L6482 cSPIN™: microstepping motor controller with motion engine and SPI Datasheet − production data Features ■ Operating voltage: 7.5 V - 85 V ■ Dual full-bridge gate driver for N-channel MOSFETs ■ Fully programmable gate driving ■ Embedded Miller clamp function ■ Programmable speed profile ■ Up to 1/16 microstepping ■ Advanced current control with auto-adaptive decay mode ■ Integrated voltage regulators ■ SPI interface ■ Low quiescent standby currents ■ Programmable non-dissipative overcurrent protection ■ Overtemperature protection HTSSOP38 Applications ■ Bipolar stepper motor Description non-dissipative overcurrent protection. Thanks to a new current control, a 1/16 microstepping is achieved through an adaptive decay mode which outperforms traditional implementations. The digital control core can generate user defined motion profiles with acceleration, deceleration, speed or target position easily programmed through a dedicated register set. All application commands and data registers, including those used to set analog values (i.e. current protection trip point, deadtime, PWM frequency, etc.) are sent through a standard 5-Mbit/s SPI. A very rich set of protections (thermal, low bus voltage, overcurrent and motor stall) make the L6482 “bullet proof”, as required by the most demanding motor control applications. The L6482, realized in analog mixed signal technology, is an advanced fully integrated solution suitable for driving two-phase bipolar stepper motors with microstepping. It integrates a dual full-bridge gate driver for Nchannel MOSFET power stages with embedded Table 1. Device summary Order code Package Packaging L6482H HTSSOP38 Tube L6482HTR HTSSOP38 Tape and reel December 2012 This is information on a product in full production. Doc ID 023768 Rev 2 1/73 www.st.com 73 Contents L6482 Contents 1 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2 Electrical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2 Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.3 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 4 Pin connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.1 Pin list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 5 Typical applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 6 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 6.1 Device power-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 6.2 Logic I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 6.3 Charge pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 6.4 Microstepping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 6.4.1 6.5 Absolute position counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 6.6 Programmable speed profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 6.6.1 6.7 6.8 2/73 Automatic Full-step and Boost modes . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Infinite acceleration/deceleration mode . . . . . . . . . . . . . . . . . . . . . . . . . 22 Motor control commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 6.7.1 Constant speed commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 6.7.2 Positioning commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 6.7.3 Motion commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 6.7.4 Stop commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 6.7.5 Step-clock mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 6.7.6 GoUntil and ReleaseSW commands . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Internal oscillator and oscillator driver . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 6.8.1 Internal oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 6.8.2 External clock source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Doc ID 023768 Rev 2 L6482 7 Contents 6.9 Overcurrent detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 6.10 Undervoltage lockout (UVLO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 6.11 VS undervoltage lockout (UVLO_ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . 29 6.12 Thermal warning and thermal shutdown . . . . . . . . . . . . . . . . . . . . . . . . . 29 6.13 Reset and standby . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 6.14 External switch (SW pin) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 6.15 Programmable gate drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 6.16 Deadtime and blanking time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 6.17 Integrated analog-to-digital converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 6.18 Supply management and internal voltage regulators . . . . . . . . . . . . . . . . 