LASI
1.41071.0
Reserved
RO
Monitoring Capable
Note (1): These 1-byte register values are merely copied by the ISL35822 from the I2C address space on Power-up or RESET, or on a periodic or on-demand direct
DOM update operation (i.e. with Register bit 1.C018’h.2 Table 51 not set) under the control of Register 1.A100’h (Table 38). The ISL35822 takes no action as
a result of the values copied.
Table 36. XENPAK DOM ALARM FLAGS REGISTER
MDIO REGISTER, ADDRESS = 1.41072:3 (1.A070:1’h)
BIT
1.41072.15:8
NAME
SETTING
00’h(1)
Reserved
1.41072.7
TT_High
1.41072.6
TT_Low
1.41072.5:4
Reserved
1.41072.3
LBC_High
1.41072.2
LBC_Low
1.41072.1
LOP_High
DEFAULT
1 = Alarm Set
0 = Alarm Not Set
DESCRIPTION(1)
R/W
RO
0’b
RO
Transceiver Temp High Alarm
0’b
RO
Transceiver Temp Low Alarm
00’b
1 = Alarm Set
0 = Alarm Not Set
0’b
RO
Laser Bias Current High Alarm
0’b
RO
Laser Bias Current Low Alarm
0’b
RO
Laser Output Power High Alarm
RO
Laser Output Power Low Alarm
0’b
RO
Receive Optical Power High Alarm
0’b
RO
Receive Optical Power Low Alarm
1.41072.0
LOP_Low
0’b
1.41073.15:8
Reserved
00’h
1.41073.7
ROP_High
1.41073.6
ROP_Low
1.41073.5:0
Reserved
1 = Alarm Set
0 = Alarm Not Set
00’h
Note (1): These 1-byte register values are copied by the ISL35822 from the I2C address space on Power-up or RESET, or on any DOM read operation. If the ‘Indirect
DOM Enable’ bit (Register bit 1.C018’h.2 Table 51) is not set, a four-lane external DOM device is expected to determine the values for these registers,
according to Section 11.3 in the XENPAK MSA Rev 3.0 specification. A single one-lane DOM device system will provide the values from the single DOM
device here. If the ‘Indirect DOM Enable’ bit is set, the values from the “Representative” (as set by Register bits 1.C018’h.1:0 in Table 51) lane DOM are
entered here. See “DOM Registers” on page 16. These bits are gated with the enable bits in 1.9006:7 (Table 30 & Table 31) and the LX4/CX4 select
LX4_MODE pin to drive bits 1.9004.1 & 1.9003.1 (Table 28 & Table 27), and if enabled via 1.9002 & 1.9001 (Table 25 & Table 24) to drive the LASI pin.
Table 37. XENPAK DOM WARNING FLAGS REGISTER
MDIO REGISTER, ADDRESS = 1.41076:7 (1.A074:5’h)
BIT
NAME
1.41076.15:8
Reserved
1.41076.7
TT_High
1.41076.6
TT_Low
1.41076.5:4
Reserved
SETTING
DEFAULT
R/W
DESCRIPTION(1)
00’h(1)
1 = Warning Set
0 = Warn. Not Set
0’b
RO
Transceiver Temp High Warning
0’b
RO
Transceiver Temp Low Warning
00’b
32
ISL35822
Table 37. XENPAK DOM WARNING FLAGS REGISTER (Continued)
MDIO REGISTER, ADDRESS = 1.41076:7 (1.A074:5’h)
BIT
NAME
1.41076.3
LBC_High
1.41076.2
LBC_Low
1.41076.1
LOP_High
1.41076.0
SETTING
DEFAULT
0’b
RO
Laser Bias Current High Warning
0’b
RO
Laser Bias Current Low Warning
0’b
RO
Laser Output Power High Warning
LOP_Low
0’b
RO
Laser Output Power Low Warning
1.41077.15:8
Reserved
00’h
1.41077.7
ROP_High
1.41077.6
ROP_Low
1.41077.5:0
Reserved
1 = Warning Set
0 = Warning Not Set
DESCRIPTION(1)
R/W
1 = Warning Set
0 = Warn. Not Set
0’b
RO
Receive Optical Power High Warning
0’b
RO
Receive Optical Power Low Warning
00’h
Note (1): These 1-byte register values are merely copied by the ISL35822 from the I2C address space on Power-up or RESET, or on any DOM read operation. If the ‘Indirect
DOM Enable’ bit (Register bit 1.C018’h.2 Table 51) is not set, a four-lane external DOM device is expected to determine the values for these registers, according
Section 11.3 in the XENPAK MSA Rev 3.0 specification. A single one-lane DOM device system will provide the values from the single DOM device here. If the
‘Indirect DOM Enable’ bit is set, the values from the “Representative” (as defined by Register bits 1.C018’h.1:0 in Table 51), lane DOM are entered here.
Table 38. XENPAK DOM OPERATION CONTROL AND STATUS REGISTER
MDIO REGISTER, ADDRESS = 1.41216 (1.A100’h)
BIT
NAME
SETTING
DEFAULT
R/W
DESCRIPTION
1.41216.15:4
Reserved
0000’h
1.41216.3:2
DOM
Command
Status(1)
Current Status of DOM
Command
00’b
RO
11 = Command failed
10 = Command in progress/Queued
01 = Command complete w success
00 = Idle
1.41216.1:0
DOM
Command
Type(1)
NVR operation to be
performed
11’b(2)
R/W
00 = Single DOM Read operation
01 = Periodic update, slowest rate(3)
10 = Periodic update, intermediate rate(3)
11 = Periodic update, fastest rate(3)
Note (1): User writes to these bits are not valid unless the Command Status is Idle. The Command Status will not return to Idle until being read after command
completion (either Succeed or Failed).
Note (2): At the end of a hardware RESETN or a register 1.0.15 RESET operation, if the XP_ENA pin is asserted, and the DOM control bits are set in 1.32890 (1.807A),
the ISL35822 will automatically begin a ‘Periodic update, fastest rate read’ operation.
Note (3): The rates of the periodic reads are determined by bits 4:3 of register 1.49176 (1.C018’h), see Table 51.
VENDOR-SPECIFIC PMA/PMD AND GPIO REGISTERS (1.C001’H TO 1.C01D’H)
Table 39. PMA CONTROL 2 REGISTER
MDIO REGISTER, ADDRESS = 1.49153 (1.C001’h)
BIT
NAME
SETTING
DEFAULT
R/W
DESCRIPTION
1.49153.15
PMA DC_O_DIS
1 = Disable, 0 = normal
0’b(1)
R/W
PMA DC Offset Disable
1.49153.14
Test
0 = normal
0’b(2) (1)
R/W
User must keep at 0.
R/W
Optimizing Setting, TBD(4)
R/W
Set the threshold voltage for the Loss Of
Signal (LOS) detection circuit in
PMA/PMD. Nominal levels are listed for
each control value. Note that the
differential peak-to-peak value is twice that
listed.
1.49153.13
Amplitude adjust
1,0’h(1) (3)
1.49153.12:11
Reserved
0’h
1.49153.10:8
PMA_LOS_TH
1.49153.7:0
Reserved
Note (1):
Note (2):
Note (3):
Note (4):
0’h = 160mVp-p
1’h = 240mVp-p
2’h = 200mVp-p
3’h = 120mVp-p
4’h = 80mVp-p
else = 160mVp-p
LX4: (3) 0’h,
CX4:
03’h(1)
00’h
These values may be overwritten by the Auto-Configure operation (See “Auto-Configuring Control Registers” on page 16 and Table 92 for details).
Internal test purposes only.
Default values depend on setting of LX4/CX4 select LX4_MODE pin. LX4 value is shown first.
Optimum value to meet output templates. Contact BitBlitz for recommended value.
33
ISL35822
Table 40. PMA SERIAL LOOP BACK CONTROL REGISTER
MDIO REGISTER ADDRESS = 1.49156 (1.C004’h)
BIT
NAME
1.49156.15:13
Reserved
1.49156.12
PMA Test LP
1.49156.11
PMA SLP_3
SETTING
1 = enable
0 = disable
DEFAULT
R/W
DESCRIPTION
0’h(1)
R/W
Serial Network Test Loopback
0’b(2)
R/W
PMA Serial Loop Back Enable for each individual
lane. When high, it routes the internal PMA Serial
output to the PMA Serial input.
1.49156.10
PMA SLP_2
0’b(2)
1.49156.9
PMA SLP_1
0’b(2)
1.49156.8
PMA SLP_0
0’b(2)
1.49156.7:0
Reserved
Note (1): Loopback is from Serial I/P to Serial O/P. Recommended use for test purposes only; the lanes are swapped, and no pre-emphasis is performed.
Note (2): These values may be overwritten by the Auto-Configure operation (See “Auto-Configuring Control Registers” on page 16 and Table 92 for details).
Table 41. PMA PRE-EMPHASIS CONTROL
MDIO REGISTER ADDRESS = 1.49157 (1.C005’h)
BIT
NAME
1.49157.15:12
PRE_EMP Lane 3
1.49157.11:8
PRE_EMP Lane 2
1.49157.7:4
1.49157.3:0
DEFAULT(1)
SETTING
See Table 42 for
settings
R/W
00’h/07’h
R/W
00’h/07’h
R/W
PRE_EMP Lane 1
00’h/07’h
R/W
PRE_EMP Lane 0
00’h/07’h
R/W
DESCRIPTION
Configure the level of PMA pre-emphasis
(if Enabled, see 1.C01B.5:2 in Table 45)
Note (1): Default values depend on setting of LX4/CX4 select LX4_MODE pin. LX4 value is shown first. The values may be overwritten by the Auto-Configure operation
(See “Auto-Configuring Control Registers” on page 16 and Table 92 for details).
Table 42. PMA PRE-EMPHASIS CONTROL SETTINGS
(1)
ADDRESS
1.C005’h
BITS 3:0
PRE-EMPHASIS
(802.3ak) (2) =
(1-VLOW/VHI)
PRE-EMPHASIS
VALUE =
(VHI/ VLOW)-1
ADDRESS
1.C005’h
BITS 3:0
PRE-EMPHASIS
(802.3ak) (2) =
(1-VLOW/VHI)
PRE-EMPHASIS
VALUE =
(VHI/ VLOW)-1
0000(3)
0%
0
1000
33.0%
0.493
0001
5.0%
0.053
1001
36.5%
0.575
0010
9.5%
0.105
1010
40.0%
0.667
0011
14.0%
0.163
1011
43.0%
0.754
0100
18.5%
0.227
1100
46.0%
0.852
0101
22.0%
0.282
1101
49.0%
0.961
0110
26.5%
0.361
1110
52.0%
1.083
0111(4)
30.0%
0.429
1111
54.5%
1.198
Note (1): See Figure 3 for illustration of the pre-emphasized waveform and meaning of symbols.
Note (2): This equation is the one used by the IEEE 802.3 CX4 Working Group when discussing pre-emphasis (alias Transmit equalization). The template normalization
factor of 0.69 in step 6) of IEEE 802.3akD5.3 Section 54.6.3.6 reflects 0.31 (31%) pre-emphasis according to this equation.
Note (3): This is the Default value set on power-up or RESET if the LX4/CX4 LX4_MODE pin is set for LX4 operation. This setting allows for a lowered device power
consumption by using the Lowered Power bits to turn off the pre-emphasis drivers (seeTable 45).
Note (4): This is the Default value set on power-up or RESET if the LX4/CX4 LX4_MODE pin is set for CX4 operation. This setting allows for a small loss in the PCB
traces and connectors before the IEEE 802.3akD5.3 defined TP2 compliance measurement point. The value may be overwritten by the Auto-Configure
operation (See “Auto-Configuring Control Registers” on page 16 and Table 92 for details).
34
ISL35822
Table 43. PMA/PMD EQUALIZATION CONTROL
MDIO REGISTER ADDRESS = 1.49158 (1.C006’h)
BIT
NAME
SETTING
1.49158.15:14
Reserved
1.49158.3:0
PMA EQ_COEFF
DEFAULT(1)
0’h/C’h
0’h = no boost in
equalizer.
F’h = boost is maximum
R/W
R/W
DESCRIPTION
Configuration of the PMA/PMD equalizer
Note (1): Default values depend on setting of LX4/CX4 select LX4_MODE pin. LX4 value is shown first. The value may be overwritten by the Auto-Configure operation
(See “Auto-Configuring Control Registers” on page 16 and Table 92 for details).
Table 44. PMA SIG_DET AND LOS DETECTOR STATUS REGISTER
MDIO REGISTER ADDRESS = 1.49162 (1.C00A’h)
BIT
NAME
1.49162.15:8
Reserved
1.49162.7
SIG_DET_3
1.49162.6
SIG_DET_2
1.49162.5
SIG_DET_1
1.49162.4
SIG_DET_0
1.49162.3
PMA_LOS_3
1.49162.2
PMA_LOS_2
1.49162.1
PMA_LOS_1
1.49162.0
PMA_LOS_0
SETTING
DEFAULT
R/W
DESCRIPTION
00’b
1 = CX4 Signal Detect
Asserted
0 = CX4 Signal Detect
Deasserted
1 = Signal less than
threshold
0 = Signal greater than
threshold
1’b
RO/LL(1) Signal Detect for PMA lane 3
1’b
Signal Detect for PMA lane 2
1’b
Signal Detect for PMA lane 1
1’b
Signal Detect for PMA lane 0
0’b
0’b
RO/LH
(2)
Loss Of Signal for PMA lane 3
Loss Of Signal for PMA lane 2
0’b
Loss Of Signal for PMA lane 1
0’b
Loss Of Signal for PMA lane 0
Note (1): These bits are latched low on any SIG_DET failure condition detected. They are reset high on being read.
Note (2): These bits are latched high on any LOS condition detected. They are reset low on being read.
Table 45. PMA/PMD MISCELLANEOUS ADJUSTMENT REGISTER
MDIO REGISTER ADDRESS = 1.49163 (1.C00B’h)
BIT
1.49163.15:10
NAME
SETTING
Reserved
DEFAULT
R/W
DESCRIPTION
00’h
1.49163.9:6
Amplitude
Output Control (1)
LX4: 5’h
CX4: 3’h
R/W
1.49163.5:2
LoweredPower
Predriver Control (1,2) LX4: 0’h
CX4: F’h
R/W
Bit 5 is for Lane 3, etc. Values of 0’b reduce
device power consumption.
1.49163.1:0
Reserved
Internal
R/W
Test Function, do not alter.
00’b
Note (1): Default values depend on setting of LX4/CX4 select LX4_MODE pin. LX4 value is shown first. The value may be overwritten by the Auto-Configure operation
(See “Auto-Configuring Control Registers” on page 16 and Table 92 for details).
Note (2): The 0’h LX4 default value, combined with the 00’h pre-emphasis values (see Table 41) allow reduced power consumption in LX4 applications.
Table 46. PMA/PMD/PCS/PHY XS SOFT RESET REGISTER
MDIO REGISTER ADDRESS = [1,3:4].49167 ([1,3:4].C00F’h)
BIT
NAME
1.49167.15
[3,4].49167.15
SOFT_RESET
[1,3:4].49167.14:0
Reserved
SETTING
Write 1 to initiate.
DEFAULT
0’b
R/W
R/W SC
DESCRIPTION
Reset the entire chip except MDIO register
settings(1)
Note (1): This reset will NOT cause a reload of the NVR or DOM areas, nor an Auto-Configure operation. It will reset the Byte Sync engine, the Lane Alignment engine,
the FIFO pointers, and the I2C controller. The ISL35822 will (if “normally” configured) transmit ||LF|| local fault signals until Byte Sync and Lane Alignment are
re-established, and any DOM update in progress may be aborted.
35
ISL35822
Table 47. GPIO PIN DIRECTION CONFIGURE REGISTER
MDIO REGISTER ADDRESS = 1.49168 (1.C010’h)
BIT
NAME
1.49168.15:5
Reserved
1.49168.4:0
GPIO pins
configuration
SETTING
DEFAULT
R/W
00’h(1)
1 = output
0 = input
R/W
DESCRIPTION
Controls whether GPIO pin is used as input or
output
Note (1): The value may be overwritten by the Auto-Configure operation (See “Auto-Configuring Control Registers” on page 16 and Table 92 for details).
Table 48. GPIO PIN INPUT STATUS REGISTER
MDIO REGISTER ADDRESS = 1.49169 (1.C011’h)
BIT
NAME
1.49169.15:13
Reserved
1.49169.12:8
LASI I/P
value
1.49169.7:5
Reserved
1.49169.4:0
GPIO Pin I/P
Value
SETTING
R/W
DESCRIPTION
1 = can trigger LASI (1)
0 = cannot trigger LASI
RO/LH
XOR of GPIO Pin I/P and Invert register
1.49170.13:8.
1 = Pin Hi
0 = Pin Lo
RO
Original values from GPIO pins directly.
Note (1): If any of these bits is set to ‘1’, it triggers LASI if the corresponding bit in 1.49170.5:0 and the GPIO enable bit 1.36866.3 are set high.
Table 49. TX_FAULT & GPIO PIN TO LASI CONFIGURE REGISTER
MDIO REGISTER ADDRESS = 1.49170 (1.C012’h)
BIT
NAME
SETTING
DEFAULT
R/W
DESCRIPTION
1.49170.15:14
Reserved
1.49170.13
Invert TX_FAULT 1 = Pin Low,
0 = Pin High to trigger LASI
0’b(2)
R/W
Control Polarity of TX_FAULT pin which will
trigger LASI (if enabled)
1.49170.12:8
Invert LASI I/P
1 = Invert to LASI
0 = Straight to LASI
00’h(2)
R/W
Control XOR of GPIO Pin I/P to LASI I/P
register 1.49169.13:8.
1.49170.7:5
Reserved
1.49170.4:0
Enable LASI I/P
1 = Enable (1)
0 = Do not Enable
00’h(2)
R/W
Enable the GPIO pin value to trigger
GPIO_ALARM to LASI
Note (1): If any of these bits is set to ‘1’, it triggers LASI if the corresponding bit in 1.49169.12:8 and the GPIO enable bit 1.36866.3 are set high. The polarity that will
trigger LASI is set by bits 1.49170.12:8 above.
Note (2): These values may be overwritten by the Auto-Configure operation (See “Auto-Configuring Control Registers” on page 16 and Table 92 for details).
