INTEGRAL IZ1242M

IZ1242M
Scientific 10 Digits LCD Calculator
IZ1242M
The IZ1242M is the CMOS LSI for 10-digit display and the complete single chip for scientific
calculator with 56 programmed functions.
FUNCTIONS
FEATURES
• Six operations
- four standard functions (+, -, ×, ÷ )
x
-y
- √y
- auto-constant
- parenthesis
- percentage
• Memory calculation
- independent single memory (× → M, RM, M+)
• Four operations complex number calculation
• 1-variable functions
- trigonometric and arctrigonometric function
- hyperbolic and archyperbolic function
- factorial
- reciprocal and square
- square root and cube root
- time conversions
- angular mode conversion
• 2-variable functions
- polar-rectangular coordinate conversion
• Statistics calculations
- number of sample (n)
- average (×)
- total of all data (Σ ×)
2
- total of square of all data (Σ x )
- 2 kinds of the standard deviation (S, σ)
• Binary, octal, decimal and hexadecimal
number
calculations
- mutual conversions and calculations of binary,
octal,
decimal, and hexadecimal numbers
• Display conversion
- conversion and setting of floating and
engineering displays
• Display
-10 display digits plus negative code digit
- scientific and engineering displays
- 8 mantissa digits plus 2 exponent digits plus 2
negative code digits
• 14 kinds of special display
Memory
Minus
Error
2nd
Function
Hyperbolic
Degree
Gradient
Parenthesis
Binary mode
Octal mode
Hexadecimal
mode
Complex number
mode
RAD
STAT
Radian
Statistic
calculation mode
• The minus sign of the mantissa is floating minus
• The arithmetic key operation has the same
sequence
as the mathematical equation, 6 pending
operations
are allowed and ( ) are up to continuous 15
levels
• Mutual conversion and calculation in arithmetic
among binary, octal, decimal and hexadecimal
numbers
• One independent accumulating memory
• It is possible to convert and fix the display
number
system by the F → E key
• It is possible to specify decimal part digits by the
TAB key
• Direct drive for LCD (1/3 prebias, 1/4 duty)
• Automatic power off (about 7.5 minutes)
• Low power consumption
VDD = 3.0V single power supply
• Bare chip available
• Mirror type
M
E
2ndF
HYP
DEG
GRAD
(
)
BIN
OCT
HEX
CPLX
o
ABSOLUTE MAXIMUM RATINGS (Ta = 25 C)
Characteristic
Symbol
VDD
Terminal Voltage
VIN
Operating Temperature
Topr
Storage Temperature
Tstg
* Voltage greater than above may damage the circuit
1
Value
- 0.3 ~ + 3.3
- 0.3 ~ VDD + 0.3
0 ~ + 40
- 55 ~ + 125
Unit
V
V
o
C
o
C
IZ1242M
ELECTRICAL CHARACTERISTICS (Ta = 25oC, VDD = 3.0V, VSS = 0V unless otherwise specified)
Characteristic
Symbol
Operating Voltage
Input Voltage (K18 ~ K11)
High Output Voltage
(K18, K14, K12)
Output Voltage (LCD,
COM)
Low Output Voltage (K11)
Middle Output Voltage
(LCD, COM)
Key Pull Down
Resistance (K11)
Key Pull Up Resistance
(K18, K14, K12)
OSC Frequency
Frame Frequency
Min
Typ
Max
Unit
VDD
VIH
VIL
VOH
2.5
VDD - 0.5
VSS
VDD - 0.2
3
V
VDD
3.4
VDD
VSS+0.5
VDD
VOH
VOL
VOL
VDD
VSS
VSS
2/3VDD
1/3VDD
50
VDD
VSS +0.2
0.2
2/3VDD +0.2
1/3VDD +0.2
70
70
Rpd
Vout = 0V
VDD -0.2
VSS
VSS
2/3VDD -0.2
1/3VDD -0.2
30
Rpu
Vout VDD
30
50
Fdis
Stand-by
VDD = 3V
Operating
VDD = 3V
Stand-by
VDD = 3V
Display is off
VDD = 3V
Stand-by
VDD = 3V
Operation
VDD = 3V
30
45
VOM
Fopr
Ff
IOFF
Supply Current
Test
Condition
IDIS
IOPR
200
110
280
180
V
V
V
V
V
KΩ
KΩ
KHz
Hz
1
3
20
35
70
120
µA
BASIC SPECIFICATION
Number of display digits
• 10-digit display and 14 kinds of special displays
• Engineering display
• Max mantissa 8 digits plus exponent 2 digits plus each negative code digit
• Normal display
Max 10 mantissa digits plus 1 negative code 6 digit.