33 6.19 BUSY/SYNC pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 6.20 FLAG pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Phase current control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 7.1 Predictive current control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 7.2 Auto-adjusted decay mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 7.3 Auto-adjusted fast decay during the falling steps . . . . . . . . . . . . . . . . . . . 38 7.4 Torque regulation (output current amplitude regulation) . . . . . . . . . . . . . . 39 8 Serial interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 9 Programming manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 9.1 Register and flag description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 9.1.1 ABS_POS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 9.1.2 EL_POS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 9.1.3 MARK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 9.1.4 SPEED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 9.1.5 ACC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 9.1.6 DEC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 9.1.7 MAX_SPEED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 9.1.8 MIN_SPEED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 9.1.9 FS_SPD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 9.1.10 TVAL_HOLD, TVAL_RUN, TVAL_ACC and TVAL_DEC . . . . . . . . . . . . 47 9.1.11 T_FAST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 9.1.12 TON_MIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Doc ID 023768 Rev 2 3/73 Contents L6482 9.2 9.1.13 TOFF_MIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 9.1.14 ADC_OUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 9.1.15 OCD_TH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 9.1.16 STEP_MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 9.1.17 ALARM_EN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 9.1.18 GATECFG1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 9.1.19 GATECFG2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 9.1.20 CONFIG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 9.1.21 STATUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Application commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 9.2.1 Command management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 9.2.2 Nop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 9.2.3 SetParam (PARAM, VALUE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 9.2.4 GetParam (PARAM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 9.2.5 Run (DIR, SPD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 9.2.6 StepClock (DIR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 9.2.7 Move (DIR, N_STEP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 9.2.8 GoTo (ABS_POS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 9.2.9 GoTo_DIR (DIR, ABS_POS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 9.2.10 GoUntil (ACT, DIR, SPD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 9.2.11 ReleaseSW (ACT, DIR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 9.2.12 GoHome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 9.2.13 GoMark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 9.2.14 ResetPos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 9.2.15 ResetDevice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 9.2.16 SoftStop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 9.2.17 HardStop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 9.2.18 SoftHiZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 9.2.19 HardHiZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 9.2.20 GetStatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 10 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 11 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 4/73 Doc ID 023768 Rev 2 L6482 List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. Table 39. Table 40. Table 41. Table 42. Table 43. Table 44. Table 45. Table 46. Table 47. Table 48. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Typical application values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 CL values according to external oscillator frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 UVLO thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Thermal protection summarizing table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 EL_POS register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 MIN_SPEED register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 FS_SPD register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Torque regulation by TVAL_HOLD, TVAL_ACC, TVAL_DEC and TVAL_RUN registers . 