ISL35822 ® Data Sheet June 29, 2005 FN6165.0.0 Octal 2.488Gbps to 3.187Gbps/ Lane Retimer • 0.13mm Pure-Digital CMOS Technology Features • Clock Compensation • 8 Lanes of Clock & Data Recovery and Retiming; 4 in Each Direction • Tx/Rx Rate Matching via IDLE Insertion/Deletion up to ±100ppm Clock Difference • Differential Input/Output • Receive Signal Detect and 16 Levels of Receiver Equalization for Media Compensation • 1.5V Core Supply, Control I/O 2.5V Tolerant • Wide Operating Data Rate Range: 2.488Gbps to 3.1875Gbps, and 1.244Gbps to 1.59325Gbps • CML CX4 Transmission Output with 16 Settable Levels of Pre-Emphasis, Eight on XAUI Side • Ultra Low-Power Operation (163mW typical per lane, 1300mW typical total consumption, LX4 mode) • Single-Ended or Differential Input Lower-Speed Reference Clock • Low Power Version Available for LX4 Applications • Ease of Testing • 17mm Square Low Profile 192 pin 1.0mm Pitch EBGA-B Package • Complete Suite of Ingress-Egress Loopbacks • Compliant to the IEEE 802.3 10GBASE-LX4(WWDM), 10GBASE-CX4, and XAUI Specifications • Full 802.3ae Pattern Generation and Test, including CJPAT & CRPAT • Reset Jitter Domain • PRBS (both 223-1 and 13458 byte) Built-In Self Tests, Error Flags and Count Output • Meets 802.3ae and 802.3ak Jitter Requirements with Significant Margin • JTAG and AC-JTAG Boundary Scan • Received Data Aligned to Local Reference Clock for Retransmission • Long Run Length (512 bit) Frequency Lock Ideal for Proprietary Encoding Schemes • Increase Driving Distance • Extensive Configuration and Status Reporting via 802.3 Clause 45 Compliant MDC/MDIO Serial Interface • LX4: Up to 40 inches of FR-4 Traces or 500 Meters of MMF Fiber at 3.1875Gbps • Automatic Load of ISL35822 Control and all XENPAK Registers from EEPROM or DOM Circuit • CX4: Over 15 meters of Compatible Cable • Deskewing and Lane-to-Lane Alignment Figure 1. FUNCTIONAL BLOCK DIAGRAM Egress 3 Egress 2 Egress 1 Egress 0 Ingress 3 Ingress 2 Ingress 1 Ingress 0 RX0N Clock & Data Recovery RX0P RFCP Deserializer and Comma Detector 8B/10B Decoder Receive FIFO Receive Parallel Data MDIO MDC RFCN Clock Multiplier 3.125G 1 TX0N 8B/10B Encoder & Mux TX0P SCL MDIO/MDC Register File SDA I2C Interface CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. 1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc. Copyright Intersil Americas Inc. 2005. All Rights Reserved All other trademarks mentioned are the property of their respective owners. ISL35822 Table of Contents Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 List of Figures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Receiver Operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Loss of Signal Detection, Termination & Equalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Clock and Data Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Byte Alignment (Code-Group Alignment) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 8b/10b Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Receive FIFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Deskew (Lane to Lane) Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Clock Compensation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Transmitter Operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 8b/10b Encoding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Pre-Emphasis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 8b/10b Coding and Decoding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 8 Bit Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 10 Bit Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Error Indications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Loss of Signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Byte or Lane Synchronization Failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Channel Fault Indications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Coding Violation, Disparity & FIFO Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Loopback Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 PMA Loopback (1.0.0 & 1.C004.[11:8]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 PHY XS (Serial) Loopback (4.0.14 & 4.C004.[11:8]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 PCS Parallel Network Loopback (3.C004.[3:0]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 PCS (Parallel) Loopback (4.C004.[3:0] & Optionally 3.0.14) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Serial Test Loopbacks (1.C004.12 & 4.C004.12) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Serial Management Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 MDIO Register Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 I2C Space Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 NVR Registers & EEPROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Auto-Configuring Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 DOM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 General Purpose (GPIO) Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 LASI Registers & I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Reading Additional EEPROM Space Via the I2C Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Writing EEPROM Space through the I2C Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2 ISL35822 Block Writes to EEPROM Space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Byte Writes to EEPROM Space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 19 MDIO Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 PMA/PMD DEVICE 1 MDIO REGISTERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IEEE PMA/PMD Registers (1.0 to 1.15/1.000F’h). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XENPAK-Defined Registers (1.8000’h to 1.8106’h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XENPAK LASI and DOM Registers (1.9000’h to 1.9007’h & 1.A000’h to 1.A100’h). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Vendor-Specific PMA/PMD and GPIO Registers (1.C001’h to 1.C01D’h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 21 24 27 33 PCS DEVICE 3 MDIO REGISTERS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IEEE PCS Registers (3.0 to 3.25/3.0019’h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Vendor-Specific PCS Registers (3.C000’h to 3.C00E’h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 39 41 PHY XS DEVICE 4 MDIO REGISTERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IEEE PHY XS Registers (4.0 to 4.25/4.0019’h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Vendor-Specific PHY XS Registers (4.C000’h to 4.C00B’h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 46 47 Auto-Configure Register List. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 JTAG & AC-JTAG Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 BIST Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Pin Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Pin Diagram 17x17mm (16*16 Ball Matrix) 192-pin EBGA-B Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Package Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 AC and Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Timing Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Applications Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 CX4/LX4/XAUI Re-timer Setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Recommended Analog Power and Ground Plane Splits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Recommended Power Supply Decoupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 XENPAK/XPAK/X2 Interfacing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 CX4 Interfacing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 LX4 Interfacing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 MDIO/MDC Interfacing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 I2C Interfacing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 DOM Interfacing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 LASI Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Intersil Corporation Contact Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 3 ISL35822 List of Figures Figure 1. FUNCTIONAL BLOCK DIAGRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Figure 2. DETAILED FUNCTIONAL BLOCK DIAGRAM (BIST OMITTED) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Figure 3. PRE-EMPHASIS OUTPUT ILLUSTRATION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Figure 4. IEEE AND VENDOR SPECIFIC FAULT AND STATUS REGISTERS (EQUIVALENT SCHEMATIC). . . . . . . . . . . . . . 14 Figure 5. LASI EQUIVALENT SCHEMATIC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Figure 6. BLOCK DIAGRAM OF BIST OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Figure 7. TOP VIEW OF PINOUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Figure 8. EBGA-192 PACKAGE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Figure 9. DIFFERENTIAL OUTPUT SIGNAL TIMING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Figure 10. LANE TO LANE DIFFERENTIAL SKEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Figure 11. EYE DIAGRAM DEFINITION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Figure 12. BYTE SYNCHRONIZATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Figure 13. LANE-LANE ALIGNMENT OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Figure 14. RETRANSMIT LATENCY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Figure 15. MDIO FRAME AND REGISTER TIMING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Figure 16. MDIO INTERFACE TIMING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Figure 17. MDIO TIMING AFTER SOFT RESET (D.0.15). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Figure 18. BEGINNING I2C NVR READ AT THE END OF RESET. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Figure 19. I2C BUS INTERFACE PROTOCOL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Figure 20. NVR/DOM SEQUENTIAL READ OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Figure 21. NVR SEQUENTIAL WRITE ONE PAGE OPERATION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Figure 22. I2C SINGLE BYTE READ OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Figure 23. SINGLE BYTE WRITE OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Figure 24. I2C OPERATION TIMING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Figure 25. VDDPR CLAMP CIRCUIT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Figure 26. RESISTIVE DIVIDER CIRCUITS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4 ISL35822 List of Tables Table 1. VALID 10b/8b DECODER & ENCODER PATTERNS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Table 2. DEVAD DEVICE ADDRESS TABLE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Table 3. MDIO MANAGEMENT FRAME FORMATS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Table 4. MDIO PMA/PMD DEVAD 1 REGISTERS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Table 5. IEEE PMA/PMD CONTROL 1 REGISTER. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Table 6. IEEE PMA/PMD STATUS 1 REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Table 7. IEEE PMA/PMD, PCS, PHY XS, SPEED ABILITY REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Table 8. IEEE DEVICES IN PACKAGE REGISTERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Table 9. IEEE PMA/PMD TYPE SELECT REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Table 10. IEEE PMA/PMD STATUS 2 DEVICE PRESENT & FAULT SUMMARY REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Table 11. IEEE TRANSMIT DISABLE REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Table 12. IEEE PMD SIGNAL DETECT REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Table 13. IEEE EXTENDED PMA/PMD CAPABILITY REGISTER(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Table 14. IEEE PACKAGE IDENTIFIER REGISTERS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Table 15. XENPAK NVR CONTROL & STATUS REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Table 16. I2C ONE-BYTE OPERATION DEVICE ADDRESS REGISTER. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Table 17. I2C ONE-BYTE OPERATION MEMORY ADDRESS REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Table 18. I2C ONE-BYTE OPERATION READ DATA REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Table 19. I2C ONE-BYTE OPERATION WRITE DATA REGISTER. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Table 20. NVR I2C OPERATION CONTROL REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Table 21. NVR I2C OPERATION STATUS REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Table 22. XENPAK NVR REGISTER COPY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Table 23. XENPAK DIGITAL OPTICAL MONITORING (DOM) CAPABILITY REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Table 24. XENPAK LASI RX_ALARM CONTROL REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Table 25. XENPAK LASI TX_ALARM CONTROL REGISTER. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Table 26. XENPAK LASI CONTROL REGISTER. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Table 27. XENPAK LASI RX_ALARM STATUS REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Table 28. XENPAK LASI TX_ALARM STATUS REGISTER. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Table 29. XENPAK LASI STATUS REGISTER. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Table 30. XENPAK DOM TX_FLAG CONTROL REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Table 31. XENPAK DOM RX_FLAG CONTROL REGISTER. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Table 32. XENPAK DOM ALARM & WARNING THRESHOLD REGISTERS COPY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Table 33. XENPAK DOM MONITORED A/D VALUES REGISTER COPY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Table 34. XENPAK OPTIONAL DOM STATUS BITS REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Table 35. XENPAK DOM EXTENDED CAPABILITY REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Table 36. XENPAK DOM ALARM FLAGS REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Table 37. XENPAK DOM WARNING FLAGS REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Table 38. XENPAK DOM OPERATION CONTROL AND STATUS REGISTER. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Table 39. PMA CONTROL 2 REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Table 40. PMA SERIAL LOOP BACK CONTROL REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Table 41. PMA PRE-EMPHASIS CONTROL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Table 42. PMA PRE-EMPHASIS CONTROL SETTINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Table 43. PMA/PMD EQUALIZATION CONTROL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Table 44. PMA SIG_DET AND LOS DETECTOR STATUS REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Table 45. PMA/PMD MISCELLANEOUS ADJUSTMENT REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Table 46. PMA/PMD/PCS/PHY XS SOFT RESET REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 5 ISL35822 Table 47. GPIO PIN DIRECTION CONFIGURE REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Table 48. GPIO PIN INPUT STATUS REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Table 49. TX_FAULT & GPIO PIN TO LASI CONFIGURE REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Table 50. GPIO PIN OUTPUT REGISTER. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Table 51. DOM CONTROL REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Table 52. DOM PERIODIC UPDATE WAITING TIME VALUES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Table 53. DOM INDIRECT MODE START ADDRESS REGISTERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Table 54. DOM INDIRECT MODE DEVICE ADDRESS REGISTERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Table 55. OPTICAL STATUS & CONTROL PIN POLARITY REGISTER. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Table 56. MDIO PCS DEVAD 3 REGISTERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Table 57. IEEE PCS CONTROL 1 REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Table 58. IEEE PCS STATUS 1 REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Table 59. IEEE PCS TYPE SELECT REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Table 60. IEEE PCS STATUS 2 DEVICE PRESENT & FAULT SUMMARY REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Table 61. IEEE 10GBASE-X PCS STATUS REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Table 62. IEEE 10GBASE-X PCS TEST CONTROL REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Table 63. PCS CONTROL REGISTER 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Table 64. PCS CONTROL REGISTER 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Table 65. PCS or PHY XS XAUI_EN CONTROL OVERRIDE FUNCTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Table 66. PCS INTERNAL ERROR CODE REGISTER. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Table 67. PCS INTERNAL IDLE CODE REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Table 68. PCS PARALLEL NETWORK LOOP BACK CONTROL REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Table 69. PCS RECEIVE PATH TEST AND STATUS FLAGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Table 70. PMA/PCS OUTPUT CONTROL & TEST FUNCTION REGISTER. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Table 71. PCS/PHY XS HALF RATE CLOCK CONTROL REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Table 72. BIST CONTROL REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Table 73. BIST ERROR COUNTER REGISTERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Table 74. MDIO PHY XS DEVAD 4 REGISTERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Table 75. IEEE PHY XS CONTROL 1 REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Table 76. IEEE PHY XS STATUS 1 REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Table 77. IEEE PHY XS STATUS 2 DEVICE PRESENT & FAULT SUMMARY REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Table 78. IEEE 10GBASE-X PHY XGXS STATUS REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Table 79. IEEE 10GBASE-X PHY XGXS TEST CONTROL REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Table 80. PHY XS CONTROL REGISTER 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Table 81. PHY XS CONTROL REGISTER 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Table 82. PHY XS INTERNAL ERROR CODE REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Table 83. PHY XS INTERNAL IDLE CODE REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Table 84. PHY XS MISCELLANEOUS LOOP BACK CONTROL REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Table 85. PHY XS PRE-EMPHASIS CONTROL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Table 86. PHY XS XAUI PRE-EMPHASIS CONTROL SETTINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Table 87. PHY XS EQUALIZATION CONTROL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Table 88. PHY XS RECEIVE PATH TEST AND STATUS FLAGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Table 89. PHY XS OUTPUT AND TEST FUNCTION CONTROL REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Table 90. PHY XS STATUS 4 LOS DETECTOR REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Table 91. PHY XS CONTROL REGISTER 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Table 92. Auto-CONFIGURE REGISTERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Table 93. JTAG OPERATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Table 94. CLOCK PINS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 6 ISL35822 Table 95. XAUI (XENPAK/XPAK/X2) SIDE SERIAL DATA PINS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Table 96. PMA/PMD (CX4/LX4) SIDE SERIAL DATA PINS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Table 97. JTAG INTERFACE PINS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Table 98. MANAGEMENT DATA INTERFACE PINS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Table 99. MISCELLANEOUS PINS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Table 100. I2C 2-WIRE SERIAL DATA INTERFACE PINS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Table 101. VOLTAGE SUPPLY PINS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Table 102. ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Table 103. RECOMMENDED OPERATING CONDITIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Table 104. POWER DISSIPATION AND THERMAL RESISTANCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Table 105. PMA SERIAL PIN I/O ELECTRICAL SPECIFICATIONS, CX4 MODE (3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Table 106. PMA SERIAL PIN I/O ELECTRICAL SPECIFICATIONS, LX4 MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Table 107. PHY XS SERIAL PIN I/O ELECTRICAL SPECIFICATIONS, XAUI MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Table 108. EXTERNAL 1.2V CMOS OPEN DRAIN I/O ELECTRICAL SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Table 109. 1.5V CMOS INPUT/OUTPUT ELECTRICAL SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Table 110. 2.5V TOLERANT OPEN DRAIN CMOS INPUT/OUTPUT ELECTRICAL SPECIFICATIONS . . . . . . . . . . . . . . . . . . 62 Table 111. OTHER DC ELECTRICAL SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Table 112. REFERENCE CLOCK REQUIREMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Table 113. TRANSMIT SERIAL DIFFERENTIAL OUTPUTS (SEE Figure 9, Figure 10 AND Figure 11). . . . . . . . . . . . . . . . . . . 63 Table 114. RECEIVE SERIAL DIFFERENTIAL INPUT TIMING REQUIREMENTS (SEE Figure 11) . . . . . . . . . . . . . . . . . . . . . 63 Table 115. MDIO INTERFACE TIMING (FROM IEEE802.3AE) (SEE Figure 15 TO Figure 17) . . . . . . . . . . . . . . . . . . . . . . . . . 64 Table 116. RESET AND MDIO TIMING (SEE Figure 17). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Table 117. RESET AND I2C SERIAL INTERFACE TIMING (SEE Figure 18 AND Figure 24). . . . . . . . . . . . . . . . . . . . . . . . . . . 64 7 ISL35822 XAUI Egress RXP2P/N RXP3P/N Equalizer Signal Detect Equalizer Signal Detect TXFIFO & Error and Orderset Detector 8B/10B Encoder, AKR Generator TXFIFO & Error and Orderset Detector 8B/10B Encoder, AKR Generator TXFIFO & Error and Orderset Detector 8B/10B Encoder, AKR Generator TXFIFO & Error and Orderset Detector 8B/10B Encoder, AKR Generator TXFIFO & Error and Orderset Detector 8B/10B Encoder, AKR Generator TXFIFO & Error and Orderset Detector 8B/10B Encoder, AKR Generator TXFIFO & Error and Orderset Detector 8B/10B Encoder, AKR Generator RX FIFO Deskew RX FIFO Deskew 10B/8B Decoder 8 Serializer Serializer RX FIFO Deskew 10B/8B Decoder 10B/8B Decoder D e se ria liz e r & C om m a D e te ctor Device Address 4 PHY XGXS RX FIFO Deskew D e se ria liz e r & C om m a D e te ctor TXP3 P/N BIST_ENA 10B/8B Decoder Device Address 3 PCS TCX0 P/N TCX1 P/N Egress TCX2 P/N TCX3 P/N PMA Loop back PCS // Network Loopback Ingress TXP2 P/N WRTP SDC SDA MDC MDIO PADR[4:0] GPIO[4:0] TX_FAULT TX_ENA[3:0] OPRxxx(5 pins) OPTxxx(3 pins) TX_ENC RX FIFO Deskew PCS // (PHY XS) Loopback 8B/10B Encoder, AKR Generator LASI XP_ENA MF[3:0] RSTN TRSTN TCLK TMS TDO LX4_MODE RX FIFO Deskew TXFIFO & Error and Orderset Detector D e se ria liz e r & C om m a D e te ctor Serializer RX FIFO Deskew LX4/CX4 BIST D e se ria liz e r & C om m a D e te ctor TXP1 P/N Serializer PHY XS (Serial) Loopback TXP0 P/N TDI Deserializer & Comma Detector Deserializer & Comma Detector CDR 10B/8B Decoder CDR RX FIFO Deskew I2C S e ria liz e r CDR 10B/8B Decoder CDR MDIO Engine MDIO Register, LASI & Common Logic S e ria lize r 10B/8B Decoder Deserializer & Comma Detector Equalizer Signal Detect 10B/8B Decoder Deserializer & Comma Detector Equalizer Signal Detect JTAG S e ria liz e r RXP1P/N 20X or 10X Clock S e ria liz e r RXP0P/N TXCK20 RFC P/N FIGURE 2. DETAILED FUNCTIONAL BLOCK DIAGRAM (BIST OMITTED) (See also Figure 4 & Figure 5 for MDIO and LASI blocks and Figure 6 for BIST operation) CDR CDR Equalizer Signal Detect RCX0 P/N Equalizer, Signal Detect RCX1 P/N Ingress CDR CDR Equalizer, Signal Detect RCX2 P/N Equalizer, Signal Detect RCX3 P/N Device Address 1 PMA/PMD ISL35822 General Description The ISL35822 is a fully integrated octal 2.488Gbps to 3.1875Gbps Clock and Data Recovery (CDR) circuit and Retimer ideal for high bandwidth serial electrical or optical communications systems. It extracts timing information and data from serial inputs at 2.488Gbps to 3.1875Gbps, covering 10 Gigabit Fiber Channel (10GFC) and IEEE 802.3 specified 10 Gigabit Ethernet eXtended Attachment Unit Interface (XAUI) rates. Each ISL35822 accepts two sets of four high-speed differential serial signals, re-times them with a local Reference Clock, reduces jitter, and delivers eight clean high-speed signals. The ISL35822 provides a full-function XAUI-to-10GBASE-CX4 PMA/PMD (compatible with the IEEE 802.3ak specification), and also can be configured to provide the electrical portion of a XAUI-to-10GBASE-LX4 PMA/PMD, needing only laser drivers and photo detectors to be added. In both these applications, the XAUI side can be configured to implement the XENPAK MSA_R3.0 specification, including full NVR and DOM support. The XPAK and X2 specifications currently all reference the XENPAK specification, and are supported in exactly the same manner. The ISL35822 can also be used to enhance a single full-duplex 10 Gigabit XAUI link, extending the driving distance of the high-speed (2.488Gbps to 3.1875Gbps) differential traces to 40 inches of FR4 PCB (assuming a proper impedance-controlled layout). Each lane can operate independently with a data transfer rate of within ±100ppm of either 20x or 10x the local Reference Clock. The reference clock should be 156.25MHz for 10 Gigabit Ethernet XAUI applications, and 159.375MHz for 10 Gigabit Fiber Channel. Other reference frequencies can be used for proprietary rates. For other applications, each of the 8 lanes can be operated independently, within the same data rate and clock restrictions. The ISL35822 contains eight clock & data recovery units, 8B/10B decoders and encoders, and elastic buffers which provide the user with a simple interface for transferring data serially and recovering it on the receive side. When recovering an 8B/10B stream, a receive FIFO aligns all incoming serial data to the local reference clock domain, adding or removing IDLE sequences as required. This simplifies implementation of an upstream ASIC by removing the requirement to deal with multiple clock domains. The Retimer can also be configured to operate as eight nonencoded 10-bit Retimers. Allowing long strings of consecutive 1’s or 0’s (up to 512 bits), the ISL35822 has the capacity to accommodate proprietary encoded data links at any data rate between 2.488Gbps and 3.1875Gbps (and for half rate operation from 1.244Gbps to 1.59375Gbps). The device configuration can be done through the use of the two line Management Data Input/Output (MDIO) Interface specified in IEEE 802.3 Clause 45. The ISL35822 supports a 9 5-bit Port Address, and DEVice ADdresses (DEVAD) 1, 3 & 4. The initial values of the registers default to values controlled, where appropriate, by external configuration pins, and set to optimize the initial configuration for XAUI, CX4, and XENPAK/XPAK/X2 use. Optionally, the ISL35822 configuration can be loaded at power-on or reset from the NVR EEPROM or DOM used for the XENPAK/XPAK/X2 registers. A full suite of loopback configurations is provided, including the (802.3ae required) XAUI-transmit to XAUI-receive loopback, and also the (802.3ae optional) PHY XGXS loopback (effectively CX4/LX4-receive to CX4/LX4 transmit). Lane-by-lane diagnostic loopback is available through vendor-specific MDIO registers. The ISL35822 is a version of the BBT3821 for operation as a lower-power LX4 device. Power consumption can be reduced further at lowered supply voltages. Functions The ISL35822 serves three main functions: • Pre-emphasize the output and equalize the input in order to “re-open” the data eye, thus allowing CX4 operation, and also increasing the available driving distance of the high-speed traces in