SAMSUNG K4C89183AF-ACFB

K4C89183AF
288Mb x18 Network-DRAM2 Specification
Version 0.7
- 1 -
REV. 0.7 Jan. 2005
K4C89183AF
Revision History
Version 0.0 (Oct. 2002)
- First Release
Version 0.01 (Nov. 2002)
- Changed die revision from D-die to F-die
- Corrected typo
- Corrected DQS to DS and QS(DQS -> DS and QS) in AC timing table and timing diagram.
Version 0.1 (Apr. 2003)
- Added 800Mbps(400Mhz) product
- Changed operating temperature from Ta to Tc.
- Changed capacitance of ADDR/CMD/CLK
From
Addr/CMD/CLK
To
Min
Max
Min
Max
1.5
2.5
1.5
3.0
- Changed tDSS(DS input Falling Edge to Clock Setup Time)
From
To
F6
FB
F5
G7
F6
FB
F5
CL4
0.9
0.9
1.0
0.75
0.75
0.8
1.0
CL5
0.9
0.9
1.0
0.75
0.75
0.8
1.0
CL6
0.9
0.9
1.0
0.75
0.75
0.8
1.0
CL7
-
-
-
0.75
-
-
-
- Added CL7 for 800Mbps
- Deleted TSOP package outline
Version 0.11 (Apr. 2003)
- Corrected typo in page 3.(Deleted bi-directional strobe)
- Corrected min. Vref to VDDQ/2x95% in page 7
Version 0.2 (Aug. 2003)
- Added package physical dimension
- Extracted 800Mbps(G7) binning from target spec ( G7 will be added in the future)
- Changed DC test condition
From
To
Changed point
IDD1S,IDD2N,IDD2P,IDD5,IDD6
IDD1S,IDD2N,IDD2P,IDD5B,IDD6
Changed condition
-
IDD4W, IDD4R
newly inserted
- Changed low frequency spec like below
From
To
Unit : ns
F6
FB
F5
F6
FB
F5
tCK max@CL=4
7.5
7.5
7.5
6.0
6.0
6.0
tCK max@CL=5
7.5
7.5
7.5
6.0
6.0
6.0
tCK max@CL=6
7.5
7.5
7.5
6.0
6.0
6.0
- Changed AC test load picture
Version 0.3 (Nov. 2003)
- Changed Packge type from die-exposed to full molded
- Changed Package code in Partnumber
- 2 -
REV. 0.7 Jan. 2005
K4C89183AF
Version 0.31 (Mar., 2004)
- Corrected typo. in page 7 (Changed operating Temperature to 85’C, case temperature)
Version 0.4 (Jun., 2004)
- Changed from "target" to "Preliminary"
- Changed min. tCK@CL5 to 3.5ns in "-F6"
tCK Clock Cycle Time (min)
From
To
F6
F6
CL = 4
4.0 ns
4.0 ns
CL = 5
3.33 ns
3.5 ns
CL = 6
3.0ns
3.0ns
Version 0.5 (Aug., 2004)
- Deleted self-refresh function and BL2 from spec
Version 0.51 (Aug., 2004)
- Corrected error in page 54, "Package Out line Drawing". (Just 4 balls were missing in drawing)
Version 0.6 (Nov., 2004)
- Deleted "preliminary"
- Changed current value in page 9
Version 0.7 (Jan., 2005)
- Deleted the tDQSQA in page 11
- Deleted the tSSK in page 11
- 3 -
REV. 0.7 Jan. 2005
K4C89183AF
4,194,304-WORDS x 4 BANKS x 18-BITS DOUBLE DATA RATE Network-DRAM
DESCRIPTION
K4C89183AF is a CMOS Double Data Rate Network-DRAM containing 301,989,888 memory cells. K4C89183AF is organized as
4,194,304-words x 4 banks x18 bits. K4C89183AF feature a fully synchronous operation referenced to clock edge whereby all operations are synchronized at a clock input which enables high performance and simple user interface coexistence. K4C89183AF can operate fast core cycle compared with regular DDR SDRAM.
K4C89183AF is suitable for Server, Network and other applications where large memory density and low power consumption are
required. The Output Driver for Network-DRAM is capable of high quality fast data transfer under light loading condition.
FEATURES
K4C89183AF
Parameter
tCK Clock Cycle Time (min)
F6
FB
F5
CL = 4
4.0 ns
4.5 ns
5.0 ns
CL = 5
3.5 ns
3.75 ns
4.5 ns
CL = 6
3.0ns
3.33 ns
4.0 ns
tRC Random Read/Write Cycle Time (min)
20.0 ns
22.5 ns
25 ns
tRAC Random Access Time (min)
20.0 ns
22.5 ns
25 ns
IDD1S Operating Current (single bank) (max)
320mA
300mA
280mA
IDD2P Power Down Current (max)
70mA
65mA
60mA
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Fully Synchronous Operation
- Double Data Rate (DDR)
- Data input/output are synchronized with both edges of DS / QS.
- Differential Clock (CLK and CLK) inputs
- CS, FN and all address input signals are sampled on the positive edge of CLK.
- Output data (DQs and QS) is aligned to the crossings of CLK and CLK.
Fast clock cycle time of 3.0 ns minimum
- Clock : 333 MHz maximum
- Data : 666 Mbps/pin maximum
Quad Independent Banks operation
Fast cycle and Short Latency
Uni-directional Data Strobe
Distributed Auto-Refresh cycle in 3.9us
Power Down Mode
Variable Write Length Control
Write Latency = CAS Latency-1
Programable CAS Latency and Burst Length
- CAS Laatency = 4, 5, 6
- Burst Length = 4
Organization : 4,194,304 words x 4 banks x 18 bits
Power Supply Voltage VDD : 2.5V ± 0.125V
VDDQ : 1.4V ∼ 1.9V
1.8V CMOS I/O comply with SSTL - 1.8 (half strength driver) and HSTL
Package : 60Ball BGA, 1.0mm x 1.0mm Ball pitch
Notice : Network-DRAM is trademark of Samsung Electronics., Co LTD
- 4 -
REV. 0.7 Jan. 2005
K4C89183AF
PIN ASSIGNMENT (TOP VIEW)
Pin Names
Pin
Name
A0 ~ A14
Address Input
BA0, BA1
Bank Address
DQ0 ~ DQ17
Data Input/Output
CS
Chip Select
FN
Function Control
PD
Power Down Control
CLK, CLK
Clock Input
DS/QS
Write/Read data strobe
VDD
Power (+2.5V)
VSS
Ground
VDDQ
Power (+1.8V)
(for I/O buffer)
VSSQ
Ground
(for I/O buffer)
VREF
Reference Voltage
NC
No Connection
ball pitch=1.0 x 1.0mm
x18
1
2
3
4
5
6
Index
A
Vss
DQ17
DQ0
VDD
B
DQ16
VssQ
VDDQ
DQ1
C
DQ15
VDDQ
VssQ
DQ2
D
DQ14
DQ13
DQ4
DQ3
E
DQ12
VssQ
VDDQ
DQ5
F
DQ11
VDDQ
VssQ
DQ6
G
DQ10
VssQ
VDDQ
DQ7
H
DQ9
DS
QS
DQ8
J
VREF
Vss
VDD
A14
K
CLK
CLK
FN
A13
L
A12
PD
CS
NC
M
A11
A9
BA1
BA0
N
A8
A7
A0
A10
P
A5
A6
A2
A1
R
VSS
A4
A3
VDD
- 5 -
REV. 0.7 Jan. 2005
K4C89183AF
Block Diagram
CLK
DLL
CLK
CLOCK
PD
BUFFER
To Each Block
BANK #3
COMMAND
BANK #2
CONTROL
SIGNAL
DECODER
A0 ~ A14
ADDRESS
BA0, BA1
BUFFER
GENERATOR
BANK #0
ROW DECODER
FN
BANK #1
MODE
REGISTER
UPPER ADDRESS
LATCH
REFRESH
COUNTER
DATA
CONTROL AND LATCH
CIRCUIT
CS
MEMORY
CELL
ARRAY
COLUMN DECODER
LOWER ADDRESS
LATCH
BURST
COUNTER
READ
DATA
BUFFER
WRITE ADDRESS
LATCH
ADDRESS
COMPARATOR
DS
QS
WRITE
DATA
BUFFER
DQ BUFFER
DQ0 ~ DQ17
Note : The K4C89183AD configuration is 4 Bank of 32768 x 128 x 18 of cell array with the DQ pins numbered DQ0~DQ17.
- 6 -
REV. 0.7 Jan. 2005
K4C89183AF
Absolute Maximum Ratings
Symbol
Parameter
Rating
Units
VDD
Power Supply Voltage
-0.3 ~ 3.3
V
VDDQ
Power Supply Voltage (for I/O buffer)
-0.3 ~ VDD + 0.3
V
VIN
Input Voltage
-0.3 ~ VDD + 0.3
V
VOUT
DQ pin Voltage
-0.3 ~ VDDQ + 0.3
V
VREF
Input Reference Voltage
-0.3 ~ VDDQ + 0.3
V
TOPR
Operating Temperature
0 ~ 85
O
TSTG
Storage Temperature
-55 ~ 150
O
TSOLDER
Soldering Temperature(10s)
260
O
PD
Power Dissipation
2
W
IOUT
Short Circuit Output Current
± 50
mA
Notes
Case Temp.
C
C
C
Caution : Conditions outside the limits listed under "ABSOLUTE MAXIMUM RATINGS" may cause permanent damage to the device.
The device is not meant to be operated under conditions outside the limits described in the operational section of this specification. Exposure to "ABSOLUTE MAXIMUM RATINGS" conditions for extended periods may affect device reliability.
Recommended DC,AC Operating Conditions (Notes : 1)
Symbol
VDD
Parameter
Power Supply Voltage
(Tcase = 0 ~ 85 OC)
Min
Typ
Max
Units
2.375
2.5
2.625
V
1.7
1.8
1.9
V
Notes
VDDQ
Power Supply Voltage (for I/O Buffer)
VREF
Input Reference Voltage
VDDQ/2x95%
VDDQ/2
VDDQ/2x105%
V
2
VIH (DC)
Input DC high Voltage
VREF+0.125
-
VDDQ+0.2
V
5
VIL(DC)
Input DC Low Voltage
-0.1
-
VREF-0.125
V
5
VICK (DC)
Differential Clock DC Input Voltage
-0.1
-
VDDQ+0.1
V
10
VID (DC)
Input Differential Voltage. CLK and CLK Inputs (DC)
0.4
-
VDDQ+0.2
V
7,10
VIH (AC)
Input AC High Voltage
VREF+0.2
-
VDDQ+0.2
V
3,6
VIL (AC)
Input AC Low Voltage
-0.1
-
VREF-0.2
V
4,6
VID (AC)
Input Differential Voltage. CLK and CLK Inputs (AC)
0.55
-
VDDQ+0.2
V
7,10
VX (AC)
Differential AC Input Cross Point Voltage
VDDQ/2-0.125
-
VDDQ/2+0.125
V
8,10
Differential Clock AC Middle Level
VDDQ/2-0.125
-
VDDQ/2+0.125
V
9,10
VISO (AC)
- 7 -
REV. 0.7 Jan. 2005
K4C89183AF
Notes: 1. All voltages are referenced to Vss, VssQ.