Table 50. GPIO PIN OUTPUT REGISTER
MDIO REGISTER ADDRESS = 1.49171 (1.C013’h)
BIT
NAME
1.49171.15:5
Reserved
1.49171.4:0
GPIO[4:0] Pin
Output
SETTING
0 = Low
1 = High
DEFAULT
00’h(1)
R/W
R/W
DESCRIPTION
Controls GPIO[4:0] pin levels if set as output
Note (1): The value may be overwritten by the Auto-Configure operation (See “Auto-Configuring Control Registers” on page 16 and Table 92 for details).
36
ISL35822
Table 51. DOM CONTROL REGISTER
MDIO REGISTER ADDRESS = 1.49176 (1.C018’h)
BIT
NAME
SETTING
1.49176.15:6
Reserved
1.49176.5
Test Control
1.49176.4:3
DOM Update period
1.49176.2
1.49176.1:0
DEFAULT(1)
R/W
DESCRIPTION
0’b
R/W
User must keep at 0.
See Table 52
00’h
R/W
Controls rates at which DOM A/D values are
updated
Indirect DOM Enable
1 = Enable
0 = Disable
0’b(2)
R/W
Enable updates from four DOM devices. See
Table 33, Table 38
Representative
Lane value
00’b(2)
R/W
Select Lane for 1.A060:D’h
Note (1): The values may be overwritten by the Auto-Configure operation (See “Auto-Configuring Control Registers” on page 16 and Table 92 for details).
Note (2): If ‘Indirect DOM Enable’ is set, then the DOM A/D and Flag values are loaded from the I2C spaces pointed to by the Indirect Mode values in Table 53 and
Table 54, and ‘Representative’ controls which lane’s A/D values will appear in 1.A060:D’h. If not, then ‘Representative’ has no effect, and the full DOM area is
updated from a single DOM device. See “DOM Registers” on page 16 for details.
Table 52. DOM PERIODIC UPDATE WAITING TIME VALUES
(Approximate, based on REF_CLOCK = 156.25 MHz; default underlined)
1.49176.4:3 (1.C018’h) BITS(1)
1.41216.1:0
(1.A100’h.1:0) BITS(1)
00(2)
01
10
11
00
N/A
N/A
N/A
N/A
01
800ms
1000ms
1300ms
1600ms
10
400ms
500ms
600ms
700ms
11(2)
100ms(2)
150ms
200ms
300ms
Note (1): See Table 38 and Table 51 for these registers.
Note (2): These are the Default values. The value in 1.C018’h may be overwritten by the Auto-Configure operation
Table 53. DOM INDIRECT MODE START ADDRESS REGISTERS
MDIO REGISTER ADDRESSES = 1.49177:8 (1.C019:1A’h)
BIT
NAME
SETTING
DEFAULT(1)
R/W
1.49177.15:8
Lane 3 DOM
Start Address
60’h
R/W
1.49177.7:0
Lane 2 DOM
Start Address
60’h
R/W
1.49178.15:8
Lane 1 DOM
Start Address
60’h
R/W
1.49178.7:0
Lane 0 DOM
Start Address
60’h
R/W
DESCRIPTION
Start address to read A/D values
from DOM monitor device of respective lane
Note (1): The values may be overwritten by the Auto-Configure operation (See “Auto-Configuring Control Registers” on page 16 and Table 92 for details).
Table 54. DOM INDIRECT MODE DEVICE ADDRESS REGISTERS
MDIO REGISTER ADDRESSES = 1.49179:80 (1.C01B:1C’h)
BIT
NAME
SETTING
1.49179.15:9
Lane 3 DOM
Device Address
1.49179.8
Not used, Set by current operation
1.49179.7:1
Lane 2 DOM
1.49179.0
Not used, Set by current operation
1.49180.15:8
Lane 1 DOM
1.49180.7
Not used, Set by current operation
1.49180.7:1
Lane 0 DOM
1.49180.0
Not used, Set by current operation
Device Address
Device Address
Device Address
DEFAULT(1)
R/W
DESCRIPTION
R/W
Note: I2C Device address to read A/D values
53’h
R/W
from DOM monitor device of respective lane is
twice set value. Thus ‘Default’ column
addresses are A8’h, A6’h A4’h and A2’h for
Lanes 3, 2, 1 & 0 respectively. LSB reflects
‘Read’ operation value
52’h
R/W
51’h
R/W
54’h
Note (1): The values may be overwritten by the Auto-Configure operation (See “Auto-Configuring Control Registers” on page 16 and Table 92 for details).
37
ISL35822
Table 55. OPTICAL STATUS & CONTROL PIN POLARITY REGISTER
MDIO REGISTER ADDRESS = 1.49181 (1.C01D’h)
BIT
NAME
SETTING
DEFAULT(1)
R/W
DESCRIPTION
1.49181.15:7
Reserved
1.49181.6
OPRLOS[3:0]
1 = low -> LOS
0 = high -> LOS
0’b
R/W
Input polarity to 1.10 and enable Byte Synch in
LX4 mode
1.49181.5
TX_ENA[3:0]
0’b
R/W
Polarity of TX_ENA outputs
1.49181.4
TX_ENC
1 = Active Low
0 = Active Hi
0’b
R/W
Polarity of TX_ENC input
1.49181.3
OPRXOP
0’b
R/W
1.49181.2
OPTTEMP
Control Polarity of respective input pins which
will trigger LASI (if enabled)
1.49181.1
OPTXLBC
1.49181.0
OPTXLOP
1 = Pin Low to trigger
LASI
0 = Pin High to trigger
LASI
0’b
R/W
0’b
R/W
0’b
R/W
Note (1): The values may be overwritten by the Auto-Configure operation (See “Auto-Configuring Control Registers” on page 16 and Table 92 for details).
Table 56. MDIO PCS DEVAD 3 REGISTERS
PCS DEVICE 3 MDIO REGISTERS
ADDRESS
DEC
HEX
NAME
DESCRIPTION
DEFAULT
AC(2)
R/W
DETAILS
3.0
3.0
PCS Control 1
Reset, Enable loop back mode.
2040’h
R/W
Table 57
3.1
3.1
PCS Status 1
PCS Fault, Link Status
0004’h (3)
RO LL
Table 58
3.2:3
3.2:3
ID Code
Manufacturer and Device OUI
01839C6V’h
RO
See (1)
3.4
3.4
Speed Ability
10Gbps Ability
0001’h
RO
Table 7
3.5
3.5
IEEE Devices
Devices in Package, Clause 22 capable
001A’h
RO
Table 8
3.6
3.6
Vendor Devices
Vendor Specific Devices in Pkg
0000’h
RO
Table 8
3.7
3.7
PCS Type
IEEE PCS TYPE SELECT REGISTER
0001’h
RO
Table 59
3.8
3.8
PCS Status 2
Device Present, Local Fault, Type Summary
8002’h (3)
RO
Table 60
3.14:15
3.E:F
Package ID
Package OUI, etc.
00000000’h
RO
See (4)
3.24
3.18
PCS-X Status 3
IEEE 10GBASE-X PCS STATUS REGISTER
See (5)
RO
Table 61
3.25
3.19
PCS Test
IEEE 10GBASE-X PCS TEST CONTROL
REGISTER
0000’h
R/W
Table 62
3.49152
3.C000
PCS Control 2
PCS CONTROL REGISTER 2
0F6F’h
A
R/W
Table 63
3.49153
3.C001
PCS Control 3
PCS Control Register 3
0801’h
A
R/W
Table 64
3.49154
3.C002
PCS ERROR
PCS INTERNAL ERROR CODE REGISTER
00FE’h
A
R/W
Table 66
3.49155
3.C003
PCS IDLE
PCS INTERNAL IDLE CODE REGISTER
0007’h
A
R/W
Table 67
3.49156
3.C004
PCS // Loop Back PCS PARALLEL NETWORK LOOP BACK
CONTROL REGISTER
0000’h
A
R/W
Table 68
3.49159
3.C007
Test_Flags
Receive Path Test & Status Flags
0000’h
RO LH
Table 69
3.49160
3.C008
Output Ctrl
Output Control and Test function
AAAA’h
R/W
Table 70
3.49161
3.C009
Half Rate
Half rate clock mode enable
0000’h
R/W
Table 71
3.49164
3.C00C
BIST Ctrl
BIST Control Register
0000’h
R/W
Table 72
3.49165
3.49166
3.C00D
3.C00E
BIST Error
BIST ERROR Counter Registers
0000’h
RO/
RCNR
Table 73
3.49167
3.C00F
Soft Reset
Reset (non MDIO)
0000’h
R/W SC
Table 46
Note (1): ‘V’ is a version number. See “JTAG & AC-JTAG Operations” on page 53 for a note about the version number.
Note (2): For rows with “A”, the default value may be overwritten by the Auto-Configure operation (See “Auto-Configuring Control Registers” on page 16 and Table 92 for
details).
Note (3): Read value depends on status signal values. Value shown indicates ‘normal’ operation.
Note (4): The IEEE 802.3ae specification allows this to be all zeroes. A XENPAK (etc.) host can more readily determine where the NVR registers are if this value is zero.
Note (5): If IEEE 802.3ae (and default) setting for PCS Loopback, 180F’h. If PCS Loopback allowed, 1C0F’h. See Table 61 and Table 64.
38
ISL35822
IEEE PCS REGISTERS (3.0 TO 3.25/3.0019’H)
Table 57. IEEE PCS CONTROL 1 REGISTER
MDIO REGISTER ADDRESS = 3.0 (3.0000’h)
BIT(S)
NAME
SETTING
DEFAULT
R/W
DESCRIPTION
3.0.15
1.0.15
4.0.15
Reset
1 = reset
0 = reset done, normal
operation
0’b
R/W SC
Writing 1 to this bit will reset the whole chip,
including the MDIO registers.
3.0.14(1)
PCS_LB_EN
Optionally, enable PCS
Loopback, otherwise
reserved
0’b
R/W
If enabled by EN_PCS_LB (see bit 3.C001’h.7,
Table 64) perform PCS Loopback, and is a R/W bit;
otherwise, effectively a reserved RO 0’b bit (1).
3.0.13
Speed Select
1 = 10Gbps
1’b
RO
1 = bits 5:2 select speed
3.0.12
Reserved
3.0.11
LOPOWER
3.0.10:7
Reserved
3.0.6
00’h
0 = Normal Power
0’b
R/W
No Low Power Mode, writes ignored
Speed Select
1 = 10Gbps
1’b
RO
1 = bits 5:2 select speed
3.0.5:2
Speed Select
0000 = 10Gbps
0’h
RO
Operates at 10Gbps
3.0.1:0
Reserved
0’b
Note (1): This bit is not permitted to be a PCS loopback bit by IEEE 802.3ae-2002 subclause 45.2.3.1.2 in 10GBASE-X PCS devices. Intersil has submitted a
maintenance request (#1113) to allow that use of this bit. Many XENPAK hosts, however, expect this loopback (which is mandatory for 10GBASE-R PCS
devices). Setting the 3.C001’h.7 bit, (Table 64) will activate this loopback enable bit, but cause the ISL35822 to be non-conforming to the current 802.3
specification. See “Loopback Modes ” on page 13).
Table 58. IEEE PCS STATUS 1 REGISTER
MDIO REGISTER ADDRESS = 3.1 (3.0001’h)
BIT
NAME
SETTING
3.1.15:8
Reserved
3.1.7
Local Fault
3.1.6:3
Reserved
3.1.2
Rx Link Up
1 = PCS Rx Link Up
0 = PCS Rx Link Down
3.1.1
LoPwrAble
Low Power Ability
3.1.0
Reserved
DEFAULT
R/W
DESCRIPTION
00’h
1 = PCS Local Fault
0
RO
Derived from Register 3.0008’h
1 (1)
RO LL(1)
‘Up’ means CX4/LX4 signal level is OK, Byte
Synch and Lane-Lane Alignment have all
occurred
0
RO
Device does not support a low power mode
0’h
0
Note (1): This bit is latched low on a detected Fault condition. It is set high on being read.
Table 59. IEEE PCS TYPE SELECT REGISTER
MDIO REGISTER ADDRESS = 3.7 (3.0007’h)
BIT
NAME
3.7.15:2
Reserved
3.7.1:0
PCS Type
SETTING
DEFAULT
R/W
DESCRIPTION
000’h
01 = 10GBASE-X
01b
RO(1)
Writes ignored
Note (1): Although the 802.3ae specification describes this register as type R/W, this register cannot have any value other than that reflecting the 10GBASE-X PCS.
Thus writing any other value is ignored, and the register is in effect type RO.
39
ISL35822
Table 60. IEEE PCS STATUS 2 DEVICE PRESENT & FAULT SUMMARY REGISTER
MDIO REGISTER ADDRESS = 3.8 (3.0008’h)
BIT
NAME
3.8.15:14
Device present
3.8.13:12
Reserved
3.8.11
TX LocalFlt
3.8.10
RX LocalFlt
3.8.9:3
Reserved
3.8.2
SETTING
DEFAULT
10 = Device present
10’b
R/W
DESCRIPTION
RO
When read as “10”, it indicates that a device is
present at this device address
1 = TX Local Fault; on Egress 0’b
channel
RO LH(1)
PLL Lock Failure is only PCS TX Fault
1 = RX Local Fault; on Ingress 0’b
channel
RO LH(1)
Lane Alignment or Byte Alignment not done, or
Loss of Signal, from Register 3.24 (3.0018’h)
10GBASE-W
0 = cannot perform
0’b
RO
Device cannot be 10GBASE-W
3.8.1
10GBASE-X
1 = can perform
1’b
RO
Device can perform 10GBASE-X
3.8.0
10GBASE-R
0 = cannot perform
0’b
RO
Device cannot be 10GBASE-R
Note (1): These bits are latched high on any Fault condition detected. They are reset low (cleared) on being read. They will also be reset low on reading the LASI
registers 1.9003’h (bit 10, see Table 27) or 1.9004’h (bit 11, see Table 28)
Table 61. IEEE 10GBASE-X PCS STATUS REGISTER
MDIO REGISTER ADDRESSES = 3.24 (3.0018’h)
BIT
NAME
SETTING
DEFAULT
R/W
DESCRIPTION
3.24.15:13
Reserved
3.24.12
Lane_Align
1 = 4 Lanes Aligned
0 = Lanes not aligned
1’b(1)
RO
1 = All four 3G receive lanes (on ingress path) are
aligned
3.24.11
Test_Pattern
Test Pattern Abilities
1’b
RO
1 = The device is able to generate test patterns for
10GBASE-X
3.24.10
PCS Loopback
Ability(2) or
Reserved
1 = has Optional PCS
Loopback Ability.
0’b
RO
If enabled by EN_PCS_LB (see bit 3.C001’h.7,
Table 64) indicates PCS Loopback ability, and is a
1‘b bit; otherwise, a reserved 0’b bit (2).
3.24.9:4
Reserved
3.24.3
Lane3 Sync
1’b(1)
RO
1’b(1)
RO
Reflects the PCS_SYNC byte alignment state
machine condition; not valid if not enabled in
device (see Table 63)
Lane1 Sync
1’b(1)
RO
Lane0 Sync
1’b(1)
RO
3.24.2
3.24.1
3.24.0
00’h
1 = PCS Lane is Synchronized
0 = PCS Lane not
Synchronized
Lane2 Sync
Note (1): The status of these bits depends on the signal conditions. Default shown is for normal operation. The bits contribute to the RX Local Fault bit, see Table 60.
Note (2): See Note (1) to Table 57, Note (2) to Table 64 and/or “PCS (Parallel) Loopback (4.C004.[3:0] & Optionally 3.0.14)” under “Loopback Modes ” on page 13. If
enabled, this register bit does NOT conform to the IEEE 802.3ae-2002 specification.
Table 62. IEEE 10GBASE-X PCS TEST CONTROL REGISTER
MDIO REGISTER ADDRESS = 3.25 (3.0019’h)
BIT
NAME
SETTING
DEFAULT
R/W
DESCRIPTION
3.25.15:3
Reserved
3.25.2
PCS TestPatEn
Transmit Test Pattern
Enable
0’b
R/W
0 = Do not Transmit test pattern
1 = Transmit test pattern
3.25.1:0
PCS TestPat
Type
Test pattern
select
00’b
R/W
11 = Reserved
10 = Mixed frequency test pattern (Continuous /K/ = K28.5)
01 = Low frequency test pattern (repeat 0000011111 = K28.7)
00 = High frequency test pattern (repeat 0101010101 = D10.2)
Note (1): For other test pattern generation capabilities incorporated in the ISL35822, including CJPAT and CRPAT, see Table 72.
40
ISL35822
VENDOR-SPECIFIC PCS REGISTERS (3.C000’H TO 3.C00E’H)
Table 63. PCS CONTROL REGISTER 2
MDIO REGISTER ADDRESS = 3.49152 (3.C000’h)
BIT
NAME
3.49152.15:14
Test Mode
3.49152.13:12
Reserved
3.49152.11
PCS Clock PSYNC
3.49152.10
PCS CODECENA
3.49152.9:8
SETTING
R/W
DESCRIPTION
00’b
R/W
User should leave at 00’b
1’b
R/W
1 = Synchronize/align four lanes
0 = Do not synchronize/align four lanes
0 = disable
1 = enable
1’b
R/W
Internal 8B/10B PCS Codec enable/disable
PCS CDET[1:0]
Comma Detect
Select
11’b
R/W
These bits individually enable positive and negative
disparity “comma” detection.
11 = Enable both positive and negative comma detection
10 = Enable positive comma detection only
01 = Enable negative comma detection only
00 = Disable comma detection
3.49152.7
PCS
DSKW_SM_EN
0 = disable(2)
1 = enable
0’b
R/W
Enable De-skew state machine control (3) . Forced enabled
by XAUI_EN. May not operate correctly unless the
PCS_SYNC_EN bit is also set.
3.49152.6:5
PCS RCLKMODE(4) 11’b = Local
Reference Clock
11’b
R/W
Other values should only be used if incoming data is
frequency-synchronous with the local reference clock(4)
3.49152.4
PCS_SYNC_EN
0 = disable(2)
1 = enable
0’b
R/W
Enable 8b/10b PCS coding synchronized state machine(3)
to control the byte alignment (IEEE ‘code-group alignment’)
of the high speed de-serializer
3.49152.3
PCS IDLE_D_EN
1 = enabled
0 = disabled
1’b
R/W
Enables IDLE vs. NON-IDLE detection for lane-lane
alignment. Overridden by XAUI_EN, see Table 64
3.49152.2
PCS ELST_EN
1 = enabled
0 = disabled
1’b
R/W
Enable the elastic function of the receiver buffer
3.49152.1
PCS
A_ALIGN_DIS
1 = disabled(1)
0 = enabled
1’b
R/W
Receiver aligns data on incoming “/A/” characters (K28.3).