XAUI links. • Clock compensation by insertion and deletion of IDLE characters when 8B/10B encoding and decoding is enabled. • Automatic Byte and Lane Alignment, using both disparities of /K/ for Byte alignment and either ||A|| or IDLE to DATA transitions for lane alignment. Receiver Operations Loss of Signal Detection, Termination & Equalization Each receiver lane detects and recovers the serial clock from the received data stream. An equalizer has been added to each receiver input buffer, which boosts high frequency edge response. The boost factor can be selected from 16 values (none to full) through the MDIO Registers, (see Table 43 for the PMA/PMD and Table 87 for the PHY XS). A nominally 100Ω on-chip transmission line terminating resistor is integrated with the input equalizer. This eliminates the requirement of external termination resistors. It greatly improves the effectiveness of the termination, providing the best signal integrity possible. There are also signal detect functions on each input lane, whose “Loss Of Signal” (LOS) and “Signal Detect” (SIG_DET) outputs appear in the MDIO Vendor-Specific registers at address 1.C00A’h (Table 44) and 4.C00A’h (Table 90). The LOS indication reflects the standard XAUI specification, while the SIG_DET indication (CX4 inputs only) implements the CX4 function. These signals can also ISL35822 be routed to the MF[3:0] pins (see Table 81 and Table 99). The PMA configuration determines which of these signals will be reflected in the IEEE PMD Receive signal detect register at 1.10 (see Table 12), and contribute to the RX_FAULT bit in the IEEE Status Register 2 at address 1.8 (see Table 10) and the LOCAL_FLT bit in the IEEE PMA/PMD Status 1 Register, at address 1.1, (see Table 6). The PHY XGXS LOS will be reflected in the IEEE Status Registers at addresses 4.8 and 4.1 (see Table 77 and Table 76). The threshold of the LOS detectors is controlled via the 'LOS_TH' bits in the MDIO registers at 1.C001'h, see Table 39, for the PMA/PMD, and for the PHY XS at 4.C001'h, see Table 81. Clock and Data Recovery When the 8B/10B coding is used, the line rate receive clock is extracted from the transition rich 10-bit coded serial data stream independently on each lane. When 8B/10B coding is not used, longer run length (up to 512 1’s and 0’s) can be supported. The data rate of the received serial bit stream must be within ±100ppm of the nominal bit rate (strictly within ±200 ppm of the multiplied local reference clock) to guarantee proper reception. The receive clock locks to the input within 2µs after a valid input data stream is applied. The received data is de-serialized and byte aligned. Byte Alignment (Code-Group Alignment) Unless the CDET bits of the MDIO Registers at address 3.C000’h (for PCS, see Table 63) or 4.C000’h (for PHY XS, see Table 80) are turned off, the respective Byte Alignment Units are activated. Each Byte Alignment Unit searches the coded incoming serial stream for a sequence defined in IEEE 802.3-2002 Clause 36 as a “comma”. A comma is the sequence “0011111” or “1100000” depending on disparity, and is uniquely located in a valid 8B/10B coded data stream, appearing as the start of some control symbols, including the /K/ IDLE (K28.5). Comma disparity action can be controlled via the same CDET bits of the registers [3:4].C000’h (see Table 63 and Table 80). Any proprietary encoding scheme used should either incorporate these codes, or arrange byte alignment differently. Upon detection of a comma, the Byte Alignment Unit shifts the incoming data to align the received data properly in the 10-bit character field. Two possible algorithms may be used for byte alignment. The default is that specified in the IEEE802.3ae-2002 clause 48 specification, and is very robust. This algorithm relies on the 10b/8b decoder, and should not be used with proprietary encoding/decoding schemes. The alternative is to byte-align on any comma pattern. Although quick to align, and normally quite reliable, this method is susceptible to realignment on certain single bit errors or on successive K28.7 characters, but could be preferable for proprietary coding schemes, or during debug. The algorithm selection is controlled via MDIO register PCS_SYNC_EN bits, for the PCS at address 3.C000’h (Table 63), for the PHY XS at address 4.C000’h (Table 80), 10 unless overridden by the respective XAUI_EN bits in the [3,4].C001’h registers (Table 64 and Table 81). Up to a full code group may be deleted or modified while aligning the “comma” code group correctly to the edges of the RefClock. A comma received at any odd or even byte location, but at the proper byte boundary, will not cause any byte realignment. 8b/10b Decoding The internal 10b decoding specified in the IEEE802.3-2002 specification, section 36.2.4 in Tables 36-1 & 36-2, and discussed in more detail in “8b/10b Coding and Decoding” page 12, is enabled by default in the PCS and PHY XS through the setting of the respective CODECENA bits to 1’b, and may be disabled through the MDIO registers [3,4].C000’h (Table 63 and Table 80) by setting the respective bit to 0’b. Note that the transmit encoding will also be disabled. Although Comma detection will still operate normally, the PCS_SYNC engine (see above) may not operate correctly on a proprietary coding scheme, unless byte sync is performed on K28.5 characters, and no code violations are to be expected in the proprietary data, and so should normally be disabled if the 8b/10b coding is turned off. The ‘fallback’ byte sync operations described above can still be used, if the encoding scheme meets the “comma” rules; otherwise they should be disabled also via the CDET bits, and the user should expect unsynchronized 10-bit data to be forwarded to the transmitter. No clock compensation is then possible, and a synchronous reference clock should be used throughout. Receive FIFO The Receive FIFO performs two functions: 1. Lane to Lane Alignment 2. Clock Compensation Deskew (Lane to Lane) Alignment Trunking, also known as deskewing, means the alignment of packet data across multiple lanes. 8 bytes of RXFIFO are dedicated for this lane to lane alignment in each direction. During high-speed transmission, different active and passive elements in the links may impart varying delays in the four lanes. In trunking mode, multiple lanes share the same clock (the local reference clock), which is used to transfer data for output on the serial transmitter. Deskewing is accomplished by monitoring the contents of the FIFOs to detect either an /A/ code-group on every lane (an ||A|| Ordered_Set), or the boundary between IDLE sequences and any non-IDLE data (see Table 1); the latter boundary defines the beginning of the packet. The choice of which alignment markers to use can be controlled by the A_ALIGN_DIS bits in MDIO [3,4].C000’h (see for PCS Table 63 and for PHY XS Table 80), unless overridden by the respective XAUI_EN bits in the [3,4].C001’h registers (Table 64 and Table 81) to align on ||A||. When this alignment ISL35822 data is detected in all four lanes within the span of the Alignment FIFO, the deskewing (lane to lane) alignment operation is performed, and will be held until another ||A|| or IDLE-to- non-IDLE transition is detected again on the lanes. During this alignment, up to four code groups may be deleted on any lane. For correct operation, the XAUI Lane 0 signals should be connected to the ISL35822 Lane 0 pins. The deskew algorithm state machines (each implemented according to IEEE 802.3ae) are enabled by setting the DSKW_SM_EN bits (Address [3,4].C000’h, see Table 63 and/or Table 80) to 1 or overriding them with the respective XAUI_EN bits in the [3,4].C001’h registers (Table 64 and Table 81). Note that when one side’s DSKW_SM_EN is set to 1, the same side CAL_EN bit (Address [3,4].C000’h, Table 63/Table 80) is ignored. When a DSKW_SM_EN bit is set to 0, lane deskew can still be enabled by setting CAL_EN, but the deskew action will be carried out without hysteresis. The user has the option to disable trunking, or to enable trunking across each set of 4 lanes, in the PCS (device 3) and PHY XGXS (device 4), under control of the respective PSYNC bits in registers [3,4].C000h. In trunking mode, the lanes may have phase differences, but they are expected to be frequency synchronous. In non-trunking mode, each received serial stream need only be within ±100ppm of the nominal bit rate (2.488Gbps to 3.1875Gbps in full-speed mode or 1.244Gbps to 1.59375Gbps in half-speed mode). Setting the PSYNC bits high will enable the trunking mode, so that all transmitted data will be synchronized to the same clock. Note that trunking mode is only possible if 8B/10B Coding is activated, and all lanes have the same half-rate setting (See Table 71). Clock Compensation In addition to deskew, the Receive FIFOs also compensate for clock differences. Since the received serial streams can, under worst case conditions, be off by up to ±200ppm from the local clock domain, the received data must be adjusted to the local reference clock frequency. Another 8 bytes of RXFIFO are dedicated for clock compensation. The FIFOs achieve clock tolerance by identifying any of the IDLE patterns (/K/, /A/ or /R/ as defined by the IEEE 802.3ae standard) in the received data and then adding or dropping IDLEs as needed. The Receive FIFO does not store the actual IDLE sequences received but generates the number of IDLEs needed to compensate for clock tolerance differences. The IDLE patterns retransmitted will be determined according to the IEEE 802.3ae algorithm if the appropriate AKR_SM_EN bit is set in Registers [3,4].C001’h (see Table 64 and Table 81). Transmitter Operations 8b/10b Encoding The internal 10b encoding specified in the IEEE802.3-2002 specification, section 36.2.4 in Tables 36-1 & 36-2, and discussed in more detail in “8b/10b Coding and Decoding” page 12, is enabled by default in the PCS and PHY XS through the setting of the respective CODECENA bits to 1’b, and may be disabled through the MDIO registers [3,4].C000’h (see Table 63 and Table 80) by setting the respective bit to 0’b. Note that the receive decoding will also be disabled. The (decoded, synchronized and aligned) data is transferred via the transmit FIFOs, (normally) encoded, serialized and re-transmitted on the Serial Output pins, whose effective output impedance is nominally 100Ω differential. Pre-Emphasis In order to compensate for the loss of the high frequency signal component through PCB traces or the CX4 Cable Assembly, sixteen levels of programmable pre-emphasis have been provided on the CX4/LX4 PMA serial transmit lanes, and eight levels on the XAUI PHY XS serial transmit lanes. The output signal is boosted immediately after any transition (see Figure 3). This maximizes the data eye opening at the receiver inputs and enhances the bit error rate performance of the system. The MDIO Registers at Addresses [1,4].C005’h (see Table 41 and Table 85) control the level of pre-emphasis for the PMA/PMD (sixteen levels) and PHY XGXS (eight levels) respectively, settable from none to the maximum. The initial default values of the PMA/PMD register depend on the LX4_MODE configuration pin, and are set to the optimum values for CX4 or XAUI (assumed best for LX4 drivers). The PMA side has an additional set of Pre-emphasis enabling bits, in 1.C00B.5:2 that enable or disable the predriver/pre-emphasis. In LX4 mode these default to disabled, to reduce the power consumption. All these three registers may be auto-loaded (see Auto-Configuring Control Registers page 16) from an NVR EEPROM on start-up or RESET. FIGURE 3. PRE-EMPHASIS OUTPUT ILLUSTRATION 1 0 0 VLOW-pp Bit Time 11 1 Bit Time Bit Time VHI-pp ISL35822 8b/10b Coding and Decoding another column containing a non-idle is received. If in addition either of the AKR_SM_EN or XAUI_EN bits in the respective MDIO registers at Addresses [3,4].C001’h is set (see Table 64 and Table 81, these IDLEs will be sequenced on transmission into a pseudo-random pattern of ||A||, ||K||, and ||R|| codes according to the IEEE 802.3ae specified algorithm. If neither of the AKR_SM_EN and XAUI_EN bits are set, the internal IDLEs will all be transmitted as /K/ codes. Elasticity will be achieved by adding or deleting columns of internal IDLEs. 8 Bit Mode If 8B/10B encoding/decoding is turned on, the ISL35822 expects to receive a properly encoded serial bit stream. The serial bit stream must be ordered “abcdeifghj” with “a” being the first bit received and “j” the last. If the received data contains an error, the Retimer will re-transmit it as an ERROR or /E/ character. The character transmitted may be controlled via the ERROR code Registers [3,4].C002’h, Table 66 and Table 82. The internal decoding into, and encoding from, the FIFOs is listed in Table 1 below. If the TRANS_EN bit or XAUI_EN bit (MDIO Registers at addresses [3,4].C001’h, see Table 64 and Table 81 are set, all incoming XAUI or CX4/LX4 IDLE patterns will be converted to the (internal) XGMII IDLE pattern set by the respective PCS or PHY XS control registers at addresses [3,4].C003’h, with a default value 107’h, the standard XGMII IDLE code (see Table 67 and Table 83) in the internal FIFOs. The first full column of IDLES after any column containing a non-IDLE will be stored in the respective elasticity FIFO, and all subsequent full IDLE columns will repeat this pattern, until If neither the TRANS_EN bit nor the XAUI_EN bit is set (for either the PCS or the PHY XS), the incoming XAUI IDLE codes will all be decoded to the appropriate XGMII control code values in the respective internal FIFO. If the AKR_EN or XAUI_EN bits are set, they will be sequenced into a pseudo-random pattern of ||A||, ||K||, and ||R|| codes and retransmitted, if not, the Inter Packet Gap (IPG) will be retransmitted as the same XAUI codes as in the first full IDLE column. For most applications, the XAUI_EN bit high configuration is the most desirable, and is the default. Table 1. VALID 10b/8b DECODER & ENCODER PATTERNS RECEIVING SERDES INTERNAL DATA TRANSMITTING SERDES NOTES TRANS_EN BIT(4) E-BIT K-BIT Valid Data X 0 0 0-FF’h X See 802.3 Table /K/ (Sync) K28.5 1 0 1 07’h (2) 1 /A/ /K/ /R/ 1 BC (1) 0 /K/ 1 07’h (2) 1 /A/ /K/ /R/ 1 7C (1) 0 /A/ 1 07’h (2) 1 /A/ /K/ /R/ 0 /R/ K28.0 Alternate Idle (Skip) SERIAL CODE, CHARACTER 0 /A/ (Align) K28.3 0 1 0 0 /R/ (Skip) K28.0 0 1 0 SERIAL INTERNAL AKR_SM_ CHARACTER FIFO DATA EN(4) SERIAL CODE Valid Data DESCRIPTION Same Data Value as Received IEEE802.3ae algorithm K28.5 Comma (Sync) IEEE802.3ae algorithm K28.3 Align IEEE802.3ae algorithm 0 0 1 1C (1) /S/ K27.7 X 0 1 FB 1 /S/ K27.7 Start /T/ K29.7 X 0 1 FD 0 /T/ K29.7 Terminate K28.1 X 0 1 3C X K28.1 Extra comma /F/ K28.2 X 0 1 5C X /F/ K28.2 Signal Ordered_Set /Q/ K28.4 X 0 1 9C X /Q/ K28.4 Sequence Ordered_Set K28.6 X 0 1 DC X K28.6 K28.7 X 0 1 FC X K28.7 K23.7 X 0 1 F7 X K23.7 /E/ K30.7 X 1 1 FE X /E/ X Invalid code Any other Note (1): Note (2): Note (3): Note (4): X 1 = ERROR reg.(3) K30.7 Repeat has False Comma Error Code Error Code First incoming IDLE only, subsequent IDLEs in that block repeat first received code. Default value, actually set by ‘Internal Idle’ register, [3:4].C003’h, see Table 67 and Table 83. Value set by ‘ERROR Code’ register, [3:4].C002’h, see Table 66 and Table 66. The XAUI_EN bit forces it to 1FE’h. If the XAUI_EN bit is set, the ISL35822 acts as though both the TRANS_EN and AKR_EN bits are set. 12 ISL35822 10 Bit Mode Channel Fault Indications If a PCS or PHY XS 8B/10B codec is inactive (the respective XAUI_EN AND CODECENA bits are disabled, see Table 63/Table 64 & Table 80/Table 81), no 8b/10b coding or decoding is performed. The incoming bits will be arbitrarily split into 10 bit bundles in the internal FIFO, optionally based on any commas received, but otherwise not checked, and must be retransmitted in the same clock domain, since no elasticity is possible. Therefore the local reference clock must be frequency synchronous with the data source. Only the jitter domain will be reset. System designers must ensure that the data stream is adequately DC-balanced and contains sufficient transition density for proper operation, including synchronization. Any of the above faults (LOS/SIG_DET, Byte Sync, or Lane Align), will (by default) cause a local fault in the relevant receiver. If the PCS_SYNC_EN bit at address [3,4]C000’h (or the XAUI_EN bit at [3:4].C001’h) (see Table 63 to Table 65 and/or Table 80 to Table 81) is set, the internal FIFOs will propagate the local fault indication specified in the IEEE802.3ae-2002 specification (Sections 46.3.4 and 48.2.4.2) as the Sequence Ordered_Set ||LF|| (see Table 48-4), /K28.4/D0.0/D0.0/D1.0/, which will be transmitted as the appropriate XAUI or LX4/CX4 TX output. The ISL35822 lanes 0-3 must be connected to XAUI and LX4/CX4 lanes 0-3 in strict order. Any Sequence Ordered_Set (including ||LF|| and ||RF||) received on an input channel will be retransmitted unchanged on the appropriate output channel. Error Indications An equivalent schematic of the various IEEE-defined and Vendor Specific Fault and Status registers in the ISL35822 is shown in Figure 4. Those register signals that also contribute to the LASI system are indicated (see Figure 5). Loss of Signal If the reference clock is missing or at an out-of-range frequency, the PLL in the CMU will fail to lock. This is the only possible internal cause of a PMA ‘TX Local Fault ‘ indication in bit 1.8.11 (Table 10), and will cause ‘RX Local Fault’ in bit 1.8.10 and other consequent fault indications (see Table 6, Table 27 and Table 28). Loss of the input signal may be caused by poor connections, insufficient voltage swings, or excessive channel loss. If any of these conditions occurs, the Loss Of Signal (LOS) and (CX4) SIG_DET detector outputs on the lane will indicate the fault, and may be monitored via the MDIO system (see Table 6, Table 10, Table 27, Table 28, Table 76 and Table 77). See also the section on “Loss of Signal Detection, Termination & Equalization“ on page 9 above. In addition, the MDIO MF_SEL and MF_CTRL register bits (address 4.C001’h, see Table 81) may be set to provide the LOS/SIG_DET indication on the MF[3:0] pins. Coding Violation, Disparity & FIFO Errors The 8b/10b decoder will detect any code violation, and replace the invalid character by the error character /E/. In the case of a disparity error, the error may be propagated and only flagged at the end of a packet (according to the IEEE 802.3 rules). The ISL35822 will handle this according to those rules. In addition, the MDIO system includes a flag, in registers [3,4].C007’h on bits 11:8 (see Table 69 and Table 88). Similarly, an error in the PCS or PHY XS Elastic (clock compensation) FIFOs will be flagged in bits 7:4 of the same registers. The FIFO errors may also be flagged on the MF[3:0] pins via the MDIO MF_SEL and MF_CTRL register bits (address 4.C001’h, see Table 81). If a PCS or PHY XS 8B/10B codec is inactive, disparity error and coding violation errors do not apply, and the FIFOs have no active error source. Loopback Modes In addition to the IEEE 802.3ae-required loopback modes, the ISL35822 provides a number of additional modes. Each mode is described in detail below, by reference to the Detailed Functional Block Diagram in Figure 2, together with the register bits controlling it. Byte or Lane Synchronization Failure PMA Loopback (1.0.0 & 1.C004.[11:8]) The MDIO system can indicate a failure to achieve Byte Synchronization on any lane, in the PCS register bits 3.24.3:0 (Table 61) or in the PHY XS register bits 4.24.3:0 (Table 78), which shows the lane-by-lane Byte Sync status. A failure here, if not caused by any of the above ‘Loss of Signal’ conditions, would normally reflect a very high bit error rate, or incorrectly coded data. The PMA loopback is implemented from the output of the TCX[3:0] serializers to the input multiplexers in front of the RCX[3:0] CDRs. All four lanes are controlled by bit 1.0.0, while the individual lanes can be controlled (one at a time) by the 1.C004’h.[11:8] bits. Assuming that this is the only loopback enabled, and that the BIST and test pattern generation features are not enabled, the signal flow is from the RXP[3:0][P/N] pins through almost all the ‘egress’ channel to the input of the (still active) TCX[3:0] output drivers, then (bypassing the RCX[3:0][P/N] inputs, the equalizers and LOS detectors) back from the CDRs through almost all the ‘ingress’ channel to the TXP[3:0][P/N] pins. Failure of Lane Synchronization is indicated for the PCS by register bit 3.24.12 (Table 61) or for the PHY XS by register bit 4.24.12 (Table 78), and can be caused by failure to detect /A/ characters on every lane of a channel, by excessive skew between /A/s on the lanes of a channel, or by inconsistent skews. 13 ISL35822 FIGURE 4. IEEE AND VENDOR SPECIFIC FAULT AND STATUS REGISTERS (EQUIVALENT SCHEMATIC) TXFAULT level PMA/PMD SIGNAL DETECT REG 1.C001.10:8 IEEE REG 1.8.11 REG 1.C00A.3:0 REG 1.C012h.13 POLARITY CX4 SIGNAL_ DETECT PLL LOCK FAIL IEEE REG 1.1.7 IEEE REG 1.1.2 CX4 LX4 REG 1.C00A.7:4 REG 1.C01D.6 CX4 LX4 See LASI IEEE REG 1.10.4:1 IEEE REG 1.10.0 IEEE REG 1.8.10 See LASI IEEE REG 3.8.11 See LASI See LASI OPRLOS [3:0] PCS BYTE SYNC IEEE REG 3.24.3:0 PCS LANE ALIGN IEEE REG 3.24.12 IEEE REG 3.1.7 IEEE REG 3.1.2 IEEE REG 3.8.10 See LASI IEEE REG 4.8.11 See LASI See LASI PHY XS LANE ALIGN IEEE REG 4.24.12 PHY XS BYTE SYNC IEEE REG 4.24.3:0 IEEE REG 4.1.2 IEEE REG 4.1.7 IEEE REG 4.8.10 REG 3.C001.10:8 level PHY XS SIGNAL DETECT See LASI REG 4.C00A.3:0 PHY XS (Serial) Loopback (4.0.14 & 4.C004.[11:8]) The PHY XS loopback is implemented from the output of the TXP[3:0] serializers to the input multiplexers in front of the RXP[3:0] CDRs. All four lanes are controlled by bit 4.0.14, while the individual lanes can be controlled (one at a time) by the 4.C004’h.[11:8] bits. Assuming that this is the only loopback enabled, and that the BIST and test pattern generation features are not enabled, the signal flow is from the RCX[3:0][P/N] pins through almost all the ‘ingress’ channel to the input of the (still active) TXP[3:0] output drivers, then (bypassing the RXP[3:0][P/N] inputs, the equalizers and LOS detectors) back from the CDRs through almost all the ‘egress’ channel to the TCX[3:0][P/N] pins. PCS Parallel Network Loopback (3.C004.[3:0]) This loopback is implemented (at the internal XGMII-like level) from the output of the RXFIFOs in the ‘ingress’ channel to the input of the TXFIFOs in the ‘egress’ channel. The individual lanes can be controlled (one at a time) by the 3.C004’h.[3:0] bits. Assuming that this is the only loopback enabled, and that the BIST and test pattern generation features are not enabled, the signal flow is from the RCX[3:0][P/N] pins through the PMA/PMD and PCS and again PMA/PMD to the TCX[3:0][P/N] pins. This could also be seen as a ‘short’ loopback at the XGMII input of the PHY XS. 14 PCS (Parallel) Loopback (4.C004.[3:0] & Optionally 3.0.14) This loopback is implemented (at the internal XGMII-like level) from the output of the RXFIFOs in the ‘egress’ channel to the input of the TXFIFOs in the ‘ingress’ channel. The individual lanes can be controlled (one at a time) by the 4.C004’h.[3:0] bits. If the enable bit in 3.C001.7 (Table 64) is set, all four lanes can be controlled by bit 3.0.14. Since the latter is specifically excluded by subclause 45.2.3.1.2 of the IEEE 802.3ae-2002 specification for a 10GBASE-X PCS, the default is to NOT enable this loopback bit, and if it is enabled, the ISL35822 does not conform to the IEEE specification. A maintenance request has been submitted to the IEEE to enable this loopback bit as optional, and to allow a ‘PCS Loopback Capability’ bit in register bit 3.24.10 (see http://www.ieee802.org/3/maint/requests/maint_1113.pdf), but this has so far been rejected, and may never be approved. Assuming that this is the only loopback enabled, and that the BIST and test pattern generation features are not enabled, the signal flow is from the RXP[3:0][P/N] pins through the full PHY XS via the internal XGMII to the TXP[3:0][P/N] pins. This could also be seen as a ‘short’ loopback at the XGMII input of the PCS. ISL35822 Serial Test Loopbacks (1.C004.12 & 4.C004.12) MDIO Register Addressing In addition to the above loopbacks, the ISL35822 also offers two serial loopbacks directly between the serial inputs and outputs. These loopbacks use the recovered clock as the timing for the outputs (instead of the multiplied reference clock), so do not reset the jitter or clock domains, and in addition do NOT provide any pre-emphasis on the outputs. Furthermore, on the PMA/PMD side (1.C004.12) the lanes are internally swapped (so the Lane 3 output is from the Lane 0 input, etc.). Because of their limited utility, they are not illustrated in Figure 2 or Figure 6. They are mainly useful for debugging an otherwise intractable system problem. The reference clock still needs to be within locking range of the input frequency. The remainder of the signal path will remain active (as normal), so that if for example 1.C004.12 is set, data coming in on RCX[3:0], in addition to emerging on TCX[0:3] without retiming, etc., will also emerge from TXP[3:0] retimed, as usual. The PADR[4..0] hardware address pins control the PRTAD (Port Address) value, each port normally consisting of a series of MDIO Managed Devices (MMDs). Each Port may include up to 31 different devices, of which the current specification defines 8 types, and allows vendor specification of two others. The ISL35822 device corresponds to the PMA/PMD, PCS and PHY XGXS defined types, so responds to DEVAD values of 1, 3 and 4 respectively. The Clause 45-accessible registers are listed for each Device Address in the tables referenced in Table 2. Many of these register addresses are IEEE-defined; the ‘Vendor Defined’ registers are arranged to be as DEVAD independent as possible. DEVAD = 1 (00001’b) PMA/PMD Device Table 4, page 19 Serial Management Interface DEVAD = 3 (00011’b) PCS Device Table 56, page 38 The ISL35822 implements the MMD Management Interface defined in IEEE 802.3-2002 Clauses 22 & enhanced in IEEE 802.3ae-2002 Clause 45. This two-pin interface allows serial read/write of the internal control registers and consists of the MDC clock and MDIO data terminals. The PADR[4..0] pins are used to select the ‘Port address’ to which a given ISL35822 device responds. The ISL35822 will ignore Clause 22 format frames (on a frame-by-frame basis), based on the second ST (start) bit value. The two formats are shown in Table 3, together with the references to the respective IEEE 802.3 specifications. DEVAD = 4 (00100’b) PHY XS (XGXS) Device Table 74, page 45 Table 2. DEVAD DEVICE ADDRESS TABLE DEVAD VALUE IEEE DEFINITION REGISTER LIST TABLE Each individual device may have up to 216 (65,536) registers. The ISL35822 implements all the defined registers for 10GBASE PMA/PMD, 10GBASE-X PCS and PHY XS devices, and a few Vendor Specific registers for each DEVAD respectively. The latter have been placed in the blocks beginning at D.C000’h so as to avoid the areas currently defined as for use by the XENPAK module and similar MSA devices, to facilitate use of the ISL35822 in such modules and systems. Table 3. MDIO MANAGEMENT FRAME FORMATS CLAUSE 22 FORMAT (FROM TABLE 22-10 IN IEEE STD 802.3-2002 EDITION, FOR REFERENCE) OPERN PRE ST OP PHYAD REGAD TA DATA IDLE Read 1….1 01 10 PPPPP RRRRR Z0 DDDDDDDDDDDDDDDD Z Write 1….1 01 01 PPPPP RRRRR 10 DDDDDDDDDDDDDDDD Z CLAUSE 45 FORMAT (FROM TABLE 45-64 IN IEEE 802.3.ae-2002) OPERN PRE(1) ST OP PRTAD DEVAD TA ADDRESS/DATA IDLE Addrs 1….1 00 00 PPPPP DDDDD 10 AAAAAAAAAAAAAAAA Z Write 1….1 00 01 PPPPP DDDDD 10 DDDDDDDDDDDDDDDD Z(2) Read 1….1 00 11 PPPPP DDDDD Z0 DDDDDDDDDDDDDDDD Z Read Inc 1….1 00 10 PPPPP DDDDD Z0 DDDDDDDDDDDDDDDD Z Note (1): The ‘Preamble’ consists of at least 32 bits. After a software reset, a few extra preamble bits may be needed, depending on the MDC clock rate. See timing diagrams in Figure 15 and Figure 17. Note (2): The actual register will not be updated until up to three additional MDC cycles have been received. See Figure 15. 