It is possible to specify the number of 0 to 9 digits below the decimal place by assignment of the
decimal digit.
Classification of operating mode
The following 6 types of operation mode are set by the 2ndF key and below keys:
2ndF
2ndF
STAT
CLPX
2ndF
2ndF
2ndF
2ndF
- BIN
- OCT
- HEX
- DEC
: Statistic calculation mode set
: Complex number calculation
mode set
: Binary mode set
: Octal mode set
: Hexadecimal mode set
: Decimal mode set
2
IZ1242M
Kinds of keys and classification of the multi-functions for all touch keys
DRG
DRG
sin
sin
e E
ln
xy B
yx
2ndF
archyp
hyp
-1
-1
X
X
x
7
8
9
4
5
6
0
OCT
HEX
3
RND
2
1
OFF
TAB
F E
xy
b
X
Y
(
BIN
tan
tan
rθ
a
1/x
x2
cos
cos
10 F
log
3x
C
-1
D
DEG
A
EXP
STAT
POWER
+/-
DEC
+
ON/C
n!
CE
CLPX
n
)
x
X
s
x2
M
RM
DATA CD
M+
%
=
The condition during calculation
No key input is allowed and no data is displayed during calculation.
a.
b.
Display method
Set number and result of operation are displayed in the right margin, minus floating.
Display of decimal number operation results.
Display is made according to the display format that has been set by the F ↔ E key.
• Floating mode
10 ≤ | x | ≤ 10
10-99 ≤ | x | ≤ 10-9
0 and 10-9 ≤ | x | ≤
1010
10
100
: Exponent display
: Exponent display
: Floating display
• Engineering mode
0 and 10-99 ≤ | x | ≤ 10100 (all ranges); Exponent display.
The F ↔ E key also converts the display format of a displayed numerical value simultaneously
with the display format setting.
At the same time, the number of digits below the decimal point of the above modes follows the
display format assigned by the 2ndF and F ↔ E keys.
Further, in the same manner as the F ↔ E key, the conversion is also takes place simultaneously
with the display format setting.
3
IZ1242M
When the number of digits is specified, the last digit displayed is a rounded number, and when
there is no specification of the number of digits, the last digit displayed is a cut number.
Example:
c.
Negative numbers are not displayed with the minus symbol “-” but are displayed in
hexadecimal, octal, and binary two’s complements.
d.
Display style and special display
• Display style
• Special display
M
e.
Examples of display
• Floating of –6000 1/x; TAB=7
• Same as above, engineering display
• Error display
DEG
E
Protection
a.
Memory overflow protection
If the overflow occurs in the memory calculation, the data before the calculation is retained.
b.
Statistical overflow protection
If the overflow occurs in the statistical calculation, the data before the calculation is retained.
The number of digits of the internal retained data.
4
IZ1242M
The number of digits of the mantissa of the displayed data is a maximum of 10 digits, but the
available data for successive calculations is the retained data.
The number of digits of the mantissa of the internally retained data is as follows:
10 digits
Maximum
Data input
10 digits
Maximum
Arithmetic
Engineering function.
Statistical function
Complex number
function
3 digits
Maximum
Memory calculation.
Number of random
Auto clear
When the power supply is suddenly turned on an auto clear routine is executed to initialize as
DEC mode, no TAB, floating and DEG modes.
Power off function
Auto power off
About 7.5 minutes after operation is ended by pressing the key, the power supply is turned off.
b.
OFF
Pressing this key will stop the oscillator (Memory safe guard).
c.
ON
Pressing this key will wake the oscillator and initialize
a.