48 FS_SPD register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Maximum fast decay times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Minimum on-time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Minimum off-time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 ADC_OUT value and torque regulation feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Overcurrent detection threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 STEP_MODE register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Step mode selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 SYNC output frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 SYNC signal source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 ALARM_EN register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 GATECFG1 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 IGATE parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 TCC parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 TBOOST parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 GATECFG2 register (voltage mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 TDT parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 TBLANK parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 CONFIG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Oscillator management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 External switch HardStop interrupt mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Overcurrent event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Programmable VCC regulator output voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Programmable UVLO thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 External torque regulation enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Switching period . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Motor supply voltage compensation enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 STATUS register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 STATUS register TH_STATUS bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 STATUS register DIR bit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 STATUS register MOT_STATE bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Application commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Nop command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Doc ID 023768 Rev 2 5/73 List of tables Table 49. Table 50. Table 51. Table 52. Table 53. Table 54. Table 55. Table 56. Table 57. Table 58. Table 59. Table 60. Table 61. Table 62. Table 63. Table 64. Table 65. Table 66. Table 67. Table 68. 6/73 L6482 SetParam command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 GetParam command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Run command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 StepClock command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Move command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 GoTo command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 GoTo_DIR command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 GoUntil command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 ReleaseSW command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 GoHome command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 GoMark command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 ResetPos command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 ResetDevice command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 SoftStop command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 HardStop command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 SoftHiZ command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 HardHiZ command structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 GetStatus command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 HTSSOP38 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Doc ID 023768 Rev 2 L6482 List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Pin connection (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Typical application schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Charge pump circuitry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Normal mode and microstepping (16 microsteps) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Automatic Full-step switching in Normal mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Automatic Full-step switching in Boost mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Speed profile in infinite acceleration/deceleration mode . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Constant speed command examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Positioning command examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Motion command examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 OSCIN and OSCOUT pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Overcurrent detection-principle scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 External switch connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Gate driving currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Device supply pin management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Predictive current control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Non-predictive current control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Adaptive decay - fast decay tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Adaptive decay - switch from normal to slow+fast decay mode and vice versa . . . . . . . . . 38 Fast decay tuning during the falling steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Current sensing and reference voltage generation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 SPI timings diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Daisy chain configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Command with 3-byte argument . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Command with 3-byte response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Command response aborted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 HTSSOP38 package dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 HTSSOP38 footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Doc ID 023768 Rev 2 7/73 Block diagram 1 L6482 Block diagram Figure 1. Block diagram VSREG Voltage reg. ADC ADCIN VCC VCC REG VCC Voltage reg. VREG VREG CP VBOOT Charge pump VS Vboot HVGA1 VCC Temperature sensing OUTA1 LVGA1 Vboot Vdd VDD HVGA2 VCC CS SDO OUTA2 SPI CK LVGA2 CORE LOGIC VSENSEA SDI Vboot STBY/RESET HVB1 VCC Current sensing FLAG OUTB1 LVGB1 Vboot BUSY/SYNC 16 MHz Oscillator HVGB2 VCC OUTB2 STCK LVGB2 Ext. Osc. driver & Clock gen. SW DGND AGND OSCIN OSCOUT VSENSEB PGND AM15031v1 8/73 Doc ID 023768 Rev 2 L6482 Electrical data 2 Electrical data 2.1 Absolute maximum ratings Table 2. Absolute maximum ratings Symbol Parameter VDD Value Unit Logic interface supply voltage 5.5 V VREG Logic supply voltage 3.6 VS Motor supply voltage 95 V Low-side gate driver supply voltage 18 V VBOOT Boot voltage 100 V ΔVBOOT High-side gate driver supply voltage 0 to 20 V VSREG Internal VCC regulator supply voltage 95 V Internal VREG regulator supply voltage 18 V DC -5 to VBOOT V AC -15 to VBOOT VCC VCCREG VOUT1A VOUT2A VOUT1B VOUT2B SRout Test condition Full-bridge output voltage Full-bridge output slew rate (10% - 90%) 10 V/ns VOUT to VBOOT V 15 V Low-side output driver voltage VCC + 0.3 V High-side gate voltage clamp current capability 100 mA VADCIN Integrated ADC input voltage range (ADCIN pin) -0.3 to 3.6 V Vout_diff Differential voltage between VBOOT, VS, OUT1A, OUT2A, PGND and VBOOT, VS, OUT1B, OUT2B, PGND pins 100 V VHVG1A VHVG2A VHVG1B VHVG2B High-side output driver voltage ΔVHVG1A ΔVHVG2A ΔVHVG1B ΔVHVG2B High-side output driver to respective bridge output voltage(VHVG - VOUT) VLVG1A VLVG2A VLVG1B VLVG2B IGATECLAMP Doc ID 023768 Rev 2 9/73 Electrical data L6482 Table 2. Absolute maximum ratings (continued) Symbol Vin Ts TOP Ptot 1. 2.2 Parameter Value Unit Logic inputs voltage range -0.3 to 5.5 V Storage and operating junction temperature -40 to 150 °C 4 W Total power dissipation (Tamb = 25 ºC) Test condition (1) HTSSOP38 mounted on a four-layer FR4 PCB with a dissipating copper surface of about 30 cm2. Recommended operating conditions Table 3. Recommended operating conditions Symbol Parameter Test condition Min. 3.3 V logic outputs VDD Logic interface supply voltage VREG Logic supply voltage VS Motor supply voltage VSREG VCC VCCREG VADC 2.3 Typ. Max. 3.3 V 5 V logic outputs 5 3.3 Internal VCC voltage regulator VCC voltage internally generated Gate driver supply voltage VCC voltage imposed by external source (VSREG = VCC) Internal VREG voltage regulator VREG voltage internally supply voltage generated Integrated ADC input voltage (ADCIN pin) V VSREG 85 V VCC +3 Vs V 7.5 15 V 6.3 VCC V 0 VREG V Thermal data Table 4. Symbol Rthj-a Thermal data Parameter Thermal resistance junction-to-ambient Package Typ. Unit HTSSOP38(1) 31 °C/W 2 1. HTSSOP38 mounted on a four-layer FR4 PCB with a dissipating copper surface of about 30 cm . 