15 ISL35822 I2C Space Interface Auto-Configuring Control Registers In addition to the standard MDIO registers discussed above, the ISL35822 implements the register addresses specified in the XENPAK MSA specification for the NVR, DOM and LASI blocks. The built-in I2C controller can be configured to load these registers with the MSA-specified data on start-up or reset or on demand from an I2C EEPROM (frequently included as part of a DOM circuit) and/or one or four DOM circuits (see below). Optionally, a portion of the NVR space may be used to autoload the various ISL35822 control registers at start-up or reset. These operations are discussed in more detail below. NVR Registers & EEPROM If the XP_ENA pin is asserted enabled (high), at the end of hardware RESET or power-up the ISL35822 will attempt to load the NVR area by initiating a NVR-block read through the 1.32768 (1.8000’h) control register (Table 15). See Figure 18. The same will occur if the appropriate command value is written into this register. The I2C interface will attempt to read the A0.00:FF’h I2C space into the 1.8007:8106’h MDIO register space. The Command Status bits in the 1.32768 (1.8000’h) Control register will reflect the status of this operation. Failure may occur if the expected ACK is not received from any address after the number of attempts set in control register 1.32273 (1.8005’h), default 63 (Table 20), or if a collision is detected on the I2C bus. The timing sequence of this Block Read operation is shown in Figure 20. The host can check the checksums against the values at 1.807D, and optionally 1.80AD and 1.8106, and take appropriate action. As soon as the XENPAK MDIO space is loaded, the STA MDIO device may interrogate it. Note that the ISL35822 merely stores the values read from the EEPROM or other device at A0.00-FF’h, and, with a few exceptions, does not interpret them in any way. The exceptions are listed explicitly in Table 22, together with the other uninterpreted groups, and are: • The Package OUI at 1.32818:32821 (1.8032:5’h), which will be mirrored in the IEEE-defined 1.14:15 (1.E:F’h) space, as required by section 10.8.2 of the XENPAK spec; the allowable values here are specified by the XENPAK, XPAK and X2 specifications; • The DOM Capability byte at 1.32890 (1.807A), see the DOM Registers section, page 16; • The Auto-configure size and pointer bytes at 1.33028:9(1.8104:5); (see Auto-Configuring Control Registers, page 16). • If the Auto-configure operation is enabled, the block of bytes so specified will be written into the ISL35822 control registers, (see Auto-Configuring Control Registers on page 16 and Table 92). Other registers may be interpreted in future versions of the ISL35822. 16 If the XP_ENA pin is asserted, and the I2C controller can successfully read the I2C NVR space into the MDIO NVR space, the ISL35822 will examine the Auto-configure Pointer value at 1.33029 (1.8105’h). If this is neither 00’h or FF’h, the ISL35822 will use that value (S below) as an offset pointer into the A0.00:FF’h I2C space already copied into the MDIO NVR space, and the number of bytes given in the Auto-configure Size register 1.33028 (1.8104) value (N below) to load N bytes from the NVR data starting from location S into the various ISL35822 configuration control registers. The loading sequence and the correspondence between the NVR block and the control registers is listed in Table 92. The auto-configure engine will behave benignly if the S and N values are misconfigured, so that if S + N ≥ 252 (for example), the auto-configure block will stop at an S + N value of 252, and not use S, N , or the Checksum value to load a configuration control register. (Hence the exclusion of FF’h as a value for S is no limitation). Similarly, values of N > 40 will be ignored. Note that in a XENPAK/XPAK/X2 module, the value of S should not be between 00’h and 76’h, since this would start the loading from within the MSA-defined region. (Hence the exclusion of 00’h as a value for S is normally no limitation). If the value of S lies between 77’h and A6’h, that portion of the auto-configure data within that band can be overwritten as part of the Customer Writable area defined by the MSA specifications; if this is undesirable, that range of values should also be excluded. On the other hand, this could be used to allow some customization for specific end-user configuration values. If the block overlaps the boundary between the ‘Customer Writable’ and ‘Vendor Specific’ areas, the first part would be customerwritable, and the second part not. The order of the configuration registers has been arranged to place those most likely to be useful in such a customer-configuration environment at the beginning of the block. The ‘Customer Area Checksum’ would be part of the auto-configure block, and some other byte in the ‘Customer Writeable Area’ would need to be adjusted to make the Checksum and the desired configuration value coincide. The Command Status bits in the NVR Command register (Table 15) at 1.32768.3:2 (1.8000’h.3:2) will reflect the success of both the NVR and (if called for) the auto-configure loading operations. DOM Registers If the NVR load operation succeeds, the (newly read-in) XENPAK register at 1.32890 (1.807A’h) is examined, and if the DOM Capability bit is set (bit 6, see Table 23), the I2C interface will attempt to read the DOM values from the I2C device address space specified in the same register (bits 2:0), normally 001’b pointing to A2’h. See Note (2) to Table 23 for details. A full block of data will be read from this space (normally A2.00:FF’h) into the 1.40960:41215 (1.A000: A0FF’h) MDIO register DOM space. See Figure 18 and Figure 20 for details. The DOM control register is implemented in the ISL35822 at ISL35822 1.41216 (1.A100’h), so that one-time or (by default) periodic updates of the DOM information can be loaded into the MDIO DOM space by writing the appropriate values into it, as shown in Table 38, page 33. The actual automatic update rates selectable in this XENPAK-defined register are controlled by the DOM Control register in the ISL35822 vendor-specific register space at 1.49176 (1.C018’h), which also controls other actions of the DOM interface (see Table 51). In particular, since many available DOM circuits can handle only one lane, bit 2 enables or disables indirect access to separate DOM circuits on the four lanes. If the bit is 0’b, the DOM circuit is directly addressed at Ax.00:FF’h, and is assumed to provide the full four lane data, including the determination of which data is to be treated as the ‘furthest out of range’ or the ‘representative value’, as specified in Note 1 to Table 27 in section 11.2.6 of the XENPAK R3.0 specification, to be returned in the XENPAKdefined 1.A060:A06D’h space for a WDM module. If bit 2 of 1.C018’h is set to 1’b, the DOM data is polled from four devices attached to the I2C serial bus, getting 10 bytes from each of them. The 40 bytes of data are stored in the four lane register blocks starting from 1.A0C0’h, 1.A0D0’h, 1.A0E0’h and 1.A0F0’h respectively. The device addresses of these four DOM devices on the 2-wire bus are configured by registers 1.C01B’h and 1.C01C’h (Table 54); the starting memory addresses by registers 1.C019’h and 1.C01A’h (Table 53). Since the ISL35822 has no mechanism to determine out-ofrange data, it chooses one of these four 10-byte long groups of data to copy into 1.A060’h:A069’h according to bits 1:0 of 1.C018’h (the ‘representative’ lane per the above-mentioned XENPAK Note). In addition, the Alarm and Status flags (Table 36 and Table 37) will be loaded from this lane into 1.A070:A075’h. The ISL35822 assumes that the DOM circuit(s) will have these A/D values and flags at the same relative offsets as those specified in the XENPAK R3.0 and the SFF-8472 specifications. General Purpose (GPIO) Pins The ISL35822 includes some flexibly configurable General Purpose Input-Output (GPIO) pins, which may be configured to be inputs or outputs. As inputs, their level may be read directly via the MDIO system, but also they may be configured (again via MDIO registers, see Table 47 through Table 50) to optionally trigger the LASI on either a high or low level. The GPIO pins may also individually be used as outputs, and set high or low, under MDIO control. The GPIO control registers are among those that can be autoconfigured on start-up. LASI Registers & I/O The ISL35822 implements the Link Alarm Status Interrupt (LASI) interface defined in section 10.13 of the XENPAK specification. The source and nature of these is described above under “Error Indications” on page 13 and in Figure 4. In addition to these specification-defined inputs, the ISL35822 incorporates a number of additional inputs, related 17 to the possible byte alignment and 8b/10b code violations, which may be used to trigger a LASI. The available inputs depend on the LX4/CX4 select LX4_MODE pin (Table 99), and are detailed in Table 27 and Table 28, and include: 1. Various status bits within the ISL35822, derived from its operations; in particular, the LOS indications, Byte Sync and EFIFO errors, the Fault bits [1,3,4].8.10:11, etc. 2. The Optical Interface Status pins (in LX4 mode), see Table 99. 3. The Alarm flags in 1.A070:1 (Table 36). These bits are gated with the enable bits in 1.9006:7 (Table 30 and Table 31) and the LX4/CX4 LX4_MODE pin (Table 99) to drive bits 1.9004.1 & 1.9003.1 (Table 28 & Table 27). 4. The GPIO pins (Table 100). If configured as inputs, they may be used to optionally trigger the LASI on either a high or low level. See above. These status inputs can all be read via the LASI Status registers (1.9003 to 1.9005, see Table 27 to Table 29). Any of these inputs, if enabled via the LASI Control Registers, 1.9000 to 1.9002 (Table 24 to Table 26), can drive the LASI pin. Figure 5 shows an equivalent schematic for the LASI system (an expansion of Figure 21 in the XENPAK specification). Reading Additional EEPROM Space Via the I2C Interface The I2C interface will allow single-byte reads from any possible I2C address. The device address and memory address are written into the 1.32769 (1.8001’h) and 1.32770 (1.8002’h) registers respectively (see Table 16 and Table 17), and on issuing a ‘Read one byte’ command (write 0002’h to 1.32768 = 1.8000’h) the data will be read from the I2C space in the MDIO register at 1.32771 (1.8003’h, see Table 18). For timing sequence, see Figure 22. Note that a 16-bit addressable EEPROM (or equivalent) device on the I2C bus may be read by setting the Long Memory bit 1.32773.8 (1.8005.8’h) to a ‘1’, and writing a full 16-bit memory address value into 1.32770 (1.8002’h). This in principle allows access to almost a full 8MB of I2C space, excluding only the NVR and (optional) DOM device address portions. This 16-bit operation MUST NOT be used on an 8-bit device, since the register address setting operation will attempt to write the low byte of the address into the register at the high byte address. Such a 16-bit memory address device should be located at a device address not used by the NVR or DOM system. These one-byte operations could be used to read other types of data from (multiple) DOM devices (such as limit lookup tables), or for expanded informational areas. It also facilitates the use of I2C-based DCP (Digital Control Potentiometer) devices for Laser Current control, and other similar setup and monitoring uses. FIGURE 5. LASI EQUIVALENT SCHEMATIC (See Also Figure 4) OPTX LBC REG. 4.C00Ah. 3:0 OPT TEMP OPTX LOP TX_ FAULT REG. 4.C007h. 11:8 REG. 4.24.3:0 REG 1.C012h.13 POLARITY REG 1.C01Dh.2:0 ALARM PIN POLARITY REG 1.9005h[3:0] LASI STATUS REG. 4.C007h. 7:4 LINK STATUS REG. 1.10.0 PHY XS FIFO ERROR PHY XS BYTE SYNCH PHY XS CODE ERROR REG. 4.24.12 LS ALARM Masked CLR REG 1.A070h[7:0] TX_FLAG REG 4.8.11 REG 3.8.11 LX4 CX4 LX4 CX4 CX4 LX4 LX4 CX4 CX4 LX4 LX4 CX4 LX4 CX4 REGISTER 1.9004h.[10:0] TX_ALARM_STATUS Q D LS_ALARM CLK REG 1.9006h[7:0] TX_FLAG CONTROL TX_FLAG Clear on read Clock on any change Clear on Read of 1.9005 See IEEE REG 1.8.11 18 PHY XS LOS (SIG DET) Change REG. 3.24.12 Latch on high LASI REGISTER 1.9000h[6:0] RX_ALARM CONTROL RX_ALARM RX ALARM Masked Clear on read REGISTER 1.9003h.[6:0] RX_ALARM_STATUS Latch on high REG 1.C012h.[4:0] GPIO-LASI EN Latch hi GPIO->LASI REG 1.C011h.[12:8] GPIO INPUT REG 4.8.10 PCS CODE ERROR LX4 CX4 REG 3.8.10 REG 1.10.0 REG 3.24 [3:0] REG 1.8.10 LX4 CX4 PCS BYTE SYNCH REG 1.C012h.[12:8] GPIO POLARITY GPIO [4:0] REG 1.9002h[3:0] LASI CONTROL OPRX OP REG. 3.C007h. 7:4 REG. 3.C007h. 11:8 RX_FLAG CX4 Selector for CX4 vs LX4 LASI External Pad LX4 PCS FIFO ERROR REG 1.9007h[7:6] RX_FLAG CONTROL REG 1.C01Dh.3 GPIO ALARM Masked REG 1.A074h[7:6] RX_FLAG Legend ISL35822 TX ALARM Masked TX_ALARM REGISTER 1.9001h[10:0] TX_ALARM CONTROL ISL35822 Writing EEPROM Space through the I2C Interface The ISL35822 permits two methods for writing the requisite values into EEPROM or other I2C devices from the MDIO space into the I2C register space. Many DOM circuits protect their important internal data through some form of password protection, and in general the ISL35822 will allow this to be done without a problem. BLOCK WRITES TO EEPROM SPACE The first method is applicable only to the NVR space (I2C address space A0.00:FF’h). If the WRTP (Write Protect) pin is inactive (low), and the NVR Write Size bit (1.32773.7 = 1.8005.7’h) is set to a ‘1’, then issuing a ‘Write All NVR’ command (write 0023’h to 1.32768 = 1.8000’h) will write the current contents of MDIO registers 1.8007:8106’h into the NVR space. The ‘NVR Write Page Size’ bits in 1.32773.1:0 (1.8005.1:0’h) control the block size used for the write operation. See Figure 21 for the sequence timing. Normally this operation is only useful for initialization of a module EEPROM space, but it could be used for field upgrades or the like. If the WRTP (Write Protect) pin is high (active, normal condition), OR the Write Size bit (1.32773.7 = 1.8005.7’h) is cleared to a ‘0’, then issuing a ‘Write All NVR’ command (write 0023’h to 1.32768 = 1.8000’h) will write only the current contents of the MDIO register block within 1.807F:80AE’h to the XENPAKdefined Customer Area, A0.77:A6’h. The actual block write will occur one byte at a time. The block write size controls cannot be used here, since the Customer Area block boundaries do not lie on page-write boundaries of the EEPROM, a feature of the XENPAK specification. BYTE WRITES TO EEPROM SPACE The second method is applicable to any part of the I2C space. The write operation is performed one byte at a time. The device address and memory address are written into the 1.32769 (1.8001’h) and 1.32770 (1.8002’h) registers respectively (see Table 16 and Table 17), and the data to be written into the 1.32772 (1.8004’h) register. On issuing a ‘Write one byte’ command (write 0022’h to 1.32768 = 1.8000’h) the data will be written into the I2C space. See Figure 23 for the timing sequence. Note that if the WRTP (Write Protect) pin is high, or the Write Size bit (1.32773.7 = 1.8005.7’h) is cleared to a ‘0’, writes to any part of the basic NVR space outside the XENPAKdefined Customer Area will be ignored. Also note that a 16-bit addressable EEPROM (or equivalent) device on the I2C bus may be written by setting the Long Memory bit 1.32773.8 (1.8005.8’h) to a ‘1’, and writing a full 16-bit memory address value into 1.32770 (1.8002’h). Note that this 16-bit operation MUST NOT be used on an 8-bit device. These one-byte operations could be used to load modified Device Address values or protective passwords into multiple DOM devices, or for loading other types of data into them. They are also useful for writing data into I2C interface DCP devices for setting laser currents, etc. MDIO Registers In the following tables, the addresses are given in the table headers both in decimal (as used in the IEEE 802.3ae and 802.3ak documents) and in hexadecimal form. Where the registers coincide in structure and meaning, but the Device Addresses differ, the underlying register bits are the same, and may be read or written indiscriminately via any relevant Device Address. For instance a full RESET may be initiated by writing any one of 1.0.15, 3.0.15, or 4.0.15. While the reset is active, reading any of these bits would return a ‘1’ (except that the reset lasts less than the MDIO preamble plus frame time). When the reset operation is complete, reading any of them will return a ‘0’. Note that extra preambles may be required after such a software RESET (see Figure 17). Table 4. MDIO PMA/PMD DEVAD 1 REGISTERS PMA/PMD DEVICE 1 MDIO REGISTERS ADDRESS DEC 1.0 NAME HEX 1.0 DESCRIPTION DEFAULT AC (5) R/W DETAILS PMA/PMD Control 1 Reset, Enable serial loop back mode. 2040’h R/W Table 5 RO/LL Table 6 1.1 1.1 PMA/PMD Status 1 Local Fault and Link Status 0004’h (2) 1.2:3 1.2:3 ID Code Manufacturer OUI & Device ID 01839C6V’h RO See (1) 1.4 1.4 Speed Ablty PMA/PMD Speed Ability 0001’h RO Table 7 1.5 1.5 Dev in Pkg. Devices in Package, Clause 22. 001A’h RO Table 8 1.6 1.6 Vend Sp Dev Vendor Specific Devices in Package 0000’h RO Table 8 1.7 1.7 PMA/PMD Control 2 PMA/PMD type Selection P (4) RO (6) Table 9 RO (LH) Table 10 1.8 1.8 PMA/PMD Status 2 Fault Summary, Device Ability B311’h (2) 1.9 1.9 PMD TX Dis Disable PMD Transmit 0000’h R/W Table 11 PMD Signal Detect 001F’h (2) RO Table 12 1.10 1.A PMD Sig Det 19 ISL35822 Table 4. MDIO PMA/PMD DEVAD 1 REGISTERS (Continued) PMA/PMD DEVICE 1 MDIO REGISTERS ADDRESS DEC NAME HEX DESCRIPTION DEFAULT AC (5) R/W DETAILS 1.11 1.B PMD Ext Ca PMD Extended Capability 0001’h RO Table 13 1.14:15 1E:F Pkg OUI PMD Package OUI, etc. 00000000’h (3) R/W Table 14 1.32768 1.8000 NVR Cntrl NVR Control & Status Register 0003’h R/W Table 15 1.8001 I2C Dev Ad 1-Byte Operation Device Addr. A2’h R/W Table 16 1.8002 I2C Mem Ad 1-Byte Operation Memory Addr. 0000’h R/W Table 17 1.8003 I2C RD Data 1-Byte Operation Read Data 0000’h RO Table 18 1.8004 I2C WR Data 1-Byte Operation Write Data 0000’h R/W Table 19 I2C Operation Control 1.32769 1.32770 1.32771 1.32772 1.32773 1.8005 I2C Op Ctl 004D’h R/W Table 20 1.32774 1.8006 I2C Op Stts I2C Operation Status 0000’h RO/LH Table 21 1.32775: 33030 1.8007: 8106 NVR Copy Registers XENPAK NVR Register Copies Set by EEPROM R/W Table 22 1.36864 1.9000 RX Al Ctrl RX ALARM Control See Table (4) R/W Table 24 A R/W Table 25 A R/W Table 26 A 1.36865 1.9001 TX Al Ctrl TX ALARM Control See Table (4) 1.36866 1.9002 LASI Ctrl LASI Control 0000’h 1.36867 1.9003 RX Al Stts RX ALARM Status 0000’h (2) RO Table 27 TX ALARM Status 0000’h (2) RO Table 28 RO Table 29 1.36868 1.9004 TX Al Stts 1.36869 1.9005 LASI Stts LASI Status 0000’h (2) 1.36870 1.9006 DOM TX DOM TX_Flag Control 0000’h A R/W Table 30 1.36871 1.9007 DOM RX DOM RX_Flag Control 0000’h A R/W Table 31 1.40960: 41215 1.A000 :A0FF DOM Copy Registers Alarm & Warning Thresholds, A/D Values, (cf SFF-8472) Set by DOM devices RO Table 32: Table 37 1.41216 1.A100 DOM Ctrl DOM Control & Status 0000’h R/W Table 38 1.49153 1.C001 PMA Ctrl2 PMA Control 2 0000’h A R/W Table 39 1.49156 1.C004 PMA LB PMA Loopback Control 0000’h A R/W Table 40 PMA Pre-emphasis Control See Table (4) A R/W Table 41 A R/W Table 43 RO Table 44 R/W Table 45 R/W Table 46 1.49157 1.C005 PMA Pre 1.49158 1.C006 PMA Eql PMA Equalizer Boost Control See Table (4) 1.49162 1.C00A SIG_DET Signal Detect Flags 0000’h (2) 1.49163 1.C00B Fine Tune Adjust pre-emphasis, amplitude See Table (4) 1.49167 1.C00F Soft RST Soft RESET 0000’h A R/W Table 47: Table 50 A 1.49168: 49171 1.C010 :C013 GPIO Cnfg GPIO Config, Status & Alarm Registers 0000’h (2) 1.49176 1.C018 DOM Control DOM Control Register 0000’h A R/W Table 51 1.49177:8 1.C019:A DOM Mem DOM Indirect Start Addresses 6060’h A R/W Table 53 1.49179:80 1.C01B:C DOM Dev DOM Indirect Device Addresses See Tables A R/W Table 54 1.49181 1.C01D StatusPolrty LASI Alarm Pin Polarity 0000’h A R/W Table 55 Note (1): Note (2): Note (3): Note (4): Note (5): V’ is a version number. See “JTAG & AC-JTAG Operations” on page 53 for a note about the version number. Read values depend on status signal values. Values shown indicate ‘normal’ operation. If NVR load operation succeeds, will be overwritten by value loaded, see Table 22 Default value depends on CX4/LX4 select LX4_MODE Pin Value. IEEE 802.3ae shows as R/W, but cannot write any other value. For rows with “A”, the default value may be overwritten by the Auto-Configure operation (See “Auto-Configuring Control Registers” on page 16 and Table 92 for details). Note (6): IEEE 802.3 shows as R/W, but cannot write any other value than that set by LX4_MODE Pin. 20 ISL35822 IEEE PMA/PMD REGISTERS (1.0 TO 1.15/1.000F’H) Table 5. IEEE PMA/PMD CONTROL 1 REGISTER MDIO REGISTER ADDRESS = 1.0 (1.0000’h) BIT(S) NAME SETTING 1.0.15 3.0.15 4.0.15 Reset 1 = reset 0 = reset done, normal operation 1.0.14 Reserved 1.0.13 Speed Select 1.0.12 Reserved 1.0.11 LOPOWER 1.0.10:7 Reserved 1.0.6 Speed Select 1 = 10Gbps 1.0.5:2 Speed Select 0000 = 10Gbps 1.0.1 Reserved 1.0.0 PMA Loopback DEFAULT 0’b R/W DESCRIPTION R/W SC Writing 1 to this bit will reset the whole chip, including the MDIO registers. (1) RO 1 = bits 5:2 select speed R/W No Low Power Mode, writes ignored 1’b RO 1 = bits 5:2 select speed 0’h RO Operates at 10Gbps R/W Enable serial loop back mode on all four lanes, XAUI in to XAUI out. 0’b 1 = 10Gbps 1’b 0’b 0 = Normal Power 0’b 0’h 0’b 1 = Enable loopback 0 = Normal operation 0’b Note (1): After this RESET bit is written, the ISL35822 will not begin counting PREAMBLE bits immediately. See Figure 17 for details. Table 6. IEEE PMA/PMD STATUS 1 REGISTER MDIO REGISTER ADDRESS = 1.1 (1.0001’h) BIT NAME SETTING 1.1.15:8 Reserved 1.1.7 Local Fault 1.1.6:3 Reserved 1.1.2 Rx Link Up 1 = PMA Rx Link Up 0 = PMA/D Rx Link Down 1.1.1 LoPwrAble Low Power Ability 1.1.0 Reserved DEFAULT R/W DESCRIPTION 00’h 1 = PMA Local Fault 0’b RO Derived from Register 1.8.11:10 1’b (1) RO LL(1) ‘Up’ means CX4/LX4 signal level is OK, and the PLL locked 0’b RO Device does not support a low power mode 0’h 0’b Note (1): This bit is latched low on a detected Fault condition. It is set high on being read. Table 7. IEEE PMA/PMD, PCS, PHY XS, SPEED ABILITY REGISTER MDIO REGISTER ADDRESSES = 1.4, 3.4 & 4.4 ([1,3,4].0004’h) BIT NAME SETTING DEFAULT R/W DESCRIPTION 1.4.15:3 3.4.15:2 4.4.15:1 Reserved for future speeds 1.4.2:1 3.4.1 10PASS-T2/ 2BASE-TL EFM Ability 00’b RO Device cannot operate @ 2BASE-TL or 10PASST2 1.4.0 3.4.0 4.4.0 10GbpsAble 10Gbps Ablility 1’b RO Device Able to operate @ 10Gbps 21 000’h ISL35822 Table 8. IEEE DEVICES IN PACKAGE REGISTERS MDIO REGISTER ADDRESSES = 1.5, 3.5, 4.5 ([1,3:4].0005’h) BIT NAME SETTING DEFAULT R/W DESCRIPTION [1,3:4].5.15:8 Reserved 000’h [1,3,4].5.7 Link Partner Link Partner PMA/PMD present 0’b RO Device has no Link Partner [1,3,4].5.6 10PASS-TS tone table 10PASS-TS tone table present 0’b RO Device has no 10PASS-TS tone table [1,3:4].5.5 DTE XS DTE XS Present 0’b RO Device ignores DEVAD 5 [1,3:4].5.4 PHY XS PHY XS Present 1’b RO Device responds to DEVAD 4 [1,3:4].5.3 PCS PCS Present 1’b RO Device responds to DEVAD 3 [1,3:4].5.2 WIS WIS Present 0’b RO Device ignores DEVAD 2 [1,3:4].5.1 PMD_PMA PMD/PMA Present 1’b RO Device responds to DEVAD 1 [1,3:4].5.0 Cls_22 Clause 22 registers 0’b RO Device ignores Clause 22 MDIO REGISTER ADDRESSES = 1.6, 3.6, 4.6 ([1,3:4].0006’h) [1,3:4].6.15 VndrDEV2 Vendor Specific DEV2 0’b RO Device ignores DEVAD 31 [1,3:4].6.14 VndrDEV1 Vendor Specific DEV1 0’b RO Device ignores DEVAD 30 [1,3,4].6.13 Clause 22 extn. Clause 22 extension 0’b RO Device has no Clause 22 extension [1,3:4].6.12:0 Reserved 000’h Table 9. IEEE PMA/PMD TYPE SELECT REGISTER MDIO REGISTER ADDRESSES = 1.7 (1.0007’h) BIT NAME 1.7.15:4 Reserved 1.7.3:0 PMA/PMD Type SETTING DEFAULT R/W DESCRIPTION 000’h P’b(1) 0100 = 10GBASE-LX4 0000 = 10GBASE-CX4 RO LX4_MODE select pin high is LX4 value, low is CX4 value Note (1): Value depends on the current state of the LX4/CX4 select LX4_MODE pin. Although IEEE 802.3ae specifies R/W bits, only valid values may be written; since the pin controls the available valid value, no meaningful write is possible. Table 10. IEEE PMA/PMD STATUS 2 DEVICE PRESENT & FAULT SUMMARY REGISTER MDIO REGISTER ADDRESSES = 1.8 (1.0008’h) BIT NAME SETTING 1.8.15:14 Device present 10 = Device present 10’b RO When read as “10”, it indicates that a device is present at this device address 1.8.13 TXLocalFlt Ability 1 = PMA/PMD can detect TX Fault 1’b RO PMA/PMD has the ability to detect a Local Fault on Transmit Path 1.8.12 RXLocalFlt Ability 1 = PMA/PMD can detect RX Fault 1’b RO PMA/PMD has the ability to detect a Local Fault on Receive Path 1.8.11 TXLocalFlt 1 = TX Local Fault; on Egress 0’b channel RO LH(1) PLL lock fail (missing REFCLK) or TX_FAULT pin active 1.8.10 RXLocalFlt 1 = RX Local Fault; on Ingress 0’b channel RO LH(1,2) PLL lock fail (missing REFCLK), or Loss of Signal in 1.10 (1.000A’h) 1.8.9 Ext Ability 1 = Extended Ability Register present. 1’b RO Device has Extended Ability Register in 1.11 (1.000B’h) 1.8.8 TX Disable 1 = Can Disable TX 1’b RO Device can Disable Transmitter 1.8.7 10GBASE-SR 0 = cannot perform 0’b RO Device cannot be 10GBASE-SR 1.8.6 10GBASE-LR 0 = cannot perform 0’b RO Device cannot be 10GBASE-LR 22 DEFAULT R/W DESCRIPTION ISL35822 Table 10. IEEE PMA/PMD STATUS 2 DEVICE PRESENT & FAULT SUMMARY REGISTER (Continued) MDIO REGISTER ADDRESSES = 1.8 (1.0008’h) BIT NAME SETTING DEFAULT R/W DESCRIPTION 1.8.5 10GBASE-ER 0 = cannot perform 0’b RO Device cannot be 10GBASE-ER 1.8.4 10GBASE-LX4 1 = can perform 1’b RO Device can be 10GBASE-LX4 1.8.3 10GBASE-SW 0 = cannot perform 0’b RO Device cannot be 10GBASE-SW 1.8.2 10GBASE-LW 0 = cannot perform 0’b RO Device cannot be 10GBASE-LW 1.8.1 10GBASE-EW 0 = cannot perform 0’b RO Device cannot be 10GBASE-EW 1.8.0 PMA Loopback 1 = can perform 1’b RO Device can perform PMA loopback Note (1): These bits are latched high on any Fault condition detected. They are reset low (cleared) on being read. They will also be reset low on reading the LASI registers 1.9003’h (bit 10, see Table 27) or 1.9004’h (bit 11, see Table 28). Note (2): The source of ‘Loss of Signal’ depends on the LX4/CX4 select LX4_MODE pin (see register 1.10, 12, note (1) below). Table 11. IEEE TRANSMIT DISABLE REGISTER MDIO REGISTER ADDRESS = 1.9 (1.0009’h) BIT NAME SETTING DEFAULT R/W 1.9.15:5 Reserved 1.9.4 PMD Dis 3 Disable TX on Lane 3(1) 0’b R/W 1.9.3 PMD Dis 2 Disable TX on Lane 2(1) 0’b R/W 1.9.2 PMD Dis 1 Disable TX on Lane 1(1) 0’b R/W 1.9.1 PMD Dis 0 Disable TX on Lane 0(1) 0’b R/W 1.9.0 PMD Dis All Disable TX on all 4 Lanes 0’b R/W DESCRIPTION 1 = Disable PMD Transmit on respective Lane(1) 0 = Enable PMD Transmit on respective Lane (unless TXON/OFF pin is Low) Note (1): In CX4 mode the TCXnP/N pin outputs will be disabled; in LX4 Mode only TX_ENA[n] pin is disabled. Table 12. IEEE PMD SIGNAL DETECT REGISTER MDIO REGISTER ADDRESS = 1.10 (1.000A’h) BIT NAME 1.10.15:5 Reserved 1.10.4 PMD Rx Ln 3 1.10.3 SETTING PMD Rx Ln 2 1.10.2 PMD Rx Ln 1 1.10.1 PMD Rx Ln 0 1.10.0 PMD Rx Glob DEFAULT R/W PMD Signal Det’d 1’b(1) RO PMD Signal Det’d 1’b(1) RO PMD Signal Det’d 1’b(1) RO PMD Signal Det’d 1’b(1) RO PMD Signal Det’d 1’b(1) RO DESCRIPTION 1 = PMD Signal Detected on respective Lane (Global, all Lanes) 0 = PMD Signal not detected on respective Lane (Global, any Lane) Note (1): These bits reflect the OPRLOS[3:0] pins (Table 99) in LX4 mode, or the CX4 SIGNAL_DETECT function in CX4 mode, depending on the LX4_MODE select pin. Table 13. IEEE EXTENDED PMA/PMD CAPABILITY REGISTER(1) MDIO Register Addresses = 1.11 (1.000B’h) BIT NAME 1.11.15:1 Reserved 1.11.0(1) 10GBASE-CX4 SETTING 1 = can perform DEFAULT 0000’h RO 1’b RO Note (1): These values reflect the IEEE 802.3ak 10GBASE-CX4 specification. 