OPERATION MODE
Operational mode
Mode
DEC
BIN
OCT
HEX
STAT
CPLX
Operation
6 Operation
STAT
CLPX
DATA setting
CE
Memory
Display
conversion
P – R conversion
Random
Function
Angular
conversion
4 Operation +, -, ×, ÷, =
Power yx, x√y
Parenthesis ( )
Constant calculation
Percentage calculation
Statistical calculation
CLPX calculation
Input a, b
Numeric input 0, 1
Numeric input (2 – 7)
Numeric input 8, 9
Hex input A – F
• , Exp
+/Shift key
Memory calculation
F ← E, TAB
P→
R→P
RND
1 variable function
DRG, DRG
5
0
0
0
0
0
x
x
0
0
0
0
x
0
0
0
0
0
0
0
x
0
0
x
x
x
x
0
x
x
x
x
0
0
0
0
x
0
x
0
0
x
x
x
x
0
0
x
x
x
0
0
0
0
x
0
x
0
0
x
x
x
x
0
0
0
0
x
0
0
0
0
x
0
0
x
0
0
0
x
x
0
0
0
x
0
0
0
0
0
x
0
x
x
x
x
x
0
0
0
0
0
x
0
0
0
0
0
x
0
x
x
x
x
0
0
0
0
x
x
x
x
x
x
x
x
x
0
0
0
0
0
0
IZ1242M
The calculation is always shifted to a specified mode by mode keys
A Mode
B Mode
A
B
DEC
DEC
BIN
OCT
HEX
STAT
CPLX
NOP
DEC
Conversion
DEC
Conversion
DEC
Conversion
BIN
BIN
Conversion
NOP
BIN
Conversion
BIN
Conversion
OCT
OCT
Conversion
OCT
Conversion
NOP
OCT
Conversion
HEX
HEX
Conversion
HEX
Conversion
HEX
Conversion
NOP
STAT
Display
Clear
Display
Clear
Display
Clear
Display
Clear
Display
Clear
Display
Clear
Display
Clear
Display
Clear
DEC
Conversion
State clear
BIN
Conversion
State clear
OCT
Conversion
State clear
HEX
Conversion
State clear
NOP
DEC
Conversion
State clear
BIN
Conversion
State clear
OCT
Conversion
State clear
HEX
Conversion
State clear
Display
Clear
NOP
CPLX
Display
Clear
State clear
NOP: No operation
KEY DEFINITIONS
1. 2ndF
This is the key for specifying the second function.
When this key is pressed, the special display «2ndF» lights. When this key is pressed twice the
second function mode is released.
2.
DRG
DRG
a. Pressing this key will change the mode of angle sequentially
and display it.
DE
RA
GRAD
b. Pressing this key after 2ndF key will change the mode of the angle and will convert the
displayed data.
DEG → RAD
RAD →
GRAD
GRAD → DEG
: RAD = DEG × π/180
: GRAD = RAD × 200/π
: DEG = GRAD × 0.9
3.
0–9
a.
In setting data in the mantissa section, it is set at the right margin, and the data in more
than 11 digits cannot be input.
b. At the data input against the exponent, the last two numbers are efficients.
4.
•
RND
6
IZ1242M
a. The position first pressed has preference, and no input is made to data set in the exponent
section.
b. When pressed as the first set number, it is regarded as 0 and • keys are pressed.
c. Random as a 2ndF.
Pressing this key shall display the random numbers.
The range of random numbers is 0.000 – 0.999.
5. +/a. In setting data in the mantissa section, this key reverses the code in the mantissa section.
Similarly, for the exponent section, it reverses the code in the exponent section.
b. For the operation result, this key reverse codes in the mantissa section.
6.
+ , - , ×, ÷, =, ( )
a.
When the key operations are performed by these keys according to a numerical
expression, a result of the operation is obtained according to mathematical priorities, priorities
discriminated are:
1) 1 Variable function
2) Expression in ( ): (The most inner expression has priority in case of multiple parentheses)
3) yx , x√y
4) ×, ÷
5) +, b.
Whenever the key is operated, the calculator discriminates the above priorities and holds
the data and operation keys pending as required.
This pending action is possible up to 6 times and 7 or more pending become error.
c.
(Key is accepted only immediately after CE, +, -, ×, ÷, yx, x√y, =, (keys and not
accepted in all other cases.