2. VREF is expected to track variations in VddQ DC level of the transmitting device.
Peak to peak AC noise on VREF may not exceed ± 2% of VREF (DC).
3. Overshoot Iimit : VIH(max.) = VddQ + 0.7V with a pulse width <= 5ns
4. Undershoot Iimit : VIL(min.) = -0.7V with a pulse width <= 5ns
5. VIH(DC) and VIL(DC) are levels to maintain the current logic state.
6. VIH(AC) and VIL(AC) are levels to change to the new logic state.
7. VID is magnitude of the difference between CLK input level and CLK input level.
8. The value of Vx(AC) is expected to equal VddQ/2 of the transmitting device.
9. VISO means [VICK(CLK) + VICK(CLK)]/2
10. Refer to the figure below.
CLK
VX
VX
VX
VX
VX
VID(AC)
CLK
VICK
VICK
VICK
VICK
VSS
VID(AC)
0 V Differential
VISO
VISO(min)
VISO(max)
VSS
11. In the case of external termination, VTT(Termination Voltage) should be gone in the range of VREF(DC) ± 0.04V.
Pin Capacitance (VDD= 2.5V, VDDQ = 1.8V, f = 1 MHz, Ta = 25oC)
Symbol
Parameter
Min
Max
Delts
Units
CIN
Input Pin Capacitance
1.5
3.0
0.25
pF
CINC
Clock Pin (CLK, CLK) Capacitance
1.5
3.0
0.25
pF
CI/O
DQ, DS, QS Capacitance
2.5
3.5
0.5
pF
CNC
NC Pin Capacitance
-
1.5
-
pF
Note : These parameters are periodically sampled and not 100% tested.
- 8 -
REV. 0.7 Jan. 2005
K4C89183AF
DC Characteristics and Operating Conditions
Parameter
(VDD = 2.5V ± 0.125V, VDDQ = 1.8V ± 0.1V, Tcase = 0~85 °C)
Symbol
Max
F6
FB
F5
Units
Notes
Operating Current
One bank Read or Write operation;
tCK = min, IRC = min, IOUT = 0mA;
Burst Length = 4, CAS Latency = 6, Free running QS mode;
0V ≤ VIN ≤ VIL(AC) (max.), VIH(AC)(min.) ≤ VIN ≤ VDDQ;
Address inputs change up to 2 times during minimum IRC,
Read data change twice per clock cycle
IDD1S
320
300
280
1, 2
Standby Current
All Banks : inactive state;
tCK=min, CS = VIH, PD = VIH;
0V ≤ VIN ≤ VIL(AC)(max.), VIH(AC)(min.) ≤ VIH ≤ VDDQ;
Other input signals change one time during 4*tCK,
DQ and DS inputs change twice per clock cycle
IDD2N
100
95
90
1
Standby (Power Down) Current
All Banks : inactive state;
tCK=min, PD = VIL (Power Down);
CAS Latency = 6, Free running QS mode;
0V ≤ VIN ≤ VIL(AC)(max), VIH(AC)(min) ≤ VIN ≤ VDDQ;
Other input signals change one time during 4*tCK,
DQ and DS inputs are floating(VDDQ/2)
IDD2P
70
65
60
1
mA
Write Operating Current(4 Banks)
4 Bank intereaved continuous burst write operation;
tCK = min, IRC = min;
Burst Length = 4, CAS Latency = 6, Free running QS mode;
0V ≤ VIN ≤ VIL(AC) (max.), VIH(AC)(min.) ≤ VIN ≤ VDDQ;
Address inputs change once per clock cycle,
DQ and DS inputs change twice per clock cycle
IDD4W
650
600
550
1
Read Operating Current(4 Banks)
4 Bank intereaved continuous burst write operation;
tCK = min, IRC = min, IOUT = 0mA;
Burst Length = 4, CAS Latency = 6, Free running QS mode;
0V ≤ VIN ≤ VIL(AC) (max.), VIH(AC)(min.) ≤ VIN ≤ VDDQ;
Address inputs change once per clock cycle,
Read data change twice per clock cycle
IDD4R
650
600
550
1,2
Burst Auto-Refresh Current
Refresh command at every IREFC interval;
tCK = min, IREFC= min;
CAS Latency = 6, Free running QS mode;
0V ≤ VIN ≤ VIL(AC) (max.), VIH(AC) (min.) ≤ VIN ≤ VDDQ;
Address change up to 2 times during minimum IREFC,
DQ and DS inputs change twice per clock cycle
IDD5B
250
235
210
1,3
- 9 -
REV. 0.7 Jan. 2005
K4C89183AF
DC Characteristics and Operating Conditions
(VDD = 2.5V ± 0.125V, VDDQ = 1.8V ± 0.1V, Tcase = 0~85 °C)
Parameter
Symbol
Min
Max
Unit
Input Leakage Current (0V<=VIN<=VddQ, All other pins not under test = 0V)
ILI
-5
5
uA
Output Leakage Current (Output disabled, 0V<=VOUT<=VddQ)
ILO
-5
5
uA
5
uA
VREF Current
Normal Output
Driver
Strong Output
Driver
Output DC Current
(VDDQ = 1.7 ~ 1.9V)
Weak Output
Driver
Normal Output
Driver
Strong Output
Driver
Weak Output
Driver
Output DC Current
(VDDQ = 1.4 ~ 1.6V)
Notes
IREF
-5
VOH = 1.420V
IOH(DC)
-5.6
-
4
VOL = 0.280V
IOL(DC)
5.6
-
4
VOH = 1.420V
IOH(DC)
-9.8
-
4
mA
VOL = 0.280V
IOL(DC)
9.8
VOH = 1.420V
IOH(DC)
VOL = 0.280V
IOL(DC)
VOH = VDDQ - 0.4
-
4
-2.8
-
4
2.8
-
IOH(DC)
-4
-
3
VOL = 0.4V
IOL(DC)
-4
-
3
VOH = VDDQ - 0.4
IOH(DC)
-8
-
VOL = 0.4V
IOL(DC)
-8
-
Not defined
IOH(DC)
-
-
Not defined
IOL(DC)
-
-
3
mA
3
Notes : 1. These parameters depend on the cycle rate and these values are measured at a cycle rate with the minimum values of
tCK, tRC and IRC.
2. These parameters depend on the output loading. The specified values are obtained with the output open.
3. IDD5B is specified under burst refresh condition. Actual system should use distributed refresh that meet to tREFI specification
4. Refer to output driver characteristics for the detail. Output Driver Strength is selected by Extended Mode Register.
- 10 -
REV. 0.7 Jan. 2005
K4C89183AF
AC Characteristics and Operating Conditions (Notes : 1, 2)
Symbol
tRC
tCK
F6
Parameter
Min
Random Cycle Time
Clock Cycle Time
FB
Max
Min
F5
Max
Min
Max
Units Notes
20.0
-
22.5
-
25
-
3
CL = 4
4.0
6.0
4.5
6.0
5.0
6.0
3
CL = 5
3.33
6.0
3.75
6.0
4.5
6.0
3
CL = 6
3.0
6.0
3.33
6.0
4.0
6.0
3
-
20.0
-
22.5
-
25
3
-
0.45*tCK
-
0.45*tCK
-
3
tRAC
Random Access Time
tCH
Clock High Time
0.45*tCK
tCL
Clock Low Time
0.45*tCK
-
0.45*tCK
-
0.45*tCK
-
3
tCKQS
QS Access Time from CLK
-0.45
0.45
-0.45
0.45
-0.5
0.5
3, 8
tQSQ
Data Output Skew from QS
-
0.2
-
0.25
-
0.3
4
tAC
Data Access Time from CLK
-0.5
0.5
-0.5
0.5
-0.6
0.6
3, 8
tOH
Data Output Hold Time from CLK
-0.5
0.5
-0.5
0.5
-0.6
0.6
3, 8
-
min(tCH,
tCL)
-
min(tCH,
tCL)
-
3
tHP
CLK half period ( minium of Actual tCH, tCL)
min(tCH,
tCL)
tQSP
QS(Read) Pulse Width
tHP-tQHS
-
tHP-tQHS
-
tHP-tQHS
-
4, 8
tQSQV
Data Output Valid Time from QS
tHP-tQHS
-
tHP-tQHS
-
tHP-tQHS
-
4, 8
-
0.055x
tCK+0.17
-
0.055x
tCK+0.17
-
0.055x
tCK+0.17
tQHS
DQ, QS Hold skew factor
tDQSS
DS(Write) Low to High Setup Time
0.8*tCK
1.2*tCK
0.8*tCK
1.2*tCK
0.8*tCK
1.2*tCK
tDSPRE
DS(Write) Preamble Pulse Width
0.4*tCK
-
0.4*tCK
-
0.4*tCK
-
4
tDSPRES
DS First Input Setup Time
0
-
0
-
0
-
3
-
3
ns
3
tDSPREH
DS First Low Input Hold Time
0.3*tCK
-
0.3*tCK
-
0.3*tCK
tDSP
DS High or Low Input Pulse Width
0.45*tCK
0.55*tCK
0.45*tCK
0.55*tCK
0.45*tCK
0.55*tCK
4
CL = 4
0.75
-
0.8
-
1.0
-
3, 4
CL = 5
0.75
-
0.8
-
1.0
-
3, 4
CL = 6
0.75
-
0.8
-
1.0
-
3, 4
CL = 7
-
-
-
-
-
-
3, 4
0.45*tCK
-
0.45*tCK
0.45*tCK
-
4
3, 4
tDSS
tDSPST
tDSPSTH
DS Input Falling Edge to Clock Setup
Time
DS(Write) Postamble Pulse Width
DS(Write) Postamble Hold Time
CL = 4
0.75
-
0.8
-
1.0
-
CL = 5
0.75
-
0.8
-
1.0
-
CL = 6
0.75
-
0.8
-
1.0
CL = 7
-
-
-
-
-
3, 4
3, 4
-
3, 4
tDS
Data Input Setup Time from DS
0.3
-
0.35
-
0.4
-
4
tDH
Data Input Hold Time from DS
0.3
-
0.35
-
0.4
-
4
tIS
Command / Address Input Setup Time
0.6
-
0.6
-
0.7
-
3
tIH
Command / Address Input Hold Time
0.6
-
0.6
-
0.7
-
3
- 11 -
REV. 0.7 Jan. 2005
K4C89183AF
AC Characteristics and Operating Conditions (Notes : 1, 2) (Continued)
Symbol
F6
Parameter