23 R/W DESCRIPTION Device can be 10GBASE-CX4 ISL35822 Table 14. IEEE PACKAGE IDENTIFIER REGISTERS MDIO REGISTER ADDRESSES = 1.14:15 (1.000E:F’h) BIT NAME 1.14.15:0 Package ID 1.15.15:0 Package ID SETTING DEFAULT Package OUI bits 3:24 & etc. R/W 00’h R/W 00’h R/W DESCRIPTION If NVR is loaded, these are copies of 1.32818:32819 (1.8032:8033’h) & 1.32820:32821 (1.8034:8035’h) XENPAK-DEFINED REGISTERS (1.8000’H TO 1.8106’H) Table 15. XENPAK NVR CONTROL & STATUS REGISTER MDIO (XENPAK) REGISTER ADDRESS = 1.32768 (1.8000’h) BIT NAME SETTING DEFAULT R/W DESCRIPTION 1.32768.15:6 Reserved 000’h R/W 1.32768.5 NVR Command(1) 0’b(2) R/W 1.32768.4 Reserved 0’b RO 1.32768.3:2 NVR Command Status(3) Current Status of NVR Command 00’b RO 11 = Command failed 10 = Command in progress/Queued 01 = Command completed with success 00 = Idle 1.32768.1:0 Extended NVR Command NVR operation to be 11’b(2) performed R/W 10 = read/write one byte(3) 11 = read/write all NVR contents(3) Other values = reserved 1 = Write NVR 0 = Read NVR Write/Read Control for I2C operation Note (1): User writes to these bits are not valid unless the Command Status is Idle. The Command Status will not return to Idle until read after command completion (either Succeed or Failed). Note (2): At the end of a hardware RESET via the RSTN pin, on powerup, or on a register [1,3,4].0.15 RESET operation, and if the XP_ENA pin is asserted, the ISL35822 will automatically begin an ‘all NVR read’ operation. Note (3): The single byte commands are controlled through the bits of the registers at 1.32769:32774 (1.8001:8006’h). The ‘block write/read’ commands are affected by register 1.32773 (1.8005’h). Additional status is available in 1.327743 (1.8006’h) Table 16. I2C ONE-BYTE OPERATION DEVICE ADDRESS REGISTER MDIO REGISTER ADDRESS = 1.32769 (1.8001’h) BIT 1.32769.15:8 1.32769.7:0 NAME SETTING Reserved I2C Device address to Device Address DEFAULT R/W 00’h RO A2’h R/W DESCRIPTION All I2C Device addresses are even. Bit 0 cannot be set. access Table 17. I2C ONE-BYTE OPERATION MEMORY ADDRESS REGISTER MDIO REGISTER, ADDRESS = 1.32770 (1.8002’h) BIT 1.32770.15:0 NAME SETTING I2C Memory address to Memory Address DEFAULT R/W 0000’h(2) R/W access DESCRIPTION I2C Memory Address within Device address of 1.32769 (1.8001’h) Note (1): 8-bit-addressed I2C devices are addressed using bits 7:0. Never set bit 1.32773.8 (1.8005’h.8) for 16-bit address operation with an 8-bit address I2C device. Table 18. I2C ONE-BYTE OPERATION READ DATA REGISTER MDIO REGISTER ADDRESS = 1.32771 (1.8003’h) BIT NAME 1.32771.15:8 Reserved 1.32771.7:0 Read Data SETTING I2C Read Data 24 DEFAULT R/W 00’h RO 00’h RO DESCRIPTION Result of I2C 1-byte Read operation ISL35822 Table 19. I2C ONE-BYTE OPERATION WRITE DATA REGISTER MDIO Register Address = 1.32772 (1.8004’h) BIT 1.32772.15:8 1.32772.7:0 NAME SETTING DEFAULT Reserved I2C Write Data Write Data R/W 00’h RO 00’h R/W DESCRIPTION Data to be written by 1-byte Write Operation Table 20. NVR I2C OPERATION CONTROL REGISTER MDIO REGISTER ADDRESS = 1.32773 (1.8005’h) BIT NAME 1.32773.15:9 Reserved 1.32773.8 Long Memory(1) 1.32773.7 NVR Write Size 1.32773.6:4 I2C Bus Speed 1.32773.3:2 1.32773.1:0 SETTING DEFAULT R/W DESCRIPTION 00’h RO 0’b R/W Length of address for I2C device selected 0’b R/W 1 = Block write all 256 bytes to NVR(2) 0 = Write only 1.807F:AE’h to NVR(3) Speed of I2C SCL clock(4) (derived from REF_CLOCK) 100’b R/W 111 = 400kHz 110 = 200kHz 101 = 150kHz 100 = 100kHz NVR ACK Error Count 11 = 63 10 = 16 01 = 4 00 = 1 11’b R/W Number of ACK failures at any address before I2C Operation failure is reported NVR Write Page Size(2) 11 = 32 bytes 10 = 16 bytes 01 = 8 bytes 00 = 4 byte 01’b R/W The I2C interface block write operation will issue a STOP and wait for the EEPROM every time after this number of bytes are sent out 1 =16 bit 0 = 8 bit 011 = 40kHz 010 = 20kHz 001 = 10kHz 000 = 4kHz Note (1): This bit should only be set if an I2C device which needs a 16-bit address is to be addressed. The NVR and DOM spaces are all 8-bit address sections, and for these areas, this bit should be 0’b. Note (2): Block 256-byte NVR writes will not occur unless the WRTP pin is set Low. NVR Write Page Size controls Page size for Block operations only. Note (3): This area corresponds to the XENPAK-defined Customer Area; see XENPAK Spec R3.0 Section 10.12.22. Writes will be performed one byte at a time. Note (4): The I2C clock speeds listed are approximate. They are derived by division from the CMU, locked to the RFCP/N inputs. At 156.25MHz, the nominal 100kHz clock will actually be 156.25/1.6kHz, just over 97.5kHz. See also the notes to Table 117. Table 21. NVR I2C OPERATION STATUS REGISTER MDIO REGISTER ADDRESS = 1.32774 (1.8006’h) BIT NAME 1.32774.15 XP_ENA 1.32774.14:4 Reserved 1.32774.3 Vendor Specific Area EXOR sum check 1.32774.2 Customer Write Area EXOR sum check 1.32774.1 Reserved 1.32774.0 NVR Area EXOR sum check SETTING DEFAULT XP_ENA pin R/W RO DESCRIPTION 1 = XP_ENA pin high, 0 = low 0000’h RO Error Flag 0’b RO LH 1 = 1.8106 ! = EXOR(1.80AE:8105) 0 = 1.8106 = EXOR(1.80AE:8105) (2) Error Flag 0’b RO LH 1 = 1.80AD ! = EXOR(1.807E:80AC) 0 = 1.80AD = EXOR(1.807E:80AC) (2) 0’b RO LH(1) 0’b RO LH Error Flag 1 = 1.807D ! = EXOR(1.8007:807C) 0 = 1.807D = EXOR(1.8007:807C) (2) Note (1): These bits are latched high on any internal error condition detected. They are reset low (cleared) on being read. Note (2): These bits are set if the EXOR sum calculated from the indicated range is not the same as the value read into the listed checksum register. Note that this is NOT the same as the XENPAK-defined checksum calculation. Contact Intersil for a method of reconciling these two checksum calculations. 25 ISL35822 Table 22. XENPAK NVR REGISTER COPY MDIO XENPAK/XPAK/X2 NVR REGISTER ADDRESSES = 1.32775:33030 (1.8007:8106’h) BYTE ADDRESS DEC DESCRIPTION(1) NAME HEX SUGGESTED VALUE R/W 1.32775 to 1.8007 to 1.32817 1.8031 NVR Register Copy XENPAK NVR Register Copies R/W(2) 1.32818 to 1.8032 to 1.32821 1.8035 PKG OUI XENPAK/XPAK/X2 Package OUI (bits 3 to Xenpak = 0008BE 24) XPAK = 000ACB X2 = 000C64 R/W(2) 1.32822 to 1.8036 to 1.32889 1.8079 NVR Register Copy XENPAK NVR Register Copies R/W(2) 1.32890 1.807A DOM Ctrl DOM Capability Bits R/W(2) 1.32891 1.32892 1.807B 1.807C NVR Reg Copy XENPAK NVR Register Copies R/W(2) 1.32893 1.807D Basic Chksm Basic Field Checksum(3) 1.32894 to 1.807E to 1.32940 1.80AC NVR Register Copy Customer Writable Area(4) 1.32941 Cstm Chksm Customer Area Checksum(5) 1.80AD 1.32942 to 1.80AE to NVR Register 1.33027 1.8103 Copy Vendor Specific Area 1.33028 1.8104 A/C Size Auto-configure Size (N) 1.33029 1.8105 A/C Pointer Auto-configure Pointer (S) 1.33030 1.8106 Vndr Chksm Vendor Specific Checksum(6) DETAILS Mirrored to 1.14:15 (1.E:F’h) Table 23 Σ(1.8007:807C) R/W(2) Σ(1.807E:80AC) R/W(2) See page 16 (or 00 or FF’h) See Table 92 Σ(1.80AE:8105) Note (1): Only register values operated on by the ISL35822 are individually listed. The others are merely copied from the I2C NVR space. Note (2): Although data can be written to these registers, it will be volatile, unless the ‘Write NVR’ operation as specified in “Writing EEPROM Space through the I2C Interface” on page 19 is performed. Note (3): Checksum to be calculated from 1.8007’h to 1.807C’h. Host can check for validity. Note (4): If WRTP pin is high, this is the only area that can be written by the user. See also Note (2) above. Note (5): Checksum to be calculated from 1.807E’h to 1.80AC’h. Note (6): Checksum to be calculated from 1.80AE’h to 1.8105’h. Table 23. XENPAK DIGITAL OPTICAL MONITORING (DOM) CAPABILITY REGISTER MDIO (XENPAK) REGISTER, ADDRESS = 1. 32890 (1. 807A’h) BIT NAME 1.32890.15:8 Reserved 1.32890.7 DOM Ctrl Reg 1.32890.6 DOM system 1.32890.5 Lane-by Lane 1.32890.4 LBC Scale 1.32890.3 Reserved 1.32890.2:0 DOM Address SETTING SUGGESTED VALUE(1) R/W(3) DESCRIPTION 000’h 1 = Implemented 0 = Not implemented 1’b R/W DOM Control/Status Register 1.A100’h 1’b R/W DOM Implemented 1’b R/W WDM Lane-by-Lane DOM; registers 1.A0C0:A0FF’h valid R/W Laser Bias Scale Factor R/W I2C Device Address of (initial) DOM IC(2) 1 = 10µA 0 = 2µA 001’b Note (1): Suggested values are given, for a full LX4 module with four individual-lane DOM circuits, at least one having the DOM data at Device Address A2’h. Note (2): Last three significant bits of the (default) DOM I2C Device Address (NB LSB is a read/write flag). Upper bits are assumed to be ‘1010’b, Device address will be (A0’h + 2*(<1.32890.2:0>). A device MUST be present at this address for correct operation if bit 6 is set. Note (3): Although data can be written to this register, it should only be done for writing the NVR, using the ‘Write NVR’ operation as specified in “Writing EEPROM Space through the I2C Interface” on page 19. The values here should normally only be loaded from the NVR, since they could affect the operation of the ISL35822 if incorrect. 26 ISL35822 XENPAK LASI AND DOM REGISTERS (1.9000’H TO 1.9007’H & 1.A000’H TO 1.A100’H) Table 24. XENPAK LASI RX_ALARM CONTROL REGISTER MDIO REGISTER, ADDRESS = 1.36864 (1.9000’h) BIT NAME 1.36864.15:7 Reserved 1.36864.6 PCS Byte S 1.36864.5 RX Power 1.36864.4 PMA LF 1.36864.3 PCS LF 1.36864.2 DEFAULT(1) SETTING R/W DESCRIPTION 000’h 0’b R/W PCS Byte Sync Fail LASI Enable 1’b R/W Receive Laser Pwr/Sig Det LASI Enable 1’b R/W PMA RX Local Fault LASI Enable 1’b R/W PCS RX Local Fault LASI Enable PCS Code 0’b/1’b R/W 8b/10b Code Violation LASI Enable 1.36864.1 DOM RX 1’b R/W DOM RX or RX EFIFO Fault LASI Enable 1.36864.0 PHY RX LF 1’b R/W PHY RX Local Fault LASI Enable 1 = trigger LASI by corresponding bit of 1.36867 (1.9003’h) 0 = LASI ignores corresponding bit of 1.36867 (1.9003’h) Note (1): Where two values are given, Default depends on LX4/CX4 select LX4_MODE pin. First value is LX4 value. The value may be overwritten by the AutoConfigure operation (See “Auto-Configuring Control Registers” on page 16 and Table 92 for details). Table 25. XENPAK LASI TX_ALARM CONTROL REGISTER MDIO REGISTER, ADDRESS = 1.36865 (1.9001’h) BIT NAME 1.36865.15:11 Reserved 1.36865.10 PHY S_D 1.36865.9 LBC 1.36865.8 LTEMP 1.36865.7 LOP 1.36865.6 SETTING DEFAULT(1) R/W DESCRIPTION 000’h 0’b/1’b R/W PHY XS Signal Detect LASI Enable 1’b/0’b R/W Laser Bias Current Fault LASI Enable 1’b/0’b R/W Laser Temperature Fault LASI Enable 1’b/0’b R/W Laser Output Power Fault LASI Enable TX LF 1’b/0’b R/W Transmit Local Fault LASI Enable 1.36865.5 Byte Sync 0’b/1’b R/W PHY XS Byte Sync Fail LASI Enable 1.36865.4 PMA LF 1’b R/W PMA TX Local Fault LASI Enable 1.36865.3 PCS LF 1’b/0’b R/W PCS TX Local Fault LASI Enable 1.36865.2 TX EFIFO 0’b/1’b R/W Transmit EFIFO Error LASI Enable 1.36865.1 DOM TX/ PHY Code 1’b R/W DOM TX or PHY XS 8b/10b Code Violation Fault LASI Enable 1.36865.0 PHY TX LF 1’b R/W PHY TX Local Fault LASI Enable 1 = trigger LASI from corresponding bit of 1.36868 (1.9004’h) 0 = LASI ignores corresponding bit of 1.36868 (1.9004’h) Note (1): Where two values are given, Default depends on LX4/CX4 select LX4_MODE pin. First value is LX4 value. The value may be overwritten by the AutoConfigure operation (See “Auto-Configuring Control Registers” on page 16 and Table 92 for details). Table 26. XENPAK LASI CONTROL REGISTER MDIO REGISTER, ADDRESS = 1.36866 (1.9002’h) BIT NAME 1.36866.15:4 Reserved 1.36866.3 GPIO 1.36866.2 RX_Alarm 1.36866.1 1.36866.0 SETTING DEFAULT(1) R/W DESCRIPTION 000’h 0’b R/W Enable GPIO pins to trigger LASI(2) 0’b R/W Enable RX_Alarm to trigger LASI TX_Alarm 0’b R/W Enable TX_Alarm to trigger LASI LS_Alarm 0’b R/W Enable Link Status change to trigger LASI 1 = trigger LASI via bit in 1.36869 (1.9005’h) 0 = LASI ignores bit Note (1): The default values may be overwritten by the Auto-Configure operation (See “Auto-Configuring Control Registers” on page 16 and Table 92 for details). Since on Power up or RESET several LASI contributors will initially be in the ‘fault’ condition (in particular, Byte Synch and Lane Alignment, and their derivatives), it may be advisable for a host to clear these before enabling these to trigger LASI. Note (2): See description of the General Purpose Input/Output (GPIO) pins and bits for a description of how they contribute to the LASI system. 27 ISL35822 Table 27. XENPAK LASI RX_ALARM STATUS REGISTER MDIO REGISTER, ADDRESS = 1.36867 (1.9003’h) BIT NAME 1.36867.15:6 Reserved 1.36867.6 PCS Byte Synch 1.36867.5 RX Receive Power/Level SETTING DEFAULT DESCRIPTION(1) R/W 000’h 1 = Alarm Condition is Detected 0’b RO/LH PCS Byte Sync Fail (logical NAND of bits 3.24.[3:0]) 0’b RO/LH LX4: Receive Laser Power from OPRXOP pin (for polarity see 1.49181) CX4: Loss of Signal Detect(3) 0 = No Alarm Condition is Detected 1.36867.4 PMA LF 0’b RO/LH PMA/PMD RX Local Fault: mirror to bit 1.8.10(2) 1.36867.3 PCS LF 0’b RO/LH PCS RX Local Fault: mirror to bit 3.8.10(2) 1.36867.2 PCS Code 0’b RO/LH PCS 8b/10b Code Violation in any lane of PCS 1.36867.1 DOM RXFlg/ RX EFIFO 0’b RO/LH LX4: DOM RX_Flag (from polling) CX4: RX EFIFO over/underflow Fault 1.36867.0 PHY RX LF 0’b RO/LH PHY RX Local Fault Status: mirror to bit 4.8.10(2) Note (1): Where two descriptions are given, depends on LX4/CX4 select LX4_MODE pin. First value is LX4 value Note (2): These mirrored bits will be cleared on a read of either this register or of their respective mirroring registers. Note (3): This bit is derived from the OR of the LOS bits (1.C00A.3:0). In the case of a signal which is close to the LOS threshold value, so that LOS is changing over time for one or more lanes, this bit may give a “FAIL” indication even though the SIGNAL_DETECT function declares the signal “GOOD”, and Byte Synch and Lane Align all indicate a “GOOD” signal. Table 28. XENPAK LASI TX_ALARM STATUS REGISTER MDIO REGISTER, ADDRESS = 1.36868 (1.9004’h) BIT NAME 1.36868.15:11 Reserved 1.36868.10 PHY S_D 1.36868.9 LBC 1.36868.8 SETTING DEFAULT DESCRIPTION(1) R/W 000’h 1 = Alarm Condition is 0’b Detected RO/ LH LX4: No fail detected CX4: PHY XS Signal Detect Fail (XAUI) 0’b RO LH LX4: Laser Bias Current Fault (from OPTXLBC pin, for polarity see 1.49181) CX4: No failure detectable LTEMP 0’b RO LH LX4: Laser Temperature Fault (from OPTTEMP pin, for polarity see 1.49181) CX4: No failure detectable 1.36868.7 LOP 0’b RO LH LX4: Laser Output Power Fault (from OPTXLOP pin, for polarity see 1.49181) CX4: No failure detectable 1.36868.6 TX LF 0’b RO LH Transmit Local Fault (from TX_FAULT pin, for polarity see 1.49170) 1.36868.5 Byte Sync 0’b RO LH LX4: No fail detected CX4: PHY XS Byte Sync Fail Status 1.36868.4 PMA LF 0’b RO LH PMA TX Local Fault Status: mirror to bit 1.8.11(2) 1.36868.3 PCS LF 0’b RO LH LX4: PCS TX Local Fault Status: mirror to bit 3.8.11(2) CX4: No failure detectable 1.36868.2 TX EFIFO 0’b RO LH LX4: No fail detected CX4: Transmit EFIFO Error Status 1.36868.1 DOM TX/ PHY Code 0’b RO LH LX4: DOM TX_Flag (from polling) CX4: PHY XS 8b/10b Code Violation 1.36868.0 PHY TX LF 0’b RO LH PHY TX Local Fault Status: mirror to bit 4.8.11(2) 0 = No Alarm Condition is Detected Note (1): Where two descriptions are given, depends on LX4/CX4 select LX4_MODE pin. First value is LX4 value Note (2): These mirrored bits will be cleared on read of either this register or their respective registers. 28 ISL35822 Table 29. XENPAK LASI STATUS REGISTER MDIO REGISTER, ADDRESS = 1.36869 (1.9005’h) BIT NAME 1.36869.15:4 Reserved 1.36869.3 GPIO Alarm 1.36869.2 SETTING DEFAULT R/W DESCRIPTION 000’h 1 = Alarm Condition is Detected 0’b RO Logic OR of signals in register 1.49169.[15:8] (1.C011h), which come from GPIO pins. RX_ALARM 0 = No Alarm Condition is 0’b Detected RO Logic OR of signals in register 1.36867 RX_ALARM Status register 1.36869.1 TX_ALARM 0’b RO Logic OR of signals in register 1.36868 TX_ALARM Status register 1.36869.0 LS_ALARM 0’b RO LH(1) Link Status Logic change in AND of “PMD Signal OK” (1.10.0), “PCS Lane Alignment” (3.24.12), and “PHY XS Lane Alignment” (4.24.12) Note (1): This bit is latched high on any change in the condition detected. It is reset low (cleared) on being read. Table 30. XENPAK DOM TX_FLAG CONTROL REGISTER MDIO REGISTER, ADDRESS = 1.36870 (1.9006’h) BIT(1) NAME 1.36870.15:8 Reserved 1.36870.7 TTmp_Hi 1.36870.6 TTmp_Lo 1.36870.5:4 Reserved 1.36870.3 LBC_Hi 1.36870.2 LBC_Lo 1.36870.1 1.36870.0 SETTING DEFAULT(2) R/W DESCRIPTION 000’h 1 = Enable Alarm 0 = Disable Alarm 0’b R/W Transceiver Temp High Alarm Enable 0’b R/W Transceiver Temp Low Alarm Enable 0’h R/W 0’b R/W Laser Bias Current High AlarmEnable 0’b R/W Laser Bias Current Low Alarm Enable LOP_Hi 0’b R/W Laser Output Power High Alarm Enable LOP_Lo 0’b R/W Laser Output Power Low Alarm Enable 1 = Enable Alarm 0 = Disable Alarm Note (1): These bits control (select) alarm signals (bits) in register 1.41072 (1.A070’h) to generate the TX_Flag bit of register 1.36868 (1.9004’h) to trigger TX_ALARM and hence LASI. Note (2): The default values may be overwritten by the Auto-Configure operation (See “Auto-Configuring Control Registers” on page 16 and Table 92 for details). Table 31. XENPAK DOM RX_FLAG CONTROL REGISTER MDIO REGISTER, ADDRESS = 1.36871 (1.9007’h) BIT(1) NAME 1.36871.15:8 Reserved 1.36871.7 ROP_Hi 1.36871.6 1.36871.5:0 SETTING DEFAULT(2) R/W DESCRIPTION 000’h 1 = Enable Alarm 0 = Disable Alarm 0’b R/W Receive Optical Power High Alarm Enable ROP_Lo 0’b R/W Receive Optical Power Low Alarm Enable Reserved 00’h Note (1): These bits control (select) alarm signals (bits) in register 1.41073 (1.A071’h) to generate the RX_Flag bit of register 1.36867 (1.9003’h) to trigger RX_ALARM and hence LASI. Note (2): The default value may be overwritten by the Auto-Configure operation (See “Auto-Configuring Control Registers” on page 16 and Table 92 for details). 29 ISL35822 Table 32. XENPAK DOM ALARM & WARNING THRESHOLD REGISTERS COPY XENPAK/XPAK/X2 DOM REGISTERS = 1.40960:40999 & 41032:41055 (1.A000:A027’h & A048:A05F’h) (1) BYTE ADDRESS DEC MEMORY ADDRESS HEX DESCRIPTION DEFAULT R/W 1.40960 to 1.A000 to 1.40967 1.A007 00 to 07 Transceiver Temp High & Low Alarm & Warning Thresholds RO 1.40968 to 1.A008 to 1.40975 1.A00F 08 to15 Reserved RO 1.40976 to 1.A010 to 1.40983 1.A017 16 to 23 Laser Bias Current High & Low Alarm & Warning Thresholds (Lane 0 or common to all lanes) RO 1.40984 to 1.A018 to 1.40991 1.A01F 24 to 31 Laser Output Power High & Low Alarm & Warning Thresholds RO 1.40992to 1.40099 32-39 Receive Optical Power High & Low Alarm & Warning Thresholds RO 72 to 95 Lane-by-Lane Laser Bias Current High & Low Alarm & Warning Thresholds (or Zero) RO 1.A020 to 1.A027 1.41032 to 1.A048 to 1.41055 1.A05F DETAILS Byte Order: High Alarm MSB:LSB Low Alarm MSB:LSB High Warning MSB:LSB Low Warning MSB:LSB Order: Lane 1 to Lane 3 Note (1): These1-byte register values are merely copied by the ISL35822 from the I2C address space on Power-up or RESET, or on a periodic direct DOM update operation (i.e. with Register bit 1.C018’h.2 Table 51 not set) under the control of Register 1.A100’h (Table 38). For further details see Table 27 in the XENPAK MSA Rev 3.0 specification, especially Note 2. If it is desired to write this data into a DOM device through the MDIO interface, it will need to be written one byte at a time via the methods discussed in “MDIO Register Addressing” on page 15. Table 33. XENPAK DOM MONITORED A/D VALUES REGISTER COPY MDIO XENPAK/XPAK/X2 DOM REGISTER ADDRESSES = 1.41056:41069 & 1.41152:41215 (1.A060:A06D’h & 1.A0C0:A0FF) BYTE ADDRESS DEC HEX MEMORY ADDRESS DESCRIPTION(1) DEFAULT R/W DETAILS RO MSB:LSB “Farthest out of range/Representative” Laser Bias Current(2) RO MSB:LSB 102 & 103 “Farthest out of range/Representative” Laser Output Power(2) RO MSB:LSB 1.A068 1.A069 104 & 105 “Farthest out of range/Representative” Receive Optical Power(2) RO MSB:LSB 1.41066 1.41069 1.A06A to 1.406D 106 to 109 Reserved 1.41070 to 1.41077 1.A06E to 1.A075 110 to 117 DOM Status, Capability, and Alarm Flags(2). See Table 34 to Table 37 1.41078 to 1.41151 1.A076 to 1.A0BF 118 to 191 Reserved 1.41152:3 1.A0C0:1 192:193 Lane 0 Transceiver Temperature (3) RO MSB:LSB 1.41154:5 1.A0C2:3 194:195 Reserved RO MSB:LSB 196:197 Lane 0 Laser Bias Current(3) RO MSB:LSB RO MSB:LSB RO MSB:LSB RO MSB:LSB 1.41056 1.41057 1.A060 1.A061 96 & 97 “Farthest out of range/Representative” Transceiver Temperature (2) 1.41058 1.41059 1.A062 1.A063 98 & 99 Reserved 1.41060 1.41061 1.A064 1.A065 100 & 101 1.41062 1.41063 1.A066 1.A067 1.41064 1.41065 1.41156:7 1.A0C4:5 1.41158:9 1.A0C6:7 198:199 Lane 0 Laser Output Power(3) 1.41160:1 1.A0C8:9 200:201 Lane 0 Receive Optical Power(3) 1.41162:7 1.A0CA:F 202:207 Reserved 1.41168:9 1.A0D0:1 208:209 Lane 1 Transceiver Temperature (3) 30 RO ISL35822 Table 33. XENPAK DOM MONITORED A/D VALUES REGISTER COPY (Continued) MDIO XENPAK/XPAK/X2 DOM REGISTER ADDRESSES = 1.41056:41069 & 1.41152:41215 (1.A060:A06D’h & 1.A0C0:A0FF) BYTE ADDRESS DEC MEMORY ADDRESS HEX DESCRIPTION(1) DEFAULT R/W DETAILS 1.41170:1 1.A0D2:3 210:211 Reserved RO MSB:LSB 1.41172:3 1.A0D4:5 212:213 Lane 1 Laser Bias Current(3) RO MSB:LSB 1.41174:5 1.A0D6:7 214:215 Lane 1 Laser Output Power(3) RO MSB:LSB RO MSB:LSB 1.41176:7 1.A0D8:9 216:217 Lane 1 Receive Optical Power(3) 1.41178:83 1.A0DA:F 218:223 Reserved 1.41184:5 1.A0E0:1 224:225 Lane 2 Transceiver Temperature (3) RO MSB:LSB 1.41186:7 1.A0E2:3 226:227 Reserved RO MSB:LSB 228:229 Lane 2 Laser Bias Current(3) RO MSB:LSB RO MSB:LSB RO MSB:LSB 1.41188:9 1.A0E4:5 1.41190:1 1.A0E6:7 230:231 Lane 2 Laser Output Power(3) 1.41192:3 1.A0E8:9 232:233 Lane 2 Receive Optical Power(3) 1.41194:9 1.A0EA:F 234:239 Reserved 1.41200:1 1.A0F0:1 240:241 Lane 3 Transceiver Temperature (3) RO MSB:LSB 1.41202:3 1.A0F2:3 242:243 Reserved RO MSB:LSB 244:245 Lane 3 Laser Bias Current(3) RO MSB:LSB 246:247 Lane 3 Laser Output Power(3) RO MSB:LSB RO MSB:LSB 1.41204:5 1.41206:7 1.A0F4:5 1.A0F6:7 1.41208:9 1.A0F8:9 228:249 Lane 3 Receive Optical Power(3) 1.41210:5 1.A0FA:F 250:255 Reserved Note (1): These 1-byte register values are merely copied by the ISL35822 from the I2C address space on RESET (if enabled), on demand, or periodically under the control of Register 1.A100’h (Table 38). Note (2): If the ‘Indirect DOM Enable’ bit (Register bit 1.C018’h.2 Table 51) is not set, a four-lane external DOM device is expected to determine the “Farthest out of range” or “Representative” values for these registers, according to the rules of Note 1 to Table 28 in the XENPAK MSA Rev 3.0 specification. A single onelane DOM device system will provide the values from the single DOM device here only. If the ‘Indirect DOM Enable’ bit is set, “Representative” is defined by Register bits 1.C018’h.1:0 (Table 51), and the values from the specified lane’s DOM are entered here also. Note (3): If the ‘Indirect DOM Enable’ bit (Register bit 1.C018’h.2 Table 51) is not set, a four-lane external DOM device is expected to provide the Lane-by-Lane data. For a single one-lane DOM device system these values are 00’h. The Lane-by-Lane data is obtained from the I2C address space via the pointers defined in Registers 1.C019:C’h (Table 53 & Table 54), if the ‘Indirect DOM Enable’ bit is set (Register 1.C018’h Table 51). Table 34. XENPAK OPTIONAL DOM STATUS BITS REGISTER MDIO REGISTER, ADDRESS = 1.41070 (1.A06E’h) BIT NAME 1.41070.15:1 Reserved 1.41070.0 Data_Ready_Bar SETTING DEFAULT R/W DESCRIPTION(1) 0000’h 1 = Not Ready 0 = Ready 0’b(2) RO High during power-up and first NVR/DOM read. After that set low. Note (1): This 1-byte register value is merely copied by the ISL35822 from the I2C address space on Power-up or RESET, or on a periodic or on-demand direct DOM update operation (i.e. with Register bit 1.C018’h.2 Table 51 not set) under the control of Register 1.A100’h (Table 38). The ISL35822 takes no action as a result of the values copied. Note (2): Assumes NVR/DOM read succeeds 31 ISL35822 Table 35. XENPAK DOM EXTENDED CAPABILITY REGISTER MDIO REGISTER, ADDRESS = 1.41071 (1.A06F’h) BIT NAME 1.41071.15:8 Reserved 1.41071.7 TT_Able 1.41071.6 LBC_Able SETTING DEFAULT DESCRIPTION(1) R/W 00’h(1) 1 = Indicates Capability Implemented 0 = Not Implemented RO Transceiver Temp Monitoring Capable RO Laser Bias Current Monitoring Capable RO Laser Output Power Monitoring Capable RO Receive Optical Power Monitoring Capable 1.41071.5 LOP_Able 1.41071.4 ROP_Able 1.41071.3 AL_Able RO Alarm Flags for Monitored Quantities 1.41071.2 WN_Able RO Warning Flags for Monitored Quantities 1.41071.1 MON_LASI RO Monitoring Quantities Input to LASI 1.41071.0 Reserved RO Monitoring Capable Note (1): These 1-byte register values are merely copied by the ISL35822 from the I2C address space on Power-up or RESET, or on a periodic or on-demand direct DOM update operation (i.e. with Register bit 1.C018’h.2 Table 51 not set) under the control of Register 1.A100’h (Table 38). The ISL35822 takes no action as a result of the values copied. Table 36. XENPAK DOM ALARM FLAGS REGISTER MDIO REGISTER, ADDRESS = 1.41072:3 (1.A070:1’h) BIT 1.41072.15:8 NAME SETTING 00’h(1) Reserved 1.41072.7 TT_High 1.41072.6 TT_Low 1.41072.5:4 Reserved 1.41072.3 LBC_High 1.41072.2 LBC_Low 1.41072.1 LOP_High DEFAULT 1 = Alarm Set 0 = Alarm Not Set DESCRIPTION(1) R/W RO 0’b RO Transceiver Temp High Alarm 0’b RO Transceiver Temp Low Alarm 00’b 1 = Alarm Set 0 = Alarm Not Set 0’b RO Laser Bias Current High Alarm 0’b RO Laser Bias Current Low Alarm 0’b RO Laser Output Power High Alarm RO Laser Output Power Low Alarm 0’b RO Receive Optical Power High Alarm 0’b RO Receive Optical Power Low Alarm 1.41072.0 LOP_Low 0’b 1.41073.15:8 Reserved 00’h 1.41073.7 ROP_High 1.41073.6 ROP_Low 1.41073.5:0 Reserved 1 = Alarm Set 0 = Alarm Not Set 00’h Note (1): These 1-byte register values are copied by the ISL35822 from the I2C address space on Power-up or RESET, or on any DOM read operation. If the ‘Indirect DOM Enable’ bit (Register bit 1.C018’h.2 Table 51) is not set, a four-lane external DOM device is expected to determine the values for these registers, according to Section 11.3 in the XENPAK MSA Rev 3.0 specification. A single one-lane DOM device system will provide the values from the single DOM device here. If the ‘Indirect DOM Enable’ bit is set, the values from the “Representative” (as set by Register bits 1.C018’h.1:0 in Table 51) lane DOM are entered here. See “DOM Registers” on page 16. These bits are gated with the enable bits in 1.9006:7 (Table 30 & Table 31) and the LX4/CX4 select LX4_MODE pin to drive bits 1.9004.1 & 1.9003.1 (Table 28 & Table 27), and if enabled via 1.9002 & 1.9001 (Table 25 & Table 24) to drive the LASI pin. Table 37. XENPAK DOM WARNING FLAGS REGISTER MDIO REGISTER, ADDRESS = 1.41076:7 (1.A074:5’h) BIT NAME 1.41076.15:8 Reserved 1.41076.7 TT_High 1.41076.6 TT_Low 1.41076.5:4 Reserved SETTING DEFAULT R/W DESCRIPTION(1) 00’h(1) 1 = Warning Set 0 = Warn. Not Set 0’b RO Transceiver Temp High Warning 0’b RO Transceiver Temp Low Warning 00’b 32 ISL35822 Table 37. XENPAK DOM WARNING FLAGS REGISTER (Continued) MDIO REGISTER, ADDRESS = 1.41076:7 (1.A074:5’h) BIT NAME 1.41076.3 LBC_High 1.41076.2 LBC_Low 1.41076.1 LOP_High 1.41076.0 SETTING DEFAULT 0’b RO Laser Bias Current High Warning 0’b RO Laser Bias Current Low Warning 0’b RO Laser Output Power High Warning LOP_Low 0’b RO Laser Output Power Low Warning 1.41077.15:8 Reserved 00’h 1.41077.7 ROP_High 1.41077.6 ROP_Low 1.41077.5:0 Reserved 1 = Warning Set 0 = Warning Not Set DESCRIPTION(1) R/W 1 = Warning Set 0 = Warn. Not Set 0’b RO Receive Optical Power High Warning 0’b RO Receive Optical Power Low Warning 00’h Note (1): These 1-byte register values are merely copied by the ISL35822 from the I2C address space on Power-up or RESET, or on any DOM read operation. If the ‘Indirect DOM Enable’ bit (Register bit 1.C018’h.2 Table 51) is not set, a four-lane external DOM device is expected to determine the values for these registers, according Section 11.3 in the XENPAK MSA Rev 3.0 specification. A single one-lane DOM device system will provide the values from the single DOM device here. If the ‘Indirect DOM Enable’ bit is set, the values from the “Representative” (as defined by Register bits 1.C018’h.1:0 in Table 51), lane DOM are entered here. Table 38. XENPAK DOM OPERATION CONTROL AND STATUS REGISTER MDIO REGISTER, ADDRESS = 1.41216 (1.A100’h) BIT NAME SETTING DEFAULT R/W DESCRIPTION 1.41216.15:4 Reserved 0000’h 1.41216.3:2 DOM Command Status(1) Current Status of DOM Command 00’b RO 11 = Command failed 10 = Command in progress/Queued 01 = Command complete w success 00 = Idle 1.41216.1:0 DOM Command Type(1) NVR operation to be performed 11’b(2) R/W 00 = Single DOM Read operation 01 = Periodic update, slowest rate(3) 10 = Periodic update, intermediate rate(3) 11 = Periodic update, fastest rate(3) Note (1): User writes to these bits are not valid unless the Command Status is Idle. The Command Status will not return to Idle until being read after command completion (either Succeed or Failed). Note (2): At the end of a hardware RESETN or a register 1.0.15 RESET operation, if the XP_ENA pin is asserted, and the DOM control bits are set in 1.32890 (1.807A), the ISL35822 will automatically begin a ‘Periodic update, fastest rate read’ operation. Note (3): The rates of the periodic reads are determined by bits 4:3 of register 1.49176 (1.C018’h), see Table 51. VENDOR-SPECIFIC PMA/PMD AND GPIO REGISTERS (1.C001’H TO 1.C01D’H) Table 39. PMA CONTROL 2 REGISTER MDIO REGISTER, ADDRESS = 1.49153 (1.C001’h) BIT NAME SETTING DEFAULT R/W DESCRIPTION 1.49153.15 PMA DC_O_DIS 1 = Disable, 0 = normal 0’b(1) R/W PMA DC Offset Disable 1.49153.14 Test 0 = normal 0’b(2) (1) R/W User must keep at 0. R/W Optimizing Setting, TBD(4) R/W Set the threshold voltage for the Loss Of Signal (LOS) detection circuit in PMA/PMD. Nominal levels are listed for each control value. Note that the differential peak-to-peak value is twice that listed. 