When this key is accepted, the displayed data is cleared to 0.
When ( key is first accepted, the special display « ( ) » illuminates.
When a parenthesis expression is completed ) and = keys or when it is cleared by the ON/C key,
etc, or when errors are generated, the special display « ( ) » goes out.
d.
If it is within the allowable range of pending. ( can be input into any place in an
expression as many times as desired. However, if the key is pressed continuously 16 times or
more, it be comes error.
e.
From a viewpoint of numerical expression, even when the corresponding C key is not
pressed, the operation is not executed if the «)» key is pressed. On the other hand, when the «(«
key is pressed and the «=» key is pressed without pressing the corresponding «)» key, the
operation is also completed according to the priority.
7. Memory calculation ( x → M, RM, M+ )
a.
The memory register «M» used by these keys is a completely independent single
memory.
b.
Display data is added to «M» (memory register) by M+ key.
If data overflows at this time, the processing data is held.
c.
Display data is stored in «M» by x → M key.
d.
Contents of «M» is displayed by MR key.
e.
When any data except for 0 is stored in «M», the special display «M» illuminates.
8. π
a.
This key displays a rounded value (3.141592654) of a 12-digit value (3.14159265359)
according to the set display format.
b.
A value that is used in a subsequent operation is the above the 12-digit value.
7
IZ1242M
c.
The display is cleared by the following 1-st numeric key and new data is set.
9. % Calculation.
a.
When any arithmetic functions or constant mode has/not been set, the displayed number
is converted from a percentage to a decimal.
Example) 61.5%
Display
6 1 . 5 %
0.615
b.
When = key is pressed after % with any arithmetic function
• Add-on
a+b
• Discount
a-b
•
Percentag
e
axb
a÷b
%
=
→a +
b)/100
(a
x
• yx, x√y
a yx b
a
%
=
→a b)/100
%
=
→(a x b)/100
%
=
→a/b x 100
(a
%
=
→at (t = b/100)
√y %
=
→ t√a
b/100)
x
x b
(t
=
10. Trigonometric and arctrigonometric functions (1 Variable).
-1
-1
-1
(sin, cos, tan, sin , cos , tan )
These functions are calculated according to respective defined areas and accuracy show in (6),
and displayed result of operation can become operators.
11. Hyperbolic and archiperbolic function.
(hyp → sin cos tan, archyp → sin cos tan)
Same as trigonometric function.
12. Exponential and logarithmic functions.
x
x
(e 10 In log)
Same as trigonometric functions.
13. Reciprocal, square, square root and cube root.
2
3
(1/x x √ √)
Same as trigonometric functions.
14. Factorial functions (n!).
n! = n x (n-1) x (n-2) x … x 2 x 1
Same as trigonometric functions.
15. →DEG → DMS
a.
These keys convert degrees, minutes and seconds into decimal degrees and decimal
degrees into degree minutes and seconds.
b.
On the DMS format, the integer part of display data is regarded as degrees, 2 digits below
rd
the decimal point as minutes and the 3 digit and below as seconds.
8
IZ1242M
1.999999999
16.
1
degree
-DMS
59
minute
5999
second
Coordinate conversion ( a b → r θ → xy).
a.
These keys convert the rectangular coordinates into the polar coordinates and the polar
coordinates into the rectangular coordinates. The angle units that have been set by the DRG key
follows.
b.
Respective defined areas and accuracy are as shown in (6), however, the range of θ
obtained by R→P in degree is as follows:
1st
2nd
3rd
Quadrant
Quadrant
Quadrant
4th
Quadrant
0o ≤ θ ≤ 90o
90o ≤ θ ≤180o
-180o ≤ θ ≤ 90o
-90o ≤ θ ≤ 0o
c.
Input of 2 variables is performed by setting
X or R by pressing a key and
Y or θ by pressing b key
d.
The operation result of X or R is obtained in the display register or by pressing a key and
Y or θ by pressing b key.
Input Data
a
R→P
(Rectangular→Polar)
P→R
(Polar→Rectangular)
Result
b
a
b
x
y
r
θ
r
θ
x
y
( →r, θ ) r = √(x2 + y2), θ =tan-1 y/x
(→x, y ) x = r cosθ, y = r sinθ
e.