10/73 Unit Doc ID 023768 Rev 2 L6482 3 Electrical characteristics Electrical characteristics VS = 48 V; VCC = 7.5 V; Tj = 25 °C, unless otherwise specified. Table 5. Electrical characteristics Symbol Parameter Test condition Min. Typ. Max. Unit UVLO_VAL set high(1) 9.9 10.4 10.9 V 6.5 6.9 7.3 V General VCCthOn VCC UVLO turn-on threshold VCCthOff VCC UVLO turn-off threshold UVLO_VAL set low(1) UVLO_VAL set high(1) ΔVBOOTthOn VBOOT - VS UVLO turn-on threshold ΔVBOOTthOff VBOOT - VS UVLO turn-off threshold 9.5 10 10.5 V UVLO_VAL set low(1) 5.9 6.3 6.7 V UVLO_VAL set high(1) 8.6 9.2 9.8 V UVLO_VAL set low(1) 5.7 6 6.3 V 8.2 8.8 9.5 V UVLO_VAL set high(1) UVLO_VAL set low(1) 5.3 5.5 5.8 V VREG turn-on threshold (1) 2.8 3 3.18 V VREGthOff VREG turn-off threshold (1) 2.2 2.4 2.5 V IVSREGqu Undervoltage VSREG quiescent supply current VCCREG= VREG< 2.2 V 40 μA IVSREGq Quiescent VSREG supply current VCCREG= VREG< 3.3 V, internal oscillator selected(1) 3.8 mA IVSREGq Quiescent VSREG supply current VCCREG = VREG = 15V 6.5 mA VREGthOn Thermal protection Tj(WRN)Set Thermal warning temperature 135 °C Tj(WRN)Rec Thermal warning recovery temperature 125 °C Tj(OFF)Set Thermal bridge shutdown temperature 155 °C Tj(OFF)Rec Thermal bridge shutdown recovery temperature 145 °C Tj(SD)Set Thermal device shutdown temperature 170 °C Tj(SD)Rec Thermal device shutdown recovery temperature 130 °C Voltage swing for charge pump oscillator VCC V 660 kHz Charge pump Vpump frequency(2) fpump,min Minimum charge pump oscillator fpump,max Maximum charge pump oscillator frequency(2) 800 kHz RpumpHS Charge pump high-side RDS(on) resistance 10 Ω Doc ID 023768 Rev 2 11/73 Electrical characteristics Table 5. Electrical characteristics (continued) Symbol RpumpLS Iboot L6482 Parameter Test condition Min. Typ. Max. Unit Charge pump low-side RDS(ON) resistance 10 Ω Average boot current 2.6 mA Gate driver outputs IGATE,Sink IGATE,Source IOB Programmable high-side and low-side gate sink current Programmable high-side and low-side gate source current VS = 38 V VHVGX - VOUTX > 3 V VLVGX > 3 V VS = 38 V VBOOTX - VHVGX > 3.5 V VCC-VLVGX > 3.5 V High-side and low-side turn-off overboost gate current 2.4 4 5.6 5.4 8 10.6 11.3 16 20.7 17.3 24 30.7 23.2 32 40.8 50.2 64 77.8 81 96 113 2.8 4 5.2 5.8 8 10.2 12 16 20 18 24 30 24 32 40 51 64 77 82 96 112 85 103 117 mA mA mA RCLAMP(LS) Low-side gate driver Miller clamp resistance 6.5 10 Ω RCLAMP(HS) High-side gate driver Miller clamp resistance 3 10 Ω VGATE-CLAMP High-side gate voltage clamp tcc Programmable constant gate current time(2) tOB Programmable. Turn-off overboost; gate current time(2) IDSS tr tf 12/73 Leakage current IGATE-CLAMP=100 mA 16.7 TCC=’00000’ 125 TCC= 11111 3750 TBOOST=’001’, internal oscillator 62.5 TBOOST=’111’ 1000 v ns OUT = VS OUT = GND ns 100 μA μA -100 Rise time IGATE = 96 mA VCC = 15 V CGATE = 15 nF 2.5 μs Fall time IGATE = 96 mA VCC = 15 V CGATE = 15 nF 2.5 μs Doc ID 023768 Rev 2 L6482 Table 5. Electrical characteristics Electrical characteristics (continued) Symbol SRgate Parameter Test condition Gate driver output slew rate Min. Typ. IGATE= 96 mA VCC = 15 V CGATE = 15 nF 6 TDT= '00000' 125 TDT=’11111’ 4000 TBLANK= '000' 125 TBLANK=’111’ 1000 Max. Unit V/μs Deadtime and blanking tDT tblank Programmable deadtime(2) ns Programmable blanking time(2) ns Logic VIL Low level logic input voltage VIH High level logic input voltage IIH High level logic input current VIN = 5 V, VDDIO = 5 V IIL Low level logic input current VIN = 0 V, VDDIO = 5 V Low level logic output voltage(3) VDD = 3.3 V, IOL = 4 mA 0.3 VDD = 5 V, IOL = 4 mA 0.3 VOL VOH 0.8 2 High level logic output voltage V V 1 -1 µA µA V VDD = 3.3 V, IOH = 4 mA 2.4 VDD = 5 V, IOH = 4 mA 4.7 V RPUCS CS pull-up resistor 430 RPDRST STBY/RESET pull-down resistor 450 RPUSW SW pull-up resistor 80 thigh,STCK Step-clock input high time 300 ns tlow,STCK Step-clock input low time 300 ns kΩ Internal oscillator and external oscillator driver fosc,int Internal oscillator frequency Tj = 25 °C, fosc,ext Programmable external oscillator frequency -5% 16 8 +5% MHz 32 VOSCOUTH OSCOUT clock source high