If disabled (default), receiver aligns data on IDLE to nonIDLE transitions (if bit 3 set). Overridden by XAUI_EN, see
Table 64
3.49152.0
PCS
CAL_EN
1 = enabled
0 = disabled
1’b
R/W
Enable de-skew calculator of receiver Align FIFO
Note (1):
Note (2):
Note (3):
Note (4):
00’b
DEFAULT(1)
The default values may be overwritten by the Auto-Configure operation (See “Auto-Configuring Control Registers” on page 16 and Table 92 for details).
These bits are overridden by PCS XAUI_EN, see Table 64 and Table 65.
These state machines are implemented according to 802.3ae-2002 clause 48.6.2.
If the RCLKMODE bits are set to 10’b, the internal XGMII clock from the PCS to the PHY XS is set to the recovered clock. If the PCS Clock PSYNC bit is set
(the default), the recovered clock from Lane 0 is used for all four lanes, if cleared, or if the RCLKMODE bits are set to 01’b or 00’b, each lane uses its own
recovered clock. If the incoming data is NOT frequency-synchronous with the local reference clock, data will be corrupted (occasional characters will be lost,
or repeated).
Table 64. PCS CONTROL REGISTER 3
MDIO REGISTER ADDRESS = 3.49153 (3.C001’h)
BIT
NAME
3.49153.15:12
Reserved
3.49153.11
PCS XAUI_EN
3.49153.10:8
Reserved
3.49153.7
EN_PCSLB_EN
41
SETTING
1 = enable
0 = disable
DEFAULT
1’b(1)
0’b(1)
R/W
R/W
DESCRIPTION
Enables all XAUI features per 802.3ae-2002. It is
equivalent to setting the configuration bits listed in
Table 65 (but does not change the actual value of the
corresponding MDIO registers’ bits).
Enable 3.0.14 Loopback Control (2)
ISL35822
Table 64. PCS CONTROL REGISTER 3 (Continued)
MDIO REGISTER ADDRESS = 3.49153 (3.C001’h)
BIT
NAME
SETTING
DEFAULT
R/W
DESCRIPTION
3.49153.6
PCS AKR_SM_EN
1 = enable random
A/K/R
0 = /K/ only(3)
0’b(1)
R/W
Enable pseudo- random A/K/R(4) in Inter Packet Gap
(IPG) on PCS transmitter side (vs. /K/ only)
3.49153.5
PCS TRANS_EN
1 = enable
0 = disable(3)
Overridden by
XAUI_EN, see
Table 65
0’b(1)
R/W
This bit enables the transceiver to translate an “IDLE”
pattern in the internal FIFOs (matching the value of
register 3.C003’h) to and from the XAUI IDLE /K/
comma character or /A/, /K/ & /R/ characters.
3.49153.4
Reserved
3.49153.3
TX_SDR
PCS receive
data rate
0’b(1)
R/W
1 = PCS egress takes data from PHY XS at half speed
0 = PCS egress takes data from PHY XS at full speed
3.49153.2:0
Reserved
001’b
Note (1): These values may be overwritten by the Auto-Configure operation (See “Auto-Configuring Control Registers” on page 16 and Table 92 for details).
Note (2): PCS loopback via bit 3.0.14 (Table 57) is NOT permitted by IEEE 802.3ae-2002 for 10GBASE-X PCS devices. Many XENPAK hosts, however, expect this
loopback (which is mandatory for 10GBASE-R PCS devices). Setting this bit will enable this loopback, but cause the ISL35822 to be non-conforming to the
current 802.3 specification. See “Loopback Modes ” on page 13).
Note (3): These bits are overridden by PCS XAUI_EN, see also Table 65.
Note (4): This state machine is implemented according to IEEE 802.3ae-2002 clause 48.2.6.
Table 65. PCS or PHY XS XAUI_EN CONTROL OVERRIDE FUNCTIONS
BITS OVERRIDDEN BY XAUI_EN Bit, D.49153.11 (D.C001’h.11) = 1’b (1)
REG. BIT(1)
NAME
OVERRIDE TO
DEFAULT
R/W
DESCRIPTION
D.49153.5
TRANS_EN
1 = enable
0’b
R/W
Translates /A/K/R/ to-from /I/
D.49153.6
AKR_SM_EN
1 = enable
0’b
R/W
Generate pseudo-random /A/K/R/
D.49152.1
A_ALIGN_DIS
0 = enabled
1’b
R/W
Aligns data on incoming “||A||”
D.49152.4
PCS_SYNC_EN
1 = enable
0’b
R/W
IEEE Clause 48.2.6 State Machine
D.49152.7
DSKW_SM_EN
1 = enable
0’b
R/W
IEEE Clause 48.2.6 State Machine
D.49154
ERROR Code
FE’h
FE’h
R/W
Internal FIFO ERROR character
Note (1): “D” is either 3 for PCS or 4 for PHY XS. Behavior of the two devices is entirely independent of each other.
Table 66. PCS INTERNAL ERROR CODE REGISTER
MDIO REGISTER, ADDRESS = 3.49154 (3.C002’h)
BIT
NAME
3.49154.15:8
Reserved
3.49154.7:0
PCS ERROR
SETTING
Desired Value(2)
DEFAULT(1)
FE’h
R/W
R/W
DESCRIPTION
Error Code. These bits allow the internal FIFO
ERROR control character to be programmed.
Note (1): The value may be overwritten by the Auto-Configure operation (See “Auto-Configuring Control Registers” on page 16 and Table 92 for details).
Note (2): These bits are overridden to FE’h by XAUI_EN, see Table 64 and Table 65.
Table 67. PCS INTERNAL IDLE CODE REGISTER
MDIO REGISTER ADDRESS = 3.49155 (3.C003’h)
BIT
NAME
3.49155.15:8
Reserved
3.49155.7:0
PCS XG_IDLE
SETTING
Desired Value
DEFAULT(1)
07’h
R/W
R/W
DESCRIPTION
IDLE pattern in internal FIFOs for translation
to/from XAUI IDLEs
Note (1): The value may be overwritten by the Auto-Configure operation (See “Auto-Configuring Control Registers” on page 16 and Table 92 for details).
42
ISL35822
Table 68. PCS PARALLEL NETWORK LOOP BACK CONTROL REGISTER
MDIO REGISTER ADDRESS = 3.49156 (3.C004’h)
BIT
NAME
SETTING
DEFAULT
3.49156.15:4
Reserved
3.49156.3
PLP_3
3.49156.2
PLP_2
3.49156.1
PLP_1
0’b(1)
3.49156.0
PLP_0
0’b(1)
1 = enable PCS Parallel 0’b(1)
Network loopback(2)
0’b(1)
0 = disable
R/W
DESCRIPTION
R/W
PCS Parallel Network Loop Back Enable for each
individual lane. When high, routes the CX4/LX4 Serial
input to the CX4/LX4 Serial output via the XGMII side
of the PCS.
Note (1): The default value may be overwritten by the Auto-Configure operation (See “Auto-Configuring Control Registers” on page 16 and Table 92 for details).
Note (2): Equivalent to a loopback at the XGMII input side of the PHY XS.
Table 69. PCS RECEIVE PATH TEST AND STATUS FLAGS
MDIO REGISTER ADDRESS = 3.49159 (3.C007’h)
BIT
NAME
3.49159.15:12
Test Flags
3.49159.11
EFIFO_3
3.49159.10
EFIFO_2
3.49159.9
EFIFO_1
3.49159.8
EFIFO_0
3.49159.7
Code_3
3.49159.6
Code_2
3.49159.5
SETTING
DEFAULT
0’h
1 = EFIFO error in Lane
0 = no EFIFO error in
Lane
R/W
DESCRIPTION
ROLH
Special test use only
0’b
0’b
ROLH
0’b
ROLH
0’b
ROLH
ROLH
Code_1
1 = 10b/8b Code error in 0’b
Lane
0’b
0 = no 10b/8b Code error
0’b
3.49159.4
Code_0
0’b
ROLH
3.49159.3:0
Test Flags
0’h
ROLH
PCS Elasticity FIFO Overflow/Underflow Error
Detection(1)
PCS 10b/8b Decoder Code Violation Detection(1)
ROLH
ROLH
Special test use only
Note (1): Note (1): These bits are latched high on any Fault condition detected. They are reset low (cleared) on being read. They will also be reset low on reading the
LASI register 1.9003’h (see Table 27)
Table 70. PMA/PCS OUTPUT CONTROL & TEST FUNCTION REGISTER
MDIO REGISTER ADDRESS = 3.49160 (3.C008’h)
BIT
NAME
3.49160.15:14
Reserved
3.49160.13
ENA_3
3.49160.12:10
Reserved
3.49160.9
ENA_2
3.49160.8:6
Reserved
3.49160.5
ENA_1
3.49160.12:10
Reserved
3.49160.1
ENA_0
3.49160.0
Reserved
SETTING
Enable Lane 3 O/P
Enable Lane 2 O/P
Enable Lane 1 O/P
Enable Lane 0 O/P
43
DEFAULT
R/W
DESCRIPTION
10’b
R/W
Test Function, do not alter
1’b
R/W
0 = disable (indep. of LX4_MODE)
010’b
R/W
Test Function, do not alter
1’b
R/W
0 = disable (indep. of LX4_MODE)
010’b
R/W
Test Function, do not alter
1’b
R/W
0 = disable (indep. of LX4_MODE)
010’b
R/W
Test Function, do not alter
1’b
R/W
0 = disable (indep. of LX4_MODE)
0’b
R/W
Test Function, do not alter
ISL35822
Table 71. PCS/PHY XS HALF RATE CLOCK CONTROL REGISTER
MDIO REGISTER ADDRESSES = 3.49161 & 4.49161 ([3,4].C009’h)
BIT
NAME
3.49161.15:4
4.49161.15:4
Reserved
3.49161.3
4.49161.3
HALF_RATE 3
3.49161.2
4.49161.2
SETTING
DEFAULT
R/W
DESCRIPTION
0’h
R/W
1’b = half rate clock 0’b = full
rate clock
0’b
R/W
Lane 3 is running at half rate clock speed
HALF_RATE 2
1’b = half rate clock 0’b = full
rate clock
0’b
R/W
Lane 2 is running at half rate clock speed
3.49161.1
4.49161.1
HALF_RATE 1
1’b = half rate clock 0’b = full
rate clock
0’b
R/W
Lane 1 is running at half rate clock speed
3.49161.0
4.49161.0
HALF_RATE 0
1’b = half rate clock 0’b = full
rate clock
0’b
R/W
Lane 0 is running at half rate clock speed
Table 72. BIST CONTROL REGISTER
MDIO REGISTER ADDRESS = 3.49164 (3.C00C’h)
BIT
NAME
3.49164.15
BIST_EN
3.49164.14:12
Reserved
3.49164.11
SETTING
DEFAULT
DESCRIPTION(1)
R/W
BIST generator
enable
0’b
R/W
1 = Enable BIST generator
0 = Disable BIST generator
BIST_DIR
Select BIST data output
direction
0’b
R/W
1 = BIST to PCS (transmit path)
0 = BIST to XGXS (receive path)
3.49164.10:8
BIST_PAT
Select BIST
generator data pattern(4)
0’h
R/W
000 = CRPAT
001 = CJPAT
010 = PRBS23 with 9 /K/s as IPG
011 = Short PRBS23 pattern(2)
100 = Jumbo Ethernet packet(3)
Other = reserved
3.49164.7
BIST_DET
BIST checker enable
0’b
R/W
1 = Enable BIST checker
0 = Disable BIST checker
3.49164.6:4
Reserved
3.49164.3
BIST_SRC
Select BIST data checker
input source
0’b
R/W
0 = PCS to BIST (receive path)
1 = XGXS to BIST (transmit path)
3.49164.2:0
BIST_CHK
Select BIST
checker data pattern (5)
0’h
R/W
000 = CRPAT
001 = CJPAT
010 = PRBS23 with /K/’s as IPG
011 = Short PRBS23 pattern(2)
100 = Jumbo Ethernet packet(3)
Other = reserved
Note (1): See “BIST Operation” on page 53 for a description of these tests and patterns.
Note (2):
Note (3):
Note (4):
Note (5):
This Short pattern is the first 13458 Bytes of the full PRBS 223-1 Byte pattern, and also has 9 /K/ per lane as IPG
This pattern is an /S/, preamble, the ‘Short PRBS23’ pattern, one /T/, and 9 /K/s, repeated.
A Soft Reset is required to activate the newly selected pattern.
The checker expects at least one /K/ on each lane between pattern repeats
44
ISL35822
Table 73. BIST ERROR COUNTER REGISTERS
MDIO REGISTER ADDRESSES = 3.49165:6 (3.C00D:E’h)
BIT
NAME
SETTING
DEFAULT
R/W
3.49165.15:8
BIST_ERR_CNT_3
Lane 3 errors
00’h
RCNR(1)
3.49165.7:0
BIST_ERR_CNT_2
Lane 2 errors
00’h
RCNR(1)
3.49166.15:8
BIST_ERR_CNT_1
Lane 1 errors
00’h
RCNR(1)
3.49166.7:0
BIST_ERR_CNT_0
Lane 0 errors
00’h
RCNR(1)
DESCRIPTION
Error byte counter of BIST pattern
checker on each Lane
Note (1): The counters do not rollover at FF’h, and are cleared on read. There is also an error flag bit, see register 4.C007, Table 88.
Table 74. MDIO PHY XS DEVAD 4 REGISTERS
PHY XS DEVICE 4 MDIO REGISTERS
ADDRESS
DEC
4.0
HEX
4.0
NAME
PHYXS Control 1
DESCRIPTION
DEFAULT
Reset, Enable loop back mode.
2040’h
AC
(2)
R/W
R/W
DETAILS
Table 75
4.1
4.1
PHYXS Status 1
PCS Fault, Link Status
0004’h (3)
RO (LL)
Table 76
4.2:3
4.2:3
ID Code
Manufacturer and Device OUI
01839C6V’h
RO
See (1)
4.4
4.4
Speed Ability
10Gbps Ability
0001’h
RO
Table 7
4.5
4.5
IEEE Devices
Devices in Package, Clause 22 capable
001A’h
RO
Table 8
4.6
4.6
Vendor Devices
Vendor Specific Devices in Pkg
0000’h
RO
Table 8
RO
Table 77
4.8
4.8
PHYXS Status 2
Device Present, Local Fault, Type Summary 8000’h (3)
4.14:15
4.E:F
Package ID
Package OUI, etc.
00000000’h
RO
See (4)
4.24
4.18
PHYXS Status 3
10GBASE-X PHY XGXS Status
1C0F’h
RO
Table 78
4.25
4.19
PHYXS Test
10GBASE PHY XS Test Control
0000’h
R/W
Table 79
4.49152
4.C000
PHYXS Control 2
PHY XS Control Register 2
0F6F’h
A
R/W
Table 80
4.49153
4.C001
PHYXS Control 3
PHY XS Control Register 3
0800’h
A
R/W
Table 81
4.49154
4.C002
PHYXS ERR
PHY XS Internal ERROR code register
00FE’h
A
R/W
Table 82
4.49155
4.C003
PHYXS IDLE
PHY XS Internal IDLE Code Register
0007’h
A
R/W
Table 83
4.49156
4.C004
PHYXS Loop Back PHY XS Loop Back Control Register
0000’h
A
R/W
Table 84
4.49157
4.C005
PRE_EMPH
PHY XS Pre-emphasis level
0000’h
A
R/W
Table 85
4.49158
4.C006
Equalization
PHY XS Equalization Control
0000’h
A
R/W
Table 87
4.49159
4.C007
Test_Flags
PHY XS Receive Path Test & Status Flags
0000’h
RO LH
Table 88
4.49160
4.C008
Output Ctrl
Output Control and Test function
AAAA’h
R/W
Table 89
4.49161
4.C009
Half Rate
Half rate clock mode enable
0000’h
R/W
Table 71
4.49162
4.C00A
LOS Det
PHY XS Status 4 LOS Register
0000’h
RO LH
Table 90
4.49163
4.C00B
Reserved
PHY XS Control 4 TXCLK20
0000’h
R/W
Table 91
4.49167
4.C00F
Soft Reset
Reset (non MDIO)
0000’h
R/W SC
Table 46
Note (1): ‘V’ is a version number. See “JTAG & AC-JTAG Operations” on page 53 for a note about the version number.
Note (2): For rows with “A”, the default value may be overwritten by the Auto-Configure operation (See “Auto-Configuring Control Registers” on page 16 and Table 92
for details).
Note (3): Read value depends on status signal values. Value shown indicates ‘normal’ operation.
Note (4): The IEEE 802.3ae spec allows this to be all zeroes. A XENPAK (etc.) host can more readily determine where the NVR registers are if this value is zero.
45
ISL35822
IEEE PHY XS REGISTERS (4.0 TO 4.25/4.0019’H)
Table 75. IEEE PHY XS CONTROL 1 REGISTER
MDIO REGISTER ADDRESS = 4.0 (4.0000’h)
BIT(S)
NAME
SETTING
DEFAULT
R/W
DESCRIPTION
3.0.15
1.0.15
4.0.15
Reset
1 = reset
0 = reset done, normal
operation
0’b
R/W SC
Writing 1 to this bit will reset the whole chip,
including the MDIO registers.
4.0.14
PHY XS Loopback
1 = Enable loopback
0 = Normal operation
0’b
R/W
Enable PHY XS loop back mode on all four lanes.