( R → P Conversion) ([ x, y ] →[ r, θ] )
Key operation
x
a
y
b
→r θ
b
f.
Display
x
x
y
y
r
θ
( P → R Conversion) ( [ r, θ] → [ x, y ] )
Key operation
θ
b
r
a
→xy
b
Display
θ
θ
r
r
x
y
17. Binary Mode (2ndF , → BIN, 0, 1).
a.
Data input and output are both binary integers in a maximum of 10 digits.
b.
A negative number is expressed in the binary number of two’s complement.
c.
The range of internal operation is as show below and if the result of the operation exceed
the range, it becomes an error (overflow).
9
IZ1242M
Outside the operation range
Binary
Positive
Integer
Binary
Positive
Integer
(Complement)
Binary Number
111111111
111111110
111111101
:
:
10
1
0
111111111
111111110
111111101
:
:
:
:
1000000001
1000000000
Outside the operation range
Decimal Number
512 ≤ DATA
511
510
509
:
:
2
1
0
-1
-2
-3
:
:
-511
-512
-512 ≥ DATA
18. Octal Mode (2ndF , → OCT, 0 - 7)
a.
Data input and output are both octal integers with a maximum of 10 digits.
b.
A negative number is expressed in the octal number of two’s complement.
c.
The range of internal operation is as show below and if the result of the operation exceed
the range, it becomes an error (overflow).
Outside the operation range
Binary
Positive
Integer
Octal
Negative
Integer
(Complement)
Octal Number
3777777777
3777777776
:
:
1
0
777777777
777777776
111111101
:
:
:
:
4000000001
4000000000
Outside the operation range
Decimal Number
5 3 6 8 7 0 9 1 2 ≤ DATA
536870911
536870910
:
:
1
0
-1
-2
:
:
-5 3 6 8 7 0 9 1 1
-5 3 6 8 7 0 9 1 2
-5 3 6 8 7 0 9 1 3 ≥DATA
19. Hexadecimal Mode (2ndF , → HEX, 0 – 9, A - F).
a.
Data input and output are both hexadecimal integers with a maximum of 10 digits.
b.
A negative number is expressed in the hexadecimal number of two’s complement.
c.
The range of internal operation is as show below and if the result of the operation exceed
the range, it becomes an error (overflow).
10
IZ1242M
Hexadecimal Number
2540BE3FF
2540BE3FE
:
:
1
0
FFFFFFFFFF
FFFFFFFFFE
:
:
FDABF41C02
FDABF41C01
Outside the operation range
Hexadecimal
Positive
Integer
Hexadecimal
Negative
Integer
(Complement)
Decimal Number
1 x 1010 ≤ DATA
9999999999
9999999998
:
:
1
0
-1
-2
:
:
-9 9 9 9 9 9 9 9 9 8
-9 9 9 9 9 9 9 9 9 9
-1 x 1010 ≥ DATA
Outside the operation range
20. Complex number Mode (2ndF , → CPLX).
a.
Pressing these keys shall set the complex number mode.
b.
Input of 2 parts is performed by setting the real part (X; Pressing a key) and the imaginary
part (Y; pressing b key).
c.
The operation result of the real part is obtained by pressing = or a key and the imaginary
part by pressing b key.
Input Data 1
Input Data 2
Result
Characteristic Real
Imaginary Function
Real
Imaginary
Real
a
b
a
b
a
Addition
X1
Y1
+
X2
Y2
X1+X2
Subtraction
X1
Y1
X2
Y2
X1-X2
Multiplication
X1
Y1
X2
Y2
X1X2-Y1Y2
×
X1X2+Y1Y2
Division
X1
Y1
X2
Y2
÷
2
2
X2 +Y2
Imaginary
b
Y1+Y2
Y1-Y2
Y1X2+X1Y2
Y1X2-X1Y2
2
2
X2 +Y2
21. Static calculation Mode (2ndF , STAT).
a.
Pressing these keys shall set the static calculation mode.
b.
The available number of data is a positive integer, such as 0 ≤ n ≤ 9999999999, and when
the number of data exceeds this integer, it becomes an error.
c.