1.49153.13 Amplitude adjust 1,0’h(1) (3) 1.49153.12:11 Reserved 0’h 1.49153.10:8 PMA_LOS_TH 1.49153.7:0 Reserved Note (1): Note (2): Note (3): Note (4): 0’h = 160mVp-p 1’h = 240mVp-p 2’h = 200mVp-p 3’h = 120mVp-p 4’h = 80mVp-p else = 160mVp-p LX4: (3) 0’h, CX4: 03’h(1) 00’h These values may be overwritten by the Auto-Configure operation (See “Auto-Configuring Control Registers” on page 16 and Table 92 for details). Internal test purposes only. Default values depend on setting of LX4/CX4 select LX4_MODE pin. LX4 value is shown first. Optimum value to meet output templates. Contact BitBlitz for recommended value. 33 ISL35822 Table 40. PMA SERIAL LOOP BACK CONTROL REGISTER MDIO REGISTER ADDRESS = 1.49156 (1.C004’h) BIT NAME 1.49156.15:13 Reserved 1.49156.12 PMA Test LP 1.49156.11 PMA SLP_3 SETTING 1 = enable 0 = disable DEFAULT R/W DESCRIPTION 0’h(1) R/W Serial Network Test Loopback 0’b(2) R/W PMA Serial Loop Back Enable for each individual lane. When high, it routes the internal PMA Serial output to the PMA Serial input. 1.49156.10 PMA SLP_2 0’b(2) 1.49156.9 PMA SLP_1 0’b(2) 1.49156.8 PMA SLP_0 0’b(2) 1.49156.7:0 Reserved Note (1): Loopback is from Serial I/P to Serial O/P. Recommended use for test purposes only; the lanes are swapped, and no pre-emphasis is performed. Note (2): These values may be overwritten by the Auto-Configure operation (See “Auto-Configuring Control Registers” on page 16 and Table 92 for details). Table 41. PMA PRE-EMPHASIS CONTROL MDIO REGISTER ADDRESS = 1.49157 (1.C005’h) BIT NAME 1.49157.15:12 PRE_EMP Lane 3 1.49157.11:8 PRE_EMP Lane 2 1.49157.7:4 1.49157.3:0 DEFAULT(1) SETTING See Table 42 for settings R/W 00’h/07’h R/W 00’h/07’h R/W PRE_EMP Lane 1 00’h/07’h R/W PRE_EMP Lane 0 00’h/07’h R/W DESCRIPTION Configure the level of PMA pre-emphasis (if Enabled, see 1.C01B.5:2 in Table 45) Note (1): Default values depend on setting of LX4/CX4 select LX4_MODE pin. LX4 value is shown first. The values may be overwritten by the Auto-Configure operation (See “Auto-Configuring Control Registers” on page 16 and Table 92 for details). Table 42. PMA PRE-EMPHASIS CONTROL SETTINGS (1) ADDRESS 1.C005’h BITS 3:0 PRE-EMPHASIS (802.3ak) (2) = (1-VLOW/VHI) PRE-EMPHASIS VALUE = (VHI/ VLOW)-1 ADDRESS 1.C005’h BITS 3:0 PRE-EMPHASIS (802.3ak) (2) = (1-VLOW/VHI) PRE-EMPHASIS VALUE = (VHI/ VLOW)-1 0000(3) 0% 0 1000 33.0% 0.493 0001 5.0% 0.053 1001 36.5% 0.575 0010 9.5% 0.105 1010 40.0% 0.667 0011 14.0% 0.163 1011 43.0% 0.754 0100 18.5% 0.227 1100 46.0% 0.852 0101 22.0% 0.282 1101 49.0% 0.961 0110 26.5% 0.361 1110 52.0% 1.083 0111(4) 30.0% 0.429 1111 54.5% 1.198 Note (1): See Figure 3 for illustration of the pre-emphasized waveform and meaning of symbols. Note (2): This equation is the one used by the IEEE 802.3 CX4 Working Group when discussing pre-emphasis (alias Transmit equalization). The template normalization factor of 0.69 in step 6) of IEEE 802.3akD5.3 Section 54.6.3.6 reflects 0.31 (31%) pre-emphasis according to this equation. Note (3): This is the Default value set on power-up or RESET if the LX4/CX4 LX4_MODE pin is set for LX4 operation. This setting allows for a lowered device power consumption by using the Lowered Power bits to turn off the pre-emphasis drivers (seeTable 45). Note (4): This is the Default value set on power-up or RESET if the LX4/CX4 LX4_MODE pin is set for CX4 operation. This setting allows for a small loss in the PCB traces and connectors before the IEEE 802.3akD5.3 defined TP2 compliance measurement point. The value may be overwritten by the Auto-Configure operation (See “Auto-Configuring Control Registers” on page 16 and Table 92 for details). 34 ISL35822 Table 43. PMA/PMD EQUALIZATION CONTROL MDIO REGISTER ADDRESS = 1.49158 (1.C006’h) BIT NAME SETTING 1.49158.15:14 Reserved 1.49158.3:0 PMA EQ_COEFF DEFAULT(1) 0’h/C’h 0’h = no boost in equalizer. F’h = boost is maximum R/W R/W DESCRIPTION Configuration of the PMA/PMD equalizer Note (1): Default values depend on setting of LX4/CX4 select LX4_MODE pin. LX4 value is shown first. The value may be overwritten by the Auto-Configure operation (See “Auto-Configuring Control Registers” on page 16 and Table 92 for details). Table 44. PMA SIG_DET AND LOS DETECTOR STATUS REGISTER MDIO REGISTER ADDRESS = 1.49162 (1.C00A’h) BIT NAME 1.49162.15:8 Reserved 1.49162.7 SIG_DET_3 1.49162.6 SIG_DET_2 1.49162.5 SIG_DET_1 1.49162.4 SIG_DET_0 1.49162.3 PMA_LOS_3 1.49162.2 PMA_LOS_2 1.49162.1 PMA_LOS_1 1.49162.0 PMA_LOS_0 SETTING DEFAULT R/W DESCRIPTION 00’b 1 = CX4 Signal Detect Asserted 0 = CX4 Signal Detect Deasserted 1 = Signal less than threshold 0 = Signal greater than threshold 1’b RO/LL(1) Signal Detect for PMA lane 3 1’b Signal Detect for PMA lane 2 1’b Signal Detect for PMA lane 1 1’b Signal Detect for PMA lane 0 0’b 0’b RO/LH (2) Loss Of Signal for PMA lane 3 Loss Of Signal for PMA lane 2 0’b Loss Of Signal for PMA lane 1 0’b Loss Of Signal for PMA lane 0 Note (1): These bits are latched low on any SIG_DET failure condition detected. They are reset high on being read. Note (2): These bits are latched high on any LOS condition detected. They are reset low on being read. Table 45. PMA/PMD MISCELLANEOUS ADJUSTMENT REGISTER MDIO REGISTER ADDRESS = 1.49163 (1.C00B’h) BIT 1.49163.15:10 NAME SETTING Reserved DEFAULT R/W DESCRIPTION 00’h 1.49163.9:6 Amplitude Output Control (1) LX4: 5’h CX4: 3’h R/W 1.49163.5:2 LoweredPower Predriver Control (1,2) LX4: 0’h CX4: F’h R/W Bit 5 is for Lane 3, etc. Values of 0’b reduce device power consumption. 1.49163.1:0 Reserved Internal R/W Test Function, do not alter. 00’b Note (1): Default values depend on setting of LX4/CX4 select LX4_MODE pin. LX4 value is shown first. The value may be overwritten by the Auto-Configure operation (See “Auto-Configuring Control Registers” on page 16 and Table 92 for details). Note (2): The 0’h LX4 default value, combined with the 00’h pre-emphasis values (see Table 41) allow reduced power consumption in LX4 applications. Table 46. PMA/PMD/PCS/PHY XS SOFT RESET REGISTER MDIO REGISTER ADDRESS = [1,3:4].49167 ([1,3:4].C00F’h) BIT NAME 1.49167.15 [3,4].49167.15 SOFT_RESET [1,3:4].49167.14:0 Reserved SETTING Write 1 to initiate. DEFAULT 0’b R/W R/W SC DESCRIPTION Reset the entire chip except MDIO register settings(1) Note (1): This reset will NOT cause a reload of the NVR or DOM areas, nor an Auto-Configure operation. It will reset the Byte Sync engine, the Lane Alignment engine, the FIFO pointers, and the I2C controller. The ISL35822 will (if “normally” configured) transmit ||LF|| local fault signals until Byte Sync and Lane Alignment are re-established, and any DOM update in progress may be aborted. 35 ISL35822 Table 47. GPIO PIN DIRECTION CONFIGURE REGISTER MDIO REGISTER ADDRESS = 1.49168 (1.C010’h) BIT NAME 1.49168.15:5 Reserved 1.49168.4:0 GPIO pins configuration SETTING DEFAULT R/W 00’h(1) 1 = output 0 = input R/W DESCRIPTION Controls whether GPIO pin is used as input or output Note (1): The value may be overwritten by the Auto-Configure operation (See “Auto-Configuring Control Registers” on page 16 and Table 92 for details). Table 48. GPIO PIN INPUT STATUS REGISTER MDIO REGISTER ADDRESS = 1.49169 (1.C011’h) BIT NAME 1.49169.15:13 Reserved 1.49169.12:8 LASI I/P value 1.49169.7:5 Reserved 1.49169.4:0 GPIO Pin I/P Value SETTING R/W DESCRIPTION 1 = can trigger LASI (1) 0 = cannot trigger LASI RO/LH XOR of GPIO Pin I/P and Invert register 1.49170.13:8. 1 = Pin Hi 0 = Pin Lo RO Original values from GPIO pins directly. Note (1): If any of these bits is set to ‘1’, it triggers LASI if the corresponding bit in 1.49170.5:0 and the GPIO enable bit 1.36866.3 are set high. Table 49. TX_FAULT & GPIO PIN TO LASI CONFIGURE REGISTER MDIO REGISTER ADDRESS = 1.49170 (1.C012’h) BIT NAME SETTING DEFAULT R/W DESCRIPTION 1.49170.15:14 Reserved 1.49170.13 Invert TX_FAULT 1 = Pin Low, 0 = Pin High to trigger LASI 0’b(2) R/W Control Polarity of TX_FAULT pin which will trigger LASI (if enabled) 1.49170.12:8 Invert LASI I/P 1 = Invert to LASI 0 = Straight to LASI 00’h(2) R/W Control XOR of GPIO Pin I/P to LASI I/P register 1.49169.13:8. 1.49170.7:5 Reserved 1.49170.4:0 Enable LASI I/P 1 = Enable (1) 0 = Do not Enable 00’h(2) R/W Enable the GPIO pin value to trigger GPIO_ALARM to LASI Note (1): If any of these bits is set to ‘1’, it triggers LASI if the corresponding bit in 1.49169.12:8 and the GPIO enable bit 1.36866.3 are set high. The polarity that will trigger LASI is set by bits 1.49170.12:8 above. Note (2): These values may be overwritten by the Auto-Configure operation (See “Auto-Configuring Control Registers” on page 16 and Table 92 for details). Table 50. GPIO PIN OUTPUT REGISTER MDIO REGISTER ADDRESS = 1.49171 (1.C013’h) BIT NAME 1.49171.15:5 Reserved 1.49171.4:0 GPIO[4:0] Pin Output SETTING 0 = Low 1 = High DEFAULT 00’h(1) R/W R/W DESCRIPTION Controls GPIO[4:0] pin levels if set as output Note (1): The value may be overwritten by the Auto-Configure operation (See “Auto-Configuring Control Registers” on page 16 and Table 92 for details). 36 ISL35822 Table 51. DOM CONTROL REGISTER MDIO REGISTER ADDRESS = 1.49176 (1.C018’h) BIT NAME SETTING 1.49176.15:6 Reserved 1.49176.5 Test Control 1.49176.4:3 DOM Update period 1.49176.2 1.49176.1:0 DEFAULT(1) R/W DESCRIPTION 0’b R/W User must keep at 0. See Table 52 00’h R/W Controls rates at which DOM A/D values are updated Indirect DOM Enable 1 = Enable 0 = Disable 0’b(2) R/W Enable updates from four DOM devices. See Table 33, Table 38 Representative Lane value 00’b(2) R/W Select Lane for 1.A060:D’h Note (1): The values may be overwritten by the Auto-Configure operation (See “Auto-Configuring Control Registers” on page 16 and Table 92 for details). Note (2): If ‘Indirect DOM Enable’ is set, then the DOM A/D and Flag values are loaded from the I2C spaces pointed to by the Indirect Mode values in Table 53 and Table 54, and ‘Representative’ controls which lane’s A/D values will appear in 1.A060:D’h. If not, then ‘Representative’ has no effect, and the full DOM area is updated from a single DOM device. See “DOM Registers” on page 16 for details. Table 52. DOM PERIODIC UPDATE WAITING TIME VALUES (Approximate, based on REF_CLOCK = 156.25 MHz; default underlined) 1.49176.4:3 (1.C018’h) BITS(1) 1.41216.1:0 (1.A100’h.1:0) BITS(1) 00(2) 01 10 11 00 N/A N/A N/A N/A 01 800ms 1000ms 1300ms 1600ms 10 400ms 500ms 600ms 700ms 11(2) 100ms(2) 150ms 200ms 300ms Note (1): See Table 38 and Table 51 for these registers. Note (2): These are the Default values. The value in 1.C018’h may be overwritten by the Auto-Configure operation Table 53. DOM INDIRECT MODE START ADDRESS REGISTERS MDIO REGISTER ADDRESSES = 1.49177:8 (1.C019:1A’h) BIT NAME SETTING DEFAULT(1) R/W 1.49177.15:8 Lane 3 DOM Start Address 60’h R/W 1.49177.7:0 Lane 2 DOM Start Address 60’h R/W 1.49178.15:8 Lane 1 DOM Start Address 60’h R/W 1.49178.7:0 Lane 0 DOM Start Address 60’h R/W DESCRIPTION Start address to read A/D values from DOM monitor device of respective lane Note (1): The values may be overwritten by the Auto-Configure operation (See “Auto-Configuring Control Registers” on page 16 and Table 92 for details). Table 54. DOM INDIRECT MODE DEVICE ADDRESS REGISTERS MDIO REGISTER ADDRESSES = 1.49179:80 (1.C01B:1C’h) BIT NAME SETTING 1.49179.15:9 Lane 3 DOM Device Address 1.49179.8 Not used, Set by current operation 1.49179.7:1 Lane 2 DOM 1.49179.0 Not used, Set by current operation 1.49180.15:8 Lane 1 DOM 1.49180.7 Not used, Set by current operation 1.49180.7:1 Lane 0 DOM 1.49180.0 Not used, Set by current operation Device Address Device Address Device Address DEFAULT(1) R/W DESCRIPTION R/W Note: I2C Device address to read A/D values 53’h R/W from DOM monitor device of respective lane is twice set value. Thus ‘Default’ column addresses are A8’h, A6’h A4’h and A2’h for Lanes 3, 2, 1 & 0 respectively. LSB reflects ‘Read’ operation value 52’h R/W 51’h R/W 54’h Note (1): The values may be overwritten by the Auto-Configure operation (See “Auto-Configuring Control Registers” on page 16 and Table 92 for details). 37 ISL35822 Table 55. OPTICAL STATUS & CONTROL PIN POLARITY REGISTER MDIO REGISTER ADDRESS = 1.49181 (1.C01D’h) BIT NAME SETTING DEFAULT(1) R/W DESCRIPTION 1.49181.15:7 Reserved 1.49181.6 OPRLOS[3:0] 1 = low -> LOS 0 = high -> LOS 0’b R/W Input polarity to 1.10 and enable Byte Synch in LX4 mode 1.49181.5 TX_ENA[3:0] 0’b R/W Polarity of TX_ENA outputs 1.49181.4 TX_ENC 1 = Active Low 0 = Active Hi 0’b R/W Polarity of TX_ENC input 1.49181.3 OPRXOP 0’b R/W 1.49181.2 OPTTEMP Control Polarity of respective input pins which will trigger LASI (if enabled) 1.49181.1 OPTXLBC 1.49181.0 OPTXLOP 1 = Pin Low to trigger LASI 0 = Pin High to trigger LASI 0’b R/W 0’b R/W 0’b R/W Note (1): The values may be overwritten by the Auto-Configure operation (See “Auto-Configuring Control Registers” on page 16 and Table 92 for details). Table 56. MDIO PCS DEVAD 3 REGISTERS PCS DEVICE 3 MDIO REGISTERS ADDRESS DEC HEX NAME DESCRIPTION DEFAULT AC(2) R/W DETAILS 3.0 3.0 PCS Control 1 Reset, Enable loop back mode. 2040’h R/W Table 57 3.1 3.1 PCS Status 1 PCS Fault, Link Status 0004’h (3) RO LL Table 58 3.2:3 3.2:3 ID Code Manufacturer and Device OUI 01839C6V’h RO See (1) 3.4 3.4 Speed Ability 10Gbps Ability 0001’h RO Table 7 3.5 3.5 IEEE Devices Devices in Package, Clause 22 capable 001A’h RO Table 8 3.6 3.6 Vendor Devices Vendor Specific Devices in Pkg 0000’h RO Table 8 3.7 3.7 PCS Type IEEE PCS TYPE SELECT REGISTER 0001’h RO Table 59 3.8 3.8 PCS Status 2 Device Present, Local Fault, Type Summary 8002’h (3) RO Table 60 3.14:15 3.E:F Package ID Package OUI, etc. 00000000’h RO See (4) 3.24 3.18 PCS-X Status 3 IEEE 10GBASE-X PCS STATUS REGISTER See (5) RO Table 61 3.25 3.19 PCS Test IEEE 10GBASE-X PCS TEST CONTROL REGISTER 0000’h R/W Table 62 3.49152 3.C000 PCS Control 2 PCS CONTROL REGISTER 2 0F6F’h A R/W Table 63 3.49153 3.C001 PCS Control 3 PCS Control Register 3 0801’h A R/W Table 64 3.49154 3.C002 PCS ERROR PCS INTERNAL ERROR CODE REGISTER 00FE’h A R/W Table 66 3.49155 3.C003 PCS IDLE PCS INTERNAL IDLE CODE REGISTER 0007’h A R/W Table 67 3.49156 3.C004 PCS // Loop Back PCS PARALLEL NETWORK LOOP BACK CONTROL REGISTER 0000’h A R/W Table 68 3.49159 3.C007 Test_Flags Receive Path Test & Status Flags 0000’h RO LH Table 69 3.49160 3.C008 Output Ctrl Output Control and Test function AAAA’h R/W Table 70 3.49161 3.C009 Half Rate Half rate clock mode enable 0000’h R/W Table 71 3.49164 3.C00C BIST Ctrl BIST Control Register 0000’h R/W Table 72 3.49165 3.49166 3.C00D 3.C00E BIST Error BIST ERROR Counter Registers 0000’h RO/ RCNR Table 73 3.49167 3.C00F Soft Reset Reset (non MDIO) 0000’h R/W SC Table 46 Note (1): ‘V’ is a version number. See “JTAG & AC-JTAG Operations” on page 53 for a note about the version number. Note (2): For rows with “A”, the default value may be overwritten by the Auto-Configure operation (See “Auto-Configuring Control Registers” on page 16 and Table 92 for details). Note (3): Read value depends on status signal values. Value shown indicates ‘normal’ operation. Note (4): The IEEE 802.3ae specification allows this to be all zeroes. A XENPAK (etc.) host can more readily determine where the NVR registers are if this value is zero. Note (5): If IEEE 802.3ae (and default) setting for PCS Loopback, 180F’h. If PCS Loopback allowed, 1C0F’h. See Table 61 and Table 64. 38 ISL35822 IEEE PCS REGISTERS (3.0 TO 3.25/3.0019’H) Table 57. IEEE PCS CONTROL 1 REGISTER MDIO REGISTER ADDRESS = 3.0 (3.0000’h) BIT(S) NAME SETTING DEFAULT R/W DESCRIPTION 3.0.15 1.0.15 4.0.15 Reset 1 = reset 0 = reset done, normal operation 0’b R/W SC Writing 1 to this bit will reset the whole chip, including the MDIO registers. 3.0.14(1) PCS_LB_EN Optionally, enable PCS Loopback, otherwise reserved 0’b R/W If enabled by EN_PCS_LB (see bit 3.C001’h.7, Table 64) perform PCS Loopback, and is a R/W bit; otherwise, effectively a reserved RO 0’b bit (1). 3.0.13 Speed Select 1 = 10Gbps 1’b RO 1 = bits 5:2 select speed 3.0.12 Reserved 3.0.11 LOPOWER 3.0.10:7 Reserved 3.0.6 00’h 0 = Normal Power 0’b R/W No Low Power Mode, writes ignored Speed Select 1 = 10Gbps 1’b RO 1 = bits 5:2 select speed 3.0.5:2 Speed Select 0000 = 10Gbps 0’h RO Operates at 10Gbps 3.0.1:0 Reserved 0’b Note (1): This bit is not permitted to be a PCS loopback bit by IEEE 802.3ae-2002 subclause 45.2.3.1.2 in 10GBASE-X PCS devices. Intersil has submitted a maintenance request (#1113) to allow that use of this bit. Many XENPAK hosts, however, expect this loopback (which is mandatory for 10GBASE-R PCS devices). Setting the 3.C001’h.7 bit, (Table 64) will activate this loopback enable bit, but cause the ISL35822 to be non-conforming to the current 802.3 specification. See “Loopback Modes ” on page 13). Table 58. IEEE PCS STATUS 1 REGISTER MDIO REGISTER ADDRESS = 3.1 (3.0001’h) BIT NAME SETTING 3.1.15:8 Reserved 3.1.7 Local Fault 3.1.6:3 Reserved 3.1.2 Rx Link Up 1 = PCS Rx Link Up 0 = PCS Rx Link Down 3.1.1 LoPwrAble Low Power Ability 3.1.0 Reserved DEFAULT R/W DESCRIPTION 00’h 1 = PCS Local Fault 0 RO Derived from Register 3.0008’h 1 (1) RO LL(1) ‘Up’ means CX4/LX4 signal level is OK, Byte Synch and Lane-Lane Alignment have all occurred 0 RO Device does not support a low power mode 0’h 0 Note (1): This bit is latched low on a detected Fault condition. It is set high on being read. Table 59. IEEE PCS TYPE SELECT REGISTER MDIO REGISTER ADDRESS = 3.7 (3.0007’h) BIT NAME 3.7.15:2 Reserved 3.7.1:0 PCS Type SETTING DEFAULT R/W DESCRIPTION 000’h 01 = 10GBASE-X 01b RO(1) Writes ignored Note (1): Although the 802.3ae specification describes this register as type R/W, this register cannot have any value other than that reflecting the 10GBASE-X PCS. Thus writing any other value is ignored, and the register is in effect type RO. 39 ISL35822 Table 60. IEEE PCS STATUS 2 DEVICE PRESENT & FAULT SUMMARY REGISTER MDIO REGISTER ADDRESS = 3.8 (3.0008’h) BIT NAME 3.8.15:14 Device present 3.8.13:12 Reserved 3.8.11 TX LocalFlt 3.8.10 RX LocalFlt 3.8.9:3 Reserved 3.8.2 SETTING DEFAULT 10 = Device present 10’b R/W DESCRIPTION RO When read as “10”, it indicates that a device is present at this device address 1 = TX Local Fault; on Egress 0’b channel RO LH(1) PLL Lock Failure is only PCS TX Fault 1 = RX Local Fault; on Ingress 0’b channel RO LH(1) Lane Alignment or Byte Alignment not done, or Loss of Signal, from Register 3.24 (3.0018’h) 10GBASE-W 0 = cannot perform 0’b RO Device cannot be 10GBASE-W 3.8.1 10GBASE-X 1 = can perform 1’b RO Device can perform 10GBASE-X 3.8.0 10GBASE-R 0 = cannot perform 0’b RO Device cannot be 10GBASE-R Note (1): These bits are latched high on any Fault condition detected. They are reset low (cleared) on being read. They will also be reset low on reading the LASI registers 1.9003’h (bit 10, see Table 27) or 1.9004’h (bit 11, see Table 28) Table 61. IEEE 10GBASE-X PCS STATUS REGISTER MDIO REGISTER ADDRESSES = 3.24 (3.0018’h) BIT NAME SETTING DEFAULT R/W DESCRIPTION 3.24.15:13 Reserved 3.24.12 Lane_Align 1 = 4 Lanes Aligned 0 = Lanes not aligned 1’b(1) RO 1 = All four 3G receive lanes (on ingress path) are aligned 3.24.11 Test_Pattern Test Pattern Abilities 1’b RO 1 = The device is able to generate test patterns for 10GBASE-X 3.24.10 PCS Loopback Ability(2) or Reserved 1 = has Optional PCS Loopback Ability. 0’b RO If enabled by EN_PCS_LB (see bit 3.C001’h.7, Table 64) indicates PCS Loopback ability, and is a 1‘b bit; otherwise, a reserved 0’b bit (2). 3.24.9:4 Reserved 3.24.3 Lane3 Sync 1’b(1) RO 1’b(1) RO Reflects the PCS_SYNC byte alignment state machine condition; not valid if not enabled in device (see Table 63) Lane1 Sync 1’b(1) RO Lane0 Sync 1’b(1) RO 3.24.2 3.24.1 3.24.0 00’h 1 = PCS Lane is Synchronized 0 = PCS Lane not Synchronized Lane2 Sync Note (1): The status of these bits depends on the signal conditions. Default shown is for normal operation. The bits contribute to the RX Local Fault bit, see Table 60. Note (2): See Note (1) to Table 57, Note (2) to Table 64 and/or “PCS (Parallel) Loopback (4.C004.[3:0] & Optionally 3.0.14)” under “Loopback Modes ” on page 13. If enabled, this register bit does NOT conform to the IEEE 802.3ae-2002 specification. Table 62. IEEE 10GBASE-X PCS TEST CONTROL REGISTER MDIO REGISTER ADDRESS = 3.25 (3.0019’h) BIT NAME SETTING DEFAULT R/W DESCRIPTION 3.25.15:3 Reserved 3.25.2 PCS TestPatEn Transmit Test Pattern Enable 0’b R/W 0 = Do not Transmit test pattern 1 = Transmit test pattern 3.25.1:0 PCS TestPat Type Test pattern select 00’b R/W 11 = Reserved 10 = Mixed frequency test pattern (Continuous /K/ = K28.5) 01 = Low frequency test pattern (repeat 0000011111 = K28.7) 00 = High frequency test pattern (repeat 0101010101 = D10.2) Note (1): For other test pattern generation capabilities incorporated in the ISL35822, including CJPAT and CRPAT, see Table 72. 40 ISL35822 VENDOR-SPECIFIC PCS REGISTERS (3.C000’H TO 3.C00E’H) Table 63. PCS CONTROL REGISTER 2 MDIO REGISTER ADDRESS = 3.49152 (3.C000’h) BIT NAME 3.49152.15:14 Test Mode 3.49152.13:12 Reserved 3.49152.11 PCS Clock PSYNC 3.49152.10 PCS CODECENA 3.49152.9:8 SETTING R/W DESCRIPTION 00’b R/W User should leave at 00’b 1’b R/W 1 = Synchronize/align four lanes 0 = Do not synchronize/align four lanes 0 = disable 1 = enable 1’b R/W Internal 8B/10B PCS Codec enable/disable PCS CDET[1:0] Comma Detect Select 11’b R/W These bits individually enable positive and negative disparity “comma” detection. 11 = Enable both positive and negative comma detection 10 = Enable positive comma detection only 01 = Enable negative comma detection only 00 = Disable comma detection 3.49152.7 PCS DSKW_SM_EN 0 = disable(2) 1 = enable 0’b R/W Enable De-skew state machine control (3) . Forced enabled by XAUI_EN. May not operate correctly unless the PCS_SYNC_EN bit is also set. 3.49152.6:5 PCS RCLKMODE(4) 11’b = Local Reference Clock 11’b R/W Other values should only be used if incoming data is frequency-synchronous with the local reference clock(4) 3.49152.4 PCS_SYNC_EN 0 = disable(2) 1 = enable 0’b R/W Enable 8b/10b PCS coding synchronized state machine(3) to control the byte alignment (IEEE ‘code-group alignment’) of the high speed de-serializer 3.49152.3 PCS IDLE_D_EN 1 = enabled 0 = disabled 1’b R/W Enables IDLE vs. NON-IDLE detection for lane-lane alignment. Overridden by XAUI_EN, see Table 64 3.49152.2 PCS ELST_EN 1 = enabled 0 = disabled 1’b R/W Enable the elastic function of the receiver buffer 3.49152.1 PCS A_ALIGN_DIS 1 = disabled(1) 0 = enabled 1’b R/W Receiver aligns data on incoming “/A/” characters (K28.3). If disabled (default), receiver aligns data on IDLE to nonIDLE transitions (if bit 3 set). Overridden by XAUI_EN, see Table 64 3.49152.0 PCS CAL_EN 1 = enabled 0 = disabled 1’b R/W Enable de-skew calculator of receiver Align FIFO Note (1): Note (2): Note (3): Note (4): 00’b DEFAULT(1) The default values may be overwritten by the Auto-Configure operation (See “Auto-Configuring Control Registers” on page 16 and Table 92 for details). These bits are overridden by PCS XAUI_EN, see Table 64 and Table 65. These state machines are implemented according to 802.3ae-2002 clause 48.6.2. If the RCLKMODE bits are set to 10’b, the internal XGMII clock from the PCS to the PHY XS is set to the recovered clock. If the PCS Clock PSYNC bit is set (the default), the recovered clock from Lane 0 is used for all four lanes, if cleared, or if the RCLKMODE bits are set to 01’b or 00’b, each lane uses its own recovered clock. If the incoming data is NOT frequency-synchronous with the local reference clock, data will be corrupted (occasional characters will be lost, or repeated). Table 64. PCS CONTROL REGISTER 3 MDIO REGISTER ADDRESS = 3.49153 (3.C001’h) BIT NAME 3.49153.15:12 Reserved 3.49153.11 PCS XAUI_EN 3.49153.10:8 Reserved 3.49153.7 EN_PCSLB_EN 41 SETTING 1 = enable 0 = disable DEFAULT 1’b(1) 0’b(1) R/W R/W DESCRIPTION Enables all XAUI features per 802.3ae-2002. It is equivalent to setting the configuration bits listed in Table 65 (but does not change the actual value of the corresponding MDIO registers’ bits). Enable 3.0.14 Loopback Control (2) ISL35822 Table 64. PCS CONTROL REGISTER 3 (Continued) MDIO REGISTER ADDRESS = 3.49153 (3.C001’h) BIT NAME SETTING DEFAULT R/W DESCRIPTION 3.49153.6 PCS AKR_SM_EN 1 = enable random A/K/R 0 = /K/ only(3) 0’b(1) R/W Enable pseudo- random A/K/R(4) in Inter Packet Gap (IPG) on PCS transmitter side (vs. /K/ only) 3.49153.5 PCS TRANS_EN 1 = enable 0 = disable(3) Overridden by XAUI_EN, see Table 65 0’b(1) R/W This bit enables the transceiver to translate an “IDLE” pattern in the internal FIFOs (matching the value of register 3.C003’h) to and from the XAUI IDLE /K/ comma character or /A/, /K/ & /R/ characters. 3.49153.4 Reserved 3.49153.3 TX_SDR PCS receive data rate 0’b(1) R/W 1 = PCS egress takes data from PHY XS at half speed 0 = PCS egress takes data from PHY XS at full speed 3.49153.2:0 Reserved 001’b Note (1): These values may be overwritten by the Auto-Configure operation (See “Auto-Configuring Control Registers” on page 16 and Table 92 for details). Note (2): PCS loopback via bit 3.0.14 (Table 57) is NOT permitted by IEEE 802.3ae-2002 for 10GBASE-X PCS devices. Many XENPAK hosts, however, expect this loopback (which is mandatory for 10GBASE-R PCS devices). Setting this bit will enable this loopback, but cause the ISL35822 to be non-conforming to the current 802.3 specification. See “Loopback Modes ” on page 13). Note (3): These bits are overridden by PCS XAUI_EN, see also Table 65. Note (4): This state machine is implemented according to IEEE 802.3ae-2002 clause 48.2.6. Table 65. PCS or PHY XS XAUI_EN CONTROL OVERRIDE FUNCTIONS BITS OVERRIDDEN BY XAUI_EN Bit, D.49153.11 (D.C001’h.11) = 1’b (1) REG. BIT(1) NAME OVERRIDE TO DEFAULT R/W DESCRIPTION D.49153.5 TRANS_EN 1 = enable 0’b R/W Translates /A/K/R/ to-from /I/ D.49153.6 AKR_SM_EN 1 = enable 0’b R/W Generate pseudo-random /A/K/R/ D.49152.1 A_ALIGN_DIS 0 = enabled 1’b R/W Aligns data on incoming “||A||” D.49152.4 PCS_SYNC_EN 1 = enable 0’b R/W IEEE Clause 48.2.6 State Machine D.49152.7 DSKW_SM_EN 1 = enable 0’b R/W IEEE Clause 48.2.6 State Machine D.49154 ERROR Code FE’h FE’h R/W Internal FIFO ERROR character Note (1): “D” is either 3 for PCS or 4 for PHY XS. Behavior of the two devices is entirely independent of each other. Table 66. PCS INTERNAL ERROR CODE REGISTER MDIO REGISTER, ADDRESS = 3.49154 (3.C002’h) BIT NAME 3.49154.15:8 Reserved 3.49154.7:0 PCS ERROR SETTING Desired Value(2) DEFAULT(1) FE’h R/W R/W DESCRIPTION Error Code. These bits allow the internal FIFO ERROR control character to be programmed. Note (1): The value may be overwritten by the Auto-Configure operation (See “Auto-Configuring Control Registers” on page 16 and Table 92 for details). Note (2): These bits are overridden to FE’h by XAUI_EN, see Table 64 and Table 65. Table 67. PCS INTERNAL IDLE CODE REGISTER MDIO REGISTER ADDRESS = 3.49155 (3.C003’h) BIT NAME 3.49155.15:8 Reserved 3.49155.7:0 PCS XG_IDLE SETTING Desired Value DEFAULT(1) 07’h R/W R/W DESCRIPTION IDLE pattern in internal FIFOs for translation to/from XAUI IDLEs Note (1): The value may be overwritten by the Auto-Configure operation (See “Auto-Configuring Control Registers” on page 16 and Table 92 for details). 