FB
F5
Max
Min
Max
Min
Max
-0.5
-
-0.5
-
-0.6
-
3, 6, 8
3, 7, 8
tLZ
Data-out Low Impedance Time from CLK
tHZ
Data-out High Impedance Time from CLK
-
0.5
-
0.5
-
0.6
tQPDH
Last Output to PD High Hold Time
0
-
0
-
0
-
tPDEX
Power Down Exit Time
0.6
-
0.6
-
0.7
-
tT
Input Transition Time
0.1
1
0.1
1
0.1
1
tFPDL
PD Low Input Window for Self-Refresh Entry
-0.5*tCK
5
-0.5*tCK
5
-0.5*tCK
5
tREFI
Auto-Refresh Average Interval
0.4
3.9
0.4
3.9
0.4
3.9
tPAUSE
Pause Time after Power-up
200
-
200
-
200
-
IRC
IRCD
IRAS
3
3
5
us
CL = 4
5
-
5
-
5
-
Random Read/Write Cycle Time
CL = 5
6
-
6
-
6
-
(Applicable to Same Bank)
CL = 6
7
-
7
-
7
-
CL = 7
-
-
-
-
-
-
1
1
1
1
1
1
RDA/WRA to LAL Command Input Delay
(Applicable to Same Bank)
LAL to RDA/WRA Command Input Delay
(Applicable to Same Bank)
IRBD
Random Bank Access Delay
(Applicable to Other Bank)
IRWD
LAL following RDA to WRA Delay
(Applicable to Other Bank)
IWRD
LAL following WRA to RDA Delay
(Applicable to Other Bank)
IRSC
Units Notes
Min
Mode Register Set Cycle Time
CL = 4
4
-
4
-
4
-
CL = 5
5
-
5
-
5
-
CL = 6
6
-
6
-
6
-
CL = 7
-
-
-
-
-
-
2
-
2
-
2
-
3
-
3
-
3
-
1
-
1
-
1
-
BL = 4
CL = 4
7
-
7
-
7
-
CL = 5
7
-
7
-
7
-
CL = 6
7
-
7
-
7
-
-
2
-
2
-
2
Cycle
CL = 7
IPD
PD Low to Inactive State of Input Buffer
IPDA
PD High to Active State of Input Buffer
IPDV
Power down mode valid from REF command
1
-
1
-
1
-
CL = 4
19
-
19
-
19
-
CL = 5
23
-
23
-
23
-
CL = 6
25
-
25
-
25
-
CL = 7
IREFC
Auto-Refresh Cycle Time
CL = 4
19
-
19
-
19
-
CL = 5
23
-
23
-
23
-
CL = 6
25
-
25
-
25
-
200
-
200
-
200
-
CL = 7
ILOCK
DLL Lock-on Time (Applicable to RDA command)
- 12 -
REV. 0.7 Jan. 2005
K4C89183AF
AC Test Conditions
Symbol
Parameter
Value
Units
V
VIH(min)
Input high voltage (minimum)
VREF + 0.2
VIL (max)
Input low voltage (maximum)
VREF - 0.2
V
VddQ/2
V
VREF
V
0.7
V
VX(AC)
V
VREF
Input reference voltage
VTT
Termination voltage
VSWING
VR
Input signal peak to peak swing
Differential clock input reference level
VID(AC)
Input differential voltage
1.0
V
SLEW
Input signal minimum slew rate
2.5
V/ns
VOTR
Output timing measurement reference voltage
VddQ/2
V
Notes
9
VddQ
VTT
VIH min(AC)
VSWING
25 Ω
VREF
Output
VIL max(AC)
Measurement Point
Vss
∆T
∆T
AC Test Load
Slew=(VIHmin(AC) - VILmax(AC))/∆T
Notes : 1. Transition times are measured between VIH min(DC) and VIL max(DC).
Transition (rise and fall) of input signals have a fixed slope.
2. If the result of nominal calculation with regard to tCK contains more than
one decimal place, the result is rounded up to the nearest decimal place.
(i.e., tDQSS = 0.8*tCK, tCK = 3.3ns, 0.8*3.3 ns = 2.64 ns is rounded up to 2.7 ns.)
3. These parameters are measured from the differential clock (CLK and CLK) AC cross point.
4. These parameters are measured from signal transition point of DS crossing VREF level.
5. The tREFI (MAX.) applies to equally distributed refresh method.
The tREFI (MIN.) applies to both burst refresh method and distributed refresh method.
In such case, the average interval of eight consecutive Auto-Refresh commands has to be more than 400ns always. In
other words, the number of Auto- Refresh cycles which can be performed within 3.2us (8X400ns) is to 8 times in the
maximum.
6. Low Impedance State is speified at VddQ/2± 0.2V from steady state.
7. High Impedance State is specified where output buffer is no longer driven.
8. These parameters depend on the clock jitter. These parameters are measured at stable clock.
9. Output timing is measured by using Normal driver strength at VDDQ = 1.7V ~ 1.9V.
Output timing is measured by using Strong driver strength at VDDQ = 1.4V ~ 1.6V
- 13 -
REV. 0.7 Jan. 2005
K4C89183AF
Power Up Sequence
1. As for PD, being maintained by the low state (<0.2V) is desirable before a power-supply injection.
2. Apply VDD before or at the same time as VDDQ.
3. Apply VDDQ before or at the same time as VREF.
4. Start clock (CLK, CLK) and maintain stable condition for 200us (min.).
5. After stable power and clock, apply DESL and take PD = H.
6. Issue EMRS to enable DLL and to define driver strength and data strobe type. (Note : 1)
7. Issue MRS for set CAS Latency (CL), Burst Type (BT), and Burst Length (BL). (Note : 1)
8. Issue two or more Auto-Refresh commands. (Note:1)
9. Ready for normal operation after 200 clocks from Extended Mode Register programming.
Note : 1. Sequence 6, 7 and 8 can be issued in random order.
2. L=Logic Low, H = Logic High
∼
∼
∼
∼
∼
∼
∼
∼
∼
∼
∼
∼
∼
0.9V(TYP)
∼
1.8V(TYP)
∼
VDDQ
∼
2.5V(TYP)
∼
VDD
VREF
∼
CLK
∼
∼
CLK
tPDEX
200 µs(min)
IPDA
lRSC
lRSC
RDA MRS
WRA REF
DESL
∼
∼
∼
∼
∼
∼
∼
∼
∼
∼
∼
∼
∼
∼
∼
∼
∼
∼
∼
DS
DESL
op-code
EMRS
DQ
DESL WRA REF
∼
DESL
∼
RDA MRS
∼
DESL
op-code
Address
∼
200 clock cycle(min)
∼
∼
Command
lREFC
∼
∼
∼
∼
PD
lREFC
Hi-Z
QS
(Uni-QS mode)
- 14 -
Low
∼
MRS
∼
EMRS
∼
∼
QS
(Free Running mode)
MRS
Auto Refresh cycle
Normal Operation
REV. 0.7 Jan. 2005
K4C89183AF
Basic Timing Diagrams
Input Timing
Command and Address
tCK
tCH
tCK
tCL
CK
~
CK
CS
tIH
tIS
1st
tIH
~~
tIS
2nd
tIPW
tIS
tIS
tIH
~~
2nd
1st
FN
tIH
tIPW
A0-A14
BA0.BA1
tIS
tIH
tIH
~~
tIS
LA
UA, BA
~
Data
DS
tDH
tDS
tDH
tDS
tDH
tDS
tDH
~~ ~~
tDS
DQn (Input)
DQm (Input)
Refer to the Command Truth Table.
Timing of the CLK, CLK
tCH
tCL
CLK
CLK
tT
tT
VIH
VIH(AC)
VIL(AC)
VIL
tCK
CLK
VIH
CLK
VIL
VID(AC)
VX
VX
- 15 -
VX
REV. 0.7 Jan. 2005
K4C89183AF
Read Timing (Burst Length = 4)
Unidirectional DS/QS mode
0
1
2
tCH
3
tCL
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
tCK
CK
CK
tIS
Input
(Control &
Addresses)
tIH LAL(after RDA)
DESL
LDS/UDS
(Input)
tCKQS
tCKQS
CAS latency = 4
LQS/UQS
(Output)
tQSP
Low
Low
tQSQV
tLZ
DQ
(Output)
tCKQS
tQSP
tQSQ
tQSQ
tQSQ
tQSQV
Q0
Q1
Q2
tHZ
High-Z
tAC
tAC
Q3
tAC
tOH
tCKQS
tCKQS
CAS latency = 5
LQS/UQS
(Output)
tQSP
Low
Low
tQSQV
tLZ
DQ
(Output)
tCKQS
tQSP
tQSQ
tQSQ
tQSQ
tQSQV
Q0
Q1
Q2
tHZ
High-Z
tAC
tAC
Q3
tAC
tOH
tCKQS
tCKQS
CAS latency = 6
LQS/UQS
(Output)
tQSP
Low
Low
tQSQV
tLZ
DQ
(Output)
tCKQS
tQSP
tQSQ
tQSQ
tQSQ
tQSQV
Q0
Q1
Q2
tHZ
High-Z
tAC
tAC
tAC
Q3
tOH
Note : DQ0 to DQ17 are aligned with LQS.
DQ18 to DQ35 are aligned with UQS.
- 16 -
REV. 0.7 Jan. 2005
K4C89183AF
Read Timing (Burst Length = 4)
Unidirectional DS/Free Running QS mode
0
1
2
tCH
3
tCL
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
tCK
CK
CK
tIS
Input
(Control &
Addresses)
tIH LAL(after RDA)
DESL
LDS/UDS
(Input)
tCKQS
tCKQS
CAS latency = 4
tCKQS
tQSP
tQSP
LQS/UQS
(Output)
tQSQV
tLZ
DQ
(Output)
tQSQ
tQSQ
tQSQ
tQSQV
Q0
Q1
Q2
tHZ
High-Z
tAC
tAC
Q3
tAC
tOH
tCKQS
tCKQS
CAS latency = 5
tCKQS
tQSP
tQSP
LQS/UQS
(Output)
tQSQV
tLZ
DQ
(Output)
tQSQ
tQSQ
tQSQ
tQSQV
Q0
Q1
Q2
tHZ
High-Z
tAC
tAC
Q3
tAC
tOH
tCKQS
tCKQS
CAS latency = 6
tCKQS
tQSP
tQSP
LQS/UQS
(Output)
tQSQV
tLZ
DQ
(Output)
tQSQ
tQSQ
tQSQ
tQSQV
Q0
Q1
Q2
tHZ
High-Z
tAC
tAC
tAC
Q3
tOH
Note : DQ0 to DQ17 are aligned with LQS.