3.0.13
4.0.13
Speed Select
1 = 10Gbps
1’b
RO
Operates at 10Gbps & above
4.0.12
Reserved
4.0.11
LOPOWER
4.0.10:7
Reserved
3.0.6
4.0.6
00’h
0 = Normal Power
0’b
R/W
No Low Power Mode, writes ignored
Speed Select
1 = 10Gbps
1’b
RO
Operates at 10Gbps & above
3.0.5:2
4.0.5:2
Speed Select
0000 = 10Gbps
0’h
RO
Operates at 10Gbps
4.0.1:0
Reserved
0’b
Table 76. IEEE PHY XS STATUS 1 REGISTER
MDIO REGISTER ADDRESS = 4.1 (4.0001’h)
BIT
NAME
SETTING
4.1.15:8
Reserved
4.1.7
Local Fault
4.1.6:3
Reserved
4.1.2
Tx Link Up
1 = XGXS Tx Link Up
0 = XGXS Tx Link Down
4.1.1
LoPwrAble
Low Power Ability
4.1.0
Reserved
DEFAULT
R/W
DESCRIPTION
00’h
1 = PHY XS Local Fault
0
RO
Derived from Register 4.0008’h
1 (1)
RO LL(1)
‘Up’ means XAUI-side signal level is OK, Byte
Synch and Lane-Lane Alignment have all
occurred
0
RO
Device does not support a low power mode
0’h
0
Note (1): This bit is latched low on a detected Fault condition. It is set high on being read.
Table 77. IEEE PHY XS STATUS 2 DEVICE PRESENT & FAULT SUMMARY REGISTER
MDIO REGISTER ADDRESSES = 4.8 (4.0008’h)
BIT
NAME
4.8.15:14
Device present
4.8.13:12
Reserved
4.8.11
TX LocalFlt
4.8.10
RX LocalFlt
4.8.9:0
Reserved
SETTING
10 = Device present
DEFAULT
10’b
R/W
DESCRIPTION
RO
When read as “10”, it indicates that a device is present at
this device address
1 = TX Local Fault; on Egress 0’b
channel
RO/
LH(1)
Lane Alignment or Byte Alignment not done, or Loss of
Signal. From Reg. 4.24
1 = RX Local Fault; on Ingress 0’b
channel
RO/
LH(1)
PLL lock failure (lack of RFCP/N signal)
Note (1): These bits are latched high on any Fault condition detected. They are reset low (cleared) on being read. They will also be reset low on reading the LASI
registers 1.9003’h (bit 10, see Table 27) or 1.9004’h (bit 11, see Table 28)
46
ISL35822
Table 78. IEEE 10GBASE-X PHY XGXS STATUS REGISTER
MDIO REGISTER ADDRESSES = 4.24 (4.0018’h)
BIT
NAME
SETTING
DEFAULT
R/W
DESCRIPTION
4.24.15:13
Reserved
4.24.12
PHY XS
Lane_Align
1 = 4 Lanes Aligned
0 = Lanes not aligned
1’b(1)
RO
1 = Four 3G receive lanes (on egress path) are
aligned
4.24.11
Test_Pattern
Test Pattern Abilities
1’b
RO
1 = The device is able to generate test patterns for
10GBASE-X
4.24.10
PHYXSLpbk
Loopback Ability
1’b
RO
1 = Device is able to loopback
4.24.9:4
Reserved
4.24.3
Lane3 Sync
1 = Lane is Synchronized
0 = Lane not Synchronized
1’b(1)
RO
1’b(1)
RO
Reflects the PCS_SYNC byte alignment state
machine condition; not valid if not enabled in
device (see Table 80)
4.24.2
Lane2 Sync
4.24.1
Lane1 Sync
1’b(1)
RO
Lane0 Sync
1’b(1)
RO
4.24.0
Note (1): The status of these bits depends on the signal conditions. Default shown is for normal operation. The bits contribute to the RX Local Fault bit, see Table 77.
Table 79. IEEE 10GBASE-X PHY XGXS TEST CONTROL REGISTER
MDIO REGISTER ADDRESS = 4.25 (4.0019’h)
BIT
NAME
SETTING
DEFAULT
R/W
DESCRIPTION
4.25.15:3
Reserved
4.25.2
PHY XS
TestPatEn
Receive Test Pattern
Enable
0’b
R/W
0 = Do not enable Receive test pattern
1 = Enable Receive test pattern
4.25.1:0
PHY XS TestPat
Type
Test pattern select (see
Table 72 for other test
patterns generated by
the ISL35822)
00’b
R/W
11 = Reserved
10 = Mixed frequency test pattern (Continuous /K/ = K28.5)
01 = Low frequency test pattern (repeat 0000011111 = K28.7)
00 = High frequency test pattern (repeat 0101010101 = D10.2)
VENDOR-SPECIFIC PHY XS REGISTERS (4.C000’H TO 4.C00B’H)
Table 80. PHY XS CONTROL REGISTER 2
MDIO REGISTER ADDRESS = 4.49152 (4.C000’h)
BIT
NAME
4.49152.15:14
Test Mode
4.49152.13:12
Reserved
4.49152.11
PHY XS Clock
PSYNC
4.49152.10
PHY XS CODECENA
4.49152.9:8
SETTING
00’b
DEFAULT(1)
R/W
DESCRIPTION
00’b
R/W
User should leave at 00’b
1’b
R/W
1 = Synchronize/align four lanes
0 = Do not synchronize/align four lanes
0 = disable
1 = enable
1’b
R/W
Internal 8B/10B Codec enable/disable
PHY XS CDET[1:0]
Comma Detect
Select.
11’b
R/W
These bits individually enable positive and negative disparity
“comma” detection.
11 = Enable both positive and negative comma detection
10 = Enable positive comma detection only
01 = Enable negative comma detection only
00 = Disable comma detection
4.49152.7
PHY XS
DSKW_SM_EN
0 = disable(2)
1 = enable
0’b
R/W
Enable De-skew state machine control (3) . Forced enabled
by PHY XS XAUI_EN. May not operate correctly unless the
PHY XS PCS_SYNC_EN bit is also set.
4.49152.6:5
PHY XS RCLKMODE
11’b = Local
Reference
Clock(4)
11’b
R/W
Other values should only be used if incoming data is
frequency-synchronous with the local reference clock(4).
47
ISL35822
Table 80. PHY XS CONTROL REGISTER 2 (Continued)
MDIO REGISTER ADDRESS = 4.49152 (4.C000’h)
BIT
NAME
SETTING
DEFAULT(1)
R/W
DESCRIPTION
4.49152.4
PHY XS
PCS_SYNC_EN(5)
0 = disable(2)
1 = enable
0’b
R/W
Enable 8b/10b PCS coding synchronized state machine(3) to
control the byte alignment (IEEE ‘code-group alignment’) of
the high speed de-serializer
4.49152.3
PHY XS IDLE_D_EN
1 = enable
0 = disable
1’b
R/W
Enables IDLE vs. NON-IDLE detection for lane alignment.
Overridden by PHY XS XAUI_EN, see Table 88
4.49152.2
PHY XS ELST_EN
1 = enable
0 = disable
1’b
R/W
Enable the elastic function of the PHY XS receiver buffer
4.49152.1
PHY XS
A_ALIGN_DIS
1 = disable(2)
0 = enable
1’b
R/W
PHY XS Receiver aligns data on incoming “/A/” characters
(K28.3). If disabled (default), receiver aligns data on IDLE to
non-IDLE transitions (if bit 3 set). Overridden by PHY XS
XAUI_EN, see Table 81
4.49152.0
PHY XS CAL_EN
1 = enable
0 = disable
1’b
R/W
Enable de-skew calculator of PHY XS receiver Align FIFO
Note (1):
Note (2):
Note (3):
Note (4):
The values may be overwritten by the Auto-Configure operation (See “Auto-Configuring Control Registers” on page 16 and Table 92 for details).
These bits are overridden by PHY XS XAUI_EN, see Table 81 and Table 65.
These state machines are implemented according to 802.3ae-2002 clause 48.
If the RCLKMODE bits are set to 10’b, the internal XGMII clock from the PHY XS to the PCS is set to the recovered clock. If the PHY XS Clock PSYNC bit is set (the
default), the recovered clock from Lane 0 is used for all four lanes, if cleared, or if the RCLKMODE bits are set to 01’b or 00’b, each lane uses its own recovered clock.
If the incoming data is NOT frequency-synchronous with the local reference clock, data will be corrupted (occasional characters will be lost, or repeated).
Note (5): This bit name reflects the “embedded” PCS function within an XGXS, see IEEE 802.3 Clause 47.2.1.
Table 81. PHY XS CONTROL REGISTER 3
MDIO REGISTER ADDRESS = 4.49153 (4.C001’h)
BIT
NAME
4.49153.15
PHY XS DC_O_DIS
4.49153.14:13
Reserved
4.49153.12
SETTING
DEFAULT(1)
R/W
DESCRIPTION
1 = Disable, 0 = normal
0’b
R/W
PHY XS DC Offset Disable
MF_SEL
Select source of signals
for four MF pins
0’b
R/W
1 = Select signals from PMA/PCS
to be output on MF pins
0 = Select signals from PHY
XGXS to be output on MF pins
4.49153.11
PHY XS XAUI_EN
1 = enable
0 = disable
1’b
R/W
Enables all XAUI features per 802.3ae-2002. It is
equivalent to setting the configuration bits listed in
Table 65 (but does not change the actual value of the
corresponding MDIO registers’ bits).
4.49153.10:8
PHY_LOS_TH
0’h = 160mVp-p
1’h = 240mVp-p
2’h = 200mVp-p
3’h = 120mVp-p
4’h = 80mVp-p
else = 160mVp-p
000’b
R/W
Set the threshold voltage for the Loss Of Signal
(LOS) detection circuit in PHY XS. Nominal levels are
listed for each control value. Note that the differential
peak-to-peak value is twice that listed
4.49153.7
Reserved
4.49153.6
PHY XS
AKR_SM_EN
R/W
Enable pseudo- random A/K/R(3) in Inter Packet Gap
(IPG) on transmitter side (vs. /K/ only)
4.49153.5
PHY XS TRANS_EN 1 = enable
0 = disable(2)
Overridden by PHY XS
XAUI_EN, see Table 65
0’b
R/W
This bit enables the transceiver to translate an “IDLE”
pattern in the internal FIFOs (matching the value of
register 4.C003’h) to and from the XAUI IDLE /K/
comma character or /A/, /K/ & /R/ characters.
4.49153.4
Reserved
4.49153.3
PHY XS TX_SDR
0’b
R/W
1 = PHY XS takes data from PCS at half speed
0 = PHY XS takes data from PCS at full speed
48
1 = enable random A/K/R 0’b
0 = /K/ only(2)
PHY XS receive
data rate
ISL35822
Table 81. PHY XS CONTROL REGISTER 3 (Continued)
MDIO REGISTER ADDRESS = 4.49153 (4.C001’h)
BIT
4.49153.2:0
NAME
SETTING
MF_CTRL
0 = BIST_ERR
1 = LOS
2,3 = Reserved
4 = TXFIFO_ERR
5 = AFIFO_ERR
6 = EFIFO_ERR
DEFAULT(1)
000’b
R/W
R/W
DESCRIPTION
Control the meaning of Multi-function pins MF[3:0] of
the 4 lanes in the device selected by MF_SEL above
(bit 12)
Note (1): The values may be overwritten by the Auto-Configure operation (See “Auto-Configuring Control Registers” on page 16 and Table 92 for details).
Note (2): These bits are overridden by PHY XS XAUI_EN, see also Table 65.
Note (3): This state machine is implemented according toIEEE 802.3ae-2002 clause 48.
Table 82. PHY XS INTERNAL ERROR CODE REGISTER
MDIO REGISTER, ADDRESS = 4.49154 (4.C002’h)
BIT
NAME
4.49154.15:8
Reserved
4.49154.7:0
PHY XS
ERROR
SETTING
Desired Value(2)
DEFAULT(1)
FE’h
R/W
R/W
DESCRIPTION
Error Code. These bits allow the internal FIFO
ERROR control character to be programmed.
Note (1): The values may be overwritten by the Auto-Configure operation (See “Auto-Configuring Control Registers” on page 16 and Table 92 for details).
Note (2): These bits are overridden to FE’h by PHY XS XAUI_EN, see Table 65 and Table 81.
Table 83. PHY XS INTERNAL IDLE CODE REGISTER
MDIO REGISTER ADDRESS = 4.49155 (4.C003’h)
BIT
NAME
4.49155.15:8
Reserved
4.49155.7:0
PHY XS
XG_IDLE
SETTING
Desired Value
DEFAULT(1)
07’h
R/W
R/W
DESCRIPTION
IDLE pattern in internal FIFOs for translation
to/from XAUI IDLEs
Note (1): The default value may be overwritten by the Auto-Configure operation (See “Auto-Configuring Control Registers” on page 16 and Table 92 for details).
Table 84. PHY XS MISCELLANEOUS LOOP BACK CONTROL REGISTER
MDIO REGISTER ADDRESS = 4.49156 (4.C004’h)
BIT
NAME
SETTING
DEFAULT
R/W
DESCRIPTION
4.49156.15:13
Reserved
4.49156.12
Test LP
1 = enable
0’b(1)
R/W
Serial Host Test Loopback
4.49156.11
SLP_3
0’b(2)
R/W
4.49156.10
SLP_2
1 = enable PHY XS
Network Loopback
0 = disable
Internal PHY XS Serial Loop Back Enable for each
individual lane. When high, it routes the internal
XAUI Serial output to the Serial input.
4.49156.9
SLP_1
0’b(2)
4.49156.8
SLP_0
0’b(2)
4.49156.7:4
Reserved
4.49156.3
PLP_3
R/W
4.49156.2
PLP_2
PCS Parallel Loop Back Enable for each individual
lane. When high, it routes the XAUI Serial input to
the Serial output via the full PHY XS.
4.49156.1
PLP_1
0’b(2)
4.49156.0
PLP_0
0’b(2)
0’b(2)
1 = enable System (“PCS”) 0’b(2)
Parallel Loopback
0’b(2)
0 = disable
Note (1): Loopback is from XAUI Serial I/P to Serial O/P. Recommended use for test purposes only; no retiming or pre-emphasis is performed
Note (2): These values may be overwritten by the Auto-Configure operation (See “Auto-Configuring Control Registers” on page 16 and Table 92 for details).
49
ISL35822
Table 85. PHY XS PRE-EMPHASIS CONTROL
MDIO REGISTER ADDRESS = 4.49157 (4.C005’h)
BIT
NAME
SETTING
DEFAULT(1)
4.49157.15:12
Reserved
4.49157.11:9
PRE_EMP Lane 3
4.49157.8:6
PRE_EMP Lane 2
See Table 86 for 0’h
settings
0’h
4.49157.5:3
PRE_EMP Lane 1
0’h
4.49157.2:0
PRE_EMP Lane 0
0’h
R/W
DESCRIPTION
R/W
Configure the level of PHY XS pre-emphasis
(nominal levels indicated)
Note (1): The values may be overwritten by the Auto-Configure operation (See “Auto-Configuring Control Registers” on page 16 and Table 92 for details).
Table 86. PHY XS XAUI PRE-EMPHASIS CONTROL SETTINGS
PRE-EMPHASIS (1)
(802.3ak) =
(1-VLOW/VHI)
PRE-EMPHASIS VALUE = ADDRESS 4.C005’h
(VHI/ VLOW)-1
BITS 2:0
000
0
0
100
0.50
1.00
001
0.17
0.20
101
0.53
1.28
010
0.28
0.39
110
0.57
1.33
011
0.44
0.79
111
0.60
1.50
ADDRESS
4.C005’h
BITS 2:0
PRE-EMPHASIS
(802.3ak) =
(1-VLOW/VHI)
PRE-EMPHASIS
VALUE =
(VHI/ VLOW)-1
Note (1): See Note (2) to Table 42 for a note about the equations and symbols used here.
Table 87. PHY XS EQUALIZATION CONTROL
MDIO REGISTER ADDRESS = 4.49158 (4.C006’h)
BIT
NAME
4.49158.15:14
Reserved
4.49158.3:0
PHY XS
EQ_COEFF
DEFAULT(1)
SETTING
0’h = no boost in equalizer. 0’h
F’h = boost is maximum
R/W
R/W
DESCRIPTION
Configuration of the PHY XS equalizer
Note (1): The value may be overwritten by the Auto-Configure operation (See “Auto-Configuring Control Registers” on page 16 and Table 92 for details).
Table 88. PHY XS RECEIVE PATH TEST AND STATUS FLAGS
MDIO REGISTER ADDRESS = 4.49159 (4.C007’h)
BIT
NAME
4.49159.15:12
Test Flags
4.49159.11
EFIFO_3
SETTING
1 = EFIFO error in Lane
0 = no EFIFO error in
Lane
DEFAULT
R/W
DESCRIPTION
0’h
ROLH
Special test use only
0’b
ROLH
PHY XS Elasticity FIFO Overflow/Underflow
Error Detection(1)
ROLH
PHY XS 10b/8b Decoder Code Violation
Detection(1)
ROLH
Lane by lane BIST error checker indicator(1) (2)
4.49159.10
EFIFO_2
4.49159.9
EFIFO_1
0’b
0’b
4.49159.8
EFIFO_0
0’b
4.49159.7
Code_3
4.49159.6
Code_2
4.49159.5
Code_1
1 = 10b/8b Code error in 0’b
Lane
0’b
0 = no 10b/8b Code error
0’b
4.49159.4
Code_0
0’b
4.49159.3
BIST_ERR_3
4.49159.2
BIST_ERR_2
1 = BIST error in lane
0’b
0 = No BIST error in lane
0’b
4.49159.1
BIST_ERR_1
0’b
4.49159.0
BIST_ERR_0
0’b
Note (1): These bits are latched high on any Fault condition detected. They are reset low (cleared) on being read. They will also be reset low on reading the LASI
register 1.9004’h (see Table 28)
Note (2): See also error counters in registers 3.C00D:E’h (Table 73)
50
ISL35822
Table 89. PHY XS OUTPUT AND TEST FUNCTION CONTROL REGISTER
MDIO REGISTER ADDRESS = 4.49160 (4.C008’h)
BIT
NAME
4.49160.15:14
Reserved
4.49160.13
ENA_3
4.49160.12:10
Reserved
4.49160.9
ENA_2
4.49160.8:6
Reserved
4.49160.5
ENA_1
4.49160.12:10
Reserved
4.49160.1
ENA_0
4.49160.0
Reserved
SETTING
Enable Lane 3 O/P
Enable Lane 2 O/P
Enable Lane 1 O/P
Enable Lane 0 O/P
DEFAULT
R/W
DESCRIPTION
10’b
R/W
Test Function, do not alter
1’b
R/W
0 = disable
010’b
R/W
Test Function, do not alter
1’b
R/W
0 = disable
010’b
R/W
Test Function, do not alter
1’b
R/W
0 = disable
010’b
R/W
Test Function, do not alter
1’b
R/W
0 = disable
0’b
R/W
Test Function, do not alter
Table 90. PHY XS STATUS 4 LOS DETECTOR REGISTER
MDIO REGISTER ADDRESS = 4.49162 (4.C00A’h)
BIT
NAME
4.49162.15:4
Reserved
4.49162.3
PHY_LOS_3
4.49162.2
SETTING
DEFAULT
R/W
DESCRIPTION
00’b
RO/LH(1) Loss Of Signal for lane 3
PHY_LOS_2
1 = Signal less than threshold
0’b
0 = Signal greater than threshold
0’b
4.49162.1
PHY_LOS_1
0’b
Loss Of Signal for lane 1
4.49162.0
PHY_LOS_0
0’b
Loss Of Signal for lane 0
Loss Of Signal for lane 2
Note (1): These bits are latched high on any LOS condition detected. They are reset low on being read.