The input range of the data is as follows: 0 ≤  data ≤ 1 × 1050.
This data exceeds the ranges, it becomes an error.
d.
n Σx Σx2
2
These keys display the number of data (sample), each sum total of x and sum total of x .
x= nx = Σnx
n
Σ
n
S=
Σ (xi-x)
i
-1
n
Σx
2
2
=
Σx)
2
-(
n
/n
δ=
-1
n
• The standard deviation of the
sample
Σ (xi-x)2
n
2
=
Σ x2 - (Σx)
/n
n
• The standard deviation of the population
11
IZ1242M
ERROR CONDITIONS
1.
2.
3.
4.
a.
b.
5.
6.
The result of operation is exponent parts exceed + 99
Entering more than the calculation range (6) of each function.
Dividing be zero.
In statistical calculation.
x, s, σ when n=0
s when n=1
The number of pending operations exceeds 3.
The number of the parenthesis in the one level exceeds 15.
OPERATION RANGE AND ACCURACY
Function
sin x
cos x
tan x
sin-1x
cos-1x
tan-1x
Angle
Unit
DEG
RAD
GRAD
DEG
RAD
GRAD
DEG
RAD
GRAD
DEG
RAD
GRAD
DEG
RAD
GRAD
DEG
RAD
GRAD
ln x
log x
ex
Operation Range
Under Flow Area
Normal
Accuracy
0 ≤ x ≤ 4.499999999 × 1010
0 ≤ x ≤ 7853981633
0 ≤ x ≤ 4.999999999 × 1010
0 ≤ x ≤ 4.500000008 × 1010
0 ≤ x ≤ 7853981649
0 ≤ x ≤ 5.000000009 × 1010
0 ≤ x ≤ 4.499999999 × 1010
0 ≤ x ≤ 7853981633
0 ≤ x ≤ 4.999999999 × 1010
0 ≤ x ≤ 1
0 ≤ x ≤ 1
0 ≤ x ≤ 1
0 ≤ x ≤ 1
0 ≤ x ≤ 1
0 ≤ x ≤ 1
0 ≤ x ≤9.999999999 × 1099
0 ≤ x ≤9.999999999 × 1099
0 ≤ x ≤9.999999999 × 1099
0≤x
0≤x
-9.999999999 × 1099 ≤ x ≤
230.2585092
0≤ x ≤ 5.729577951 × 10-98

0≤ x ≤ 6.366197723 × 10-98



0≤ x ≤ 5.729577951 × 10-98

0≤ x ≤ 6.366197723 × 10-98
0≤ x ≤ 1.570796326 × 10-99

0≤ x ≤ 1.570796326 × 10-99



0≤ x ≤ 1.570796326 × 10-99

0≤ x ≤ 1.570796326 × 10-99


-9.999999999 × 1099 ≤ x ≤
227.9559243
10 digits
±1
12
IZ1242M
OPERATION RANGE AND ACCURACY (Continued)
Function
10x
x!
1/x
x2
√x
3
√x
DMS→DEG
DEG→DMS
sinh x
cosh x
tanh x
sinh-1 x
-1
cosh x
tanh-1 x
R→P
(x, y) (r, θ)
P→R
(r, θ) (x, y)
DEG→RAD
RAD→GRAD
GRAD→DEG
yx
√y
x
→DEC
→BIN
→OCT
→HEX
Operation Range
Under Flow Area
-9.999999999 × 1099 ≤ x ≤
99.99999999
0 ≤ x ≤ 69 (integer)
1 × 10-99 ≤ x ≤9.999999999 ×
99
10
0 ≤ x ≤9.999999999 × 1049
0 ≤ x ≤9.999999999 × 1099
99
0 ≤ x ≤9.999999999 × 10
0 ≤ x ≤9.999999999 × 109
0 ≤ x ≤9.999999999 × 109
0 ≤ x ≤230.2585092
0 ≤ x ≤230.2585092
0 ≤ x ≤9.999999999 × 1099
0 ≤ x ≤4.999999999 × 1099
1≤ x ≤4.999999999 × 1099
0 ≤ x ≤9.999999999 × 10-1
49
x , y  ≤9.999999999 × 10
2
2
99
(x + y ) ≤9.999999999 × 10
0≤ r ≤9.999999999 × 1099
θ correspond to the under flow
area of sin x, cos x
0 ≤ x ≤9.999999999 × 1099
0 ≤ x ≤1.570796326 × 1098
0 ≤ x ≤9.999999999 × 1099
-9.999999999 × 1099 ≤ x, ln y 
≤ 230.2585092
-9.999999999 × 1099 ≤ x ≤
99.00000001

1.000000001 × 1099≤x 
99
≤ 9.999999999 × 10
-50
0 ≤ x ≤3.162277660 × 10



0 ≤ x ≤ 2.777777777 × 10-99






correspond to the under flow
area of tan x
θ correspond to the under flow
area of sin x, cos x
10 digits
±1
0 ≤ x ≤5.729577951 × 1098

0 ≤ x ≤1.111111111 × 10-99
-9.999999999 × 1099 ≤ x, ln y

≤ -227.9559243
y > 0; The above – mentioned operation range
у < 0; x (integer) or 1/x (x = odd, x = 0)
The above – mentioned operation range
y = 0; x > 0.