DQ18 to DQ35 are aligned with UQS.
LQS/UQS is always asserted in Free Running QS mode.
- 17 -
REV. 0.7 Jan. 2005
K4C89183AF
Write Timing (Burst Length = 4)
Unidirectional DS/QS mode, Unidirectional DS/Free Running QS mode
0
1
2
tCH
3
tCL
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
tCK
CK
CK
tIS
Input
(Control &
Addresses)
tIH LAL(after RDA)
DESL
tDSPSTH
tDQSS
tDSS
tDSPRES
CAS latency = 4
tDSPREH
tDSP
tDSP
LDS/UDS
(Input)
tDSS
Preamble
tDSPRE tDS
tDS
tDH
DQ
(Input)
tDSP
Postamble
tDS
tDH
Q0
Q1
tDSPST
tDH
Q2
Q3
tDSS
tDSPSTH
tDQSS
tDSS
tDSPRES
CAS latency = 5
tDSPREH
tDSP
tDSP
tDSP
tDSPST
LDS/UDS
(Input)
Preamble
tDH
DQ
(Input)
Postamble
tDSPRE
tDS
tDS
Q0
tDS
tDH
tDH
Q2
Q3
Q1
tDSS
tDSPSTH
tDQSS
tDSS
tDSPRES
CAS latency = 6
tDSPREH
tDSP
tDSP
tDSP
tDSPST
LDS/UDS
(Input)
Preamble
tDH
DQ
(Input)
Q0
LQS/UQS
(Uni-QS)
Postamble
tDSPRE
tDS
tDS
Q1
tDS
tDH
tDH
Q2
Q3
Low
LQS/UQS
(Free Runninig)
Note : DQ0 to DQ17 are sampled at both edges of LDS.
DQ18 to DQ35 are sampled at both edges of UDS.
- 18 -
REV. 0.7 Jan. 2005
K4C89183AF
~
tREFI, tPAUSE, Ixxxx Timing
CLK
tIS
Input
(Control &
Addresses)
tIH
Command
tREFI,tPAUSE,IXXXX
~
CLK
tIS
tIH
Command
Note. "IXXXX"means "IRC", "IRCD", "IRAS", etc.
- 19 -
REV. 0.7 Jan. 2005
K4C89183AF
Function Truth Table (Notes : 1,2,3)
Command Truth Table (Notes : 4)
•The First Command
Symbol
Function
CS
FN
BA1-BA0
A14-A9
A8
A7
A6-A0
DESL
Device Deselect
H
X
X
X
X
X
X
RDA
Read with Auto-close
L
H
BA
UA
UA
UA
UA
WRA
Write with Auto-close
L
L
BA
UA
UA
UA
UA
•The Second Command (The next clock of RDA or WRA command)
Symbol
Function
CS
FN
BA1-BA0 A14-A13 A12-A11 A10-A9
A8
A7
A6-A0
LAL
Lower Address Latch
H
X
X
V
X
X
X
X
LA
REF
Auto-Refresh
L
X
X
X
X
X
X
X
X
MRS
Mode Register Set
L
X
V
L
L
L
L
V
V
Notes : 1. L = Logic Low, H = Logic High, X = either L or H, V = Valid (Specified Value), BA = Bank Address, UA = Upper Address,
LA = Lower Address.
2. All commands are assumed to issue at a valid state.
3. All inputs for command (excluding SELFX and PDEX) are latched on the crossing point of differential clock input where
CLK goes to High.
4. Operation mode is decided by the comination of 1st command and 2nd command refer to "STATE DIAGRAM" and the
command table below.
Read Command Table
Command (Symbol)
CS
FN
BA1-BA0
A14-A9
A8
A7
A6-A0
RDA (1st)
L
H
BA
UA
UA
UA
UA
LAL (2nd)
H
X
X
X
X
X
LA
Notes
Write Command Table
Command (Symbol)
CS
FN
BA1BA0
A14
A13
A12
A11
A10~
A9
A8
A7
A6-A0
WRA (1st)
L
L
BA
UA
UA
UA
UA
UA
UA
UA
UA
LAL (2nd)
H
X
X
VW0
VW1
X
X
X
X
X
LA
Notes : 5. A14~A13 are used for Variable Write Length (VW) control at Write Operation.
VW Truth Table
Function
BL = 4
VW0
VW1
Reserved
L
L
Write All Words
H
L
Write First Two Words
L
H
Write First One Word
H
H
- 20 -
REV. 0.7 Jan. 2005
K4C89183AF
Function Truth Table (Continued)
Mode Register Set Command Truth Table
Command (Symbol)
CS
FN
BA1-BA0
A14-A9
A8
A7
A6-A0
RDA (1st)
L
H
X
X
X
X
X
MRS (2nd)
L
X
V
L
L
V
V
Notes
6
Note : 6. Refer to "Mode Register Table".
Auto-Refresh Command Table
PD
Command
(Symbol)
Current
State
n-1
n
Active
WRA(1st)
Standby
H
Auto-Refresh
REF(2nd)
Active
H
Function
CS
FN
BA1-BA0 A14-A9
H
L
L
X
H
L
X
X
A8
A7
A6-A0
X
X
X
X
X
X
X
X
Notes
Power Down Table
Function
Power Down Entry
Power Down Continue
Power Down Exit
PD
Command
(Symbol)
Current
State
n-1
n
CS
FN
BA1BA0
A14-A9
A8
A7
PDEN
Standby
H
L
H
X
X
X
X
X
X
-
Power Down
L
L
X
X
X
X
X
X
X
PDEX
Power Down
L
H
H
X
X
X
X
X
X
A6-A0 Notes
8
9
Notes : 7. PD has to be brought to Low within tFPDL from REF command.
8. PD should be brought to Low after DQ’s state turned high impedance.
9. When PD is brought to High from Low, this function is executed asynchronously.
- 21 -
REV. 0.7 Jan. 2005
K4C89183AF
Function Truth Table (Continued)
Current State
Idle
Row Active for Read
Row Active for Write
Read
Write
Auto-Refreshing
Mode Register Accessing
Power Down
PD
CS
Address
Command
X
X
DESL
NOP
H
L
BA, UA
BA, UA
RDA
WRA
Row activate for Read
Row activate for Write
X
X
X
X
PDEN
-
Power Down Entry
Illegal
X
H
X
X
X
LA
LAL
H
L
X
Op-Code
MRS/EMRS
L
H
X
X
PDEN
H
L
L
X
X
MRS/EMRS
Illegal
L
X
X
X
X
-
Invalid
H
H
H
X
LA
LAL
Begin Write
H
H
L
X
X
REF
Auto-Refresh
H
L
H
X
X
PDEN
H
L
L
X
X
REF (Self)
n-1
H
n
H
H
H
H
H
H
L
L
H
H
L
L
H
L
L
H
X
H
H
H
FN
Action
Notes
10
Refer to Power Down state
Begin read
Access to Mode Register
Illegal
Illegal
Self-Refresh entry
L
X
X
X
X
-
H
H
H
H
H
L
X
H
X
BA, UA
DESL
RDA
Invalid
Continue burst read to end
Illegal
11
H
H
L
L
BA, UA
WRA
Illegal
11
H
L
H
X
X
PDEN
Illegal
H
L
L
X
L
X
X
X
X
X
-
Illegal
Invalid
H
H
H
H
H
L
X
H
X
BA, UA
DESL
RDA
Data write & continue burst write to end
Illegal
H
H
H
L
L
H
L
X
BA, UA
X
WRA
PDEN
Illegal
Illegal
H
L
L
X
L
X
X
X
X
X
-
Illegal
Invalid
H
H
H
X
X
DESL
NOP-> Idle after IREFC
H
H
L
H
BA, UA
RDA
Illegal
H
H
H
L
L
H
L
X
BA, UA
X
WRA
PDEN
H
L
L
X
L
X
X
X
X
X
-
H
H
H
X
X
DESL
Nop-> Idle after IRSC
H
H
L
H
BA, UA
RDA
Illegal
H
H
H
L
L
H
L
X
BA, UA
X
WRA
PDEN
Illegal
Illegal
H
L
L
X
L
X
X
X
X
X
-
Illegal
Invalid
H
L
X
L
X
X
X
X
X
X
-
Invalid
Maintain Power Down Mode
L
H
H
X
X
RDEX
L
H
L
X
X
-
11
11
Illegal
Self-Refresh entry
12
Illegal
Refer to Self-Refreshing state
Exit Power Down Mode->Idle after tPDEX
Illegal
Notes : 10. Illegal if any bank is not idle.
11. Illegal to bank in specified states : Function may be Legal in the bank indicated by bank Address (BA).
12. Illegal if tFPDL is not Stisfied.
- 22 -
REV. 0.7 Jan. 2005
K4C89183AF
Mode Register Table
Regular Mode Register (Notes : 1)
Address
BA1*1
BA0*1
A14-A8
A7*3
A6-A4
A3
A2-A0
Register
0
0
0
TM
CL
BT
BL
A7
Test Mode (TE)
A3
Burst Type (BT)
0
Regular (Default)
0
Sequential
1
Test Mode Entry
1
Interleave
A6
A5
A4
CAS Latency (CL)
A2
A1
A0
Burst Length (BL)
0
0
X
Reserved *2
0
0
0
Reserved *2
0
1
0
Reserved *2
0
0
1
Reserved *2
0
1
1
Reserved *2
0
1
0
4
1
0
0
4
0
1
1
1
0
1
5
1
X
X
1
1
0
6
1
1
1
Reserved *2
Reserved *2
Extended Mode Register (Notes : 4)
Address
BA1*4
BA0*4
A14-A7
A6~A5
A4-A3
A2~A1
A0*5
Register
0
1
0
SS
DIC(QS)
DIC(DQ)
DS
A6
A5
Strobe Select
0
0
Reserved
0
1
Reserved*2
1
0
Unidirectional DS/QS
1
1
Unidirectional DS/Free Running QS
*2
QS
DQ
A4
A3
A2
A1
Output Driver Impedance Control
(DIC)
0
0
0
0
Normal Output Driver
0
1
0
1
Strong Output Driver
1
0
1
0
Weak Output Driver
1
1
1
1
Reserved
Note : 1. Regular Mode Register Is Chosen Using the combination of BA0 = 0 and BA1 = 0.
2. "Reserved" places in Regular Mode Register should not be set.
3. A7 in Regular Mode Register must be set to "0"(Low state).
Because Test Mode is specific mode for supplier.