Table 91. PHY XS CONTROL REGISTER 4
MDIO REGISTER ADDRESS = 4.49163 (4.C00B’h)
BIT
NAME
SETTING
DEFAULT
R/W
DESCRIPTION
4.49163.15:2
Reserved
00’h
4.49163.1
TXCLK20
0 = disable 1 = enable
0’b
R/W
TXCLK20 pin output
4.49163.0
Test
Internal
0’b
R/W
User must keep at 0’b
Auto-Configure Register List
Table 92. Auto-CONFIGURE REGISTERS
Auto-configure Pointer is (S), Auto-configure Size is (N), from 1.8106’h & 1.8105’h respectively
NVR ADDRESS
DEC
TARGET REGISTER BITS ADDRESS (1)
HEX
DEC
HEX
TARGET NAME(1)
DETAILS
S+0
S+0
4.49158.[3:0]
4.C006.[3:0]
PHY XS Equalizer Value
Table 87
S+1
S+1
4.49157.[7:0]
4.C005.[7:0]
PHY XS Pre-emphasis Lanes 1:0
Table 85
S+2
S+2
4.49157.[15:8]
4.C005.[15:8]
PHY XS Pre-emphasis Lanes 3:2
S+3
S+3
1.49158.[3:0]
1.C006.[3:0]
PMA/PMD Equalizer Value
Table 43
S+4
S+4
1.49157.[7:0]
1.C005.[7:0]
PMA/PMD Pre-emphasis Lanes 1:0
Table 41
S+5
S+5
1.49157.[15:8]
1.C005.[15:8]
PMA/PMD Pre-emphasis Lanes 3:2
S+6
S+6
1.36864.[6:0].
1.9000.[6:0]
LASI RX Alarm Control
51
Table 24
ISL35822
Table 92. Auto-CONFIGURE REGISTERS (Continued)
Auto-configure Pointer is (S), Auto-configure Size is (N), from 1.8106’h & 1.8105’h respectively
NVR ADDRESS
DEC
TARGET REGISTER BITS ADDRESS (1)
HEX
DEC
TARGET NAME(1)
HEX
DETAILS
S+7
S+7
1.36865.[7:0]
1.9001.[7:0]
LASI TX Alarm Control
Table 25
S+8
S+8
1.36865.[10:8]
& 1.36866.[3:0]
1.9001.[10:8],
1.9002.[3:0]
LASI TX Alarm & LASI Control
Table 25 &
Table 26
S+9
S+9
1.36870.
1.9006
DOM TX flag control
Table 30
S + 10
S+A
1.36871.
1.9007
DOM RX flag control
Table 31
S + 11
S+B
1.49170.[1:0],
1.49168.[5:0]
1.C012.[1:0],
1.C010.[5:0]
GPIO LASI & Pin Direction Configuration
Table 49 &
Table 47
S + 12
S+C
1.49170.[11:8,5:2],
1.C012.[11:8,5:2]
GPIO LASI control
Table 49
S + 13
S+D
1.49170.[13:12],
1.49171.[5:0]
1.C012.[13:12],
1.C013.[5:0]
TX_FAULT polarity, GPIO LASI & Output Control Table 49 &
Table 50
S + 14
S+E
1.49176
1.C018
DOM Control
Table 51
S + 15
S+F
1.49177.[7:0]
1.C019.[7:0]
Indirect DOM Mem Address Lane2
Table 53
S + 16
S + 10
1.49177.[15:8]
1.C019.[15:8]
Indirect DOM Mem Address Lane3
S + 17
S + 11
1.49178.[7:0]
1.C01A.[7:0]
Indirect DOM Mem Address Lane0
S + 18
S + 12
1.49178.[15:8]
1.C01A.[15:8]
Indirect DOM Mem Address Lane1
S + 19
S + 13
1.49179.[7:0]
1.C01B.[7:0]
Indirect DOM Dev Address Lane2
S + 20
S + 14
1.49179.[15:8]
1.C01B.[15:8]
Indirect DOM Dev Address Lane3
S + 21
S + 15
1.49180.[7:0]
1.C01C.[7:0]
Indirect DOM Dev Address Lane0
S + 22
S + 16
1.49180.[15:8]
1.C01C.[15:8]
Indirect DOM Dev Address Lane1
S + 23
S + 17
1.49181.[7:0]
1.C01D.[7:0]
Optical I/F Pin Polarity Control
Table 55
S + 24
S + 18
4.49152.[7:0]
4.C000.[7:0]
PHY XS control 2
Table 80
Table 54
S + 25
S + 19
4.49152.[15:8]
4.C000.[15:8]
PHY XS control 2
S + 26
S + 1A
4.49153.[7:0]
4.C001.[7:0]
PHY XS control 3
S + 27
S + 1B
4.49153.[15:8]
4.C001.[15:8]
PHY XS control 3
S + 28
S + 1C
4.49154.[7:0]
4.C002.[7:0]
PHY XS Error Code
Table 82
S + 29
S + 1D
4.49155.[7:0]
4.C003.[7:0]
PHY XS IDLE Code
Table 83
S + 30
S + 1E
4.49156.[11:8,3:0]
4.C004.[11:8,3:0]
PHY XS Loopback Control
Table 85
S + 31
S + 1F
3.49152.[7:0]
3.C000.[7:0]
PCS control 2
Table 63
S + 32
S + 20
3.49152.[15:8]
3.C000.[15:8]
PCS control 2
S + 33
S + 21
3.49153.[7:0]
3.C001.[7:0]
PCS control 3
Table 81
Table 64 &
Table 39 (2)
S + 34
S + 22
1:3.49153.[15:8]
1:3.C001.[15:8]
PCS control 3/PMA control 2
S + 35
S + 23
3.49154.[7:0]
3.C002.[7:0]
PCS Error Code
Table 66
S + 36
S + 24
3.49155.[7:0]
3.C003.[7:0]
PCS IDLE Code
Table 67
S + 37
S + 25
1.49156.[11:8]
3.49156.[3:0]
1.C004.[11:8]
3.C004.[3:0]
PCS/PMA Loopback Control
Table 40 &
Table 68 (3)
S + 38
S + 26
1.49163.[9:2]
1.C00B.[9:2]
Miscellaneous Adjustments
Table 45
S + 39
S + 27
4.49163.[9:2]
4.C00B.[9:2]
BitBlitz Internal Test Control
Table 91
Note (1): The 8 bits of the NVR register (7:0) are mapped to the listed bits of the target in order. Unused bits are always at the MSb (bit 7) end.
Note (2): The target register pair are overlapped, ignoring the ‘reserved’ bits in one where used bits occur in the same location in the other. Thus the mapping from the
NVR register is: 1.C001.[15:12], 3.C001.11, 1.C001.[10:8].
Note (3): The mapping from the NVR register is: 1.C004.[11:8], 3.C004.[3:0]
52
ISL35822
JTAG & AC-JTAG Operations
Five pins – TMS, TCK, TDO, TRST, and TDI – support IEEE
Standards 1149.1-2001 JTAG and 1149.6-2003 AC-JTAG
testing. The JTAG test capability has been implemented on
all signal pins. Note that the 1149.1-2001 specification has
removed the previous requirement that the [000...0]
instruction be an entry into EXTEST, and deprecated its use
for anything but a non-test function (e.g. BYPASS). The
ISL35822 fully conforms to this revision. The AC-JTAG test
capability has been implemented on the high-speed
differential output and input terminals. The output
configuration corresponds to Figure 51 in IEEE 1149.6-2003,
except that there is no provision to bring the ‘mission’ signal
into the scan chain, since this 3.125Gbps signal has no
meaningful value at the (asynchronous) JTAG TCK rate, and
the ISL35822 does not support INTEST. The receiver
configuration corresponds to Figure 48, using the DC
detection mode only, according to method 2 of 6.2.3.1 rule
a), and omitting the components needed only for the
unsupported INTEST instruction. The EXTEST_PULSE and
EXTEST_TRAIN instruction timings are illustrated in Figures
37, 38 and 44 while the (DC) EXTEST waveforms are
indicated in Figure 42 in IEEE 1149.6-2003. Provided that
the TCK period is sufficiently longer than the AC-coupling
time constant, controlled by the (external) capacitors and the
input impedance of the ISL35822, (see IEEE 1149.6-2003
clause 6.2.3.1 rule k), the combination of (DC) EXTEST and
EXTEST_PULSE or EXTEST_TRAIN scans can detect
open or shorted capacitors or wires.
The supported boundary scan operation instruction codes
are listed in Table 93:
Table 93. JTAG OPERATIONS
INSTRUCTION
CODE
BYPASS (1)
0000
Sample/Preload
0001
HighZ
0010
Clamp
0011
ID Code
0110
EXTEST
1000
UDR0
1001
EXTEST_PULSE
1011
EXTEST_TRAIN
1100
BYPASS
1111
Note (1): All non-listed codes are also BYPASS.
53
The Manufacturers ID Code returned when reading the ID
Code from the JTAG pins is as follows:V0006351’h
where ‘V’ is an internal 4-bit version number. Consult the
“Intersil Corporation Contact Information” on page 75 for
information as to the meaning of the revision number.
Note that the JTAG and AC-JTAG capability is not currently
tested in production.
BIST Operation
In addition to the low, mid and high frequency test patterns
defined in IEEE 802.3ae-2002, which are injected (at the 10bit level) directly into the serializers, and controlled via the
“IEEE 10GBASE-X PCS TEST CONTROL REGISTER ” on
page 40 and the “IEEE 10GBASE-X PHY XGXS TEST
CONTROL REGISTER ” on page 47, and to further facilitate
the exercise of all the BT3821 blocks, the device includes a
Built In Self Test (BIST) function. The BIST Data Package
Generator sends out a continuous data stream to emulate
network traffic. The available BIST data patterns are enabled
via the bits in Table 72. The patterns available are:
1. CRPAT pattern per IEEE802.3ae-2002 Annex 48A
2. CJPAT pattern per IEEE802.3ae-2002 Annex 48A
3. A full PRBS23 pattern (223–1 coded bytes, 10 times that
many bits) with nine /K/ “comma” characters as interval
on each XAUI/CX4 lane.
4. A Short Pseudo-Random data pattern (13458 byte long)
with nine /K/ “comma” characters as interval on each
XAUI/CX4 lane.
5. Emulation of an Ethernet Jumbo frame: ||S|| + preamble
+ Random data (4 x 13458 byte long) + ||T|| + IPG;
The ‘PRBS23’-based patterns are derived from a PRBS
generator that, after an Inter-Packet Gap (‘IPG’) of 9 /K/
characters, creates a pseudo-random 223 – 1 byte
sequence. The full sequence is used for the ‘PRBS23’
pattern, while the ‘Short PRBS23’ pattern is truncated after
13458 bytes. Each will start again from the beginning,
repeating indefinitely. This pattern is generated on each
lane, and checked (except for the /K/s, of which one is
required for byte synchronization, but all the others are
ignored) in the same way.
The ‘Jumbo Ethernet Packet’ is similar, except that the
‘Short PRBS23’ pattern is preceded by an /S/ & one
preamble on Lane 0, two preambles on Lanes 1 & 2, and a
preamble and SFD on Lane 3, and followed by a /T/ on lane
0. Apart from providing byte sync (byte alignment), the /K/filled IPG allows for lane alignment (using the IDLE-toNONIDLE transition alignment engine) and elasticity (by
deleting or adding the requisite number of /K/s). The latter, in
particular, allows one ISL35822 to check the ‘Short PRBS23’
or ‘Jumbo Ethernet Packet’ generated by another ISL35822
running on an independent clock within ±100 ppm. The full
PRBS23 pattern could be over 300 bytes off in one repeat
ISL35822
under these circumstances, greatly exceeding the elasticity
FIFO’s range, unless the clocks were synchronized. The
CJPAT and CRPAT patterns are those defined by IEEE
802.3ae-2002 Annex 48.
Either the BIST_EN bit (see Table 72 or the BIST_ENA pin
(see Table 99 on Page 56) will cause the Serial Transmitter
selected by the BIST_DIR bit to put out the pattern selected
by the BIST_PAT bits (see Table 72). The BIST_DET bit will
enable the Serial Receiver selected by the BIST_SRC bit to
search its incoming bit stream for the pattern (separately)
selected by the BIST_CHK bits (see Table 72). Once the
comma group or IPG has set the byte alignment, the BIST
error detector will be enabled, and the decoded pattern will
be then be checked. Any bit error will set the error detector
for the corresponding lane, and increment the
BIST_ERR_CNT counters (see Table 73). These detectors
may be monitored via the MF[3:0] pins (see Table 99) and
both they and the counters may be read via the MDIO
system (see Table 81).
The separate setup for BIST generation and checking
means that two ISL35822s may be tested with a different
pattern in each direction on the link between them.
The signal flows provided for these BIST patterns are shown
in Figure 6. The generator output may be injected (in place
of the ‘normal’ signal flow) into the AKR Randomizer in either
the PCS or PHY XS, as controlled by the "BIST CONTROL
REGISTER" (see Table 72). The signal may be looped back
using the PMA or PHY XS loopbacks (respectively), and
checked at the output of the respective Elastic FIFO, or
continue on to the other loopback, and checked at the output
of the other Elastic FIFO. The internal loopback(s) may be
replaced by external loopbacks, and in each ‘full loop’ case
this will test virtually the complete device; if both possible full
loops are checked, both complete signal paths are tested.
Note that if any external loopback changes the clock
domain, the full ‘PRBS23’ pattern cannot be checked.
FIGURE 6. BLOCK DIAGRAM OF BIST OPERATION
Egress
CDR
PHY XS
(Serial)
Loopback
(4.0.14 &
4.C004)
Only One Lane
of Four Shown
Vendor
REG
3.C003
Serializer
TXFIFO &
Error and
Orderset
Detector
IEEE REG
3.25
IEEE REG
4.25
TXFIFO &
Error and
Orderset
Detector
8B/10B
Encoder,
AKR
Generator
CRPAT, CJPAT,
PRBS23
Checker
PCS //
= PHY XS
Loopback
4.C004 &
~3.0.14)
RX FIFO
Deskew
TCXn P/N
HF, LF, MixedF
Generator
PCS // Network
Loopback (3.C004)
CRPAT, CJPAT,
PRBS23
Generater
HF, LF, MixedF
Generator
8B/10B
Encoder,
AKR
Generator
RX FIFO
Deskew
10B/8B
Decoder
Ingress
Vendor
REG
3.C003
Deserializer &
Comma Detector
TXPn P/N
10B/8B
Decoder
Only One Lane
of Four Shown
Deserializer &
Comma Detector
Equalizer
Signal
Detect
Serializer
RXPnP/N
Egress
PMA
Loopback
(1.0.14 &
1.C004)
CDR
Equalizer
Signal
Detect
RCXn P/N
Ingress
Device Address 4 PHY XGXS
54
Device Address 3 PCS
Device Address 1 PMA/PMD
ISL35822
Pin Specifications
Table 94. CLOCK PINS
PIN#
NAME
TYPE
DESCRIPTION
T9/T8
RFCP/RFCN
Input
LVPECL
Differential Reference Input Clock. The reference input clock frequency is line rate
clock frequency divided by 20 (full rate mode) or 10 (half rate mode). The pins are
internally biased at VDDA/2, and should be AC coupled.
C10
TXCLK20
Output
1.5V CMOS
Transmit Clock Output. Divided-by-20 transmit clock output.
Table 95. XAUI (XENPAK/XPAK/X2) SIDE SERIAL DATA PINS
PIN#
NAME
T14/T15
TXP0P/TXP0N
P14/P15
TXP1P/TXP1N
M14/M15
TXP2P/TXP2N
K14/K15
TXP3P/TXP3N
H14/H15
RXP0P/RXP0N
F14/F15
RXP1P/RXP1N
D14/D15
RXP2P/RXP2N
B14/B15
RXP3P/RXP3N
TYPE
DESCRIPTION
Output CML
Transmit Differential Pairs, Lane 0 to 3. CML High speed serial outputs.
Input CML
Receive Differential Pairs, Lane 0 to 3. CML High speed serial inputs. Differentially
terminated at 100Ω
Table 96. PMA/PMD (CX4/LX4) SIDE SERIAL DATA PINS
PIN#
NAME
A2/A3
TCX0P/TCX0N
C2/C3
TCX1P/TCX1N
E2/E3
TCX2P/TCX2N
G2/G3
TCX3P/TCX3N
R2/R3
RCX0P/RCX0N
N2/N3
RCX1P/RCX1N
L2/L3
RCX2P/RCX2N
J2/J3
RCX3P/RCX3N
TYPE
DESCRIPTION
Output CML
Transmit Differential Pairs, Lane 0 to 3. CML High speed serial outputs.