-9.999999999 × 1099 ≤ 1/x, ln
-9.999999999 × 1099 ≤ 1/x, ln
y 
y 
≤ 230.2585092
≤ -227.9559243
y > 0; The above – mentioned operation range
у < 0; x (odd) or 1/x (integer, x ≠ 0)
The above – mentioned operation range
y = 0; x > 0.
The following operation range after the conversion.
0 ≤ x ≤9999999999
The following operation range after the conversion.
1000000000 ≤ x ≤ 1111111111, 0 ≤ x ≤ 1111111111
The following operation range after the conversion.
4000000000 ≤ x ≤ 7777777777, 0 ≤ x ≤ 3777777777
The following operation range after the conversion.
FDABF41C01≤ x ≤FFFFFFFFFF, 0≤ x ≤2540BE3FF
13
Normal
Accuracy



IZ1242M
OPERATION RANGE AND ACCURACY (Continued)
Function
Complex number
calculation
Statistic calculation
Operation Range
Under Flow Area
(X1+Y1i) +, -, ×, ÷ (X2+Y2i)
Addition and subtraction
99
X1+X2 ≤9.999999999 × 10
99
Y1+Y2 ≤9.999999999 × 10
Multiplication
99
X1X2-Y1Y2 ≤9.999999999 × 10
99
Y1X2+X1Y2 ≤9.999999999 × 10
99
X1X2 , Y1Y2 , Y1X2 , X1Y2 ≤9.999999999 × 10
Division
99
Y1X2-X1Y2 ≤9.999999999 × 10
X1X2+Y1Y2
2
2
2
2
,
X2 +Y2
X2 +Y2
2
2
2
2
X1X2, Y1Y2 , Y1X2, X1Y2 , X2 +Y2 , X2 , Y2 ,
99
X1X2+Y1Y2 , Y1X2-X1Y2 ≤9.999999999 × 10
Data; x ≤9.999999999 × 10
∑x ≤9.999999999 × 10
2
∑x ≤9.999999999 × 10
x; n = 0
s; n = 1, n = 0
2
2
-1
0 ≤ (∑x - ( ∑x ) /n)/ n ≤ 9.999999999 × 10
σ; n ≠ 0
2
2
0 ≤ (∑x - ( ∑x ) /n)/ n ≤ 9.999999999 × 10
Normal
Accuracy
10 digits
±1
10 digits
±1
LCD CONNECTION
M
a
. Segment
b. Common
M
14
IZ1242M
WAVEFORM OF COMMON SIGNALS
V (3V)
2V
1V
GND
DD
COM1
COM2
COM3
COM4
160Hz (6.25ms)
0.034ms
EXTERNAL CONNECTION
Pad description
Pad
No.