4. Extended Mode Register is chosen using the Combination of BA0 = 1 and BA1 = 0.
5. A0 in Extended Mode Register must be set to "0" to enable DLL for normal operation.
- 23 -
A0
DLL Switch (DS)
0
DLL Enable
1
DLL Disable
REV. 0.7 Jan. 2005
K4C89183AF
State Diagram
Power
Down
PDEX
(PD = H)
PDEN
(PD = L)
Standby
(Idle)
PD = H
AutoRefresh
Mode
Register
WRA
RDA
REF
MRS
Active
(Restore)
Active
LAL
LAL
Write
(Buffer)
Read
Command Input
Automatic Return
The second command at Active
state must be issued 1clock after
RDA or WRA command input
- 24 -
REV. 0.7 Jan. 2005
K4C89183AF
Timing Diagrams
Single Bank Read Timing (CL=4)
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
CLK
CLK
lRC=5cycles
Command
RDA
LAL
lRCD=1cycle
Address
UA
Bank Add.
#0
DESL
lRAS=4cycles
LA
lRC=5cycles
RDA
LAL
lRCD=1cycle
UA
DESL
lRAS=4cycles
LA
lRC=5cycles
RDA
lRCD=1cycle
UA
#0
LAL
DESL
RDA
lRAS=4cycles
LA
UA
#0
#0
Unidirectional DS/QS mode
DS
(Input)
QS
(Output)
Low
CL=4
DQ
(Output)
Hi-Z
CL=4
Q0 Q1 Q2 Q3
CL=4
Q0 Q1 Q2 Q3
Q0
Unidirectional DS/Free Running QS mode
DS
(Input)
QS
(Output)
CL=4
DQ
(Output)
CL=4
CL=4
Hi-Z
Q0 Q1 Q2 Q3
- 25 -
Q0 Q1 Q2 Q3
Q0
REV. 0.7 Jan. 2005
K4C89183AF
Single Bank Read Timing (CL=5)
0
1
2
3
4
5
6
7
8
9
10
11
12
13
RDA
LAL
14
15
CLK
CLK
lRC=6cycles
Command
RDA
LAL
lRCD=1cycle
Address
UA
Bank Add.
#0
DESL
lRAS=5cycles
LA
lRC=6cycles
RDA
LAL
DESL
lRCD=1cycle
lRAS=5cycles
UA
LA
UA
#0
DESL
lRCD=1cycle
LA
#0
Unidirectional DS/QS mode
DS
(Input)
QS
(Output)
Low
CL=5
DQ
(Output)
Hi-Z
CL=5
Q0 Q1 Q2 Q3
Q0 Q1 Q2 Q3
Unidirectional DS/Free Running QS mode
DS
(Input)
QS
(Output)
CL=5
DQ
(Output)
Hi-Z
CL=5
Q0 Q1 Q2 Q3
- 26 -
Q0 Q1 Q2 Q3
REV. 0.7 Jan. 2005
K4C89183AF
Single Bank Read Timing (CL=6)
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
RDA
LAL
CLK
CLK
lRC=7cycles
Command
RDA
LAL
lRCD=1cycle
Address
UA
Bank Add.
#0
DESL
lRC=7cycles
RDA
lRAS=6cycles
LAL
lRCD=1cycle
LA
UA
DESL
lRAS=6cycles
LA
lRCD=1cycle
UA
#0
LA
#0
Unidirectional DS/QS mode
DS
(Input)
QS
(Output)
Low
CL=6
DQ
(Output)
CL=6
Hi-Z
Q0 Q1 Q2 Q3
Q0 Q1 Q2
Unidirectional DS/Free Running QS mode
DS
(Input)
QS
(Output)
CL=6
DQ
(Output)
CL=6
Hi-Z
Q0 Q1 Q2 Q3
- 27 -
Q0 Q1 Q2
REV. 0.7 Jan. 2005
K4C89183AF
Single Bank Write Timing (CL=4)
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
CLK
CLK
lRC=5cycles
Command
WRA
LAL
lRCD=1cycle
Address
UA
Bank Add.
#0
DESL
lRAS=4cycles
LA
lRC=5cycles
WRA
LAL
lRCD=1cycle
UA
DESL
lRAS=4cycles
LA
lRC=5cycles
WRA
lRCD=1cycle
UA
#0
LAL
DESL
WRA
lRAS=4cycles
LA
UA
#0
#0
Unidirectional DS/QS mode
DS
(Input)
QS
(Output)
Low
WL=3
DQ
(Input)
WL=3
D0 D1 D2 D3
WL=3
D0 D1 D2 D3
D0 D1 D2 D3
Unidirectional DS/Free Running QS mode
DS
(Input)
QS
(Output)
WL=3
DQ
(Input)
WL=3
D0 D1 D2 D3
WL=3
D0 D1 D2 D3
- 28 -
D0 D1 D2 D3
REV. 0.7 Jan. 2005
K4C89183AF
Single Bank Write Timing (CL=5)
0
1
2
3
4
5
6
7
8
9
10
11
12
13
WRA
LAL
14
15
CLK
CLK
lRC=6cycles
Command
WRA
LAL
lRCD=1cycle
Address
UA
Bank Add.
#0
DESL
lRAS=5cycles
LA
lRC=6cycles
WRA
LAL
lRCD=1cycle
UA
DESL
lRAS=5cycles
LA
lRCD=1cycle
UA
#0
DESL
LA
#0
Unidirectional DS/QS mode
DS
(Input)
QS
(Output)
Low
WL=4
DQ
(Input)
WL=4
D0 D1 D2 D3
D0 D1 D2 D3
Unidirectional DS/Free Running QS mode
DS
(Input)
QS
(Output)
WL=4
DQ
(Input)
WL=4
D0 D1 D2 D3
- 29 -
D0 D1 D2 D3
REV. 0.7 Jan. 2005
K4C89183AF
Single Bank Write Timing (CL=6)
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
WRA
LAL
CLK
CLK
lRC=7cycles
Command
WRA
LAL
lRCD=1cycle
Address
UA
Bank Add.
#0
lRC=7cycles
DESL
WRA
lRAS=6cycles
LA
LAL
lRCD=1cycle
UA
DESL
lRAS=6cycles
LA
lRCD=1cycle
UA
#0
LA
#0
Unidirectional DS/QS mode
DS
(Input)
QS
(Output)
Low
WL=5
DQ
(Input)
WL=5
D0 D1 D2 D3
D0 D1 D2 D3
Unidirectional DS/Free Running QS mode
DS
(Input)
QS
(Output)
WL=5
DQ
(Input)
WL=5
D0 D1 D2 D3
- 30 -
D0 D1 D2 D3
REV. 0.7 Jan. 2005
K4C89183AF
Single Bank Read-Write Timing (CL=4)
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
CLK
CLK
lRC=5cycles
Command
RDA
LAL
Address
UA
LA
Bank Add.
#0
DESL
lRC=5cycles
WRA
LAL
UA
LA
DESL
#0
lRC=5cycles
RDA
LAL
UA
LA
DESL
WRA
UA
#0
#0
Unidirectional DS/QS mode
DS
(input)
QS
(Output)
Low
CL=4
DQ
WL=3
CL=4
Hi-Z
Q0 Q1 Q2 Q3
D0 D1 D2 D3
Q0
Unidirectional DS/Free Running QS mode
DS
(input)
QS
(Output)
CL=4
DQ
WL=3
CL=4
Hi-Z
Q0 Q1 Q2 Q3
- 31 -
D0 D1 D2 D3
Q0
REV. 0.7 Jan. 2005
K4C89183AF
Single Bank Read-Write Timing (CL=5)
0
1
2
3
4
5
6
7
8
9
10
11
12
13
RDA
LAL
UA
LA
14
15
CLK
CLK
lRC=6cycles
Command
RDA
LAL
Address
UA
LA
Bank Add.
#0
DESL
lRC=6cycles
WRA
LAL
UA
LA
DESL
#0
DESL
#0
Unidirectional DS/QS mode
DS
(input)
QS
(Output)
Low
CL=5
DQ
WL=4
Hi-Z
Q0 Q1 Q2 Q3
D0 D1 D2 D3
Unidirectional DS/Free Running QS mode
DS
(input)
QS
(Output)
CL=5
DQ
WL=4
Hi-Z
Q0 Q1 Q2 Q3
Read data
- 32 -
D0 D1 D2 D3
Write data
REV. 0.7 Jan. 2005
K4C89183AF
Single Bank Read-Write Timing (CL=6)
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
RDA
LAL
UA
LA
CLK
CLK
lRC=7cycles
RDA
LAL
Address
UA
LA
Bank Add.
#0
Command
lRC=7cycles
DESL
WRA
LAL
UA
LA
DESL
#0
#0
Unidirectional DS/QS mode
DS
(input)
QS
(Output)
Low
CL=6
DQ
WL=5
Hi-Z
Q0 Q1 Q2 Q3
D0 D1 D2 D3
Unidirectional DS/Free Running QS mode
DS
(input)
QS
(Output)
CL=6
DQ
WL=5
Hi-Z
Q0 Q1 Q2 Q3
Read data
- 33 -
D0 D1 D2 D3
Write data
REV. 0.7 Jan. 2005
K4C89183AF
Multiple Bank Read Timing (CL=4)
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
CLK
CLK
lRBD=2cycles
Command
Address
Bank Add.
lRBD=2cycles
RDA
LAL
RDA
LAL
UA
LA
UA
LA
Bank
"a"
DESL
Bank
"b"
lRBD=2cycles
lRBD=2cycles
lRBD=2cycles
RDA
LAL
RDA
LAL
RDA
LAL
RDA
LAL
RDA
LAL
RDA
UA
LA
UA
LA
UA
LA
UA
LA
UA
LA
UA
Bank
"a"
Bank
"b"
Bank
"c"
Bank
"d"
Bank
"a"
Bank
"b"
lRC(Bank"a")=5cycles
lRC(Bank"b")=5cycles
Unidirectional DS/QS mode
DS
(input)
QS
(Output)
Low
CL=4
CL=4
DQ
(Output)
Hi-Z
Qa0 Qa1 Qa2 Qa3 Qb0 Qb1 Qb2 Qb3
Qa0 Qa1 Qa2 Qa3 Qb0 Qb1 Qb2 Qb3 Qc0 Qc1 Qc2
Unidirectional DS/Free Running QS mode
DS
(input)
QS
(Output)
CL=4
CL=4
DQ
(Output)
Hi-Z
Qa0 Qa1 Qa2 Qa3 Qb0 Qb1 Qb2 Qb3
Qa0 Qa1 Qa2 Qa3 Qb0 Qb1 Qb2 Qb3 Qc0 Qc1 Qc2
Note : lRC to the same bank must be satisfied
- 34 -
REV. 0.7 Jan. 2005
K4C89183AF
Multiple Bank Read Timing (CL=5)
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
CLK
CLK
lRBD=2cycles
Command
Address
Bank Add.