42 ISL35822 Table 68. PCS PARALLEL NETWORK LOOP BACK CONTROL REGISTER MDIO REGISTER ADDRESS = 3.49156 (3.C004’h) BIT NAME SETTING DEFAULT 3.49156.15:4 Reserved 3.49156.3 PLP_3 3.49156.2 PLP_2 3.49156.1 PLP_1 0’b(1) 3.49156.0 PLP_0 0’b(1) 1 = enable PCS Parallel 0’b(1) Network loopback(2) 0’b(1) 0 = disable R/W DESCRIPTION R/W PCS Parallel Network Loop Back Enable for each individual lane. When high, routes the CX4/LX4 Serial input to the CX4/LX4 Serial output via the XGMII side of the PCS. Note (1): The default value may be overwritten by the Auto-Configure operation (See “Auto-Configuring Control Registers” on page 16 and Table 92 for details). Note (2): Equivalent to a loopback at the XGMII input side of the PHY XS. Table 69. PCS RECEIVE PATH TEST AND STATUS FLAGS MDIO REGISTER ADDRESS = 3.49159 (3.C007’h) BIT NAME 3.49159.15:12 Test Flags 3.49159.11 EFIFO_3 3.49159.10 EFIFO_2 3.49159.9 EFIFO_1 3.49159.8 EFIFO_0 3.49159.7 Code_3 3.49159.6 Code_2 3.49159.5 SETTING DEFAULT 0’h 1 = EFIFO error in Lane 0 = no EFIFO error in Lane R/W DESCRIPTION ROLH Special test use only 0’b 0’b ROLH 0’b ROLH 0’b ROLH ROLH Code_1 1 = 10b/8b Code error in 0’b Lane 0’b 0 = no 10b/8b Code error 0’b 3.49159.4 Code_0 0’b ROLH 3.49159.3:0 Test Flags 0’h ROLH PCS Elasticity FIFO Overflow/Underflow Error Detection(1) PCS 10b/8b Decoder Code Violation Detection(1) ROLH ROLH Special test use only Note (1): Note (1): These bits are latched high on any Fault condition detected. They are reset low (cleared) on being read. They will also be reset low on reading the LASI register 1.9003’h (see Table 27) Table 70. PMA/PCS OUTPUT CONTROL & TEST FUNCTION REGISTER MDIO REGISTER ADDRESS = 3.49160 (3.C008’h) BIT NAME 3.49160.15:14 Reserved 3.49160.13 ENA_3 3.49160.12:10 Reserved 3.49160.9 ENA_2 3.49160.8:6 Reserved 3.49160.5 ENA_1 3.49160.12:10 Reserved 3.49160.1 ENA_0 3.49160.0 Reserved SETTING Enable Lane 3 O/P Enable Lane 2 O/P Enable Lane 1 O/P Enable Lane 0 O/P 43 DEFAULT R/W DESCRIPTION 10’b R/W Test Function, do not alter 1’b R/W 0 = disable (indep. of LX4_MODE) 010’b R/W Test Function, do not alter 1’b R/W 0 = disable (indep. of LX4_MODE) 010’b R/W Test Function, do not alter 1’b R/W 0 = disable (indep. of LX4_MODE) 010’b R/W Test Function, do not alter 1’b R/W 0 = disable (indep. of LX4_MODE) 0’b R/W Test Function, do not alter ISL35822 Table 71. PCS/PHY XS HALF RATE CLOCK CONTROL REGISTER MDIO REGISTER ADDRESSES = 3.49161 & 4.49161 ([3,4].C009’h) BIT NAME 3.49161.15:4 4.49161.15:4 Reserved 3.49161.3 4.49161.3 HALF_RATE 3 3.49161.2 4.49161.2 SETTING DEFAULT R/W DESCRIPTION 0’h R/W 1’b = half rate clock 0’b = full rate clock 0’b R/W Lane 3 is running at half rate clock speed HALF_RATE 2 1’b = half rate clock 0’b = full rate clock 0’b R/W Lane 2 is running at half rate clock speed 3.49161.1 4.49161.1 HALF_RATE 1 1’b = half rate clock 0’b = full rate clock 0’b R/W Lane 1 is running at half rate clock speed 3.49161.0 4.49161.0 HALF_RATE 0 1’b = half rate clock 0’b = full rate clock 0’b R/W Lane 0 is running at half rate clock speed Table 72. BIST CONTROL REGISTER MDIO REGISTER ADDRESS = 3.49164 (3.C00C’h) BIT NAME 3.49164.15 BIST_EN 3.49164.14:12 Reserved 3.49164.11 SETTING DEFAULT DESCRIPTION(1) R/W BIST generator enable 0’b R/W 1 = Enable BIST generator 0 = Disable BIST generator BIST_DIR Select BIST data output direction 0’b R/W 1 = BIST to PCS (transmit path) 0 = BIST to XGXS (receive path) 3.49164.10:8 BIST_PAT Select BIST generator data pattern(4) 0’h R/W 000 = CRPAT 001 = CJPAT 010 = PRBS23 with 9 /K/s as IPG 011 = Short PRBS23 pattern(2) 100 = Jumbo Ethernet packet(3) Other = reserved 3.49164.7 BIST_DET BIST checker enable 0’b R/W 1 = Enable BIST checker 0 = Disable BIST checker 3.49164.6:4 Reserved 3.49164.3 BIST_SRC Select BIST data checker input source 0’b R/W 0 = PCS to BIST (receive path) 1 = XGXS to BIST (transmit path) 3.49164.2:0 BIST_CHK Select BIST checker data pattern (5) 0’h R/W 000 = CRPAT 001 = CJPAT 010 = PRBS23 with /K/’s as IPG 011 = Short PRBS23 pattern(2) 100 = Jumbo Ethernet packet(3) Other = reserved Note (1): See “BIST Operation” on page 53 for a description of these tests and patterns. Note (2): Note (3): Note (4): Note (5): This Short pattern is the first 13458 Bytes of the full PRBS 223-1 Byte pattern, and also has 9 /K/ per lane as IPG This pattern is an /S/, preamble, the ‘Short PRBS23’ pattern, one /T/, and 9 /K/s, repeated. A Soft Reset is required to activate the newly selected pattern. The checker expects at least one /K/ on each lane between pattern repeats 44 ISL35822 Table 73. BIST ERROR COUNTER REGISTERS MDIO REGISTER ADDRESSES = 3.49165:6 (3.C00D:E’h) BIT NAME SETTING DEFAULT R/W 3.49165.15:8 BIST_ERR_CNT_3 Lane 3 errors 00’h RCNR(1) 3.49165.7:0 BIST_ERR_CNT_2 Lane 2 errors 00’h RCNR(1) 3.49166.15:8 BIST_ERR_CNT_1 Lane 1 errors 00’h RCNR(1) 3.49166.7:0 BIST_ERR_CNT_0 Lane 0 errors 00’h RCNR(1) DESCRIPTION Error byte counter of BIST pattern checker on each Lane Note (1): The counters do not rollover at FF’h, and are cleared on read. There is also an error flag bit, see register 4.C007, Table 88. Table 74. MDIO PHY XS DEVAD 4 REGISTERS PHY XS DEVICE 4 MDIO REGISTERS ADDRESS DEC 4.0 HEX 4.0 NAME PHYXS Control 1 DESCRIPTION DEFAULT Reset, Enable loop back mode. 2040’h AC (2) R/W R/W DETAILS Table 75 4.1 4.1 PHYXS Status 1 PCS Fault, Link Status 0004’h (3) RO (LL) Table 76 4.2:3 4.2:3 ID Code Manufacturer and Device OUI 01839C6V’h RO See (1) 4.4 4.4 Speed Ability 10Gbps Ability 0001’h RO Table 7 4.5 4.5 IEEE Devices Devices in Package, Clause 22 capable 001A’h RO Table 8 4.6 4.6 Vendor Devices Vendor Specific Devices in Pkg 0000’h RO Table 8 RO Table 77 4.8 4.8 PHYXS Status 2 Device Present, Local Fault, Type Summary 8000’h (3) 4.14:15 4.E:F Package ID Package OUI, etc. 00000000’h RO See (4) 4.24 4.18 PHYXS Status 3 10GBASE-X PHY XGXS Status 1C0F’h RO Table 78 4.25 4.19 PHYXS Test 10GBASE PHY XS Test Control 0000’h R/W Table 79 4.49152 4.C000 PHYXS Control 2 PHY XS Control Register 2 0F6F’h A R/W Table 80 4.49153 4.C001 PHYXS Control 3 PHY XS Control Register 3 0800’h A R/W Table 81 4.49154 4.C002 PHYXS ERR PHY XS Internal ERROR code register 00FE’h A R/W Table 82 4.49155 4.C003 PHYXS IDLE PHY XS Internal IDLE Code Register 0007’h A R/W Table 83 4.49156 4.C004 PHYXS Loop Back PHY XS Loop Back Control Register 0000’h A R/W Table 84 4.49157 4.C005 PRE_EMPH PHY XS Pre-emphasis level 0000’h A R/W Table 85 4.49158 4.C006 Equalization PHY XS Equalization Control 0000’h A R/W Table 87 4.49159 4.C007 Test_Flags PHY XS Receive Path Test & Status Flags 0000’h RO LH Table 88 4.49160 4.C008 Output Ctrl Output Control and Test function AAAA’h R/W Table 89 4.49161 4.C009 Half Rate Half rate clock mode enable 0000’h R/W Table 71 4.49162 4.C00A LOS Det PHY XS Status 4 LOS Register 0000’h RO LH Table 90 4.49163 4.C00B Reserved PHY XS Control 4 TXCLK20 0000’h R/W Table 91 4.49167 4.C00F Soft Reset Reset (non MDIO) 0000’h R/W SC Table 46 Note (1): ‘V’ is a version number. See “JTAG & AC-JTAG Operations” on page 53 for a note about the version number. Note (2): For rows with “A”, the default value may be overwritten by the Auto-Configure operation (See “Auto-Configuring Control Registers” on page 16 and Table 92 for details). Note (3): Read value depends on status signal values. Value shown indicates ‘normal’ operation. Note (4): The IEEE 802.3ae spec allows this to be all zeroes. A XENPAK (etc.) host can more readily determine where the NVR registers are if this value is zero. 45 ISL35822 IEEE PHY XS REGISTERS (4.0 TO 4.25/4.0019’H) Table 75. IEEE PHY XS CONTROL 1 REGISTER MDIO REGISTER ADDRESS = 4.0 (4.0000’h) BIT(S) NAME SETTING DEFAULT R/W DESCRIPTION 3.0.15 1.0.15 4.0.15 Reset 1 = reset 0 = reset done, normal operation 0’b R/W SC Writing 1 to this bit will reset the whole chip, including the MDIO registers. 4.0.14 PHY XS Loopback 1 = Enable loopback 0 = Normal operation 0’b R/W Enable PHY XS loop back mode on all four lanes. 3.0.13 4.0.13 Speed Select 1 = 10Gbps 1’b RO Operates at 10Gbps & above 4.0.12 Reserved 4.0.11 LOPOWER 4.0.10:7 Reserved 3.0.6 4.0.6 00’h 0 = Normal Power 0’b R/W No Low Power Mode, writes ignored Speed Select 1 = 10Gbps 1’b RO Operates at 10Gbps & above 3.0.5:2 4.0.5:2 Speed Select 0000 = 10Gbps 0’h RO Operates at 10Gbps 4.0.1:0 Reserved 0’b Table 76. IEEE PHY XS STATUS 1 REGISTER MDIO REGISTER ADDRESS = 4.1 (4.0001’h) BIT NAME SETTING 4.1.15:8 Reserved 4.1.7 Local Fault 4.1.6:3 Reserved 4.1.2 Tx Link Up 1 = XGXS Tx Link Up 0 = XGXS Tx Link Down 4.1.1 LoPwrAble Low Power Ability 4.1.0 Reserved DEFAULT R/W DESCRIPTION 00’h 1 = PHY XS Local Fault 0 RO Derived from Register 4.0008’h 1 (1) RO LL(1) ‘Up’ means XAUI-side signal level is OK, Byte Synch and Lane-Lane Alignment have all occurred 0 RO Device does not support a low power mode 0’h 0 Note (1): This bit is latched low on a detected Fault condition. It is set high on being read. Table 77. IEEE PHY XS STATUS 2 DEVICE PRESENT & FAULT SUMMARY REGISTER MDIO REGISTER ADDRESSES = 4.8 (4.0008’h) BIT NAME 4.8.15:14 Device present 4.8.13:12 Reserved 4.8.11 TX LocalFlt 4.8.10 RX LocalFlt 4.8.9:0 Reserved SETTING 10 = Device present DEFAULT 10’b R/W DESCRIPTION RO When read as “10”, it indicates that a device is present at this device address 1 = TX Local Fault; on Egress 0’b channel RO/ LH(1) Lane Alignment or Byte Alignment not done, or Loss of Signal. From Reg. 4.24 1 = RX Local Fault; on Ingress 0’b channel RO/ LH(1) PLL lock failure (lack of RFCP/N signal) Note (1): These bits are latched high on any Fault condition detected. They are reset low (cleared) on being read. They will also be reset low on reading the LASI registers 1.9003’h (bit 10, see Table 27) or 1.9004’h (bit 11, see Table 28) 46 ISL35822 Table 78. IEEE 10GBASE-X PHY XGXS STATUS REGISTER MDIO REGISTER ADDRESSES = 4.24 (4.0018’h) BIT NAME SETTING DEFAULT R/W DESCRIPTION 4.24.15:13 Reserved 4.24.12 PHY XS Lane_Align 1 = 4 Lanes Aligned 0 = Lanes not aligned 1’b(1) RO 1 = Four 3G receive lanes (on egress path) are aligned 4.24.11 Test_Pattern Test Pattern Abilities 1’b RO 1 = The device is able to generate test patterns for 10GBASE-X 4.24.10 PHYXSLpbk Loopback Ability 1’b RO 1 = Device is able to loopback 4.24.9:4 Reserved 4.24.3 Lane3 Sync 1 = Lane is Synchronized 0 = Lane not Synchronized 1’b(1) RO 1’b(1) RO Reflects the PCS_SYNC byte alignment state machine condition; not valid if not enabled in device (see Table 80) 4.24.2 Lane2 Sync 4.24.1 Lane1 Sync 1’b(1) RO Lane0 Sync 1’b(1) RO 4.24.0 Note (1): The status of these bits depends on the signal conditions. Default shown is for normal operation. The bits contribute to the RX Local Fault bit, see Table 77. Table 79. IEEE 10GBASE-X PHY XGXS TEST CONTROL REGISTER MDIO REGISTER ADDRESS = 4.25 (4.0019’h) BIT NAME SETTING DEFAULT R/W DESCRIPTION 4.25.15:3 Reserved 4.25.2 PHY XS TestPatEn Receive Test Pattern Enable 0’b R/W 0 = Do not enable Receive test pattern 1 = Enable Receive test pattern 4.25.1:0 PHY XS TestPat Type Test pattern select (see Table 72 for other test patterns generated by the ISL35822) 00’b R/W 11 = Reserved 10 = Mixed frequency test pattern (Continuous /K/ = K28.5) 01 = Low frequency test pattern (repeat 0000011111 = K28.7) 00 = High frequency test pattern (repeat 0101010101 = D10.2) VENDOR-SPECIFIC PHY XS REGISTERS (4.C000’H TO 4.C00B’H) Table 80. PHY XS CONTROL REGISTER 2 MDIO REGISTER ADDRESS = 4.49152 (4.C000’h) BIT NAME 4.49152.15:14 Test Mode 4.49152.13:12 Reserved 4.49152.11 PHY XS Clock PSYNC 4.49152.10 PHY XS CODECENA 4.49152.9:8 SETTING 00’b DEFAULT(1) R/W DESCRIPTION 00’b R/W User should leave at 00’b 1’b R/W 1 = Synchronize/align four lanes 0 = Do not synchronize/align four lanes 0 = disable 1 = enable 1’b R/W Internal 8B/10B Codec enable/disable PHY XS CDET[1:0] Comma Detect Select. 11’b R/W These bits individually enable positive and negative disparity “comma” detection. 11 = Enable both positive and negative comma detection 10 = Enable positive comma detection only 01 = Enable negative comma detection only 00 = Disable comma detection 4.49152.7 PHY XS DSKW_SM_EN 0 = disable(2) 1 = enable 0’b R/W Enable De-skew state machine control (3) . Forced enabled by PHY XS XAUI_EN. May not operate correctly unless the PHY XS PCS_SYNC_EN bit is also set. 4.49152.6:5 PHY XS RCLKMODE 11’b = Local Reference Clock(4) 11’b R/W Other values should only be used if incoming data is frequency-synchronous with the local reference clock(4). 47 ISL35822 Table 80. PHY XS CONTROL REGISTER 2 (Continued) MDIO REGISTER ADDRESS = 4.49152 (4.C000’h) BIT NAME SETTING DEFAULT(1) R/W DESCRIPTION 4.49152.4 PHY XS PCS_SYNC_EN(5) 0 = disable(2) 1 = enable 0’b R/W Enable 8b/10b PCS coding synchronized state machine(3) to control the byte alignment (IEEE ‘code-group alignment’) of the high speed de-serializer 4.49152.3 PHY XS IDLE_D_EN 1 = enable 0 = disable 1’b R/W Enables IDLE vs. NON-IDLE detection for lane alignment. Overridden by PHY XS XAUI_EN, see Table 88 4.49152.2 PHY XS ELST_EN 1 = enable 0 = disable 1’b R/W Enable the elastic function of the PHY XS receiver buffer 4.49152.1 PHY XS A_ALIGN_DIS 1 = disable(2) 0 = enable 1’b R/W PHY XS Receiver aligns data on incoming “/A/” characters (K28.3). If disabled (default), receiver aligns data on IDLE to non-IDLE transitions (if bit 3 set). Overridden by PHY XS XAUI_EN, see Table 81 4.49152.0 PHY XS CAL_EN 1 = enable 0 = disable 1’b R/W Enable de-skew calculator of PHY XS receiver Align FIFO Note (1): Note (2): Note (3): Note (4): The values may be overwritten by the Auto-Configure operation (See “Auto-Configuring Control Registers” on page 16 and Table 92 for details). These bits are overridden by PHY XS XAUI_EN, see Table 81 and Table 65. These state machines are implemented according to 802.3ae-2002 clause 48. If the RCLKMODE bits are set to 10’b, the internal XGMII clock from the PHY XS to the PCS is set to the recovered clock. If the PHY XS Clock PSYNC bit is set (the default), the recovered clock from Lane 0 is used for all four lanes, if cleared, or if the RCLKMODE bits are set to 01’b or 00’b, each lane uses its own recovered clock. If the incoming data is NOT frequency-synchronous with the local reference clock, data will be corrupted (occasional characters will be lost, or repeated). Note (5): This bit name reflects the “embedded” PCS function within an XGXS, see IEEE 802.3 Clause 47.2.1. Table 81. PHY XS CONTROL REGISTER 3 MDIO REGISTER ADDRESS = 4.49153 (4.C001’h) BIT NAME 4.49153.15 PHY XS DC_O_DIS 4.49153.14:13 Reserved 4.49153.12 SETTING DEFAULT(1) R/W DESCRIPTION 1 = Disable, 0 = normal 0’b R/W PHY XS DC Offset Disable MF_SEL Select source of signals for four MF pins 0’b R/W 1 = Select signals from PMA/PCS to be output on MF pins 0 = Select signals from PHY XGXS to be output on MF pins 4.49153.11 PHY XS XAUI_EN 1 = enable 0 = disable 1’b R/W Enables all XAUI features per 802.3ae-2002. It is equivalent to setting the configuration bits listed in Table 65 (but does not change the actual value of the corresponding MDIO registers’ bits). 4.49153.10:8 PHY_LOS_TH 0’h = 160mVp-p 1’h = 240mVp-p 2’h = 200mVp-p 3’h = 120mVp-p 4’h = 80mVp-p else = 160mVp-p 000’b R/W Set the threshold voltage for the Loss Of Signal (LOS) detection circuit in PHY XS. Nominal levels are listed for each control value. Note that the differential peak-to-peak value is twice that listed 4.49153.7 Reserved 4.49153.6 PHY XS AKR_SM_EN R/W Enable pseudo- random A/K/R(3) in Inter Packet Gap (IPG) on transmitter side (vs. /K/ only) 4.49153.5 PHY XS TRANS_EN 1 = enable 0 = disable(2) Overridden by PHY XS XAUI_EN, see Table 65 0’b R/W This bit enables the transceiver to translate an “IDLE” pattern in the internal FIFOs (matching the value of register 4.C003’h) to and from the XAUI IDLE /K/ comma character or /A/, /K/ & /R/ characters. 4.49153.4 Reserved 4.49153.3 PHY XS TX_SDR 0’b R/W 1 = PHY XS takes data from PCS at half speed 0 = PHY XS takes data from PCS at full speed 48 1 = enable random A/K/R 0’b 0 = /K/ only(2) PHY XS receive data rate ISL35822 Table 81. PHY XS CONTROL REGISTER 3 (Continued) MDIO REGISTER ADDRESS = 4.49153 (4.C001’h) BIT 4.49153.2:0 NAME SETTING MF_CTRL 0 = BIST_ERR 1 = LOS 2,3 = Reserved 4 = TXFIFO_ERR 5 = AFIFO_ERR 6 = EFIFO_ERR DEFAULT(1) 000’b R/W R/W DESCRIPTION Control the meaning of Multi-function pins MF[3:0] of the 4 lanes in the device selected by MF_SEL above (bit 12) Note (1): The values may be overwritten by the Auto-Configure operation (See “Auto-Configuring Control Registers” on page 16 and Table 92 for details). Note (2): These bits are overridden by PHY XS XAUI_EN, see also Table 65. Note (3): This state machine is implemented according toIEEE 802.3ae-2002 clause 48. Table 82. PHY XS INTERNAL ERROR CODE REGISTER MDIO REGISTER, ADDRESS = 4.49154 (4.C002’h) BIT NAME 4.49154.15:8 Reserved 4.49154.7:0 PHY XS ERROR SETTING Desired Value(2) DEFAULT(1) FE’h R/W R/W DESCRIPTION Error Code. These bits allow the internal FIFO ERROR control character to be programmed. Note (1): The values may be overwritten by the Auto-Configure operation (See “Auto-Configuring Control Registers” on page 16 and Table 92 for details). Note (2): These bits are overridden to FE’h by PHY XS XAUI_EN, see Table 65 and Table 81. Table 83. PHY XS INTERNAL IDLE CODE REGISTER MDIO REGISTER ADDRESS = 4.49155 (4.C003’h) BIT NAME 4.49155.15:8 Reserved 4.49155.7:0 PHY XS XG_IDLE SETTING Desired Value DEFAULT(1) 07’h R/W R/W DESCRIPTION IDLE pattern in internal FIFOs for translation to/from XAUI IDLEs Note (1): The default value may be overwritten by the Auto-Configure operation (See “Auto-Configuring Control Registers” on page 16 and Table 92 for details). Table 84. PHY XS MISCELLANEOUS LOOP BACK CONTROL REGISTER MDIO REGISTER ADDRESS = 4.49156 (4.C004’h) BIT NAME SETTING DEFAULT R/W DESCRIPTION 4.49156.15:13 Reserved 4.49156.12 Test LP 1 = enable 0’b(1) R/W Serial Host Test Loopback 4.49156.11 SLP_3 0’b(2) R/W 4.49156.10 SLP_2 1 = enable PHY XS Network Loopback 0 = disable Internal PHY XS Serial Loop Back Enable for each individual lane. When high, it routes the internal XAUI Serial output to the Serial input. 4.49156.9 SLP_1 0’b(2) 4.49156.8 SLP_0 0’b(2) 4.49156.7:4 Reserved 4.49156.3 PLP_3 R/W 4.49156.2 PLP_2 PCS Parallel Loop Back Enable for each individual lane. When high, it routes the XAUI Serial input to the Serial output via the full PHY XS. 4.49156.1 PLP_1 0’b(2) 4.49156.0 PLP_0 0’b(2) 0’b(2) 1 = enable System (“PCS”) 0’b(2) Parallel Loopback 0’b(2) 0 = disable Note (1): Loopback is from XAUI Serial I/P to Serial O/P. Recommended use for test purposes only; no retiming or pre-emphasis is performed Note (2): These values may be overwritten by the Auto-Configure operation (See “Auto-Configuring Control Registers” on page 16 and Table 92 for details). 49 ISL35822 Table 85. PHY XS PRE-EMPHASIS CONTROL MDIO REGISTER ADDRESS = 4.49157 (4.C005’h) BIT NAME SETTING DEFAULT(1) 4.49157.15:12 Reserved 4.49157.11:9 PRE_EMP Lane 3 4.49157.8:6 PRE_EMP Lane 2 See Table 86 for 0’h settings 0’h 4.49157.5:3 PRE_EMP Lane 1 0’h 4.49157.2:0 PRE_EMP Lane 0 0’h R/W DESCRIPTION R/W Configure the level of PHY XS pre-emphasis (nominal levels indicated) Note (1): The values may be overwritten by the Auto-Configure operation (See “Auto-Configuring Control Registers” on page 16 and Table 92 for details). Table 86. PHY XS XAUI PRE-EMPHASIS CONTROL SETTINGS PRE-EMPHASIS (1) (802.3ak) = (1-VLOW/VHI) PRE-EMPHASIS VALUE = ADDRESS 4.C005’h (VHI/ VLOW)-1 BITS 2:0 000 0 0 100 0.50 1.00 001 0.17 0.20 101 0.53 1.28 010 0.28 0.39 110 0.57 1.33 011 0.44 0.79 111 0.60 1.50 ADDRESS 4.C005’h BITS 2:0 PRE-EMPHASIS (802.3ak) = (1-VLOW/VHI) PRE-EMPHASIS VALUE = (VHI/ VLOW)-1 Note (1): See Note (2) to Table 42 for a note about the equations and symbols used here. Table 87. PHY XS EQUALIZATION CONTROL MDIO REGISTER ADDRESS = 4.49158 (4.C006’h) BIT NAME 4.49158.15:14 Reserved 4.49158.3:0 PHY XS EQ_COEFF DEFAULT(1) SETTING 0’h = no boost in equalizer. 0’h F’h = boost is maximum R/W R/W DESCRIPTION Configuration of the PHY XS equalizer Note (1): The value may be overwritten by the Auto-Configure operation (See “Auto-Configuring Control Registers” on page 16 and Table 92 for details). Table 88. PHY XS RECEIVE PATH TEST AND STATUS FLAGS MDIO REGISTER ADDRESS = 4.49159 (4.C007’h) BIT NAME 4.49159.15:12 Test Flags 4.49159.11 EFIFO_3 SETTING 1 = EFIFO error in Lane 0 = no EFIFO error in Lane DEFAULT R/W DESCRIPTION 0’h ROLH Special test use only 0’b ROLH PHY XS Elasticity FIFO Overflow/Underflow Error Detection(1) ROLH PHY XS 10b/8b Decoder Code Violation Detection(1) ROLH Lane by lane BIST error checker indicator(1) (2) 4.49159.10 EFIFO_2 4.49159.9 EFIFO_1 0’b 0’b 4.49159.8 EFIFO_0 0’b 4.49159.7 Code_3 4.49159.6 Code_2 4.49159.5 Code_1 1 = 10b/8b Code error in 0’b Lane 0’b 0 = no 10b/8b Code error 0’b 4.49159.4 Code_0 0’b 4.49159.3 BIST_ERR_3 4.49159.2 BIST_ERR_2 1 = BIST error in lane 0’b 0 = No BIST error in lane 0’b 4.49159.1 BIST_ERR_1 0’b 4.49159.0 BIST_ERR_0 0’b Note (1): These bits are latched high on any Fault condition detected. They are reset low (cleared) on being read. They will also be reset low on reading the LASI register 1.9004’h (see Table 28) Note (2): See also error counters in registers 3.C00D:E’h (Table 73) 50 ISL35822 Table 89. PHY XS OUTPUT AND TEST FUNCTION CONTROL REGISTER MDIO REGISTER ADDRESS = 4.49160 (4.C008’h) BIT NAME 4.49160.15:14 Reserved 4.49160.13 ENA_3 4.49160.12:10 Reserved 4.49160.9 ENA_2 4.49160.8:6 Reserved 4.49160.5 ENA_1 4.49160.12:10 Reserved 4.49160.1 ENA_0 4.49160.0 Reserved SETTING Enable Lane 3 O/P Enable Lane 2 O/P Enable Lane 1 O/P Enable Lane 0 O/P DEFAULT R/W DESCRIPTION 10’b R/W Test Function, do not alter 1’b R/W 0 = disable 010’b R/W Test Function, do not alter 1’b R/W 0 = disable 010’b R/W Test Function, do not alter 1’b R/W 0 = disable 010’b R/W Test Function, do not alter 1’b R/W 0 = disable 0’b R/W Test Function, do not alter Table 90. PHY XS STATUS 4 LOS DETECTOR REGISTER MDIO REGISTER ADDRESS = 4.49162 (4.C00A’h) BIT NAME 4.49162.15:4 Reserved 4.49162.3 PHY_LOS_3 4.49162.2 SETTING DEFAULT R/W DESCRIPTION 00’b RO/LH(1) Loss Of Signal for lane 3 PHY_LOS_2 1 = Signal less than threshold 0’b 0 = Signal greater than threshold 0’b 4.49162.1 PHY_LOS_1 0’b Loss Of Signal for lane 1 4.49162.0 PHY_LOS_0 0’b Loss Of Signal for lane 0 Loss Of Signal for lane 2 Note (1): These bits are latched high on any LOS condition detected. They are reset low on being read. Table 91. PHY XS CONTROL REGISTER 4 MDIO REGISTER ADDRESS = 4.49163 (4.C00B’h) BIT NAME SETTING DEFAULT R/W DESCRIPTION 4.49163.15:2 Reserved 00’h 4.49163.1 TXCLK20 0 = disable 1 = enable 0’b R/W TXCLK20 pin output 4.49163.0 Test Internal 0’b R/W User must keep at 0’b Auto-Configure Register List Table 92. Auto-CONFIGURE REGISTERS Auto-configure Pointer is (S), Auto-configure Size is (N), from 1.8106’h & 1.8105’h respectively NVR ADDRESS DEC TARGET REGISTER BITS ADDRESS (1) HEX DEC HEX TARGET NAME(1) DETAILS S+0 S+0 4.49158.[3:0] 4.C006.[3:0] PHY XS Equalizer Value Table 87 S+1 S+1 4.49157.[7:0] 4.C005.[7:0] PHY XS Pre-emphasis Lanes 1:0 Table 85 S+2 S+2 4.49157.[15:8] 4.C005.[15:8] PHY XS Pre-emphasis Lanes 3:2 S+3 S+3 1.49158.[3:0] 1.C006.[3:0] PMA/PMD Equalizer Value Table 43 S+4 S+4 1.49157.[7:0] 1.C005.[7:0] PMA/PMD Pre-emphasis Lanes 1:0 Table 41 S+5 S+5 1.49157.[15:8] 1.C005.[15:8] PMA/PMD Pre-emphasis Lanes 3:2 S+6 S+6 1.36864.[6:0]. 1.9000.[6:0] LASI RX Alarm Control 51 Table 24 ISL35822 Table 92. Auto-CONFIGURE REGISTERS (Continued) Auto-configure Pointer is (S), Auto-configure Size is (N), from 1.8106’h & 1.8105’h respectively NVR ADDRESS DEC TARGET REGISTER BITS ADDRESS (1) HEX DEC TARGET NAME(1) HEX DETAILS S+7 S+7 1.36865.[7:0] 1.9001.[7:0] LASI TX Alarm Control Table 25 S+8 S+8 1.36865.[10:8] & 1.36866.[3:0] 1.9001.[10:8], 1.9002.[3:0] LASI TX Alarm & LASI Control Table 25 & Table 26 S+9 S+9 1.36870. 1.9006 DOM TX flag control Table 30 S + 10 S+A 1.36871. 1.9007 DOM RX flag control Table 31 S + 11 S+B 1.49170.[1:0], 1.49168.[5:0] 1.C012.[1:0], 1.C010.[5:0] GPIO LASI & Pin Direction Configuration Table 49 & Table 47 S + 12 S+C 1.49170.[11:8,5:2], 1.C012.[11:8,5:2] GPIO LASI control Table 49 S + 13 S+D 1.49170.[13:12], 1.49171.[5:0] 1.C012.[13:12], 1.C013.[5:0] TX_FAULT polarity, GPIO LASI & Output Control Table 49 & Table 50 S + 14 S+E 1.49176 1.C018 DOM Control Table 51 S + 15 S+F 1.49177.[7:0] 1.C019.[7:0] Indirect DOM Mem Address Lane2 Table 53 S + 16 S + 10 1.49177.[15:8] 1.C019.[15:8] Indirect DOM Mem Address Lane3 S + 17 S + 11 1.49178.[7:0] 1.C01A.[7:0] Indirect DOM Mem Address Lane0 S + 18 S + 12 1.49178.[15:8] 1.C01A.[15:8] Indirect DOM Mem Address Lane1 S + 19 S + 13 1.49179.[7:0] 1.C01B.[7:0] Indirect DOM Dev Address Lane2 S + 20 S + 14 1.49179.[15:8] 1.C01B.[15:8] Indirect DOM Dev Address Lane3 S + 21 S + 15 1.49180.[7:0] 1.C01C.[7:0] Indirect DOM Dev Address Lane0 S + 22 S + 16 1.49180.[15:8] 1.C01C.[15:8] Indirect DOM Dev Address Lane1 S + 23 S + 17 1.49181.[7:0] 1.C01D.[7:0] Optical I/F Pin Polarity Control Table 55 S + 24 S + 18 4.49152.[7:0] 4.C000.[7:0] PHY XS control 2 Table 80 Table 54 S + 25 S + 19 4.49152.[15:8] 4.C000.[15:8] PHY XS control 2 S + 26 S + 1A 4.49153.[7:0] 4.C001.[7:0] PHY XS control 3 S + 27 S + 1B 4.49153.[15:8] 4.C001.[15:8] PHY XS control 3 S + 28 S + 1C 4.49154.[7:0] 4.C002.[7:0] PHY XS Error Code Table 82 S + 29 S + 1D 4.49155.[7:0] 4.C003.[7:0] PHY XS IDLE Code Table 83 S + 30 S + 1E 4.49156.[11:8,3:0] 4.C004.[11:8,3:0] PHY XS Loopback Control Table 85 S + 31 S + 1F 3.49152.[7:0] 3.C000.[7:0] PCS control 2 Table 63 S + 32 S + 20 3.49152.[15:8] 3.C000.[15:8] PCS control 2 S + 33 S + 21 3.49153.[7:0] 3.C001.[7:0] PCS control 3 Table 81 Table 64 & Table 39 (2) S + 34 S + 22 1:3.49153.[15:8] 1:3.C001.[15:8] PCS control 3/PMA control 2 S + 35 S + 23 3.49154.[7:0] 3.C002.[7:0] PCS Error Code Table 66 S + 36 S + 24 3.49155.[7:0] 3.C003.[7:0] PCS IDLE Code Table 67 S + 37 S + 25 1.49156.[11:8] 3.49156.[3:0] 1.C004.[11:8] 3.C004.[3:0] PCS/PMA Loopback Control Table 40 & Table 68 (3) S + 38 S + 26 1.49163.[9:2] 1.C00B.[9:2] Miscellaneous Adjustments Table 45 S + 39 S + 27 4.49163.[9:2] 4.C00B.[9:2] BitBlitz Internal Test Control Table 91 Note (1): The 8 bits of the NVR register (7:0) are mapped to the listed bits of the target in order. Unused bits are always at the MSb (bit 7) end. Note (2): The target register pair are overlapped, ignoring the ‘reserved’ bits in one where used bits occur in the same location in the other. Thus the mapping from the NVR register is: 1.C001.[15:12], 3.C001.11, 1.C001.[10:8]. Note (3): The mapping from the NVR register is: 1.C004.[11:8], 3.C004.