level voltage Internal oscillator VOSCOUTL OSCOUT clock source low level voltage Internal oscillator 0.3 V trOSCOUT tfOSCOUT OSCOUT clock source rise and fall time Internal oscillator 10 ns thigh OSCOUT clock source high time textosc Internal to external oscillator switching delay tintosc External to internal oscillator switching delay Internal oscillator Doc ID 023768 Rev 2 2.4 MHz V 62.5 ns 3 ms 100 µs 13/73 Electrical characteristics Table 5. L6482 Electrical characteristics (continued) Symbol Parameter Test condition Min. Typ. Max. Unit SPI fCK,MAX Maximum SPI clock frequency(4) 5 MHz trCK tfCK SPI clock rise and fall time(4) thCK tlCK SPI clock high and low time(4) 90 ns Chip select setup time(4) 30 ns 30 ns 625 ns 20 ns 30 ns tsetCS tholCS Chip select hold time (4) (4) tdisCS Deselect time tsetSDI Data input setup time(4) tholSDI tenSDO tdisSDO tvSDO tholSDO 1 Data input hold time(4) µs Data output enable time(4) 95 ns Data output disable time(4) 95 ns 35 ns Data output valid time(4) Data output hold time(4) 0 ns Current control VREF, max Maximum reference voltage 1000 mV VREF, min Minimum reference voltage 7.8 mV Overcurrent protection VOCD Programmable overcurrent detection voltage VDS threshold OCD_TH = ‘11111’ 800 1000 1100 mV OCD_TH = ‘00000’ 27 31 35 mV OCD_TH = ‘01001’ 270 312.5 344 mV OCD_TH = ‘10011’ 500 625 688 mV tOCD,Comp OCD comparator delay 100 200 ns tOCD,Flag OCD to flag signal delay time 230 530 ns tOCD,SD OCD to shutdown delay time OCD_TH = '11111' OCD event to 90% of gate voltage 400 630 ns VCC = VCCREG = 7.5 V VSREG = 48 V 42 VCC = VCCREG = 7.5 V VSREG = 18 V 37.5 Standby ISTBY Standby mode supply current (VSREG pin) ISTBY,vreg Standby mode supply current (VREG pin) tSTBY,min tlogicwu 14/73 µA 6 µA Minimum standby time 0.5 ms Logic power-on and wake-up time 500 µs Doc ID 023768 Rev 2 L6482 Table 5. Electrical characteristics Electrical characteristics (continued) Symbol tcpwu Parameter Test condition Charge pump power-on and wake-up time Min. Power bridges disabled, Cp = 10 nF, Cboot = 220 nF, VCC=15 V Typ. Max. Unit 1 ms 7.3 7.5 V 4 15 Internal voltage regulators VCCOUT Internal VCC voltage regulator output voltage Low (default), ICC = 10 mA High, ICC = 10 mA VCCREG, drop VSREG to VCC dropout voltage PCC ICC = 50 mA Internal VCC voltage regulator power dissipation 3 V 2.5 W Internal VREG voltage regulator output voltage IREG = 10 mA VCCREG to VREG dropout voltage IREG = 50 mA Internal VREG voltage regulator output current VREG pin shorted to ground 125 mA IREGOUT,STB Internal VREG voltage regulator output standby current Y VREG pin shorted to ground 55 mA VREGOUT VSREG, drop IREGOUT PREG 3.13 5 3.3 V 3 Internal VREG voltage regulator power dissipation 0.5 V W Integrated analog-to-digital converter NADC VADC,ref fS VADC,UVLO Analog-to-digital converter resolution Analog-to-digital converter reference voltage Analog-to-digital converter sampling frequency (2) ADCIN UVLO threshold 1.05 5 bit 3.3 V fOSC/512 kHz 1.16 1.35 V 1. Guaranteed in the temperature range -25 to 125 °C. 2. The value accuracy is dependent on oscillator frequency accuracy (Section 6.8). 3. FLAG and BUSY open drain outputs included. 4. See Figure 23. Doc ID 023768 Rev 2 15/73 Pin connection 4 L6482 Pin connection Figure 2. Pin connection (top view) LVGA1 1 38 LVGA2 OUTA1 2 37 OUTA2 HVGA1 3 36 HVGA2 EPAD NC 4 35 SENSEA ADCIN 5 34 STBY/RESET 33 SW VS 6 VBOOT 7 32 STCK PGND 8 31 FLAG 30 BUSY/SYNC CP 9 VCC 10 29 DGND VCCREG 11 28 SDO VSREG 12 27 VDDIO VREG 13 26 SDI OSCIN 14 25 CK OSCOUT 15 24 CS AGND 16 23 SENSEB HVGB1 17 22 HVGB2 OUTB1 18 21 OUTB2 LVGB1 19 20 LVGB2 AM15032v1 4.1 Pin list Table 6. 16/73 Pin description No. Name Type Function 11 VCCREG Power supply Internal VREG voltage regulator supply voltage 13 VREG Power supply Logic supply voltage 27 VDD Power supply Logic interface supply voltage 12 VSREG Power supply Internal VCC voltage regulator supply voltage 10 VCC Power supply Gate driver supply voltage 14 OSCIN Analog input Oscillator pin1. To connect an external oscillator or clock source 15 OSCOUT Analog output Oscillator pin2. To connect an external oscillator. When the internal oscillator is used, this pin can supply a 2/4/8/16 MHz clock 9 CP Output Charge pump oscillator output 7 VBOOT Power supply Bootstrap voltage needed for driving the high-side power DMOS of both bridges (A and B) 5 ADCIN Analog input Internal analog-to-digital converter input 6 VS Power supply Motor voltage 3 HVGA1 Power output High-side half-bridge A1 gate driver output Doc