lRBD=2cycles
RDA
LAL
RDA
LAL
UA
LA
UA
LA
Bank
"a"
DESL
Bank
"b"
lRBD=2cycles
lRBD=2cycles
lRBD=2cycles
RDA
LAL
RDA
LAL
RDA
LAL
RDA
LAL
RDA
LAL
UA
LA
UA
LA
UA
LA
UA
LA
UA
LA
Bank
"a"
Bank
"b"
Bank
"c"
Bank
"d"
Bank
"a"
lRC(Bank"a")=6cycles
lRC(Bank"6")=6cycles
Unidirectional DS/QS mode
DS
(input)
QS
(Output)
Low
CL=5
CL=5
DQ
(Output)
Hi-Z
Qa0 Qa1 Qa2 Qa3 Qb0 Qb1 Qb2 Qb3
Qa0 Qa1 Qa2 Qa3 Qb0 Qb1 Qb2
Qa0 Qa1 Qa2 Qa3 Qb0 Qb1 Qb2 Qb3
Qa0 Qa1 Qa2 Qa3 Qb0 Qb1 Qb2
Unidirectional DS/Free Running QS mode
DS
(input)
QS
(Output)
CL=5
CL=5
DQ
(Output)
Hi-Z
Note : lRC to the same bank must be satisfied
- 35 -
REV. 0.7 Jan. 2005
K4C89183AF
Multiple Bank Read Timing (CL=6)
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
CLK
CLK
lRBD=2cycles
Command
Address
Bank Add.
lRBD=2cycles
RDA
LAL
RDA
LAL
UA
LA
UA
LA
Bank
"a"
DESL
Bank
"b"
lRBD=2cycles
lRBD=2cycles
lRBD=2cycles
RDA
LAL
RDA
LAL
RDA
LAL
RDA
LAL
RDA
UA
LA
UA
LA
UA
LA
UA
LA
UA
Bank
"a"
Bank
"b"
Bank
"c"
Bank
"d"
Bank
"a"
lRC(Bank"a")=7cycles
Unidirectional DS/QS mode
lRC(Bank"b")=7cycles
DS
(input)
QS
(Output)
Low
CL=6
CL=6
DQ
(Output)
Hi-Z
Qa0 Qa1 Qa2 Qa3 Qb0 Qb1 Qb2 Qb3
Qa0 Qa1 Qa2
Qa0 Qa1 Qa2 Qa3 Qb0 Qb1 Qb2 Qb3
Qa0 Qa1 Qa2
Unidirectional DS/Free Running QS mode
DS
(input)
QS
(Output)
CL=6
CL=6
DQ
(Output)
Hi-Z
Note : lRC to the same bank must be satisfied
- 36 -
REV. 0.7 Jan. 2005
K4C89183AF
Multiple Bank Write Timing (CL=4)
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
CLK
CLK
lRBD=2cycles
Command
Address
Bank Add.
lRBD=2cycles
WRA
LAL
WRA
LAL
UA
LA
UA
LA
Bank
"a"
DESL
Bank
"b"
lRBD=2cycles
lRBD=2cycles
lRBD=2cycles
WRA
LAL
WRA
LAL
WRA
LAL
WRA
LAL
WRA
LAL
WRA
UA
LA
UA
LA
UA
LA
UA
LA
UA
LA
UA
Bank
"a"
Bank
"b"
Bank
"c"
Bank
"d"
Bank
"a"
Bank
"b"
lRC(Bank"a")=5cycles
lRC(Bank"b")=5cycles
Unidirectional DS/QS mode
DS
(input)
QS
(Output)
Low
WL=3
WL=3
DQ
(Input)
Da0 Da1 Da2 Da3 Db0 Db1 Db2 Db3
Da0 Da1 Da2 Da3 Db0 Db1 Db2 Db3 Dc0 Dc1 Dc2 Dc3 Dd0 Dd1
Unidirectional DS/Free Running QS mode
DS
(input)
QS
(Output)
WL=3
WL=3
DQ
(Input)
Da0 Da1 Da2 Da3 Db0 Db1 Db2 Db3
Da0 Da1 Da2 Da3 Db0 Db1 Db2 Db3 Dc0 Dc1 Dc2 Dc3 Dd0 Dd1
Note : lRC to the same bank must be satisfied
- 37 -
REV. 0.7 Jan. 2005
K4C89183AF
Multiple Bank Write Timing (CL=5)
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
CLK
CLK
lRBD=2cycles
Command
Address
Bank Add.
lRBD=2cycles
WRA
LAL
WRA
LAL
UA
LA
UA
LA
DESL
Bank
"b"
Bank
"a"
lRBD=2cycles
lRBD=2cycles
lRBD=2cycles
WRA
LAL
WRA
LAL
WRA
LAL
WRA
LAL
WRA
LAL
UA
LA
UA
LA
UA
LA
UA
LA
UA
LA
Bank
"a"
Bank
"b"
Bank
"c"
Bank
"d"
Bank
"a"
lRC(Bank"a")=6cycles
lRC(Bank"b")=6cycles
Unidirectional DS/QS mode
DS
(input)
QS
(Output)
Low
WL=4
WL=4
DQ
(input)
Da0 Da1 Da2 Da3 Db0 Db1 Db2 Db3
Da0 Da1 Da2 Da3 Db0 Db1 Db2 Db3 Dc0 Dc1
Unidirectional DS/Free Running QS mode
DS
(input)
QS
(Output)
WL=4
WL=4
DQ
(input)
Da0 Da1 Da2 Da3 Db0 Db1 Db2 Db3
Da0 Da1 Da2 Da3 Db0 Db1 Db2 Db3 Dc0 Dc1
Note :IRC to the same bank must be satisfied.
- 38 -
REV. 0.7 Jan. 2005
K4C89183AF
Multiple Bank Write Timing (CL=6)
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
CLK
CLK
lRBD=2cycles
Command
Address
Bank Add.
lRBD=2cycles
WRA
LAL
WRA
LAL
UA
LA
UA
LA
DESL
Bank
"b"
Bank
"a"
lRBD=2cycles
lRBD=2cycles
lRBD=2cycles
WRA
LAL
WRA
LAL
WRA
LAL
WRA
LAL
WRA
UA
LA
UA
LA
UA
LA
UA
LA
UA
Bank
"a"
Bank
"b"
Bank
"c"
Bank
"d"
Bank
"a"
lRC(Bank"a")=7cycles
lRC(Bank"a")=7cycles
Unidirectional DS/QS mode
DS
(input)
QS
(Output)
Low
WL=5
WL=5
DQ
(input)
Da0 Da1 Da2 Da3 Db0 Db1 Db2 Db3
Da0 Da1 Da2 Da3 Db0 Db1
Unidirectional DS/Free Running QS mode
DS
(input)
QS
(Output)
WL=5
WL=5
DQ
(input)
Da0 Da1 Da2 Da3 Db0 Db1 Db2 Db3
Da0 Da1 Da2 Da3 Db0 Db1
Note :IRC to the same bank must be satisfied.
- 39 -
REV. 0.7 Jan. 2005
K4C89183AF
Multiple Bank Read-Write Timing (BL=4)
0
1
2
3
RDA
LAL
4
5
6
7
8
9
WRA
LAL
RDA
LAL
10
11
12
13
14
15
WRA
LAL
RDA
LAL
CLK
CLK
lRBD=2cycles
Command
WRA
LAL
lWRD=1cycle
Address
Bank Add.
UA
LA
UA
DESL
lRWD=3cycles
LA
UA
Bank
"b"
Bank
"a"
lWRD=1cycle
LA
Bank
"c"
UA
DESL
lRWD=3cycles
LA
lWRD=1cycle
UA
Bank
"d"
Bank
"a"
LA
UA
LA
Bank
"b"
lRC(Bank"a")
lRC(Bank"a")
Unidirectional DS/QS mode
CL =4
DS
(Input)
QS
(Output)
Low
DQ
(Output)
Hi-Z
CL=4
WL=3
Da0 Da1 Da2 Da3
Qb0 Qb1 Qb2 Qb3
Da0 Da1 Da2 Da3
Qb0 Qb1 Qb2 Qb3
CL =5
DS
(Input)
QS
(Output)
Low
DQ
(Output)
Hi-Z
WL=4
CL=5
Da0 Da1 Da2 Da3
Qb0 Qb1 Qb2 Qb3
Da0 Da1 Da2 Da3
Qb0 Qb1 Qb2 Qb3
CL =6
DS
(Input)
QS
(Output)
Low
DQ
(Output)
Hi-Z
WL=5
CL=6
Da0 Da1 Da2 Da3
Qb0 Qb1 Qb2 Qb3
Da0 Da1 Da2 Da3
Qb0 Qb1
Note :IRC to the same bank must be satisfied.
- 40 -
REV. 0.7 Jan. 2005
K4C89183AF
Multiple Bank Read-Write Timing (BL=4)
0
1
2
3
RDA
LAL
4
5
6
7
8
9
WRA
LAL
RDA
LAL
10
11
12
13
14
15
WRA
LAL
RDA
LAL
CLK
CLK
lRBD=2cycles
Command
WRA
LAL
lWRD=1cycle
Address
Bank Add.
UA
LA
UA
DESL
lRWD=3cycles
LA
UA
Bank
"b"
Bank
"a"
lWRD=1cycle
LA
Bank
"c"
UA
DESL
lRWD=3cycles
LA
lWRD=1cycle
UA
Bank
"d"
Bank
"a"
LA
UA
LA
Bank
"b"
lRC(Bank"a")
lRC(Bank"a")
Unidirectional DS/Free Running QS mode
CL =4
DS
(Input)
QS
(Output)
CL=4
WL=3
DQ
(Output)
Hi-Z
Da0 Da1 Da2 Da3
Qb0 Qb1 Qb2 Qb3
Da0 Da1 Da2 Da3
Qb0 Qb1 Qb2 Qb3
CL =5
DS
(Input)
QS
(Output)
WL=4
DQ
(Output)
CL=5
Hi-Z
Da0 Da1 Da2 Da3
Qb0 Qb1 Qb2 Qb3
Da0 Da1 Da2 Da3
Qb0 Qb1 Qb2 Qb3
CL =6
DS
(Input)
QS
(Output)
WL=5
DQ
(Output)
CL=6
Hi-Z
Da0 Da1 Da2 Da3
Qb0 Qb1 Qb2 Qb3
Da0 Da1 Da2 Da3
Qb0 Qb1
Note :IRC to the same bank must be satisfied.
- 41 -
REV. 0.7 Jan. 2005
K4C89183AF
Write with Variable Write Length (VW) Control(CL=4)
0
1
2
3
4
5
6
WRA
LAL
UA
LA=#1
VW=1
7
8
9
10
11
12
13
14
15
CLK
CLK
BL=2, SEQUENTIAL MODE
Command
Address
WRA
LAL
UA
LA=#3
VW=All
DESL
VW0 = Low
VW1 = don’t care
Bank Add.