[3:0] 52 ISL35822 JTAG & AC-JTAG Operations Five pins – TMS, TCK, TDO, TRST, and TDI – support IEEE Standards 1149.1-2001 JTAG and 1149.6-2003 AC-JTAG testing. The JTAG test capability has been implemented on all signal pins. Note that the 1149.1-2001 specification has removed the previous requirement that the [000...0] instruction be an entry into EXTEST, and deprecated its use for anything but a non-test function (e.g. BYPASS). The ISL35822 fully conforms to this revision. The AC-JTAG test capability has been implemented on the high-speed differential output and input terminals. The output configuration corresponds to Figure 51 in IEEE 1149.6-2003, except that there is no provision to bring the ‘mission’ signal into the scan chain, since this 3.125Gbps signal has no meaningful value at the (asynchronous) JTAG TCK rate, and the ISL35822 does not support INTEST. The receiver configuration corresponds to Figure 48, using the DC detection mode only, according to method 2 of 6.2.3.1 rule a), and omitting the components needed only for the unsupported INTEST instruction. The EXTEST_PULSE and EXTEST_TRAIN instruction timings are illustrated in Figures 37, 38 and 44 while the (DC) EXTEST waveforms are indicated in Figure 42 in IEEE 1149.6-2003. Provided that the TCK period is sufficiently longer than the AC-coupling time constant, controlled by the (external) capacitors and the input impedance of the ISL35822, (see IEEE 1149.6-2003 clause 6.2.3.1 rule k), the combination of (DC) EXTEST and EXTEST_PULSE or EXTEST_TRAIN scans can detect open or shorted capacitors or wires. The supported boundary scan operation instruction codes are listed in Table 93: Table 93. JTAG OPERATIONS INSTRUCTION CODE BYPASS (1) 0000 Sample/Preload 0001 HighZ 0010 Clamp 0011 ID Code 0110 EXTEST 1000 UDR0 1001 EXTEST_PULSE 1011 EXTEST_TRAIN 1100 BYPASS 1111 Note (1): All non-listed codes are also BYPASS. 53 The Manufacturers ID Code returned when reading the ID Code from the JTAG pins is as follows:V0006351’h where ‘V’ is an internal 4-bit version number. Consult the “Intersil Corporation Contact Information” on page 75 for information as to the meaning of the revision number. Note that the JTAG and AC-JTAG capability is not currently tested in production. BIST Operation In addition to the low, mid and high frequency test patterns defined in IEEE 802.3ae-2002, which are injected (at the 10bit level) directly into the serializers, and controlled via the “IEEE 10GBASE-X PCS TEST CONTROL REGISTER ” on page 40 and the “IEEE 10GBASE-X PHY XGXS TEST CONTROL REGISTER ” on page 47, and to further facilitate the exercise of all the BT3821 blocks, the device includes a Built In Self Test (BIST) function. The BIST Data Package Generator sends out a continuous data stream to emulate network traffic. The available BIST data patterns are enabled via the bits in Table 72. The patterns available are: 1. CRPAT pattern per IEEE802.3ae-2002 Annex 48A 2. CJPAT pattern per IEEE802.3ae-2002 Annex 48A 3. A full PRBS23 pattern (223–1 coded bytes, 10 times that many bits) with nine /K/ “comma” characters as interval on each XAUI/CX4 lane. 4. A Short Pseudo-Random data pattern (13458 byte long) with nine /K/ “comma” characters as interval on each XAUI/CX4 lane. 5. Emulation of an Ethernet Jumbo frame: ||S|| + preamble + Random data (4 x 13458 byte long) + ||T|| + IPG; The ‘PRBS23’-based patterns are derived from a PRBS generator that, after an Inter-Packet Gap (‘IPG’) of 9 /K/ characters, creates a pseudo-random 223 – 1 byte sequence. The full sequence is used for the ‘PRBS23’ pattern, while the ‘Short PRBS23’ pattern is truncated after 13458 bytes. Each will start again from the beginning, repeating indefinitely. This pattern is generated on each lane, and checked (except for the /K/s, of which one is required for byte synchronization, but all the others are ignored) in the same way. The ‘Jumbo Ethernet Packet’ is similar, except that the ‘Short PRBS23’ pattern is preceded by an /S/ & one preamble on Lane 0, two preambles on Lanes 1 & 2, and a preamble and SFD on Lane 3, and followed by a /T/ on lane 0. Apart from providing byte sync (byte alignment), the /K/filled IPG allows for lane alignment (using the IDLE-toNONIDLE transition alignment engine) and elasticity (by deleting or adding the requisite number of /K/s). The latter, in particular, allows one ISL35822 to check the ‘Short PRBS23’ or ‘Jumbo Ethernet Packet’ generated by another ISL35822 running on an independent clock within ±100 ppm. The full PRBS23 pattern could be over 300 bytes off in one repeat ISL35822 under these circumstances, greatly exceeding the elasticity FIFO’s range, unless the clocks were synchronized. The CJPAT and CRPAT patterns are those defined by IEEE 802.3ae-2002 Annex 48. Either the BIST_EN bit (see Table 72 or the BIST_ENA pin (see Table 99 on Page 56) will cause the Serial Transmitter selected by the BIST_DIR bit to put out the pattern selected by the BIST_PAT bits (see Table 72). The BIST_DET bit will enable the Serial Receiver selected by the BIST_SRC bit to search its incoming bit stream for the pattern (separately) selected by the BIST_CHK bits (see Table 72). Once the comma group or IPG has set the byte alignment, the BIST error detector will be enabled, and the decoded pattern will be then be checked. Any bit error will set the error detector for the corresponding lane, and increment the BIST_ERR_CNT counters (see Table 73). These detectors may be monitored via the MF[3:0] pins (see Table 99) and both they and the counters may be read via the MDIO system (see Table 81). The separate setup for BIST generation and checking means that two ISL35822s may be tested with a different pattern in each direction on the link between them. The signal flows provided for these BIST patterns are shown in Figure 6. The generator output may be injected (in place of the ‘normal’ signal flow) into the AKR Randomizer in either the PCS or PHY XS, as controlled by the "BIST CONTROL REGISTER" (see Table 72). The signal may be looped back using the PMA or PHY XS loopbacks (respectively), and checked at the output of the respective Elastic FIFO, or continue on to the other loopback, and checked at the output of the other Elastic FIFO. The internal loopback(s) may be replaced by external loopbacks, and in each ‘full loop’ case this will test virtually the complete device; if both possible full loops are checked, both complete signal paths are tested. Note that if any external loopback changes the clock domain, the full ‘PRBS23’ pattern cannot be checked. FIGURE 6. BLOCK DIAGRAM OF BIST OPERATION Egress CDR PHY XS (Serial) Loopback (4.0.14 & 4.C004) Only One Lane of Four Shown Vendor REG 3.C003 Serializer TXFIFO & Error and Orderset Detector IEEE REG 3.25 IEEE REG 4.25 TXFIFO & Error and Orderset Detector 8B/10B Encoder, AKR Generator CRPAT, CJPAT, PRBS23 Checker PCS // = PHY XS Loopback 4.C004 & ~3.0.14) RX FIFO Deskew TCXn P/N HF, LF, MixedF Generator PCS // Network Loopback (3.C004) CRPAT, CJPAT, PRBS23 Generater HF, LF, MixedF Generator 8B/10B Encoder, AKR Generator RX FIFO Deskew 10B/8B Decoder Ingress Vendor REG 3.C003 Deserializer & Comma Detector TXPn P/N 10B/8B Decoder Only One Lane of Four Shown Deserializer & Comma Detector Equalizer Signal Detect Serializer RXPnP/N Egress PMA Loopback (1.0.14 & 1.C004) CDR Equalizer Signal Detect RCXn P/N Ingress Device Address 4 PHY XGXS 54 Device Address 3 PCS Device Address 1 PMA/PMD ISL35822 Pin Specifications Table 94. CLOCK PINS PIN# NAME TYPE DESCRIPTION T9/T8 RFCP/RFCN Input LVPECL Differential Reference Input Clock. The reference input clock frequency is line rate clock frequency divided by 20 (full rate mode) or 10 (half rate mode). The pins are internally biased at VDDA/2, and should be AC coupled. C10 TXCLK20 Output 1.5V CMOS Transmit Clock Output. Divided-by-20 transmit clock output. Table 95. XAUI (XENPAK/XPAK/X2) SIDE SERIAL DATA PINS PIN# NAME T14/T15 TXP0P/TXP0N P14/P15 TXP1P/TXP1N M14/M15 TXP2P/TXP2N K14/K15 TXP3P/TXP3N H14/H15 RXP0P/RXP0N F14/F15 RXP1P/RXP1N D14/D15 RXP2P/RXP2N B14/B15 RXP3P/RXP3N TYPE DESCRIPTION Output CML Transmit Differential Pairs, Lane 0 to 3. CML High speed serial outputs. Input CML Receive Differential Pairs, Lane 0 to 3. CML High speed serial inputs. Differentially terminated at 100Ω Table 96. PMA/PMD (CX4/LX4) SIDE SERIAL DATA PINS PIN# NAME A2/A3 TCX0P/TCX0N C2/C3 TCX1P/TCX1N E2/E3 TCX2P/TCX2N G2/G3 TCX3P/TCX3N R2/R3 RCX0P/RCX0N N2/N3 RCX1P/RCX1N L2/L3 RCX2P/RCX2N J2/J3 RCX3P/RCX3N TYPE DESCRIPTION Output CML Transmit Differential Pairs, Lane 0 to 3. CML High speed serial outputs. Input CML Receive Differential Pairs, Lane 0 to 3. CML High speed serial inputs. Differentially terminated at 100Ω Table 97. JTAG INTERFACE PINS PIN# NAME TYPE DESCRIPTION D12 TDI Input (with pullup) JTAG Input Data. 1.5V CMOS B12 TDO Output (open drain) JTAG Output Data. 1.5V CMOS, 2.5V Tolerant D8 TMS Input (with pullup) JTAG Mode Select. 1.5V CMOS C12 TCLK Input (with pulldown) JTAG Clock. 1.2V CMOS, 2.5V Tolerant, with Schmitt trigger C8 TRSTN Input (with pullup) JTAG Reset. 1.5V CMOS 55 ISL35822 Table 98. MANAGEMENT DATA INTERFACE PINS PIN# NAME TYPE DESCRIPTION P11 MDIO I/O (open drain output) Management Address/Data I/O. 1.2V CMOS input, 2.5V Tolerant R11 MDC Input Management Interface Clock. 1.2V CMOS, 2.5V Tolerant, with Schmitt trigger R12 PADR[4] Input Management Port Address Setting 1.2V CMOS T12 PADR[3] P12 PADR[2] N12 PADR[1] T11 PADR[0] Table 99. MISCELLANEOUS PINS PIN# NAME N11 MF[0] P10 MF[1] B9 MF[2] A10 MF[3] N10 TYPE DESCRIPTION Output 1.5V CMOS Multi-function Outputs, Lanes 0 - 3. The functions of these pins are enabled via the MDIO Interface. The default condition for these pins is PHY XGXS BIST_ERR. See Table 81 (bits MF_SEL and MF_CTRL) for further details. RSTN Input Chip Reset (FIFO Clear) Assert RSTN for at least 10µs from power up. Active low. Schmitt trigger input, 1.2V CMOS, 2.5V tolerant. D10 BIST_ENA Input (with pulldown) Built-In Self Test Enable- Active High. When high, enables internal 223-1 byte PRBS test function generator and checker. 1.5V CMOS A11 LX4_MODE Input (with pulldown) CX4/LX4 Mode Select. When high, LX4 mode is selected. When low, CX4 mode is selected. This pin decides the trigger sources of LASI, and the default pre-emphasis and equalization strength of the high speed serial port on the PMA/PMD side. 1.5V CMOS B11 LASI Output (open drain) Link Alarm Status Interrupt Request. When low, pin indicates the existence of an incorrect condition. An external 10-22kΩ pull-up to 1.2V or 1.5V is recommended. 1.2V CMOS, 2.5V tolerant. D7 OPTXLBC (1) Input TX Laser Bias Current. Optical monitoring input. Active level is latched into register bit 1.36868.9 and can be configured to trigger LASI. When this pin is not driven by an external device, it should be pulled inactive (default down). 1.5V CMOS, 2.5V tolerant. D5 OPTTEMP(1) Input Transceiver Temperature. Optical monitoring input. Active level is latched into register bit 1.36868.8 and can be configured to trigger LASI. When this pin is not driven by an external device, it should be pulled inactive (default down). 1.5V CMOS, 2.5V tolerant. D6 OPTXLOP(1) Input TX Laser Output Power. Optical monitoring input. Active level is latched into register bit 1.36868.7 and can be configured to trigger LASI. When this pin is not driven by an external device, it should be pulled inactive (default down). 1.5V CMOS, 2.5V tolerant. N8 TX_FAULT(2) Input TX Fault Condition. Transmitter (Egress) external fault input. Active level is latched into register bits 1.10 and 1.36868.6 and can be configured to trigger LASI. When this pin is not driven by an external device, it should be pulled inactive (default down). 1.5V CMOS, 2.5V tolerant. C5 OPRXOP(1) Input Receive Optical Power. Optical monitoring input 4. Active level is latched into register bit 1.36867.5 and can be configured to trigger LASI. When this pin is not driven by an external device, it should be pulled inactive (default down). 1.5V CMOS, 2.5V tolerant. A6 OPRLOS[3] (1) Input A5 OPRLOS[2] (1) A7 OPRLOS[1] (1) Optical Receiver Loss Of Signal. Optical monitoring input 5 – 8. Active (loss) levels are latched into register 1.10 and can be configured to trigger LASI. When these pins are not driven by an external device, they should pulled inactive (default down). 1.5V CMOS, 2.5V tolerant. B7 OPRLOS[0] (1) D11 XP_ENA Input XENPAK Enable. Enable XENPAK support. Active high. Activates 2-wire serial bus interface. 1.5V CMOS, 2.5V tolerant. 56 ISL35822 Table 99. MISCELLANEOUS PINS (Continued) PIN# NAME TYPE DESCRIPTION D9 TX_ENC(1) Input Transmit enable input from XENPAK module input “TX ON/OFF”. Controls TX_ENA[3:0]. For normal operation, should be pulled active (default up). 1.2V CMOS B5 TX_ENA[3] (1) Output (open drain) B6 TX_ENA[2] (1) Transmit Laser Driver Enables. They are set active only when TX_ENC pin is active and the corresponding bits in register 1.9 are set low. During RESET stage, these pins are always low. 1.5V CMOS, 2.5V compatible. T5 TX_ENA[1] (1) R5 TX_ENA[0] (1) Note (1): Active level of these pins is controlled by register 1.49181 (1.C01D’h), see Table 55. If unused, the TX_ENC pin can be tied high, and the register bit not altered. Other unused input pins should be tied low, and the corresponding register bit not altered, so the default value of the register will allow Byte Synch and cause a ‘No Fault’ indication in the LASI alarm status registers on RESET. See also Table 12, Table 27 and Table 28. Note (2): Active level of this pin is controlled by register 1.49170 (1.C012’h), see Table 49. Otherwise Note 1 applies. Table 100. I2C 2-WIRE SERIAL DATA INTERFACE PINS PIN# NAME TYPE DESCRIPTION P9 SDA I/O (open drain) I2C Serial Address/Data I/O 1.5V CMOS, 2.5V Tolerant and Compatible P8 SCL I/O (open drain) I2C Serial Interface Clock. 1.5V CMOS, 2.5V Tolerant and Compatible C7 WRTP Input I2C Serial Interface Write Protection. When high, no write to protected XENPAK basic NVR area is allowed. 1.5V CMOS, 2.5V Tolerant R6 GPIO[4] I/O (open drain) P7 GPIO[3] General Purpose I/O Can be used for optical monitoring and status reporting, and to trigger LASI, or for external control functions. 1.5V CMOS, 2.5V Tolerant and Compatible N7 GPIO[2] N6 GPIO[1] P6 GPIO[0] Table 101. VOLTAGE SUPPLY PINS PIN# NAME TYPE DESCRIPTION C6, C13, H13, J4, N5, N13 VDDPR Supply 2.5V Protection Voltage Supply. May be same level as VDD if no inputs or outputs go above the VDD level. A4, A8, A9, A12, A13, B10, N9, P4, P5 VDD Supply 1.5V Digital and Core Supply B4, C4, C14, D4, D13, E4, E13, VDDA F4, F13, G4, G13, K4, K13, L4, L13, M4, M13, N4, P13, R4, R13, T4, T13 Analog Supply 1.5V Analog Supply. Should be decoupled from VDD R7, T7 VDDAV Analog Supply Analog supply for VCO. Should be decoupled from VDDA R10, T10 VDDAC Analog Supply Analog supply for CMU. Should be decoupled from VDDA Ground Ground. Electrically well grounded. Analog and Digital grounds are tied in the device, but it is recommended that some separation be provided in the PCB planes outside the device, to minimize the coupling between digital signals and the analog sections of the device. A1, A14, A15, A16, B1, B2, B3, GNDA B8, B13, B16, C1, C9, C11, C15, C16, D1, D2, D3, D16, E1, E14, E15, E16, F1, F2, F3, F16, G1, G14, G15, G16, H1, H2, H3, H4, H16, J1, J13, J14, J15, J16, K1, K2, K3, K16, L1, L14, L15, L16, M1, M2, M3, M16, N1, N14, N15, N16, P1, P2, P3, P16, R1, R8, R9, R14, R15, R16, T1, T2, T3, T6, T16 57 ISL35822 Pin Diagram 17x17mm (16*16 Ball Matrix) 192-pin EBGA-B Package FIGURE 7. TOP VIEW OF PINOUT A B C D E F G H J K L M N P R T 16 GNDA GNDA GNDA GNDA GNDA GNDA GNDA GNDA GNDA GNDA GNDA GNDA GNDA GNDA GNDA GNDA 16 15 GNDA RXP3 N GNDA RXP2 N GNDA RXP1 N GNDA RXP0 N GNDA TXP3 N GNDA TXP2 N GNDA TXP1 N GNDA TXP0 N 15 14 GNDA RXP3 P VDDA RXP2 P GNDA RXP1 P GNDA RXP0 P GNDA TXP3 P GNDA TXP2 P GNDA TXP1 P GNDA TXP0 P 14 13 VDD GNDA VDD PR VDDA VDDA VDDA VDDA VDD PR GNDA VDDA VDDA VDDA VDD PR VDDA VDDA VDDA 13 12 VDD TDO TCLK TDI PADR 1 PADR 2 PADR 4 PADR 3 12 11 LX4_ MODE LASI GNDA XP_E NA MF0 MDIO MDC PADR 0 11 10 MF3 VDD TXCL K20 BIST_ ENA RSTN MF1 VDDA C VDDA C 10 9 VDD MF2 GNDA TX_E NC VDD SDA GNDA RFCP 9 8 VDD GNDA TRST N TMS TX_F AULT SCL GNDA RFCN 8 7 OPR LOS1 OPR LOS0 WRTP OPTX LBC GPIO 2 GPIO 3 VDDA V VDDA V 7 6 OPR LOS3 TX_E NA2 VDD PR OPTX LOP GPIO 1 GPIO 0 GPIO 4 GNDA 6 5 OPR LOS2 TX_E NA3 OPRX OP OPT TEMP VDD PR VDD TX_E NA0 TX_E NA1 5 4 VDD VDDA VDDA VDDA VDDA VDDA VDDA GNDA VDD PR VDDA VDDA VDDA VDDA VDD VDDA VDDA 4 3 TCX0 N GNDA TCX1 N GNDA TCX2 N GNDA TCX3 N GNDA RCX3 N GNDA RCX2 N GNDA RCX1 N GNDA RCX0 N GNDA 3 2 TCX0 P GNDA TCX1 P GNDA TCX2 P GNDA TCX3 P GNDA RCX3 P GNDA RCX2 P GNDA RCX1 P GNDA RCX0 P GNDA 2 1 GNDA GNDA GNDA GNDA GNDA GNDA GNDA GNDA GNDA GNDA GNDA GNDA GNDA GNDA GNDA GNDA 1 A B C D 58 E F G H J K L M N P R T ISL35822 Package Dimensions FIGURE 8. EBGA-192 PACKAGE DIMENSIONS 59 ISL35822 Electrical Characteristics Absolute Maximum Ratings Table 102. ABSOLUTE MAXIMUM RATINGS SYMBOL MIN MAX UNITS -0.5, VDD - 0.5 2.6, VDD + 2.0 V All Other Power Supply Voltages -0.5 1.65 V V INCML CML DC Input Voltage -0.5 VDD + 0.5 V IOUTCML CML Output Current - 50 +50 mA V INCMS1 1.2V CMOS Input Voltage -0.5 VDD + 0.5 V V INCMS2 1.5V CMOS Input Voltage -0.5 VDD + 0.5 V V INCMS3 2.5V Tolerant CMOS Input Voltage -0.5 2.6 V Tstg Storage Temperature - 55 125 °C Tj Junction Temperature - 55 125 °C 220 °C 2000 V VDDPR VDDA, VDD, VDDAC, VDDAV PARAMETER 2.5V Protection Power Supply Voltage TSOL Soldering Temperature (10s) V ESD Maximum Input ESD (HBM) -2000 Note (1): These ratings are those which if exceeded may cause permanent damage to the device. Operation at these or any other conditions in excess of those listed under Operating Conditions below is not implied. Continued exposure to these ratings may reduce device reliability. Operating Conditions All Standard Device specifications assume TC = 0°C to +85°C, VDDAC = VDDAV = VDD = VDDA = 1.5V ± 5%, VDDPR = VDD or 2.4V ± 0.1V, unless otherwise specified. The Low Power Device specifications assume TC = 0°C to +85°C, VDDAC = VDDAV = VDD = VDDA = 1.355V ± 4%, VDDPR = VDD or 2.4V ± 0.1V, unless otherwise specified. Table 103. RECOMMENDED OPERATING CONDITIONS SYMBOL VDDA VDDAV, VDDAC & VDD PARAMETER Core and Serial I/O Power Supply Voltages MIN NOM MAX UNITS (Standard Device) 1.425 1.5 1.575 V (Low Power Device) 1.300 1.355 1.410 V 2.5 V +70 °C +85 °C VDD (1) TA Ambient Operating Temperature(2) 0 25 TC Case Operating Temperature 0 VDDPR Control I/O Protection Power Supply Voltage Note (1): The VDDPR supply should be tied to a level at or above VDD, and at the highest level expected on any “2.5V tolerant” control pin, consistent with the above ratings. Note (2): For reference only. All testing is performed based on Case Temperature. Table 104. POWER DISSIPATION AND THERMAL RESISTANCE SYMBOL PD TYP(1) MAX(1) UNITS (Standard Device, CX4 Mode) 1650 1830 mW (Low Power Device, LX4 Mode) 1250 1350 mW PARAMETER Power Dissipation(2) θJC Thermal Resistance, Junction to Case 2.0 °C/W θCA Thermal Resistance, Case to Ambient (still air, gap filler & cold plate) 13.0 °C/W θCA Thermal Resistance, Case to Ambient (still air only) 31.0 °C/W Note (1): The ‘Max’ value is at the maximum supply voltages, while the ‘Typ’ value is at the nominal supply voltages. The power dissipation is not significantly affected by the VDDPR supply (see Table 111 for the distribution of power between the supplies). The “Mode” setting is assumed to be the default for that mode. Note (2): The operating power varies slightly with the data pattern. The part is tested using the PRBS23 (223-1 byte) pattern. 60 ISL35822 DC Characteristics Table 105. PMA SERIAL PIN I/O ELECTRICAL SPECIFICATIONS, CX4 MODE (3) SYMBOL MIN TYP MAX UNITS Peak-To-Peak Differential Voltage Input Requirement (1) 100 >60 2000 mV VP-POUT2 Peak-To-Peak Differential Voltage Output (ZO = 100Ω differential load), definition as per IEEE 802.3ak-2004(2) , Standard Device Only 800 1000 1200 mV ∆VP-POUT2 Difference between VP-POUT2 from Lane to Lane on any group (CX4 or XAUI) (2) 75 150 mV VP-PIN PARAMETER VCMO Output Common Mode Voltage VCMI Internal Input Common Mode Voltage VDD-.5 V 0.4 V Note (1): Measured at TP3 as defined in the IEEE 802.3ak-2004 specifications. This value is needed in each IPG to maintain the SIG_DET function active. The ISL35822 will provide a BER < 1 in 10-12 under the conditions of clause 54.6.4.1 of the specification. Note (2): Measured at TP2 as defined in the IEEE 802.3ak-2004 specifications. Note (3): CX4 Mode not specified for low power Vdd = 1.35V operation; “Standard Device” conditions are required. Table 106. PMA SERIAL PIN I/O ELECTRICAL SPECIFICATIONS, LX4 MODE SYMBOL VP-PIN VP-POUT2 PARAMETER UNITS MIN TYP MAX Peak-To-Peak Differential Voltage Input Requirement mV 100 >60 2000 Peak-To-Peak Differential Voltage Output (ZO = 100Ω differential load) (Standard) mV 800 1100 1600 (LowPower)(1) mV 650 VCMO Output Common Mode Voltage V VDD-.5 VCMI Internal Input Common Mode Voltage V 0.4 Note (1): ISL35822LPIK only Table 107. PHY XS SERIAL PIN I/O ELECTRICAL SPECIFICATIONS, XAUI MODE SYMBOL VP-PIN VP-POUT2 PARAMETER MIN TYP MAX UNITS Peak-To-Peak Differential Voltage Input Requirement 100 >60 2000 mV Peak-To-Peak Differential Voltage Output (1) 800 1200 1600 mV (ZO = 100Ω differential load), definition as per 802.3ae-2002 VCMO Output Common Mode Voltage VCMI Internal Input Common Mode Voltage VDD-.6 V 0.4 V Note (1): Tested with CJPAT test pattern. Table 108. EXTERNAL 1.2V CMOS OPEN DRAIN I/O ELECTRICAL SPECIFICATIONS VPULL = External pullup Voltage, not to exceed VDD SYMBOL PARAMETER MIN MAX UNITS 22 kΩ 200 mV VPULL -0.4 VPULL V External pullup resistor for open drain O/P(1) 10 VOL Output Low Voltage Level (IOL = 4mA) (2) 0 VOH Output High Voltage Level (1) RPullup TYP 120 VIL Input Low Voltage Level -0.2 0.360 V VIH Input High Voltage Level 0.840 VDD+0.2 V Hysteresis on Schmitt Trigger Inputs (3) 100 IIL Input Low Current, VIN = 0.0V -80 IIH Input High Current, VIN = VDD VHYST Note (1): XENPAK MSA recommended for LASI pin. Note (2): For MDIO and LASI pins. Note (3): Only for RSTN and MDC pins. 61 150 mV µA .1 10 µA ISL35822 Table 109. 1.5V CMOS INPUT/OUTPUT ELECTRICAL SPECIFICATIONS SYMBOL PARAMETER MIN TYP MAX UNITS 0 200 400 mV VOL Output Low Voltage Level (IOL = 2 mA) VOH Open Drain Output High Voltage Level(1) VDD -0.4 VDD V VOH Output High Voltage Level (IOH = 2mA)(2) VDD -0.4 VDD V VIL Input Low Voltage Level -0.2 0.3*VDD V VIH Input High Voltage Level 0.7*VDD VDD+0.2 V IILPU IIL Input Low Current, VIN = 0.0V, with pull-up (3) -100 40 µA Input Low Current, VIN = 0.0V -10 -1 µA Input High Current, VIN = VDD, w. pull-down (4) IIHPD IIH 100 200 µA 1 10 µA Input High Current, VIN = VDD Note (1): Assumes pullup to VDD. Note (2): For MF[3:0] and TXCLK20 pins only Note (3): For TDI, TMS, TRSTN pins only Note (4): For TCLK, BIST_ENA, LX4_MODE pins only Table 110. 2.5V TOLERANT OPEN DRAIN CMOS INPUT/OUTPUT ELECTRICAL SPECIFICATIONS VPULL = External pullup Voltage, not to exceed 2.5V or VDDPR SYMBOL MIN TYP MAX UNITS External pullup resistor for all I/P, open drain O/P 10 15 22 kΩ VOL Output Low Voltage Level (IOL = 2mA) 0 200 400 mV VOH Output High Voltage Level (IOH = 100µA) Least of 2.5 & VPULL -0.4 2.5 VPULL V -0.2 0.3*VDD V 0.7*VDD VDDPR+0.2(1) V RPullup VIL VIH PARAMETER Input Low Voltage Level Input High Voltage Level Hysteresis on Schmitt Trigger Inputs (2) 100 IIL Input Low Current, VIN = 0.0V -80 IIH Input High Current, VIN = 1.5V VHYST 150 mV µA .1 Input High Current, VIN = 2.6V or VDDPR 10 µA 100 µA Note (1): Input voltage beyond RPullup pullup resistor; pin should not exceed VDDPR value Note (2): Only TCK pin. Table 111. OTHER DC ELECTRICAL SPECIFICATIONS SYMBOL IDDAV + IDD + IDDA + IDDAC PARAMETER Total 1.5V Supply Current, TA = 25°C MIN TYP MAX 1100(2) UNITS mA Total 1.5V Supply Current, TC = 0 to 85°C(1) 1162(1,2) mA Total 1.355V Supply Current, TC = 0 to 85°C(1,3) 935 960(1,3) mA Protection Voltage Supply Current 0.1 5 mA Analog Supply Current 810 mA IDDAV, IDDAC VCO, CMU Supply Current 35 mA IDD Digital Core Supply Current 210 mA IDDPR IDDA Note (1): The Maximum limit is measured using a PRBS23 pattern. The supply current for the CRPAT test pattern is very slightly lower, and for the CJPAT pattern is typically 20mA lower. Note (2): This is measured in CX4 Mode, with bits 1.C01B.5:2 at F’h. Note (3): This Maximum limit refers to the LowPower part only, and is measured at 1.410V in LX4 mode, with bits 1.C01B.5:2 at 0’h. 62 ISL35822 AC and Timing Characteristics All specifications assume TC = 0°C to +85°C, and VDDAC = VDDAV = VDD = VDDA = 1.5V ± 5% (for the Standard Device) or VDDAC = VDDAV = VDD = VDDA = 1.35V ± 4%(for the Low Power Device), VDDPR between VDD and 2.5V, unless otherwise specified. Table 112. REFERENCE CLOCK REQUIREMENTS SYMBOL PARAMETER MIN MAX UNITS 124.4 159.375 MHz -100 +100 ppm 1.5 ns Ref clock frequency range(1) ∆FREF Ref clock frequency offset TREFRF Ref clock Rise and Fall Time DTCREF Ref clock duty cycle 45 Ref Clock Voltage Swing(2) 300 FREF ∆VREF VCM Internal Common Mode Voltage TYP 50 55 % 1000 mV VDD/2 V Note (1): System requirements are normally much more restrictive, typically ± 100 ppm. This specification refers to the full reference clock frequency range over which the ISL35822 will operate. Note (2): Single-ended peak-to-peak swing. Table 113. TRANSMIT SERIAL DIFFERENTIAL OUTPUTS (SEE Figure 9, Figure 10 AND Figure 11) SYMBOL PARAMETER MIN TCXnP/N and TXPxP/N output data rate TYP 2.448 MAX UNIT 3.1875 Gbps TDR Differential Rise time (20%-80%) 60 110 130 ps TDF Differential Fall time (20%-80%) 60 110 130 ps TDTOL Differential Skew Tolerance TBD ps TODS Lane to Lane Differential Skew (2) 15 ps Differential Output Impedance 100 Ω Differential Return Loss (to 2.5GHz) TXRJ Random Jitter (RMS, 1100 pattern)(1) 10 2.488Gbps 2 4.5 ps 3.125Gbps 2.5 4.5 ps TBD TBD ps 8 ps 8 ps 8 ps MAX UNITS 3.1875 Total Jitter (RMS, PRBS7 pattern) dB 2.488Gbps 3.125Gbps 6 3.1875 Note (1): Strictly the 1100 pattern causes a small additional non-random jitter, so that the true random jitter is slightly less than that shown. Note (2): Parameter is guaranteed by design Table 114. RECEIVE SERIAL DIFFERENTIAL INPUT TIMING REQUIREMENTS (SEE Figure 11) SYMBOL PARAMETER MIN TYP RCXnP/N & RXPnP/N Input Data Rate 2.448 3.1875 Gbps Input Rate deviation from Reference Clock -200 +200 ppm 2500 bits Frequency Lock after Power-up 2 µs TDTOL Input Differential Skew 75 ps TDJ Deterministic Jitter(1,2) Bit Synchronization Time TJI Total jitter tolerance Note (1): Jitter specifications include all but 10-12 of the jitter population. Note (2): Near end driven by ISL35822 Tx without pre-emphasis. 