Pad
name
TST
VDD
Vss
KITEN
EXTNL
FODIS
KI8
T
KI4
COM2
COM3
b13
a13
b12
a12
b11
a11
b10
a10
b9
a9
b8
a8
I/O
Description
I/O
Test
VDD Power (+ 3V)
Vss Power (GND)
Key in test enable
External clock
Fosc disable
Key input 8
Test
Key input 4
Common Signal 2
Common Signal 3
LCD
LCD
No Connection
No Connection
LCD
LCD
LCD
LCD
LCD
LCD
LCD
LCD
I
I
I
I
I
I
O
O
O
O
O
O
O
O
O
O
O
O
O
O
Pad
No.
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
15
Pad
name
b7
a7
VDD
Vss
b6 (KO)
a6 (KO)
b5 (KO)
a5 (KO)
b4 (KO)
a4 (KO)
b3 (KO)
a3 (KO)
b2 (KO)
a2 (KO)
b1 (KO)
a1 (KO)
b0 (KO)
a0 (KO)
COM4
COM1
KI2
KI1
DEN
I/O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
I
I
I
Description
LCD
LCD
VDD Power (+ 3V)
Vss Power (GND)
LCD (Key Output)
LCD (Key Output)
LCD (Key Output)
LCD (Key Output)
LCD (Key Output)
LCD (Key Output)
LCD (Key Output)
LCD (Key Output)
LCD (Key Output)
LCD (Key Output)
LCD (Key Output)
LCD (Key Output)
LCD (Key Output)
LCD (Key Output)
Common Signal 4
Common Signal 1
Key input 2
Key input 1
Dump Enable
IZ1242M
KEY CONNECTIONS
KI8
1st F
HEX
2nd F STAT
41
0
40
=
%
39
)
x
n
x2
x
38
37
36
X
1st F
2nd F HEX
1st F
M
+
RM
σ
S
M+
CD
DATA
HEX
3
33
RND
2nd F HEX
DEC
CE
n!
CPLX
(
X
E TAB
F
Y
BIN
b
OCT
x2
xy
1/x
6
a
rθ
9
tan
tan-1
3
2
C
32
1
5
cos
cos-1
31
4
8
log
10
30
7
yx
B
ln
e
29
+/-
EXP
A
sin
sin
28
DEG
Note:
DMS
D
KI1
OFF
2nd F
35
34
KI2
44
KI4
09
07
x
y
hyp archyp
x
x
-1
DRG DRG
= Statistic Mode Keys
16
F
E
ON/C STAT
45
02 or 26
IZ1242M
APPLICATION CIRCUIT
STAT CPLX
HEX
OCT
( )
BIN
12
GRAD DEG
a0 - a6, b0 - b6
4
M
O
C
,
1
M
O
C
a9 b8 a8 b7 a7 VDD VSS b6 a6 b5 a5 b4
28 29 30 31 32
b9 20 22 23 24 25 26
33 a4
19
a10
34 b3
b10 18
a11 17
35 a3
36 b2
b11 16
37 a2
a12 15
38 b1
b12 14
IZ1242M
39 a1
a13 13
40 b0
b13 12
41 a0
11
42
10
43
KI4
9
44 KI2
T 8
KI8
7
6 5 4
3
2
1 46 45 KI1
DEN
FOD EXT KIT
VSS VDD
2
HYP 2ndF
14
a7-b13, b7-b13 exept a12, b12
3
M
O
C
,
2
M
O
C
RAD
2
6
b
0
b
,
6
a
0
a
14
COM3
COM4
COM2
COM1
TEST
-
K12 DRG
DRG
sin -1
sin
ex /E
ln
10x/F
log
cos-1
cos
3
/C
3V
STAT
ON/C
+
tan-1
tan
rθ
a
K14 archyp
π/A
EXP
x y/B
yx
8
5
2
9
6
K18
+/-
7
4
1
RND
*
3
HEX
hyp
DMS/D
DEG
b6
NOTE:
a6
b5
a5
b4
a4
2nd F
2ndF/HEX
1st F
1st F
OCT
X
a3
b3
The chip substrate is electrically connected to VSS
17
xy TAB
CPLX
b F E
1/x
x2
CD/DATA
M+
b2
BIN
+
σ/S
MR
a2
X Y
(
2
Σx /X
X M
b1
n!
CE
OFF
DEG 2nd
+
Σx/n
)
a1
%
=
b0
0
a0
IZ1242M
PAD DIAGRAM
18