DESL
VW0 = High
VW1 = don’t care
Bank
"a"
Bank
"a"
DS
(Input)
DQ
(Input)
D0 D1
D0
Lower Address #3 #2
#1 (#0)
Last one data is masked.
BL=4, SEQUENTIAL MODE
Command
Address
WRA
LAL
UA
LA=#3
VW=All
DESL
WRA
LAL
UA
LA=#1
VW=1
VW0 = High
VW1 = Low
Bank Add.
DESL
WRA
LAL
UA
LA=#2
VW=2
VW0 = High
VW1 = High
VW0 = Low
VW1 = High
Bank
"a"
Bank
"a"
DESL
Bank
"a"
DS
(Input)
DQ
(Input)
D0 D1 D2 D3
Lower Address #3
#0
D0
#1 #2
#1 (#2) (#3) (#0)
Last three data are masked.
D0 D1
#2
#3 (#0) (#1)
Last two data are masked.
Note : DS input must be continued till end of burst count even if some of laster data is masked.
- 42 -
REV. 0.7 Jan. 2005
K4C89183AF
Power Down Timing (CL=4, BL=4)
Read cycle to Power Down Mode
0
1
2
3
4
5
6
7
8
9
CLK
BL=2, SEQUENTIAL MODE
Command
Address
RDA
LAL
UA
DESL
LA
tIH
tIS
IPD=2 cycle
tQPDH
n+1
n+2
DESL
RDA
or
WRA
n+3
IPDA
UA
tPDEX
∼
DS
(input)
∼ ∼
Low
CL=4
DQ
(Output)
n
IRC(min), tREFI(max)
Unidirectional DS/QS mode
QS
(Output)
n-1
∼
PD
10
∼ ∼ ∼
CLK
Hi-Z
Q0 Q1 Q2 Q3
Hi-Z
Unidirectional DS/Free Running QS mode
∼ ∼ ∼
DS
(input)
QS
(Output)
CL=4
DC
(Output)
Hi-Z
Q0 Q1 Q2 Q3
Power Down Entry
Hi-Z
Power Down Exit
Note : PD must be kept "High" level until end of Burst data output.
PD should be brought to "High" within tREFI(max.) to maintain the data written into cell.
In Power Down Mode, PD "Low" and a stable clock signal must be maintained.
When PD is brought to "High", a valid executable command may be applied IPDA cycles later.
- 43 -
REV. 0.7 Jan. 2005
K4C89183AF
Power Down Timing (CL=4, BL=4)
Write cycle to Power Down Mode
0
1
2
3
4
5
6
7
8
CLK
Command
Address
WRA
LAL
UA
LA
DESL
tIH
tIS
WL=3
n-1
n
n+1
n+2
n+3
IPDA
DESL
RDA
or
WRA
UA
tPDEX
IPD=2 cycle
IRC(min), tREFI(max)
Unidirectional DS/QS mode
∼
DS
(input)
Low
∼ ∼
QS
(Output)
10
∼
PD
IPD=2 cycle
9
∼ ∼ ∼
CLK
WL=3
DC
(Output)
D0 D1 D2 D3
Unidirectional DS/Free Running QS mode
∼ ∼ ∼
DS
(input)
QS
(Output)
WL=3
DC
(Output)
D0 D1 D2 D3
Note : PD must be kept "High" level until end of Burst data output.
PD should be brought to "High" within tREFI(max.) to maintain the data written into cell.
In Power Down Mode, PD "Low" and a stable clock signal must be maintained.
When PD is brought to "High", a valid executable command may be applied IPDA cycles later.
- 44 -
REV. 0.7 Jan. 2005
K4C89183AF
Mode Register Set Timing (CL=4, BL=4)
From Write operation to Mode Register Set operation
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
RDA
or
WRA
LAL
Valid
(opcode)
UA
LA
BA0="0"
BA1="0"
BA
CLK
CLK
lRC=7cycles
WRA
LAL
A14~A0
UA
LA
BA0, BA1
BA
Command
DESL
RDA
MRS
DESL
WL + BL/2
Unidirectional DS/QS mode
DS
(input)
QS
(Output)
Low
DC
(input)
D0 D1 D2 D3
Unidirectional DS/Free Running QS mode
DS
(input)
QS
(Output)
DC
(input)
D0 D1 D2 D3
Note : Minimum delay from LAL following WRA to RDA of MRS operation is WL+BL/2.
- 45 -
REV. 0.7 Jan. 2005
K4C89183AF
Extended Mode Register Set Timing (CL=4, BL=4)
From Write operation to Extended Mode Register Set operation
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
RDA
or
WRA
LAL
Valid
(opcode)
UA
LA
BA0="0"
BA1="0"
BA
CLK
CLK
lRC=7cycles
WRA
LAL
A14~A0
UA
LA
BA0, BA1
BA
Command
DESL
RDA
MRS
DESL
WL + BL/2
Unidirectional DS/QS mode
DS
(input)
QS
(Output)
Low
DQ
DC
(input)
D0 D1 D2 D3
Unidirectional DS/Free Running QS mode
DS
(input)
QS
(Output)
DQ
(input)
D0 D1 D2 D3
Note : When DQ strobe mode is changed by EMRS, QS output is invalid for IRSC period.
DLL switch in Extended Mode Register must be set to enable mode for normal operation.
DLL lock-on time is needed after initial EMRS operation. See Power Up Sequence.
Minimum delay from LAL following WRA to RDA of EMRS operation is WL+BL/2.
- 46 -
REV. 0.7 Jan. 2005
K4C89183AF
Auto-Refresh Timing (CL=4, BL=4)
Unidirectional DS/QS mode
0
1
2
3
4
5
6
7
n-1
n
n+1
n+2
RDA
or
WRA
LAL or
MRS or
REF
RDA
or
WRA
LAL or
MRS or
REF
CLK
CLK
lRC=5cycles
RDA
LAL
Bank, Address
Bank,
UA
LA
DESL
lRCD=1cycle
lRAS=4cycles
REF
DESL
lRCD=1cycle
Low
∼
QS
(output)
WRA
∼ ∼
Command
lREFC=19cycles
CL=4
Hi-Z
Q0 Q1 Q2 Q3
∼
DQ
(output)
Low
Hi-Z
Unidirectional DS/Free Running QS mode
CLK
CLK
lRC=5cycles
RDA
LAL
Bank, Address
Bank,
UA
LA
DESL
lRCD=1cycles
WRA
lRAS=4cycles
∼ ∼ ∼
Command
lREFC=19cycles
REF
DESL
lRCD=1cycles
QS
(output)
CL=4
Hi-Z
Q0 Q1 Q2 Q3
∼
DQ
(output)
Hi-Z
Note : In case of CL=4, IREFC must be meet 19 clock cycles.
When the Auto-Refresh operation is perfomed, the synthetic average interval of Auto-Refresh command
specified by tREFI must be satisfied.
tREFI is average interval time in 8 Refresh cycles that is sampled randomly.
t1
t2
∼
WRA REF
t8
∼
WRA REF
t7
∼
WRA REF
∼
∼
CLK
t3
WRA REF
WRA REF
8 Refresh cycle
tREFI = Total time of 8 Refresh cycle = t1+t2+t3+t4+t5+t6+t7+t8
8
8
tREFI is specified to avoid partly concentrated current of Refresh operation that is acivated
larger are than Read/Write operation.
- 47 -
REV. 0.7 Jan. 2005
K4C89183AF
Function Description
Network - DRAM
Network - DRAM is an acronym of Double Data Rate Network - DRAM.
Network - DRAM is competent to perform fast random core access, low latency and high-speed data transfer.
Pin Functions
Clock Inputs : CLK & CLK
The CLK and CLK inputs are used as the reference for synchronous operation. CLK is master clock input. The CS, FN and all
address input signals are sampled on the crossing of the positive edge of CLK and the negative edge of CLK. The QS and DQ output
data are aligned to the crossing point of CLK and CLK. The timing reference point for the differential clock is when the CLK and CLK
signals cross during a transition.
Power Down : PD
The PD input controls the entry to the Power Down or Self-Refresh modes. The PD input does not have a Clock Suspend function like
a CKE input of a standard SDRAMs, therefore it is illegal to bring PD pin into low state if any Read or Write operation is being performed.
Chip Select & Function Control : CS & FN
The CS and FN inputs are a control signal for forming the operation commands on Network-DRAM. Each operation mode is decided
by the combination of the two consecutive operation commands using the CS and FN inputs.
Bank Addresses : BA0 & BA1
The BA0 and BA1 inputs are latched at the time of assertion of the RDA or WRA command and are selected the bank to be used for
the operation. BA0 and BA1 also define which mode register is loaded during the Mode Register Set command (MRS or EMRS).
BA0
BA1
Bank #0
0
0
Bank #1
1
0
Bank #2
0
1
Bank #3
1
1
Address Inputs : A0 to A14
Address inputs are used to access the arbitrary address of the memory cell array within each bank. The Upper Addresses with Bank
address are latched at the RDA or WRA command and the Lower Addresses are latched at the LAL command. The A0 to A14 inputs
are also used for setting the data in the Regular or Extended Mode Register set cycle.
K4C89183AF
Upper Address
Lower Address
A0 to A14
A0 to A6
- 48 -
REV. 0.7 Jan. 2005
K4C89183AF
Functional Description (Continued)
Data Input/Output : DQ0 ~ DQ17
The input data of DQ0 to DQ17 are taken in synchronizing with the both edges of DS input signal.
The output data of DQ0 to DQ17 are outputted synchronizing with the both edges of QS output signal.
Data Strobe : DS or QS
Method of data strobe is chosen by Extended mode register.
(1) Unidirectional DS/QS mode
DS is input signal and QS is output signal. Both edges of DS are used to sample all DQs at Write operation. Both edges of QS
are used for trigger signal of all DQs at Read operation. During Write. Auto-Refresh and NOP cycle, QS assert always "Low"
level. QS is Hi-Z in Self-Refresh mode.
(2) Unidirectional DS/Free running QS mode
DS is input signal and QS is output signal. Both edges of DS are used to sample all DQs at Write operation. Both edges of QS
are used for trigger signal of all DQs at Read operation. QS assert always toggle signal except Self-Refresh mode. This strobe
type is easy to use for pin to pin connect application.
Power Supply : VDD, VDDQ, VSS, VSSQ
VDD and VSS are supply pins for memory core and peripheral circuits.
VDDQ and VSSQ are power supply pins for the output buffer.
Reference Voltage : VREF
VREF is reference voltage for all input signals.
- 49 -
REV. 0.7 Jan. 2005
K4C89183AF
Command Functions and Operations
K4C89093AF is introduced the two consecutive command input method. Therefore, except for Power Down mode, each operation
mode decided by the combination of the first command and the second command from stand-by states of the bank to be accessed.