Input CML
Receive Differential Pairs, Lane 0 to 3. CML High speed serial inputs. Differentially
terminated at 100Ω
Table 97. JTAG INTERFACE PINS
PIN#
NAME
TYPE
DESCRIPTION
D12
TDI
Input (with pullup)
JTAG Input Data. 1.5V CMOS
B12
TDO
Output (open drain)
JTAG Output Data. 1.5V CMOS, 2.5V Tolerant
D8
TMS
Input (with pullup)
JTAG Mode Select. 1.5V CMOS
C12
TCLK
Input (with pulldown)
JTAG Clock. 1.2V CMOS, 2.5V Tolerant, with Schmitt trigger
C8
TRSTN
Input (with pullup)
JTAG Reset. 1.5V CMOS
55
ISL35822
Table 98. MANAGEMENT DATA INTERFACE PINS
PIN#
NAME
TYPE
DESCRIPTION
P11
MDIO
I/O (open drain output)
Management Address/Data I/O. 1.2V CMOS input, 2.5V Tolerant
R11
MDC
Input
Management Interface Clock. 1.2V CMOS, 2.5V Tolerant, with Schmitt trigger
R12
PADR[4]
Input
Management Port Address Setting 1.2V CMOS
T12
PADR[3]
P12
PADR[2]
N12
PADR[1]
T11
PADR[0]
Table 99. MISCELLANEOUS PINS
PIN#
NAME
N11
MF[0]
P10
MF[1]
B9
MF[2]
A10
MF[3]
N10
TYPE
DESCRIPTION
Output
1.5V CMOS
Multi-function Outputs, Lanes 0 - 3. The functions of these pins are enabled via the MDIO
Interface.
The default condition for these pins is PHY XGXS BIST_ERR. See Table 81 (bits MF_SEL
and MF_CTRL) for further details.
RSTN
Input
Chip Reset (FIFO Clear) Assert RSTN for at least 10µs from power up. Active low. Schmitt
trigger input, 1.2V CMOS, 2.5V tolerant.
D10
BIST_ENA
Input (with pulldown) Built-In Self Test Enable- Active High. When high, enables internal 223-1 byte PRBS test
function generator and checker. 1.5V CMOS
A11
LX4_MODE
Input (with pulldown) CX4/LX4 Mode Select. When high, LX4 mode is selected. When low, CX4 mode is
selected. This pin decides the trigger sources of LASI, and the default pre-emphasis and
equalization strength of the high speed serial port on the PMA/PMD side. 1.5V CMOS
B11
LASI
Output (open drain)
Link Alarm Status Interrupt Request. When low, pin indicates the existence of an incorrect
condition. An external 10-22kΩ pull-up to 1.2V or 1.5V is recommended. 1.2V CMOS, 2.5V
tolerant.
D7
OPTXLBC (1)
Input
TX Laser Bias Current. Optical monitoring input. Active level is latched into register bit
1.36868.9 and can be configured to trigger LASI. When this pin is not driven by an external
device, it should be pulled inactive (default down). 1.5V CMOS, 2.5V tolerant.
D5
OPTTEMP(1)
Input
Transceiver Temperature. Optical monitoring input. Active level is latched into register bit
1.36868.8 and can be configured to trigger LASI. When this pin is not driven by an external
device, it should be pulled inactive (default down). 1.5V CMOS, 2.5V tolerant.
D6
OPTXLOP(1)
Input
TX Laser Output Power. Optical monitoring input. Active level is latched into register bit
1.36868.7 and can be configured to trigger LASI. When this pin is not driven by an external
device, it should be pulled inactive (default down). 1.5V CMOS, 2.5V tolerant.
N8
TX_FAULT(2)
Input
TX Fault Condition. Transmitter (Egress) external fault input. Active level is latched into
register bits 1.10 and 1.36868.6 and can be configured to trigger LASI. When this pin is not
driven by an external device, it should be pulled inactive (default down). 1.5V CMOS, 2.5V
tolerant.
C5
OPRXOP(1)
Input
Receive Optical Power. Optical monitoring input 4. Active level is latched into register bit
1.36867.5 and can be configured to trigger LASI. When this pin is not driven by an external
device, it should be pulled inactive (default down). 1.5V CMOS, 2.5V tolerant.
A6
OPRLOS[3] (1)
Input
A5
OPRLOS[2] (1)
A7
OPRLOS[1] (1)
Optical Receiver Loss Of Signal. Optical monitoring input 5 – 8. Active (loss) levels are
latched into register 1.10 and can be configured to trigger LASI. When these pins are not
driven by an external device, they should pulled inactive (default down). 1.5V CMOS, 2.5V
tolerant.
B7
OPRLOS[0] (1)
D11
XP_ENA
Input
XENPAK Enable. Enable XENPAK support. Active high. Activates 2-wire serial bus
interface. 1.5V CMOS, 2.5V tolerant.
56
ISL35822
Table 99. MISCELLANEOUS PINS (Continued)
PIN#
NAME
TYPE
DESCRIPTION
D9
TX_ENC(1)
Input
Transmit enable input from XENPAK module input “TX ON/OFF”. Controls TX_ENA[3:0].
For normal operation, should be pulled active (default up). 1.2V CMOS
B5
TX_ENA[3] (1)
Output (open drain)
B6
TX_ENA[2] (1)
Transmit Laser Driver Enables. They are set active only when TX_ENC pin is active and
the corresponding bits in register 1.9 are set low. During RESET stage, these pins are
always low. 1.5V CMOS, 2.5V compatible.
T5
TX_ENA[1] (1)
R5
TX_ENA[0] (1)
Note (1): Active level of these pins is controlled by register 1.49181 (1.C01D’h), see Table 55. If unused, the TX_ENC pin can be tied high, and the register bit not
altered. Other unused input pins should be tied low, and the corresponding register bit not altered, so the default value of the register will allow Byte Synch and
cause a ‘No Fault’ indication in the LASI alarm status registers on RESET. See also Table 12, Table 27 and Table 28.
Note (2): Active level of this pin is controlled by register 1.49170 (1.C012’h), see Table 49. Otherwise Note 1 applies.
Table 100. I2C 2-WIRE SERIAL DATA INTERFACE PINS
PIN#
NAME
TYPE
DESCRIPTION
P9
SDA
I/O (open drain)
I2C Serial Address/Data I/O 1.5V CMOS, 2.5V Tolerant and Compatible
P8
SCL
I/O (open drain)
I2C Serial Interface Clock. 1.5V CMOS, 2.5V Tolerant and Compatible
C7
WRTP
Input
I2C Serial Interface Write Protection. When high, no write to protected
XENPAK basic NVR area is allowed. 1.5V CMOS, 2.5V Tolerant
R6
GPIO[4]
I/O (open drain)
P7
GPIO[3]
General Purpose I/O Can be used for optical monitoring and status
reporting, and to trigger LASI, or for external control functions. 1.5V CMOS,
2.5V Tolerant and Compatible
N7
GPIO[2]
N6
GPIO[1]
P6
GPIO[0]
Table 101. VOLTAGE SUPPLY PINS
PIN#
NAME
TYPE
DESCRIPTION
C6, C13, H13, J4, N5, N13
VDDPR
Supply
2.5V Protection Voltage Supply. May be same level as VDD if no inputs
or outputs go above the VDD level.
A4, A8, A9, A12, A13, B10, N9,
P4, P5
VDD
Supply
1.5V Digital and Core Supply
B4, C4, C14, D4, D13, E4, E13, VDDA
F4, F13, G4, G13, K4, K13, L4,
L13, M4, M13, N4, P13, R4, R13,
T4, T13
Analog Supply
1.5V Analog Supply. Should be decoupled from VDD
R7, T7
VDDAV
Analog Supply
Analog supply for VCO. Should be decoupled from VDDA
R10, T10
VDDAC
Analog Supply
Analog supply for CMU. Should be decoupled from VDDA
Ground
Ground. Electrically well grounded. Analog and Digital grounds are tied in
the device, but it is recommended that some separation be provided in the
PCB planes outside the device, to minimize the coupling between digital
signals and the analog sections of the device.
A1, A14, A15, A16, B1, B2, B3, GNDA
B8, B13, B16, C1, C9, C11, C15,
C16, D1, D2, D3, D16, E1, E14,
E15, E16, F1, F2, F3, F16, G1,
G14, G15, G16, H1, H2, H3, H4,
H16, J1, J13, J14, J15, J16, K1,
K2, K3, K16, L1, L14, L15, L16,
M1, M2, M3, M16, N1, N14, N15,
N16, P1, P2, P3, P16, R1, R8,
R9, R14, R15, R16, T1, T2, T3,
T6, T16
57
ISL35822
Pin Diagram 17x17mm (16*16 Ball Matrix) 192-pin EBGA-B Package
FIGURE 7. TOP VIEW OF PINOUT
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
16
GNDA GNDA GNDA GNDA GNDA GNDA GNDA GNDA GNDA GNDA GNDA GNDA GNDA GNDA GNDA GNDA
16
15
GNDA
RXP3
N
GNDA
RXP2
N
GNDA
RXP1
N
GNDA
RXP0
N
GNDA
TXP3
N
GNDA
TXP2
N
GNDA
TXP1
N
GNDA
TXP0
N
15
14
GNDA
RXP3
P
VDDA
RXP2
P
GNDA
RXP1
P
GNDA
RXP0
P
GNDA
TXP3
P
GNDA
TXP2
P
GNDA
TXP1
P
GNDA
TXP0
P
14
13
VDD
GNDA
VDD
PR
VDDA
VDDA
VDDA
VDDA
VDD
PR
GNDA
VDDA
VDDA
VDDA
VDD
PR
VDDA
VDDA
VDDA
13
12
VDD
TDO
TCLK
TDI
PADR
1
PADR
2
PADR
4
PADR
3
12
11
LX4_
MODE
LASI
GNDA
XP_E
NA
MF0
MDIO
MDC
PADR
0
11
10
MF3
VDD
TXCL
K20
BIST_
ENA
RSTN
MF1
VDDA
C
VDDA
C
10
9
VDD
MF2
GNDA
TX_E
NC
VDD
SDA
GNDA
RFCP
9
8
VDD
GNDA
TRST
N
TMS
TX_F
AULT
SCL
GNDA
RFCN
8
7
OPR
LOS1
OPR
LOS0
WRTP
OPTX
LBC
GPIO
2
GPIO
3
VDDA
V
VDDA
V
7
6
OPR
LOS3
TX_E
NA2
VDD
PR
OPTX
LOP
GPIO
1
GPIO
0
GPIO
4
GNDA
6
5
OPR
LOS2
TX_E
NA3
OPRX
OP
OPT
TEMP
VDD
PR
VDD
TX_E
NA0
TX_E
NA1
5
4
VDD
VDDA
VDDA
VDDA
VDDA
VDDA
VDDA GNDA
VDD
PR
VDDA
VDDA
VDDA
VDDA
VDD
VDDA
VDDA
4
3
TCX0
N
GNDA
TCX1
N
GNDA
TCX2
N
GNDA
TCX3
N
GNDA
RCX3
N
GNDA
RCX2
N
GNDA
RCX1
N
GNDA
RCX0
N
GNDA
3
2
TCX0
P
GNDA
TCX1
P
GNDA
TCX2
P
GNDA
TCX3
P
GNDA
RCX3
P
GNDA
RCX2
P
GNDA
RCX1
P
GNDA
RCX0
P
GNDA
2
1
GNDA GNDA GNDA GNDA GNDA GNDA GNDA GNDA GNDA GNDA GNDA GNDA GNDA GNDA GNDA GNDA
1
A
B
C
D
58
E
F
G
H
J
K
L
M
N
P
R
T
ISL35822
Package Dimensions
FIGURE 8. EBGA-192 PACKAGE DIMENSIONS
59
ISL35822
Electrical Characteristics
Absolute Maximum Ratings
Table 102. ABSOLUTE MAXIMUM RATINGS
SYMBOL
MIN
MAX
UNITS
-0.5,
VDD - 0.5
2.6,
VDD + 2.0
V
All Other Power Supply Voltages
-0.5
1.65
V
V INCML
CML DC Input Voltage
-0.5
VDD + 0.5
V
IOUTCML
CML Output Current
- 50
+50
mA
V INCMS1
1.2V CMOS Input Voltage
-0.5
VDD + 0.5
V
V INCMS2
1.5V CMOS Input Voltage
-0.5
VDD + 0.5
V
V INCMS3
2.5V Tolerant CMOS Input Voltage
-0.5
2.6
V
Tstg
Storage Temperature
- 55
125
°C
Tj
Junction Temperature
- 55
125
°C
220
°C
2000
V
VDDPR
VDDA, VDD, VDDAC,
VDDAV
PARAMETER
2.5V Protection Power Supply Voltage
TSOL
Soldering Temperature (10s)
V ESD
Maximum Input ESD (HBM)
-2000
Note (1): These ratings are those which if exceeded may cause permanent damage to the device. Operation at these or any other conditions in excess of those listed
under Operating Conditions below is not implied. Continued exposure to these ratings may reduce device reliability.
Operating Conditions
All Standard Device specifications assume TC = 0°C to +85°C, VDDAC = VDDAV = VDD = VDDA = 1.5V ± 5%, VDDPR = VDD or 2.4V ± 0.1V, unless
otherwise specified.
The Low Power Device specifications assume TC = 0°C to +85°C, VDDAC = VDDAV = VDD = VDDA = 1.355V ± 4%, VDDPR = VDD or 2.4V ± 0.1V,
unless otherwise specified.
Table 103. RECOMMENDED OPERATING CONDITIONS
SYMBOL
VDDA VDDAV,
VDDAC & VDD
PARAMETER
Core and Serial I/O Power Supply
Voltages
MIN
NOM
MAX
UNITS
(Standard Device)
1.425
1.5
1.575
V
(Low Power Device)
1.300
1.355
1.410
V
2.5
V
+70
°C
+85
°C
VDD
(1)
TA
Ambient Operating Temperature(2)
0
25
TC
Case Operating Temperature
0
VDDPR
Control I/O Protection Power Supply Voltage
Note (1): The VDDPR supply should be tied to a level at or above VDD, and at the highest level expected on any “2.5V tolerant” control pin, consistent with the above
ratings.
Note (2): For reference only. All testing is performed based on Case Temperature.
Table 104. POWER DISSIPATION AND THERMAL RESISTANCE
SYMBOL
PD
TYP(1)
MAX(1)
UNITS
(Standard Device, CX4 Mode)
1650
1830
mW
(Low Power Device, LX4 Mode)
1250
1350
mW
PARAMETER
Power Dissipation(2)
θJC
Thermal Resistance, Junction to Case
2.0
°C/W
θCA
Thermal Resistance, Case to Ambient (still air, gap filler & cold plate)
13.0
°C/W
θCA
Thermal Resistance, Case to Ambient (still air only)
31.0
°C/W
Note (1): The ‘Max’ value is at the maximum supply voltages, while the ‘Typ’ value is at the nominal supply voltages. The power dissipation is not significantly affected
by the VDDPR supply (see Table 111 for the distribution of power between the supplies). The “Mode” setting is assumed to be the default for that mode.
Note (2): The operating power varies slightly with the data pattern. The part is tested using the PRBS23 (223-1 byte) pattern.
60
ISL35822
DC Characteristics
Table 105. PMA SERIAL PIN I/O ELECTRICAL SPECIFICATIONS, CX4 MODE (3)
SYMBOL
MIN
TYP
MAX
UNITS
Peak-To-Peak Differential Voltage Input Requirement (1)
100
>60
2000
mV
VP-POUT2
Peak-To-Peak Differential Voltage Output
(ZO = 100Ω differential load), definition as per IEEE 802.3ak-2004(2) ,
Standard Device Only
800
1000
1200
mV
∆VP-POUT2
Difference between VP-POUT2 from Lane to Lane on any group (CX4 or
XAUI) (2)
75
150
mV
VP-PIN
PARAMETER
VCMO
Output Common Mode Voltage
VCMI
Internal Input Common Mode Voltage
VDD-.5
V
0.4
V
Note (1): Measured at TP3 as defined in the IEEE 802.3ak-2004 specifications. This value is needed in each IPG to maintain the SIG_DET function active. The
ISL35822 will provide a BER < 1 in 10-12 under the conditions of clause 54.6.4.1 of the specification.
Note (2): Measured at TP2 as defined in the IEEE 802.3ak-2004 specifications.
Note (3): CX4 Mode not specified for low power Vdd = 1.35V operation; “Standard Device” conditions are required.
Table 106. PMA SERIAL PIN I/O ELECTRICAL SPECIFICATIONS, LX4 MODE
SYMBOL
VP-PIN
VP-POUT2
PARAMETER
UNITS
MIN
TYP
MAX
Peak-To-Peak Differential Voltage Input Requirement
mV
100
>60
2000
Peak-To-Peak Differential Voltage Output
(ZO = 100Ω differential load)
(Standard)
mV
800
1100
1600
(LowPower)(1)
mV
650
VCMO
Output Common Mode Voltage
V
VDD-.5
VCMI
Internal Input Common Mode Voltage
V
0.4
Note (1): ISL35822LPIK only
Table 107. PHY XS SERIAL PIN I/O ELECTRICAL SPECIFICATIONS, XAUI MODE
SYMBOL
VP-PIN
VP-POUT2
PARAMETER
MIN
TYP
MAX
UNITS
Peak-To-Peak Differential Voltage Input Requirement
100
>60
2000
mV
Peak-To-Peak Differential Voltage Output (1)
800
1200
1600
mV
(ZO = 100Ω differential load), definition as per 802.3ae-2002
VCMO
Output Common Mode Voltage
VCMI
Internal Input Common Mode Voltage
VDD-.6
V
0.4
V
Note (1): Tested with CJPAT test pattern.
Table 108. EXTERNAL 1.2V CMOS OPEN DRAIN I/O ELECTRICAL SPECIFICATIONS
VPULL = External pullup Voltage, not to exceed VDD
SYMBOL
PARAMETER
MIN
MAX
UNITS
22
kΩ
200
mV
VPULL -0.4
VPULL
V
External pullup resistor for open drain O/P(1)
10
VOL
Output Low Voltage Level (IOL = 4mA) (2)
0
VOH
Output High Voltage Level (1)
RPullup
TYP
120
VIL
Input Low Voltage Level
-0.2
0.360
V
VIH
Input High Voltage Level
0.840
VDD+0.2
V
Hysteresis on Schmitt Trigger Inputs (3)
100
IIL
Input Low Current, VIN = 0.0V
-80
IIH
Input High Current, VIN = VDD
VHYST
Note (1): XENPAK MSA recommended for LASI pin.
Note (2): For MDIO and LASI pins.
Note (3): Only for RSTN and MDC pins.