63 2.488Gbps TBD UI 3.125Gbps 0.7 UI 3.1875 TBD UI 2.488Gbps TBD UI 3.125Gbps 0.88 UI 3.1875 TBD UI ISL35822 Table 115. MDIO INTERFACE TIMING (FROM IEEE802.3AE) (SEE Figure 15 TO Figure 17) SYMBOL PARAMETER MIN TYP MAX UNIT 300 ns TMDCD ISL35822 MDIO out delay from MDC 0 5.0 TMDS Setup from MDIO in to MDC 10 1.5 ns TMDH Hold from MDC to MDIO in 10 1.5 ns TMDC Clock Period MDC (1) 100 400 ns TMDV MDC Clock HI or LO time(1) 20 160 ns TUpdate Delay from last data bit to register update(2) 2 TMDC CMD Input Capacitance 10 pF Note (1): The ISL35822 will accept a much higher MDC clock rate and shorter HI and LO times than the IEEE802.3 specification (section 22.2.2.11) requires. Such a faster clock may not be acceptable to other devices on the interface. Note (2): The ISL35822 MDIO registers will not be written until two MDC clocks have occurred after the frame end. These will normally count toward the minimum preamble before the next frame, except in the case of writing a RESET into [1,3,4].0.15, see Figure 17. Table 116. RESET AND MDIO TIMING (SEE Figure 17) SYMBOL PARAMETER TRSTBIT Reset bit Active width TMDRST Delay from Reset bit to first active preamble count MIN TYP MAX 2 240 256 UNITS TMDC 282 TREFCLK Table 117. RESET AND I2C SERIAL INTERFACE TIMING (SEE Figure 18 AND Figure 24) SYMBOL TRESET PARAMETER RSTN Active width MIN TYP MAX UNITS µs 10 TWAIT Delay from RSTN to I2C SCL Start 10 ms TTRAIN I2C ‘training’ (external reset) 30 TCLAH_L Period of I2C SCL Clock Line (400kHz) 2.5 µs(1) TSCL_DAV Setup from I2C SDA Data Valid to SCL edge 100 ns TSDA_CLV Setup, Hold from SDA for START, STOP 600 ns TCLAH_L CI2C Input Capacitance 10 pF Note (1): Assuming RFCP-N clock is 156.25MHz, and register bits 1.8005.6:4 set for 400kHz (Table 20). SCL clock period scales with reference clock frequency. Also, per the I2C specification, the SCL ‘High’ time is stretched by the time taken for SCL to go high after the ISL35822 releases it, to allow an I2C slave to demand additional time. Any RC delays on the SCL line will add to the SCL ‘High’ time, in increments of approximately 100ns. 64 ISL35822 Timing Diagrams FIGURE 9. DIFFERENTIAL OUTPUT SIGNAL TIMING TDR TDF TCX[3:0]P-N, TXP[3:0]P-N TR TF TCX[3:0]P, TXP[3:0]P TDTOL TCX[3:0]N, TXP[3:0]N FIGURE 10. LANE TO LANE DIFFERENTIAL SKEW TODS TXP[3:0]P/N, TCX[3:0]P/N TXP[3:0]P/N, TCX[3:0]P/N FIGURE 11. EYE DIAGRAM DEFINITION Unit Interval (UI) Vpp (single-ended) Vcm Total Jitter Eye Width 65 ISL35822 FIGURE 12. BYTE SYNCHRONIZATION None Not Comma Comma Idle Data RCX[3:0]P-N, RXP[3:0]P-N RT SYNC Internal FIFO Data RT LAT Error Random Comma Idle Data RefCLK Internal Byte Clock RXCLK FIGURE 13. LANE-LANE ALIGNMENT OPERATION RCX[3:0] -> TXP[3:0] shown, RXP[3:0] -> TCX[3:0] is identical Align Serialized RCX0 Idle Idle Data ----to---Serialized RCX2 Data RTSKEWIN Idle Idle Idle Data Data Data Align Data Data Data Data Align Serialized RCX3 Serialized TXP0 Idle Idle Idle Idle Data Idle Data Idle ----to---Serialized TXP3 Data Data Idle Data Data RTSKEW Idle Idle Idle Idle Idle Data FIGURE 14. RETRANSMIT LATENCY Idle Data RCX[3:0]P-N, RXP[3:0]P-N RTLAT Idle TXP[3:0]P-N, TCX[3:0]P-N 66 Data Data Data ISL35822 FIGURE 15. MDIO FRAME AND REGISTER TIMING Read Operations Shown in Red frame Prev Preamble ST OP Prt/Dev Ad TA Address/Data Idle/Preamble MDIO (from STA) MDC MDIO (from MMD) TUpdate TPreamble Old Data Register Contents New Data FIGURE 16. MDIO INTERFACE TIMING STA Æ MMD TA (for READ Ops) MMD Æ STA MDIO MDD Sourced T MDC MDC MDIO STA Sourced T MDH TMDSU 67 TMDCD ISL35822 FIGURE 17. MDIO TIMING AFTER SOFT RESET (D.0.15) (Internal States, not observable) D.0.15 reset Bit reset T RSTBIT T MDRST MDIO engine 1 st preamble bit Engine reset, ignores preamble MDC FIGURE 18. BEGINNING I2C NVR READ AT THE END OF RESET condition RST wait train TUpdate TConfig wait Read NVR Read DOM (done) TTRAIN TRESET RSTN SCL SDA TWAIT TWAIT Default Data Control Registers Auto-Config Data FIGURE 19. I2C BUS INTERFACE PROTOCOL SDA acknowledgement signal from slave MSB acknowledgement signal from receiver byte complete, interrupt within slave clock line held low while interrupts are served SCL S or Sr 1 START or repeated START condition 68 2 7 8 9 ACK 1 2 3-8 9 ACK Sr or P STOP or repeated START condition ISL35822 FIGURE 20. NVR/DOM SEQUENTIAL READ OPERATION A C K A C K S slave addr word addr W S A C K A C K slave addr R read data A C K read data A C K A C K read data no ACK last read data P FIGURE 21. NVR SEQUENTIAL WRITE ONE PAGE OPERATION A C K S slave addr A C K word addr W A C K A C K A C K write data write data A C K A C K write data write data no ACK last write data P FIGURE 22. I2C SINGLE BYTE READ OPERATION A C K S slave addr A C K W word addr A C K S slave addr R no ACK read data FIGURE 23. SINGLE BYTE WRITE OPERATION A C K S slave addr W W 69 A C K word addr A C K write data P P ISL35822 FIGURE 24. I2C OPERATION TIMING T SCL_DAV T SDA_CLV T SCLH_L T SDA_CLV SCL SDA Start Data Data Stop Applications Information CX4/LX4/XAUI Re-timer Setup This section discusses the setup for the ISL35822 to be used as a XAUI/CX4/LX4 Retimer. The various descriptions and comments further assume that the device is initially configured in the default condition (i.e. exactly as found after a hardware reset). The BIST_ENA pin should be pulled LOW (to GND); the pin has an internal pulldown to this value. The LX4_MODE select pin should be tied to the appropriate level, depending on whether the ISL35822 is interfaced to a CX4 connection, or a XAUI/LX4 interface (where it is assumed that the electro-optical interface is XAUI-compatible). Although the ISL35822 will come out of reset with CX4 or LX4-directed values, some of these default register settings may need to be changed, for optimum operation in any specific application. All of these may be set via the AutoConfigure operation (See “Auto-Configuring Control Registers” on page 16). The default values of pre-emphasis and receive equalization set by the LX4_MODE select pin may need to be adjusted, particularly if the serial 3Gbps PCB traces on the ‘host’ side (the XAUI or the XENPAK/XPAK/X2 side) are long, (in which case the PHY XS values may need adjustment), or if the connection to a CX4 connector or laser driver and photo detector and limiting amplifier involve extra connectors, long traces, or enhanced edge rates (in which case the PMA/D values should be adjusted). Note that in LX4 mode, the PMA-side pre-emphasis will have to be enabled, and the power consumption of the device will be increased. The default value of the PMA/D and PHY XS XAUI_EN bits is set at ‘1’, and for normal XAUI or CX4/LX4 operation, this is usually the best setting for this use. Byte alignment will follow the IEEE 802.3ae PCS SYNC specification, Lane alignment will follow the DESKEW algorithm in the same specification, and the pseudo-random /A/K/R/ generation in 70 IDLE will also be performed according to the same specifications. For certain non-10GBASE-X uses, or for debug and problem analysis purposes, and in particular for certain BIST testing, it may be advantageous to change some of the settings. To achieve this, the relevant (PMA/D and/or PHY XS) XAUI_EN bits must be turned off (to ‘0’), since otherwise they will override many of the other registers’ bits (see Table 65). For instance, if it desirable to change Byte Alignment to a simpler algorithm than the IEEE-defined one (if, for example, only three of the four lanes are working), the PCS_SYNC_EN bit(s) (Table 63 and/or Table 80) may be turned off, and (with the respective XAUI_EN bit off), byte (code group) alignment on the working lanes will now function. Similarly, setting the A_ALIGN_DIS bit in the PCS/PHY XS Control Register 2 ([3,4].C000’h) will cause lane alignment to occur on IDLE to non-IDLE transitions across all four lanes, instead of lane alignment on ||A|| (K28.3) character columns when this bit is set to a zero. The internal (pseudo-XGMII) ERROR character can be set to a value other than 1FE’h by writing the value (without the K bit) to register 3.C002’h or 4.C002’h. Similarly, the internal (pseudo-XGMII) IDLE character may be changed using registers 3.C003’h and/or 4.C003’h. The pseudo-random XAUI/CX4/LX4 IDLE /A/K/R/ generator can be disabled by clearing the AKR_SM_EN bit in register 3.C001’h (PCS) or 4.C001’h (PHY XS). To disallow complete regeneration of the Inter Packet Gap (IPG), it would be desirable to clear the TRANS_EN bit in register 3.C001’h/4.C001’h. Recommended Analog Power and Ground Plane Splits The ISL35822 high-speed analog circuits as well as highspeed I/O draw power from the analog power (VDDA) and (shared) ground GNDA pins/balls (pins or balls will be used inter-changeably through out this document). In order for the ISL35822 to achieve best performance, the VDDA and ISL35822 GNDA should be kept as “quiet” as possible. There are also two further analog supplies, VDDAC and VDDAV for the CMU and VCO respectively. These two also need to be kept quiet. The VDDA, VDDAC, VDDAV and VDD voltage requirements of the standard ISL35822 are all 1.5V (for the Low Power LX4-only version 1.355V). The ripple noise on the VDDA# voltage rails should be as low as possible for best jitter performance. Therefore, in the layout, each VDDA should be decoupled from the main 1.5V(1.355V) supply by means of cut outs in the power plane, and the power to the individual VDDA areas supplied through ferrite beads (1A capability is recommended). The cut out spacing should be at least 20mil (0.5mm). A “quiet” analog ground also enhances the jitter performance of the ISL35822 as well. A similar cut out in the ground plane is recommended, to isolate the analog sections from the digital ones. Recommended Power Supply Decoupling For the ISL35822, the decoupling for VDDA VDD, VDDAC, and VDDAV must all be handled individually. VDDA (1.5V/1.355V) provides power to most of the analog circuits as well as the high speed I/Os. The analog power supply VDDA must have an impedance of less than 0.4Ω from around 50kHz to over 1GHz. This can be achieved by using one 22µF (1210 case size, Ceramic), and eleven 0.1µF (0402 case size, ceramic), and eleven 0.01µF (0402 case size, ceramic) capacitors in parallel. The 0.01µF and 0.1µF 0402 case size capacitors must be placed right next to the VDDA balls as close as possible. Note that the 22µF capacitor must be ceramic for the lowest ESR possible, and must be of 1210 case size or better to achieve this. The 0.01µF capacitors should be of case size 0402 or better, offering the lowest ESL to achieve low impedance towards the GHz range. Also, note that the ground of these capacitors must be well connected to GNDA. Similarly VDDAC and VDDAV (also 1.5V/1.355V) supply the frequency (and hence jitter) determining sections of the ISL35822. They should each be decoupled using one 22µF ceramic lowest-ESR-possible capacitor, and one each of 0.01µF and 0.1µF. The latter especially should be close to the respective balls of the device, with a low impedance trace-path to the device and to GNDA. The VDD (1.5V/1.355V) supply is the power rail for the ISL35822core logic circuit. For this supply, at least three 0.1µF (0402 case size), three 0.01µF (0402 case size) and a 10µF (tantalum or ceramic) capacitor are recommended. Place the 0.01µF and 0.1µF capacitors as close to the VDD balls as possible. VDDPR (recommended 2.5V or less) is used for certain ESD protection circuits; at least two 0.01µF (0402 case size), and two 0.1µF (0402 case size) capacitors are recommended. Place the 0.01µF and 0.1µF capacitors as close to the 71 VDDPR balls as possible. If the VDDPR supply can be applied faster or earlier than the VDD supply, it is recommended that a limiting clamp be provided to maintain the Absolute Maximum Rating limits of Table 102. A simple example of such a clamp is given in Figure 25, using a small shunt regulator. Since the power dissipation of the regulator is negligible except during the supply power-up time difference, no special heat dissipation precautions are needed. XENPAK/XPAK/X2 Interfacing The ISL35822 incorporates a number of features that facilitate interface to the (pin-function-compatible) XENPAK, XPAK and X2 interfaces. The relevant 3.125Gbps serial lines in the ISL35822IK are brought out in exactly the correct order to be connected to the edge connector, minimizing any layout problems, and the use of vias, in PCB design. Furthermore, the ISL35822 device also incorporates the logic required to handle the TX_ON/OFF and LASI pins, to interface (via an I2C bus) with an EEPROM (or similar device) to load the NVR space with all the MDIO register values specified in the XENPAK MSA R3.0 specification (which are referenced, with only minor OUI-number type changes in the XPAK and X2 specifications), and to transfer Digital Optical Monitoring (DOM) information from typical I2C-interface devices into the XENPAK (etc.) specified MDIO space. If the XP_ENA pin is high at the end of hardware or full MDIO reset, the I2C engine will attempt to read whatever device is on the bus at the A0:00’h address. If it succeeds, it will read the A0:01’h address, and so on, till it reaches A0:FF’h. If at any point the number of I2C Acknowledge (ACK) failures on any address exceeds the limit set in register 1.8005’h (see Table 20) the NVR load will fail, and the result of the operation in 1.8000’h will report the failure. If a suitable device with 256 bytes at the A0 device address (either a serial EEPROM device like the Atmel AT24C02A or a device such as the Micrel MIC3000 or the Dallas Semiconductor DS1852) is present, the data in it will thus be transferred to the MDIO register space. Most of this data is merely copied to the MDIO space, but a few specific items (listed in Table 22) have additional effects, for example providing the ‘Package OUI values for 1.14:15, or the DOM Capability bits in the 1.807A register. If these DOM Capability bits (listed in Table 23) indicate that the 2-wire bus has a device (again such as the Micrel MIC3000 or the Dallas Semiconductor DS1852) oriented to performing the SFF-8472-defined DOM function, the ISL35822 will attempt to read the data from that device into the MDIO DOM Alarm and Warning Thresholds registers (see Table 32), and the current A/D value and flag registers (see Table 33, Table 36 and Table 37). If the XENPAK DOM Operation Control and Status Register (see Table 38) is set appropriately, the DOM current A/D value and flag registers will be updated periodically from all the DOM device(s), via ISL35822 the DOM device pointers in Table 54 and Table 55. See "I2C Interfacing" below for more details. CX4 Interfacing The relevant 3.125Gbps serial lines in the ISL35822IK are brought out in exactly the correct order to be connected to the CX4 connector, using either the top layer of the PCB for striplines, or an inner layer for microstrip lines, without any necessity for crossing the various leads. There are GNDA pins between each serial line pair, and special care has been taken to facilitate the optimal separation of the TX3 and RX3 line pairs. Increasing the PCB trace separation between these pairs, and adding a strip of GNDA, will decrease the crosstalk effects, which are normally most severe for this pair. Note that the CX4 output will not reliably meet the CX4 specification with the VDDA VDD, VDDAC, and VDDAV supplies as low as 1.344V (1.4V-4%), so the Low Power version device is not recommended for this usage. LX4 Interfacing In LX4 mode, the serial PMA/PMD outputs are by default set up without pre-emphasis, since it is anticipated that the laser driver circuits will be located only a short distance away. This can be overridden by the Auto-configure capability, if desired, to accommodate a lossy or long interconnect, and to provide enhanced high-frequency drive if needed by the laser driver. However, the Predrivers will need to be powered up, increasing the device power dissipation. Similarly, the receiver inputs are set up by default without equalization. Again, this can be overridden by the Auto-configure capability, if desired, to accommodate a lossy or long interconnect, and to compensate for poor high-frequency performance in the photodetectors. Under ‘Standard’ part conditions, these signals are XAUI-compatible. Under the ‘Low Power’ supply voltage conditions, the output drive may fall below the XAUI specification. This is normally not a problem for laser drivers, but if Low Power operation is desired, this should be checked. Many lasers and laser drivers require setting of the laser bias and modulation currents, to optimize the performance. This is frequently done via digitally controlled resistors or current sources, many of which have I2C interfaces for setting the values, often as a function of temperature. By ensuring that the Device Addresses of these circuits are distinct from those of the NVR, and any separate DOM circuits provided, the I2C interface of the ISL35822 can be used to initialize the setups of these circuits. The technique described under “Byte Writes to EEPROM space” on page 19 can always be used in this case. This can be done after a module is fully assembled, if necessary using one of the ‘spare’ pins on the XENPAK connector, or a GPIO pin, to enable writing to the relevant circuits. MDIO/MDC Interfacing The MDIO and MDC lines in the ISL35822 have been designed to maximize compatibility both with older systems, 72 that may use logic levels compatible with 3.3V CMOS designs (such as specified in IEEE 802.3-2002 Clause 22), and newer systems compatible with the levels specified in the 10GE specification IEEE 802.3ae-2002 (based on 1.2V supplies), and systems using intermediate supply voltages. In general, no problems should occur in any such applications, provided the resistive pull-ups go to no higher than a nominal 2.6V. However, the ISL35822 is inherently a very high-speed device, and the falling-edge-rates generated by the part can be quite high. To avoid problems with excessive coupling between the MDIO line and the MDC line, and consequent generation of false clock-edges on the MDC line, and hence incorrect MDIO operation, the MDC line has been given a Schmitt trigger input. Note that the MDIO registers will not be written till AFTER up to three additional clocks after the end of a WRITE frame (see Figure 15). It is recommended that MDC run continuously, but if this is not possible, extra clocks should be added after a WRITE. These will count toward the preamble for the next frame (except when the byte written caused a Soft Reset, see Figure 17, and extra preambles may be required). I2C Interfacing The I2C interface, normally used to provide the NVR requirements for XENPAK/XPAK/X2 MSA modules, consists of two lines, SCL and SDA. These conform to the I2C specification (‘THE I2C-BUS SPECIFICATION, Version 2.1’, at URL http://www.semiconductors.philips.com/acrobat/literature/93 98/39340011.pdf) for Standard-mode (to 100kHz) and Fastmode (to 400kHz) operation. The ISL35822 is a bus master, and expects to see the NVR EEPROM and/or DOM circuits as slaves. Particularly if Fast-mode operation is desired, the capacitance of and coupling between the SCL and SDA lines should be minimized. Since these lines are ‘open drain’, the rise time of the SCL line will inherently stretch the ‘low’ time of the line, as seen by the ISL35822, due to the effect of the RC time constant of the pull-up resistor and the line capacitance. This will slow down the operation of the interface. If the other I2C devices on this bus are 3.3V devices, their VIH levels should be checked to ensure satisfactory logic operation if the pull-up resistors are taken to a nominal 2.5V. If they will work from a lower voltage, the resistors can be taken to any such voltage down to the VDD level. The above reference includes charts for the values of the resistors, based on the capacitance of the line, and the desired clock rate. For the default operation speed of nominally 100kHz, a value of 5kΩ to 15kΩ will normally be suitable, while for Fast-mode operation, 2kΩ to 4kΩ will normally be needed. If a 2.5V supply is not available, resistive dividers may be used to ensure that the signals on the ISL35822 lines do not exceed that level. Some examples are shown in Figure 26. ISL35822 DOM Interfacing The NVR interface has already been discussed above (“XENPAK/XPAK/X2 Interfacing” on page 71). The ISL35822 also includes a flexible DOM interface. See “DOM Registers” on page 16 for details. Most laser drivers and receivers (TOSA and ROSA) include monitor outputs reflecting the Laser Bias Current, the Laser Output Power, and/or Received Optical Power. Some of these analog outputs are referenced to GND, others to an appropriate VDD. For use in the optional DOM system, these values need to be converted to digital values, compared with alarm and warning levels, and made available as both digital values and as flag registers and alarm signals. Since the WDM 4-lane DOM interface ideally needs to find ‘furthest-out-of-range’ values, it will operate most effectively using a single DOM control and conversion device. Suitable parts include the Cygnal C8051F311 device, which can handle the 12 monitored values, 4 VDD signal reference levels, the SCL and SDA signals, and the LASI-driving TX_FAULT, OPTTEMP, OPTXLBC, OPTXLOP, and OPRXOP signals. The device includes a 10-bit differential ADC, a temperature sensor, an onboard clock oscillator, and an I2C bus controller (called the SMBUS system by Cygnal), which should be set up as a slave. The NVR information can all be stored in the on-board Flash EEPROM memory, making for a single NVR/DOM/LASI device. If additional I/O signals are required, the similar C8051F310 has them available, for an increase in board area. Alternatively, an analog multiplexer such as the Maxim MAX4694 could be used to switch inputs between different lanes, under I/O pin control. A similar series of parts are available from Cyex as the SLC series. These parts also include DACs for Laser control functions. If this type of device is used, the ISL35822 should be set up in ‘Direct DOM’ mode (see Table 51 and "DOM Registers"), and it will then be able to download the complete DOM block as required. An alternative is to use a device specifically designed as a DOM device, such as the Micrel MIC3000 or the Maxim/Dallas Semiconductor DS1852. Each of these is a single lane device, and is oriented to fulfilling the requirements for SFP modules and the SFF-8472 specification. Although very similar, the latter has some small differences from the XENPAK DOM specification, which can cause problems. If a single device is used, it can be configured as a single DOM device, typically at device address A2, and used to monitor, for example, the average (sum) of the desired values. The thresholds, monitored values, and alarm and warning flags will conform to the required behavior for single-lane monitoring (see Note 2 to Table 27 in section 11.2.6 of the XENPAK R3.0 specification). If the ISL35822 is set up in ‘Direct DOM’ mode (see Table 51 and "DOM Registers"), the single-lane values will be transferred to the MDIO register space. Such an arrangement may be very suitable for use in a CX4 module, where it could be desirable to measure the temperature, 73 although the “Laser Bias Current”, “Received Optical Power”, etc. have no meaning (and “Digital Optical Monitoring” is a misnomer!). Note that the DS1852 does not provide a sufficient NVR block for XENPAK, and an additional 256-byte EEPROM such as an Atmel AT24C02A will be needed. Using four of the single-lane devices mentioned previously, the system can monitor all four lanes. A first download of a single device would load the full 256-byte space, and the ISL35822 should then be set in ‘Indirect Mode’ (see Table 51 and "DOM Registers"), with the pointers appropriately reset. For the MIC3000, three of the four devices should have their ‘I2CADR’ values changed (e.g. to B2, C2 & D2), leaving the fourth at the default DOM address A2. The NVR space will be provided by the A0 space in that last device, while the DOM spaces for each of the four lanes are accessed via the indirect Device Address pointers in 1.C01B:C’h, which would be set to A2, B2, C2 & D2 in the above scenario. The memory address values in 1.C019:A’h would be left at the default 60’h value. To utilize the DS1852, an EEPROM is needed for the NVR at the A0 address space, and one lane’s DS1852 should have the D0h Device Address value at the A2 default value, and its ASEL pin should be high. The others (also with ASEL high) should have the D0h values set to an array of different Device Address values, for instance B2, C2 & D2 (as in the previous example), or A4, A6 & A8, and the same values also set in 1.C01B:C’h. A first pass will read the EEPROM space in A2.00:5F’h from the DS1852 device at A2, followed by the A/D and flag values from A2.60:75’h, and various other values to A2.7F’h. The space from A2.80:FF’h depends on the DS1852 Table select byte (7F’h); if this is 0, the source data is empty; if it is set for Table 03, the actual Alarm and Warning threshold values will be returned; if 01 or 02, the various EEPROM banks, depending on the Access Level set. See the DS1852 data sheet for details. Subsequent DOM reads performed with Indirect Access can load the standard XENPAK 4-lane A/D space from the four DOM devices. Open drain outputs from the DOM devices can be pulled up via resistors to VDD, or any voltage between that and a nominal 2.5V. If a 2.5V supply is not available, resistive dividers may be used to ensure that the signals on the ISL35822 lines do not exceed that level. Active pullup devices should have their outputs divided before reaching the ISL35822 pins. Some examples of each are shown in Figure 26. LASI Interface The ISL35822 incorporates all the logic needed to control and enable the full XENPAK/X2/XPAK Link Alarm Status Interrupt (LASI) system, with several optional incorporated enhancements. Many of the (specified and optional extra) inputs are derived from the status registers in the ISL35822 (See “LASI Registers & I/O ” on page 17, and Figure 5), and the others are derived from a set of input pins (see Table 99) ISL35822 that would normally be driven by the corresponding status outputs of the either the TOSA and ROSA devices, or (if implemented) the DOM devices. The active polarity of these pins can be controlled via the ISL35822 registers. Since many TOSA, ROSA and lane-oriented DOM devices have open-drain outputs that go high on an alarm condition, wireAND-ing these together for a four-lane indication is not possible (any ‘working’ lane masks the ‘alarmed’ lane(s)), some external gating may be required (typically a 4-input OR or NOR gate per alarm). Note that the default polarity of these alarm inputs (active high) will be set after power-up, RESET or a hard (D.0.15) software reset, until the device is reconfigured. If a host-driven configuration is being used, the polarities (controlled by 1.C01D, Table 55) should be set before the LASI enables (1.9002, Table 27). If the AutoConfigure system is used (See “Auto-Configuring Control Registers” on page 16 and Table 92), the configuration may take typically about 100 msec (see Figure 18 and Table 117), and there will normally be a brief interval during which the LASI interrupt is likely to be (incorrectly) activated. LASI host operations would probably normally ignore such ‘glitches’, since the Byte Synch and Lane Alignment will initially be in ‘Fault’ condition after such a RESET (per the IEEE 802.3ae specification), and so the relevant latched Local Fault indications will need to be cleared before LASI is meaningful, but it could be advisable to ensure that the additional indications are ignored or cleared in the same way before the full LASI system is activated. FIGURE 25. VDDPR CLAMP CIRCUIT P3V3 From MSA Conn To ISL35822, Pull-Up Resistors R1 VDD33 68 B 1 U1 R2 10K Cathode D1 Cathode 3 Reference Anode ZHCS400 Anode R3 12K A LMV431 VDD 2 FIGURE 26. RESISTIVE DIVIDER CIRCUITS RAW_3V3 Rpu - - - etc.- - - - - - etc. - - - OPRXOP_3P3 Rpd Rpd 10k 10k - - - etc. - - - Rpu OPRXOP Rpd 12k 10k 10k Rpu Rpu TX_ENA# TX_ENA3P3_# Rpd 16k 18k f or MIC3000 74 From / To ISL35822 RAW_3V3 12k - - - etc. - - OPRXOP_3P3 Rpd RAW_3V3 To 3.3V TOSA From ISL35822 OPRXOP TX_FAULT_3P3 12k 12k SDA, SCL - - - each-- Rpd SDA, SCL 30k To / From 3.3V EEPROM TX_FAULT_3P3 TX_FAULT TX_FAULT From 3.3V OSA (Active Pullup) Rpu 12k From 3.3V OSA (Open Drain only) Rpu 12k ISL35822 Ordering Information PRODUCT FREQUENCY ISL35822 2.488Gbps3.1875Gbps ISL35822LP Low Power 2.488Gbps3.1875Gbps PACKAGE ORDER PART NUMBER 192 Ld EBGA-B ISL35822IK package; 17x17mm ISL35822LPIK Intersil Corporation Contact Information Technical information can be found via the Web page at http://www.intersil.com/design/ Contact Intersil Technical Support by phone at 1-888-INTERSIL or 1-888-468-3774. All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems. Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see www.intersil.com 75