Read Operation (1st command + 2nd command = RDA + LAL)
Issuing the RDA command with Bank Addresses and Upper Addresses to the idle bank puts the bank designated by Bank Address in
a read mode. When the LAL command with Lower Addresses is issued at the next clock of the RDA command, the data is read out
sequentially synchronizing with the both edges of QS output signal (Burst Read Operation). The initial valid read data appears after
CAS latency, the burst length of read data and the burst type must be set in the Mode Register beforehand. The read operated bank
goes back automatically to the idle state after IRC.
Write Operation (1st command + 2nd command = WRA + LAL)
Issuing the WRA command with Bank Addresses and Upper Addresses to the idle bank puts the bank designated by Bank Address in
a write mode. When the LAL command with Lower Addresses is issued at the next clock of the WRA command, the input data is
latched sequentially synchronizing with the both edges of DS input signal (Burst Write Operation). The data and DS inputs have to be
asserted in keeping with clock input after CAS latency-1 from the issuing of the LAL command. The DS have to be provided for a burst
length. The CAS latency and the burst type must be set in the Mode Register beforehand. The write operated bank goes back automatically to the idle state after IRC. Write Burst Length is controlled by VW0 and VW1 inputs with LAL command. See VW truth table.
Auto-Refresh Operation (1st command + 2nd command = WRA + REF)
K4C89093AF is required to refresh like a standard SDRAM. The Auto-Refresh operation is begun with the REF command following to
the WRA command. The Auto-Refresh mode can be effective only when all banks are in the idle state and all DQ are in Hi-Z states. In
a point to notice, the write mode started with the WRA command is canceled by the REF command having gone into the next clock of
the WRA command instead of the LAL command. The minimum period between the Auto-Refresh command and the next command is
specified by IREFC. However, about a synthetic average interval of Auto-Refresh command, it must be careful. In case of equally distributed refresh, Auto-Refresh command has to be issued within once for every 3.9 us by the maximum In case of burst refresh or random
distributed refresh, the average interval of eight consecutive Auto-Refresh command has to be more than 400ns always. In other words,
the number of Auto-Refresh cycles which can be performed within 3.2 us (8x400ns) is to 8 times in the maximum.
Power Down Mode( PD="L" )
When all banks are in the idle state and all DQ outputs are in Hi-Z states, the K4C89183AF become Power Down Mode by asserting
PD is "Low". When the device enters the Power Down Mode, all input and output buffers except for PD, CLK, CLK and QS. Therefore,
the power dissipation lowers. To exit the Power Down Mode, PD has to be brought to "High" and the DESL command has to be issued
for IPDA cycle after PD goes high. The Power Down exit function is asynchronous operation.
Mode Register Set (1st command + 2nd command = RDA + MRS)
When all banks are in the idle state, issuing the MRS command following to the RDA command can program the Mode Register. In a
point to notice, the read mode started with the RDA command is canceled by the MRS command having gone into the next clock of the
RDA command instead of the LAL command. The data to be set in the Mode Register is transferred using A0 to A14, BA0 and BA1
address inputs. The K4C89183AF have two mode registers. These are Regular and Extended Mode Register. The Regular or Extended
Mode Register is chosen by BA0 and BA1 in the MRS command.The Regular Mode Register designates the operation mode for a read
or write cycle. The Regular Mode Register has four function fields.
- 50 -
REV. 0.7 Jan. 2005
K4C89183AF
The four fields are as follows :
(R-1) Burst Length field to set the length of burst data
(R-2) Burst Type field to designate the lower address access sequence in a burst cycle
(R-3) CAS Latency field to set the access time in clock cycle
(R-4) Test Mode field to use for supplier only.
The Extended Mode Register has two function fields.
The two fields are as follows:
(E-1) DLL Switch field to choose either DLL enable or DLL disable
(E-2) Output Driver Impedance Control field.
(E-3) Data Strobe Select
Once these fields in the Mode Register are set up, the register contents are maintained until the Mode Register is set up again by
another MRS command or power supply is lost. The initial value of the Regular or Extended Mode Register after power-up is undefined, therefore the Mode Register Set command must be issued before proper operation.
• Regular Mode Register/Extended Mode Register change bits (BA0, BA1)
These bits are used to choose either Regular MRS or Extended MRS
BA1
BA0
A14~A0
0
0
Regular MRS cycle
0
1
Extended MRS cycle
1
X
Reserved
Regular Mode Register Fields
(R-1) Burst Length field (A2 to A0)
This field specifies the data length for column access using the A2 to A0 pins and sets the Burst Length to be 4 words.
A2
A1
A0
Burst Length
0
0
0
Reserved
0
0
1
Reserved
0
1
0
4 words
0
1
1
Reserved
1
X
X
Reserved
(R-2) Burst Type field (A3)
This Burst Type can be chosen Interleave mode or Sequential mode. When the A3 bit is " 0", Sequential mode is
selected. When the A3 bit is "1", Interleave mode is selected. Both burst types support burst length of 2 and 4 words.
A3
Burst Type
0
Sequential
1
Interleave
• Addressing sequence of Sequential mode (A3)
A column access is started from the inputted lower address and is performed by incrementing the lower address input to
the device.
- 51 -
REV. 0.7 Jan. 2005
K4C89183AF
CAS Latency = 4 (Free Running QS mode)
CK
CK
Command
RDA
LAL
QS
DQ
Data 0 Data 1 Data 2 Data 3
Addressing sequence for Sequential mode
Data
Access Address
Data 0
n
Data 1
n+1
Data 2
n+2
Data 3
n+3
Burst Length
4 words(Address bits is LA1, LA0)
not carried from LA1~LA2
Functional Description (Continued)
• Addressing sequence of Inteleave mode
A column access is started from the inputted lower address and is performed by interleaving the address bits in the
sequence shown as the following.
Addressing sequence for Interleave mode
Data
Access Address
Data 0
...A8 A7 A6 A5 A4 A3 A2 A1 A0
Burst Length
Data 1
...A8 A7 A6 A5 A4 A3 A2 A1 A0
Data 2
...A8 A7 A6 A5 A4 A3 A2 A1 A0
Data 3
...A8 A7 A6 A5 A4 A3 A2 A1 A0
4 words
(R-3) CAS Latency field (A6 to A4)
This field specifies the number of clock cycles from the assertion of the LAL command following the RDA command to
the first data read. The minimum values of CAS Latency depends on the frequency of CLK. In a write mode, the place of
clock which should input write data is CAS Latency cycles - 1.
Addressing sequence for Interleave mode
A6
A5
A4
CAS Latency
0
0
0
Reserved
0
0
1
Reserved
0
1
0
Reserved
0
1
1
Reserved
1
0
0
4
1
0
1
5
1
1
0
6
1
1
1
7
- 52 -
REV. 0.7 Jan. 2005
K4C89183AF
(R-4) Test Mode field (A7)
This bit is used to enter Test Mode for supplier only and must be set to "0" for normal operation.
(R-5) Reserved field in the Regular Mode Register
• Reserved bits (A8 to A14)
These bits are reserved for future operations. They must be set to "0" for normal operation.
Extended Mode Register Fields
(E-1) DLL Switch field (A0)
This bit is used to enable DLL. When the A0 bit is set "0", DLL is enabled.
(E-2) Output Driver Impedance Control field (A1 to A4)
This field is used to choose Output Driver Strength. Four types of Driver Strength are supported. QS and DQ Driver
Strength can be chosen separately. A2-A1 specified the DQ Driver Strength. A4-A3 specified the QS Driver Strength.
QS
DQ
Output Driver Impedance Control
A4
A3
A2
A1
0
0
0
0
0
1
0
1
Strong Output Driver
1
0
1
0
Weaker Output Driver
1
1
1
1
Reserved
Normal Output Driver
(E-3) Strobe Select (A6/A5)
Two types of strobe are supported. This field is used to choose the type of data strobe.
(1) Unidirectional DS/QS mode
Data strobe is separated DS for write strobe and QS for read strobe.
DS is used to sample write data at write operation. QS is aligned with read data at Read operation.
(2) Unidirectional DS/Free running QS mode
Data strobe is separated DS for write strobe and QS for read strobe.
DS is used to sample write data at write operation. QS is aligned with read data and always clocking
A6
A5
Strobe Select
0
0
Reserved
0
1
Reserved
1
0
Unidirectional DS/QS mode
1
1
Unidirectional DS/Free running QS mode
(E-4)Reserved fied (A7 to A14)
These bits are reserved for future operations and must be set to "0" for normal operation.
- 53 -
REV. 0.7 Jan. 2005
K4C89183AF
Package Outline Drawing (FBGA 60ball, 1.0 x 1.0 mm)
10.50 ± 0.10
#A1
1.00 x 5 = 5.00
#A1 Mark (Option)
0.10 Max
2.50
1.50
1.50
Window Mold Area
6
10.50 ± 0.10
5
4
3
2
1.00
1
1.00
A
B
C
1.00
G
H
0.5 ± 0.05
15.50 ± 0.10
15.50 ± 0.10
F
J
15.50 ± 0.10
E
1.00 x 14 = 14.00
7.00
D
7.00
K
L
M
N
P
R
0.35 ± 0.05
TOP VIEW
1.10± 0.10
- 54 -
60 - ∅0.45 solder ball
BOTTOM VIEW
REV. 0.7 Jan. 2005
K4C89183AF
General Information
Organization
F6 (667Mbps@CL6)
FB (600Mbps@CL6 )
F5 (500Mbps@CL6 )
288M(x9)
K4C89093AF-ACF6
K4C89093AF-ACFB
K4C89093AF-AC(I)F5
288M(x18)
K4C89183AF-ACF6
K4C89183AF-ACFB
K4C89183AF-AC(I)F5
288M(x36)
K4C89363AF-GCF6
K4C89363AF-GCFB
K4C89363AF-GC(I)F5
1
5
2
3
4
6
7
8
9
10
11
K 4 C XX XX X X X - X X XX
Memory
Speed
DRAM
Temperature & Power
Small Classification
Package
Density and Refresh
Version
Organization
Bank
Interface (VDD & VDDQ)
1. SAMSUNG Memory : K
8. Version
F : 7th Generation
2. DRAM : 4
3. Small Classification
C : Network-DRAM
9. Package
A : 60 FBGA
G : 144 FBGA
4. Density & Refresh
89 : 288M 8K/32ms
10. Temperature & Power
C : (Commercial, Normal)
I : (Industrial, Normal)
5. Organization
08
09
16
18
: x8
: x9
: x16
: x18
11. Speed
F6 : 667Mbps/pin (333MHz, CL=6)
FB : 600Mbps /pin (300MHz, CL=6)
F5 : 500Mbps/pin (250MHz, CL=6)
6. Bank
3 : 4 Bank
7. Interface (VDD & VDDQ)
A: SSTL-2(2.5V, 1.8V)
- 55 -
REV. 0.7 Jan. 2005