61
150
mV
µA
.1
10
µA
ISL35822
Table 109. 1.5V CMOS INPUT/OUTPUT ELECTRICAL SPECIFICATIONS
SYMBOL
PARAMETER
MIN
TYP
MAX
UNITS
0
200
400
mV
VOL
Output Low Voltage Level (IOL = 2 mA)
VOH
Open Drain Output High Voltage Level(1)
VDD -0.4
VDD
V
VOH
Output High Voltage Level (IOH = 2mA)(2)
VDD -0.4
VDD
V
VIL
Input Low Voltage Level
-0.2
0.3*VDD
V
VIH
Input High Voltage Level
0.7*VDD
VDD+0.2
V
IILPU
IIL
Input Low Current, VIN = 0.0V, with pull-up (3)
-100
40
µA
Input Low Current, VIN = 0.0V
-10
-1
µA
Input High Current, VIN = VDD, w. pull-down (4)
IIHPD
IIH
100
200
µA
1
10
µA
Input High Current, VIN = VDD
Note (1): Assumes pullup to VDD.
Note (2): For MF[3:0] and TXCLK20 pins only
Note (3): For TDI, TMS, TRSTN pins only
Note (4): For TCLK, BIST_ENA, LX4_MODE pins only
Table 110. 2.5V TOLERANT OPEN DRAIN CMOS INPUT/OUTPUT ELECTRICAL SPECIFICATIONS
VPULL = External pullup Voltage, not to exceed 2.5V or VDDPR
SYMBOL
MIN
TYP
MAX
UNITS
External pullup resistor for all I/P, open drain O/P
10
15
22
kΩ
VOL
Output Low Voltage Level (IOL = 2mA)
0
200
400
mV
VOH
Output High Voltage Level (IOH = 100µA)
Least of 2.5 & VPULL -0.4
2.5
VPULL
V
-0.2
0.3*VDD
V
0.7*VDD
VDDPR+0.2(1)
V
RPullup
VIL
VIH
PARAMETER
Input Low Voltage Level
Input High Voltage Level
Hysteresis on Schmitt Trigger Inputs (2)
100
IIL
Input Low Current, VIN = 0.0V
-80
IIH
Input High Current, VIN = 1.5V
VHYST
150
mV
µA
.1
Input High Current, VIN = 2.6V or VDDPR
10
µA
100
µA
Note (1): Input voltage beyond RPullup pullup resistor; pin should not exceed VDDPR value
Note (2): Only TCK pin.
Table 111. OTHER DC ELECTRICAL SPECIFICATIONS
SYMBOL
IDDAV + IDD +
IDDA + IDDAC
PARAMETER
Total 1.5V Supply Current, TA = 25°C
MIN
TYP
MAX
1100(2)
UNITS
mA
Total 1.5V Supply Current, TC = 0 to 85°C(1)
1162(1,2)
mA
Total 1.355V Supply Current, TC = 0 to 85°C(1,3)
935
960(1,3)
mA
Protection Voltage Supply Current
0.1
5
mA
Analog Supply Current
810
mA
IDDAV, IDDAC
VCO, CMU Supply Current
35
mA
IDD
Digital Core Supply Current
210
mA
IDDPR
IDDA
Note (1): The Maximum limit is measured using a PRBS23 pattern. The supply current for the CRPAT test pattern is very slightly lower, and for the CJPAT pattern is
typically 20mA lower.
Note (2): This is measured in CX4 Mode, with bits 1.C01B.5:2 at F’h.
Note (3): This Maximum limit refers to the LowPower part only, and is measured at 1.410V in LX4 mode, with bits 1.C01B.5:2 at 0’h.
62
ISL35822
AC and Timing Characteristics
All specifications assume TC = 0°C to +85°C, and VDDAC = VDDAV = VDD = VDDA = 1.5V ± 5% (for the Standard Device) or VDDAC = VDDAV = VDD
= VDDA = 1.35V ± 4%(for the Low Power Device), VDDPR between VDD and 2.5V, unless otherwise specified.
Table 112. REFERENCE CLOCK REQUIREMENTS
SYMBOL
PARAMETER
MIN
MAX
UNITS
124.4
159.375
MHz
-100
+100
ppm
1.5
ns
Ref clock frequency range(1)
∆FREF
Ref clock frequency offset
TREFRF
Ref clock Rise and Fall Time
DTCREF
Ref clock duty cycle
45
Ref Clock Voltage Swing(2)
300
FREF
∆VREF
VCM
Internal Common Mode Voltage
TYP
50
55
%
1000
mV
VDD/2
V
Note (1): System requirements are normally much more restrictive, typically ± 100 ppm. This specification refers to the full reference clock frequency range over which
the ISL35822 will operate.
Note (2): Single-ended peak-to-peak swing.
Table 113. TRANSMIT SERIAL DIFFERENTIAL OUTPUTS (SEE Figure 9, Figure 10 AND Figure 11)
SYMBOL
PARAMETER
MIN
TCXnP/N and TXPxP/N output data rate
TYP
2.448
MAX
UNIT
3.1875
Gbps
TDR
Differential Rise time (20%-80%)
60
110
130
ps
TDF
Differential Fall time (20%-80%)
60
110
130
ps
TDTOL
Differential Skew Tolerance
TBD
ps
TODS
Lane to Lane Differential Skew (2)
15
ps
Differential Output Impedance
100
Ω
Differential Return Loss (to 2.5GHz)
TXRJ
Random Jitter (RMS, 1100 pattern)(1)
10
2.488Gbps
2
4.5
ps
3.125Gbps
2.5
4.5
ps
TBD
TBD
ps
8
ps
8
ps
8
ps
MAX
UNITS
3.1875
Total Jitter (RMS, PRBS7 pattern)
dB
2.488Gbps
3.125Gbps
6
3.1875
Note (1): Strictly the 1100 pattern causes a small additional non-random jitter, so that the true random jitter is slightly less than that shown.
Note (2): Parameter is guaranteed by design
Table 114. RECEIVE SERIAL DIFFERENTIAL INPUT TIMING REQUIREMENTS (SEE Figure 11)
SYMBOL
PARAMETER
MIN
TYP
RCXnP/N & RXPnP/N Input Data Rate
2.448
3.1875
Gbps
Input Rate deviation from Reference Clock
-200
+200
ppm
2500
bits
Frequency Lock after Power-up
2
µs
TDTOL
Input Differential Skew
75
ps
TDJ
Deterministic Jitter(1,2)
Bit Synchronization Time
TJI
Total jitter tolerance
Note (1): Jitter specifications include all but 10-12 of the jitter population.
Note (2): Near end driven by ISL35822 Tx without pre-emphasis.
63
2.488Gbps
TBD
UI
3.125Gbps
0.7
UI
3.1875
TBD
UI
2.488Gbps
TBD
UI
3.125Gbps
0.88
UI
3.1875
TBD
UI
ISL35822
Table 115. MDIO INTERFACE TIMING (FROM IEEE802.3AE) (SEE Figure 15 TO Figure 17)
SYMBOL
PARAMETER
MIN
TYP
MAX
UNIT
300
ns
TMDCD
ISL35822 MDIO out delay from MDC
0
5.0
TMDS
Setup from MDIO in to MDC
10
1.5
ns
TMDH
Hold from MDC to MDIO in
10
1.5
ns
TMDC
Clock Period MDC (1)
100
400
ns
TMDV
MDC Clock HI or LO time(1)
20
160
ns
TUpdate
Delay from last data bit to register update(2)
2
TMDC
CMD
Input Capacitance
10
pF
Note (1): The ISL35822 will accept a much higher MDC clock rate and shorter HI and LO times than the IEEE802.3 specification (section 22.2.2.11) requires. Such a
faster clock may not be acceptable to other devices on the interface.
Note (2): The ISL35822 MDIO registers will not be written until two MDC clocks have occurred after the frame end. These will normally count toward the minimum
preamble before the next frame, except in the case of writing a RESET into [1,3,4].0.15, see Figure 17.
Table 116. RESET AND MDIO TIMING (SEE Figure 17)
SYMBOL
PARAMETER
TRSTBIT
Reset bit Active width
TMDRST
Delay from Reset bit to first active preamble count
MIN
TYP
MAX
2
240
256
UNITS
TMDC
282
TREFCLK
Table 117. RESET AND I2C SERIAL INTERFACE TIMING (SEE Figure 18 AND Figure 24)
SYMBOL
TRESET
PARAMETER
RSTN Active width
MIN
TYP
MAX
UNITS
µs
10
TWAIT
Delay from RSTN to I2C SCL Start
10
ms
TTRAIN
I2C ‘training’ (external reset)
30
TCLAH_L
Period of I2C SCL Clock Line (400kHz)
2.5
µs(1)
TSCL_DAV
Setup from I2C SDA Data Valid to SCL edge
100
ns
TSDA_CLV
Setup, Hold from SDA for START, STOP
600
ns
TCLAH_L
CI2C
Input Capacitance
10
pF
Note (1): Assuming RFCP-N clock is 156.25MHz, and register bits 1.8005.6:4 set for 400kHz (Table 20). SCL clock period scales with reference clock frequency. Also,
per the I2C specification, the SCL ‘High’ time is stretched by the time taken for SCL to go high after the ISL35822 releases it, to allow an I2C slave to demand
additional time. Any RC delays on the SCL line will add to the SCL ‘High’ time, in increments of approximately 100ns.
64
ISL35822
Timing Diagrams
FIGURE 9. DIFFERENTIAL OUTPUT SIGNAL TIMING
TDR
TDF
TCX[3:0]P-N,
TXP[3:0]P-N
TR
TF
TCX[3:0]P,
TXP[3:0]P
TDTOL
TCX[3:0]N,
TXP[3:0]N
FIGURE 10. LANE TO LANE DIFFERENTIAL SKEW
TODS
TXP[3:0]P/N,
TCX[3:0]P/N
TXP[3:0]P/N,
TCX[3:0]P/N
FIGURE 11. EYE DIAGRAM DEFINITION
Unit Interval (UI)
Vpp (single-ended)
Vcm
Total Jitter
Eye Width
65
ISL35822
FIGURE 12. BYTE SYNCHRONIZATION
None
Not Comma
Comma
Idle
Data
RCX[3:0]P-N,
RXP[3:0]P-N
RT SYNC
Internal
FIFO Data
RT LAT
Error
Random
Comma
Idle
Data
RefCLK
Internal
Byte Clock
RXCLK
FIGURE 13. LANE-LANE ALIGNMENT OPERATION
RCX[3:0] -> TXP[3:0] shown, RXP[3:0] -> TCX[3:0] is identical
Align
Serialized RCX0
Idle
Idle
Data
----to---Serialized RCX2
Data
RTSKEWIN
Idle
Idle
Idle
Data
Data
Data
Align
Data
Data
Data
Data
Align
Serialized RCX3
Serialized TXP0
Idle
Idle
Idle
Idle
Data
Idle
Data
Idle
----to---Serialized TXP3
Data
Data
Idle
Data
Data
RTSKEW
Idle
Idle
Idle
Idle
Idle
Data
FIGURE 14. RETRANSMIT LATENCY
Idle
Data
RCX[3:0]P-N,
RXP[3:0]P-N
RTLAT
Idle
TXP[3:0]P-N,
TCX[3:0]P-N
66
Data
Data
Data
ISL35822
FIGURE 15. MDIO FRAME AND REGISTER TIMING
Read Operations Shown in Red
frame
Prev
Preamble ST
OP Prt/Dev Ad TA
Address/Data Idle/Preamble
MDIO (from STA)
MDC
MDIO (from MMD)
TUpdate
TPreamble
Old Data
Register Contents
New Data
FIGURE 16. MDIO INTERFACE TIMING
STA Æ MMD
TA (for READ Ops)
MMD Æ STA
MDIO
MDD Sourced
T MDC
MDC
MDIO
STA Sourced
T MDH TMDSU
67
TMDCD
ISL35822
FIGURE 17. MDIO TIMING AFTER SOFT RESET (D.0.15)
(Internal States,
not observable)
D.0.15
reset
Bit reset
T RSTBIT
T MDRST
MDIO
engine
1 st preamble
bit
Engine reset, ignores
preamble
MDC
FIGURE 18. BEGINNING I2C NVR READ AT THE END OF RESET
condition
RST
wait
train
TUpdate
TConfig
wait
Read NVR
Read DOM
(done)
TTRAIN
TRESET
RSTN
SCL
SDA
TWAIT
TWAIT
Default Data
Control Registers
Auto-Config Data
FIGURE 19. I2C BUS INTERFACE PROTOCOL
SDA
acknowledgement
signal from slave
MSB
acknowledgement
signal from receiver
byte complete,
interrupt within slave
clock line held low while
interrupts are served
SCL
S
or
Sr
1
START or
repeated START
condition
68
2
7
8
9
ACK
1
2
3-8
9
ACK
Sr
or
P
STOP or
repeated START
condition
ISL35822
FIGURE 20. NVR/DOM SEQUENTIAL READ OPERATION
A
C
K
A
C
K
S
slave addr
word addr
W
S
A
C
K
A
C
K
slave addr
R
read data
A
C
K
read data
A
C
K
A
C
K
read data
no ACK
last read data
P
FIGURE 21. NVR SEQUENTIAL WRITE ONE PAGE OPERATION
A
C
K
S
slave addr
A
C
K
word addr
W
A
C
K
A
C
K
A
C
K
write data
write data
A
C
K
A
C
K
write data
write data
no ACK
last write data
P
FIGURE 22. I2C SINGLE BYTE READ OPERATION
A
C
K
S
slave addr
A
C
K
W
word addr
A
C
K
S
slave addr
R
no ACK
read data
FIGURE 23. SINGLE BYTE WRITE OPERATION
A
C
K
S
slave addr
W
W
69
A
C
K
word addr
A
C
K
write data
P
P
ISL35822
FIGURE 24. I2C OPERATION TIMING
T SCL_DAV
T SDA_CLV
T SCLH_L
T SDA_CLV
SCL
SDA
Start
Data
Data
Stop
Applications Information
CX4/LX4/XAUI Re-timer Setup
This section discusses the setup for the ISL35822 to be
used as a XAUI/CX4/LX4 Retimer. The various descriptions
and comments further assume that the device is initially
configured in the default condition (i.e. exactly as found after
a hardware reset). The BIST_ENA pin should be pulled
LOW (to GND); the pin has an internal pulldown to this
value. The LX4_MODE select pin should be tied to the
appropriate level, depending on whether the ISL35822 is
interfaced to a CX4 connection, or a XAUI/LX4 interface
(where it is assumed that the electro-optical interface is
XAUI-compatible).
Although the ISL35822 will come out of reset with CX4 or
LX4-directed values, some of these default register settings
may need to be changed, for optimum operation in any
specific application. All of these may be set via the AutoConfigure operation (See “Auto-Configuring Control
Registers” on page 16).
The default values of pre-emphasis and receive equalization
set by the LX4_MODE select pin may need to be adjusted,
particularly if the serial 3Gbps PCB traces on the ‘host’ side
(the XAUI or the XENPAK/XPAK/X2 side) are long, (in which
case the PHY XS values may need adjustment), or if the
connection to a CX4 connector or laser driver and photo
detector and limiting amplifier involve extra connectors, long
traces, or enhanced edge rates (in which case the PMA/D
values should be adjusted). Note that in LX4 mode, the
PMA-side pre-emphasis will have to be enabled, and the
power consumption of the device will be increased.
The default value of the PMA/D and PHY XS XAUI_EN bits
is set at ‘1’, and for normal XAUI or CX4/LX4 operation, this
is usually the best setting for this use. Byte alignment will
follow the IEEE 802.3ae PCS SYNC specification, Lane
alignment will follow the DESKEW algorithm in the same
specification, and the pseudo-random /A/K/R/ generation in
70
IDLE will also be performed according to the same
specifications.
For certain non-10GBASE-X uses, or for debug and problem
analysis purposes, and in particular for certain BIST testing,
it may be advantageous to change some of the settings. To
achieve this, the relevant (PMA/D and/or PHY XS) XAUI_EN
bits must be turned off (to ‘0’), since otherwise they will
override many of the other registers’ bits (see Table 65). For
instance, if it desirable to change Byte Alignment to a
simpler algorithm than the IEEE-defined one (if, for example,
only three of the four lanes are working), the
PCS_SYNC_EN bit(s) (Table 63 and/or Table 80) may be
turned off, and (with the respective XAUI_EN bit off), byte
(code group) alignment on the working lanes will now
function. Similarly, setting the A_ALIGN_DIS bit in the
PCS/PHY XS Control Register 2 ([3,4].C000’h) will cause
lane alignment to occur on IDLE to non-IDLE transitions
across all four lanes, instead of lane alignment on ||A||
(K28.3) character columns when this bit is set to a zero. The
internal (pseudo-XGMII) ERROR character can be set to a
value other than 1FE’h by writing the value (without the K bit)
to register 3.C002’h or 4.C002’h. Similarly, the internal
(pseudo-XGMII) IDLE character may be changed using
registers 3.C003’h and/or 4.C003’h. The pseudo-random
XAUI/CX4/LX4 IDLE /A/K/R/ generator can be disabled by
clearing the AKR_SM_EN bit in register 3.C001’h (PCS) or
4.C001’h (PHY XS). To disallow complete regeneration of
the Inter Packet Gap (IPG), it would be desirable to clear the
TRANS_EN bit in register 3.C001’h/4.C001’h.
Recommended Analog Power and Ground Plane
Splits
The ISL35822 high-speed analog circuits as well as highspeed I/O draw power from the analog power (VDDA) and
(shared) ground GNDA pins/balls (pins or balls will be used
inter-changeably through out this document). In order for the
ISL35822 to achieve best performance, the VDDA and
ISL35822
GNDA should be kept as “quiet” as possible. There are also
two further analog supplies, VDDAC and VDDAV for the CMU
and VCO respectively. These two also need to be kept quiet.
The VDDA, VDDAC, VDDAV and VDD voltage requirements of
the standard ISL35822 are all 1.5V (for the Low Power
LX4-only version 1.355V). The ripple noise on the VDDA#
voltage rails should be as low as possible for best jitter
performance. Therefore, in the layout, each VDDA should be
decoupled from the main 1.5V(1.355V) supply by means of
cut outs in the power plane, and the power to the individual
VDDA areas supplied through ferrite beads (1A capability is
recommended). The cut out spacing should be at least 20mil
(0.5mm).
A “quiet” analog ground also enhances the jitter performance
of the ISL35822 as well. A similar cut out in the ground plane
is recommended, to isolate the analog sections from the
digital ones.
Recommended Power Supply Decoupling
For the ISL35822, the decoupling for VDDA VDD, VDDAC,
and VDDAV must all be handled individually.
VDDA (1.5V/1.355V) provides power to most of the analog
circuits as well as the high speed I/Os. The analog power
supply VDDA must have an impedance of less than 0.4Ω
from around 50kHz to over 1GHz. This can be achieved by
using one 22µF (1210 case size, Ceramic), and eleven
0.1µF (0402 case size, ceramic), and eleven 0.01µF (0402
case size, ceramic) capacitors in parallel. The 0.01µF and
0.1µF 0402 case size capacitors must be placed right next to
the VDDA balls as close as possible. Note that the 22µF
capacitor must be ceramic for the lowest ESR possible, and
must be of 1210 case size or better to achieve this. The
0.01µF capacitors should be of case size 0402 or better,
offering the lowest ESL to achieve low impedance towards
the GHz range. Also, note that the ground of these
capacitors must be well connected to GNDA.
Similarly VDDAC and VDDAV (also 1.5V/1.355V) supply the
frequency (and hence jitter) determining sections of the
ISL35822. They should each be decoupled using one 22µF
ceramic lowest-ESR-possible capacitor, and one each of
0.01µF and 0.1µF. The latter especially should be close to
the respective balls of the device, with a low impedance
trace-path to the device and to GNDA.
The VDD (1.5V/1.355V) supply is the power rail for the
ISL35822core logic circuit. For this supply, at least three
0.1µF (0402 case size), three 0.01µF (0402 case size) and a
10µF (tantalum or ceramic) capacitor are recommended.
Place the 0.01µF and 0.1µF capacitors as close to the VDD
balls as possible.
VDDPR (recommended 2.5V or less) is used for certain ESD
protection circuits; at least two 0.01µF (0402 case size), and
two 0.1µF (0402 case size) capacitors are recommended.
Place the 0.01µF and 0.1µF capacitors as close to the
71
VDDPR balls as possible. If the VDDPR supply can be
applied faster or earlier than the VDD supply, it is
recommended that a limiting clamp be provided to maintain
the Absolute Maximum Rating limits of Table 102. A simple
example of such a clamp is given in Figure 25, using a small
shunt regulator. Since the power dissipation of the regulator
is negligible except during the supply power-up time
difference, no special heat dissipation precautions are
needed.
XENPAK/XPAK/X2 Interfacing
The ISL35822 incorporates a number of features that
facilitate interface to the (pin-function-compatible) XENPAK,
XPAK and X2 interfaces. The relevant 3.125Gbps serial lines
in the ISL35822IK are brought out in exactly the correct
order to be connected to the edge connector, minimizing any
layout problems, and the use of vias, in PCB design.
Furthermore, the ISL35822 device also incorporates the
logic required to handle the TX_ON/OFF and LASI pins, to
interface (via an I2C bus) with an EEPROM (or similar
device) to load the NVR space with all the MDIO register
values specified in the XENPAK MSA R3.0 specification
(which are referenced, with only minor OUI-number type
changes in the XPAK and X2 specifications), and to transfer
Digital Optical Monitoring (DOM) information from typical
I2C-interface devices into the XENPAK (etc.) specified MDIO
space. If the XP_ENA pin is high at the end of hardware or
full MDIO reset, the I2C engine will attempt to read whatever
device is on the bus at the A0:00’h address. If it succeeds, it
will read the A0:01’h address, and so on, till it reaches
A0:FF’h. If at any point the number of I2C Acknowledge
(ACK) failures on any address exceeds the limit set in
register 1.8005’h (see Table 20) the NVR load will fail, and
the result of the operation in 1.8000’h will report the failure.
If a suitable device with 256 bytes at the A0 device address
(either a serial EEPROM device like the Atmel AT24C02A or
a device such as the Micrel MIC3000 or the Dallas
Semiconductor DS1852) is present, the data in it will thus be
transferred to the MDIO register space. Most of this data is
merely copied to the MDIO space, but a few specific items
(listed in Table 22) have additional effects, for example
providing the ‘Package OUI values for 1.14:15, or the DOM
Capability bits in the 1.807A register.
If these DOM Capability bits (listed in Table 23) indicate that
the 2-wire bus has a device (again such as the Micrel
MIC3000 or the Dallas Semiconductor DS1852) oriented to
performing the SFF-8472-defined DOM function, the
ISL35822 will attempt to read the data from that device into
the MDIO DOM Alarm and Warning Thresholds registers
(see Table 32), and the current A/D value and flag registers
(see Table 33, Table 36 and Table 37). If the XENPAK DOM
Operation Control and Status Register (see Table 38) is set
appropriately, the DOM current A/D value and flag registers
will be updated periodically from all the DOM device(s), via
ISL35822
the DOM device pointers in Table 54 and Table 55. See "I2C
Interfacing" below for more details.
CX4 Interfacing
The relevant 3.125Gbps serial lines in the ISL35822IK are
brought out in exactly the correct order to be connected to
the CX4 connector, using either the top layer of the PCB for
striplines, or an inner layer for microstrip lines, without any
necessity for crossing the various leads. There are GNDA
pins between each serial line pair, and special care has been
taken to facilitate the optimal separation of the TX3 and RX3
line pairs. Increasing the PCB trace separation between
these pairs, and adding a strip of GNDA, will decrease the
crosstalk effects, which are normally most severe for this
pair. Note that the CX4 output will not reliably meet the CX4
specification with the VDDA VDD, VDDAC, and VDDAV
supplies as low as 1.344V (1.4V-4%), so the Low Power
version device is not recommended for this usage.
LX4 Interfacing
In LX4 mode, the serial PMA/PMD outputs are by default set
up without pre-emphasis, since it is anticipated that the laser
driver circuits will be located only a short distance away. This
can be overridden by the Auto-configure capability, if
desired, to accommodate a lossy or long interconnect, and
to provide enhanced high-frequency drive if needed by the
laser driver. However, the Predrivers will need to be powered
up, increasing the device power dissipation. Similarly, the
receiver inputs are set up by default without equalization.
Again, this can be overridden by the Auto-configure
capability, if desired, to accommodate a lossy or long
interconnect, and to compensate for poor high-frequency
performance in the photodetectors. Under ‘Standard’ part
conditions, these signals are XAUI-compatible. Under the
‘Low Power’ supply voltage conditions, the output drive may
fall below the XAUI specification. This is normally not a
problem for laser drivers, but if Low Power operation is
desired, this should be checked.
Many lasers and laser drivers require setting of the laser
bias and modulation currents, to optimize the performance.
This is frequently done via digitally controlled resistors or
current sources, many of which have I2C interfaces for
setting the values, often as a function of temperature. By
ensuring that the Device Addresses of these circuits are
distinct from those of the NVR, and any separate DOM
circuits provided, the I2C interface of the ISL35822 can be
used to initialize the setups of these circuits. The technique
described under “Byte Writes to EEPROM space” on
page 19 can always be used in this case. This can be done
after a module is fully assembled, if necessary using one of
the ‘spare’ pins on the XENPAK connector, or a GPIO pin, to
enable writing to the relevant circuits.
MDIO/MDC Interfacing
The MDIO and MDC lines in the ISL35822 have been
designed to maximize compatibility both with older systems,
72
that may use logic levels compatible with 3.3V CMOS
designs (such as specified in IEEE 802.3-2002 Clause 22),
and newer systems compatible with the levels specified in
the 10GE specification IEEE 802.3ae-2002 (based on 1.2V
supplies), and systems using intermediate supply voltages.
In general, no problems should occur in any such
applications, provided the resistive pull-ups go to no higher
than a nominal 2.6V. However, the ISL35822 is inherently a
very high-speed device, and the falling-edge-rates
generated by the part can be quite high. To avoid problems
with excessive coupling between the MDIO line and the
MDC line, and consequent generation of false clock-edges
on the MDC line, and hence incorrect MDIO operation, the
MDC line has been given a Schmitt trigger input.
Note that the MDIO registers will not be written till AFTER up
to three additional clocks after the end of a WRITE frame
(see Figure 15). It is recommended that MDC run
continuously, but if this is not possible, extra clocks should
be added after a WRITE. These will count toward the
preamble for the next frame (except when the byte written
caused a Soft Reset, see Figure 17, and extra preambles
may be required).
I2C Interfacing
The I2C interface, normally used to provide the NVR
requirements for XENPAK/XPAK/X2 MSA modules, consists
of two lines, SCL and SDA. These conform to the I2C
specification (‘THE I2C-BUS SPECIFICATION, Version 2.1’,
at URL
http://www.semiconductors.philips.com/acrobat/literature/93
98/39340011.pdf) for Standard-mode (to 100kHz) and Fastmode (to 400kHz) operation. The ISL35822 is a bus master,
and expects to see the NVR EEPROM and/or DOM circuits
as slaves. Particularly if Fast-mode operation is desired, the
capacitance of and coupling between the SCL and SDA lines
should be minimized. Since these lines are ‘open drain’, the
rise time of the SCL line will inherently stretch the ‘low’ time
of the line, as seen by the ISL35822, due to the effect of the
RC time constant of the pull-up resistor and the line
capacitance. This will slow down the operation of the
interface. If the other I2C devices on this bus are 3.3V
devices, their VIH levels should be checked to ensure
satisfactory logic operation if the pull-up resistors are taken
to a nominal 2.5V. If they will work from a lower voltage, the
resistors can be taken to any such voltage down to the VDD
level. The above reference includes charts for the values of
the resistors, based on the capacitance of the line, and the
desired clock rate. For the default operation speed of
nominally 100kHz, a value of 5kΩ to 15kΩ will normally be
suitable, while for Fast-mode operation, 2kΩ to 4kΩ will
normally be needed. If a 2.5V supply is not available,
resistive dividers may be used to ensure that the signals on
the ISL35822 lines do not exceed that level. Some examples
are shown in Figure 26.
ISL35822
DOM Interfacing
The NVR interface has already been discussed above
(“XENPAK/XPAK/X2 Interfacing” on page 71). The ISL35822
also includes a flexible DOM interface. See “DOM Registers”
on page 16 for details. Most laser drivers and receivers
(TOSA and ROSA) include monitor outputs reflecting the
Laser Bias Current, the Laser Output Power, and/or
Received Optical Power. Some of these analog outputs are
referenced to GND, others to an appropriate VDD. For use
in the optional DOM system, these values need to be
converted to digital values, compared with alarm and
warning levels, and made available as both digital values
and as flag registers and alarm signals.
Since the WDM 4-lane DOM interface ideally needs to find
‘furthest-out-of-range’ values, it will operate most effectively
using a single DOM control and conversion device. Suitable
parts include the Cygnal C8051F311 device, which can
handle the 12 monitored values, 4 VDD signal reference
levels, the SCL and SDA signals, and the LASI-driving
TX_FAULT, OPTTEMP, OPTXLBC, OPTXLOP, and
OPRXOP signals. The device includes a 10-bit differential
ADC, a temperature sensor, an onboard clock oscillator, and
an I2C bus controller (called the SMBUS system by Cygnal),
which should be set up as a slave. The NVR information can
all be stored in the on-board Flash EEPROM memory,
making for a single NVR/DOM/LASI device. If additional I/O
signals are required, the similar C8051F310 has them
available, for an increase in board area. Alternatively, an
analog multiplexer such as the Maxim MAX4694 could be
used to switch inputs between different lanes, under I/O pin
control. A similar series of parts are available from Cyex as
the SLC series. These parts also include DACs for Laser
control functions. If this type of device is used, the ISL35822
should be set up in ‘Direct DOM’ mode (see Table 51 and
"DOM Registers"), and it will then be able to download the
complete DOM block as required.
An alternative is to use a device specifically designed as a
DOM device, such as the Micrel MIC3000 or the
Maxim/Dallas Semiconductor DS1852. Each of these is a
single lane device, and is oriented to fulfilling the
requirements for SFP modules and the SFF-8472
specification. Although very similar, the latter has some
small differences from the XENPAK DOM specification,
which can cause problems. If a single device is used, it can
be configured as a single DOM device, typically at device
address A2, and used to monitor, for example, the average
(sum) of the desired values. The thresholds, monitored
values, and alarm and warning flags will conform to the
required behavior for single-lane monitoring (see Note 2 to
Table 27 in section 11.2.6 of the XENPAK R3.0
specification). If the ISL35822 is set up in ‘Direct DOM’ mode
(see Table 51 and "DOM Registers"), the single-lane values
will be transferred to the MDIO register space. Such an
arrangement may be very suitable for use in a CX4 module,
where it could be desirable to measure the temperature,
73
although the “Laser Bias Current”, “Received Optical
Power”, etc. have no meaning (and “Digital Optical
Monitoring” is a misnomer!). Note that the DS1852 does not
provide a sufficient NVR block for XENPAK, and an
additional 256-byte EEPROM such as an Atmel AT24C02A
will be needed.
Using four of the single-lane devices mentioned previously,
the system can monitor all four lanes. A first download of a
single device would load the full 256-byte space, and the
ISL35822 should then be set in ‘Indirect Mode’ (see Table 51
and "DOM Registers"), with the pointers appropriately reset.
For the MIC3000, three of the four devices should have their
‘I2CADR’ values changed (e.g. to B2, C2 & D2), leaving the
fourth at the default DOM address A2. The NVR space will
be provided by the A0 space in that last device, while the
DOM spaces for each of the four lanes are accessed via the
indirect Device Address pointers in 1.C01B:C’h, which would
be set to A2, B2, C2 & D2 in the above scenario. The
memory address values in 1.C019:A’h would be left at the
default 60’h value. To utilize the DS1852, an EEPROM is
needed for the NVR at the A0 address space, and one lane’s
DS1852 should have the D0h Device Address value at the
A2 default value, and its ASEL pin should be high. The
others (also with ASEL high) should have the D0h values set
to an array of different Device Address values, for instance
B2, C2 & D2 (as in the previous example), or A4, A6 & A8,
and the same values also set in 1.C01B:C’h. A first pass will
read the EEPROM space in A2.00:5F’h from the DS1852
device at A2, followed by the A/D and flag values from
A2.60:75’h, and various other values to A2.7F’h. The space
from A2.80:FF’h depends on the DS1852 Table select byte
(7F’h); if this is 0, the source data is empty; if it is set for
Table 03, the actual Alarm and Warning threshold values will
be returned; if 01 or 02, the various EEPROM banks,
depending on the Access Level set. See the DS1852 data
sheet for details. Subsequent DOM reads performed with
Indirect Access can load the standard XENPAK 4-lane A/D
space from the four DOM devices.
Open drain outputs from the DOM devices can be pulled up
via resistors to VDD, or any voltage between that and a
nominal 2.5V. If a 2.5V supply is not available, resistive
dividers may be used to ensure that the signals on the
ISL35822 lines do not exceed that level. Active pullup
devices should have their outputs divided before reaching
the ISL35822 pins. Some examples of each are shown in
Figure 26.
LASI Interface
The ISL35822 incorporates all the logic needed to control
and enable the full XENPAK/X2/XPAK Link Alarm Status
Interrupt (LASI) system, with several optional incorporated
enhancements. Many of the (specified and optional extra)
inputs are derived from the status registers in the ISL35822
(See “LASI Registers & I/O ” on page 17, and Figure 5), and
the others are derived from a set of input pins (see Table 99)
ISL35822
that would normally be driven by the corresponding status
outputs of the either the TOSA and ROSA devices, or (if
implemented) the DOM devices. The active polarity of these
pins can be controlled via the ISL35822 registers. Since
many TOSA, ROSA and lane-oriented DOM devices have
open-drain outputs that go high on an alarm condition, wireAND-ing these together for a four-lane indication is not
possible (any ‘working’ lane masks the ‘alarmed’ lane(s)),
some external gating may be required (typically a 4-input OR
or NOR gate per alarm). Note that the default polarity of
these alarm inputs (active high) will be set after power-up,
RESET or a hard (D.0.15) software reset, until the device is
reconfigured. If a host-driven configuration is being used, the
polarities (controlled by 1.C01D, Table 55) should be set
before the LASI enables (1.9002, Table 27). If the AutoConfigure system is used (See “Auto-Configuring Control
Registers” on page 16 and Table 92), the configuration may
take typically about 100 msec (see Figure 18 and Table 117),
and there will normally be a brief interval during which the
LASI interrupt is likely to be (incorrectly) activated. LASI host
operations would probably normally ignore such ‘glitches’,
since the Byte Synch and Lane Alignment will initially be in
‘Fault’ condition after such a RESET (per the IEEE 802.3ae
specification), and so the relevant latched Local Fault
indications will need to be cleared before LASI is
meaningful, but it could be advisable to ensure that the
additional indications are ignored or cleared in the same way
before the full LASI system is activated.
FIGURE 25. VDDPR CLAMP CIRCUIT
P3V3
From MSA Conn
To ISL35822,
Pull-Up Resistors
R1
VDD33
68
B
1
U1
R2
10K
Cathode D1
Cathode
3
Reference
Anode
ZHCS400
Anode
R3
12K
A
LMV431
VDD
2
FIGURE 26. RESISTIVE DIVIDER CIRCUITS
RAW_3V3
Rpu
- - - etc.- - -
- - - etc. - - -
OPRXOP_3P3
Rpd
Rpd
10k
10k
- - - etc. - - -
Rpu
OPRXOP
Rpd 12k
10k
10k
Rpu
Rpu
TX_ENA#
TX_ENA3P3_#
Rpd
16k
18k f or
MIC3000
74
From / To
ISL35822
RAW_3V3
12k
- - - etc. - - OPRXOP_3P3
Rpd
RAW_3V3
To 3.3V TOSA
From ISL35822
OPRXOP
TX_FAULT_3P3
12k
12k
SDA, SCL
- - - each-- Rpd
SDA, SCL
30k
To / From 3.3V
EEPROM
TX_FAULT_3P3
TX_FAULT
TX_FAULT
From 3.3V OSA
(Active Pullup)
Rpu
12k
From 3.3V OSA
(Open Drain only)
Rpu
12k
ISL35822
Ordering Information
PRODUCT
FREQUENCY
ISL35822
2.488Gbps3.1875Gbps
ISL35822LP
Low Power
2.488Gbps3.1875Gbps
PACKAGE
ORDER PART
NUMBER
192 Ld EBGA-B ISL35822IK
package;
17x17mm
ISL35822LPIK
Intersil Corporation Contact Information
Technical information can be found via the Web page at
http://www.intersil.com/design/
Contact Intersil Technical Support by phone at
1-888-INTERSIL or 1-888-468-3774.
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see www.intersil.com
75