ID 023768 Rev 2 L6482 Pin connection Table 6. Pin description (continued) No. Name 36 HVGA2 Power output High-side half-bridge A2 gate driver output 17 HVGB1 Power output High-side half-bridge B1 gate driver output 22 HVGB2 Power output High-side half-bridge B2 gate driver output 1 LVGA1 Power output Low-side half-bridge A1 gate driver output 38 LVGA2 Power output Low-side half-bridge A2 gate driver output 19 LVGB1 Power output Low-side half-bridge B1 gate driver output 20 LVGB2 Power output Low-side half-bridge B2 gate driver output 8 PGND Ground Power ground pins. They must be connected to other ground pins 35 SENSEA Analog input Phase A current sensing input 23 SENSEB Analog input Phase B current sensing input 2 OUTA1 Power input Full-bridge A output 1 37 OUTA2 Power input Full-bridge A output 2 18 OUTB1 Power input Full-bridge B output 1 21 OUTB2 Power input Full-bridge B output 2 16 AGND Ground Analog ground. It must be connected to other ground pins 33 SW Logical input External switch input pin 29 DGND Ground Digital ground. It must be connected to other ground pins 28 SDO Logical output Data output pin for serial interface 26 SDI Logical input Data input pin for serial interface 25 CK Logical input Serial interface clock 24 CS Logical input Chip select input pin for serial interface 30 Type Function By default, the BUSY / SYNC pin is forced low when the device is performing a command. BUSY/SYNC Open drain output The pin can be programmed in order to generate a synchronization signal Status flag pin. An internal open drain transistor can pull the pin to GND when a programmed alarm Open drain output condition occurs (step loss, OCD, thermal pre-warning or shutdown, UVLO, wrong command, nonperformable command) 31 FLAG 34 STBY RESET Logical input Standby and reset pin. LOW logic level puts the device in Standby mode and reset logic. If not used, it should be connected to VREG 32 STCK Logical input Step-clock input EPAD Exposed pad Ground Exposed pad. It must be connected to other ground pins Doc ID 023768 Rev 2 17/73 Typical applications 5 L6482 Typical applications Table 7. Typical application values Name Value CVSPOL 220 µF CVS 220 nF CBOOT 470 nF CFLY 47 nF CVSREG 100 nF CVCC 470 nF CVCCREG 100 nF CVREG 100 nF CVREGPOL 22 µF CVDD 100 nF D1 Charge pump diodes Q1,Q2,Q3,Q4,Q5,Q6,Q7 ,Q8 STD25NF10 RPU 39 kΩ RSENSE 0.2 Ω (maximum phase current 5 A) Figure 3. Typical application schematic V S (10.5V - 85V ) CBOO T C VREG CVDD VREG VDD R PU VSPOL D1 CVREGPOL R PU C C VS C VCCREG CVSREG CVCC VCCREG VCC VSREG VS Analog signal CFLY CP VBOOT ADCIN FLAG HVGA1 OUTA1 L VGA1 BUSY/SYNC STBY/RESET STCK Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 RSENSE LVGA2 OUTA2 HVGA2 HOST CS SENSEA CK SDO Motor L6482 SDI SW HV GB1 OUTB1 LVGB1 OSCIN LVGB2 OUTB2 R SENSE HVGB2 OSCOUT SENSEB DGND AGND PGND AM15033v1 18/73 Doc ID 023768 Rev 2 L6482 Functional description 6 Functional description 6.1 Device power-up During power-up, the device is under reset (all logic IOs disabled and power bridges in high impedance state) until the following conditions are satisfied: ● VCC is greater than VCCthOn ● VBOOT - VS is greater than ΔVBOOTthOn ● VREG is greater than VREGthOn ● Internal oscillator is operative ● STBY/RESET input is forced high. After power-up, the device state is the following: ● Parameters are set to default ● Internal logic is driven by internal oscillator and a 2-MHz clock is provided by the OSCOUT pin ● Bridges are disabled (high impedance). After power-up, a period of tlogicwu must pass before applying a command to allow proper oscillator and logic startup. Any movement command makes the device exit from High Z state (HardStop and SoftStop included). 6.2 Logic I/O Pins CS, CK, SDI, STCK, SW and STBY/RESET are TTL/CMOS 3.3 V-5 V compatible logic inputs. Pin SDO is a TTL/CMOS compatible logic output. VDD pin voltage imposes a logical output voltage range. Pins FLAG and BUSY/SYNC are open drain outputs. SW and CS inputs are internally pulled up to VDD and STBY/RESET input is internally pulled down to ground. 6.3 Charge pump To ensure the correct driving of the high-side integrated MOSFETs, a voltage higher than the motor power supply voltage needs to be applied to the VBOOT pin. The high-side gate driver supply voltage VBOOT is obtained through an oscillator and a few external components realizing a charge pump (see Figure 4). Doc ID 023768 Rev 2 19/73 Functional description Figure 4. L6482 Charge pump circuitry VD1 VS + VCP CBOOT VS D2 CFLY VS + VCP VD1 VD2 VBOOT D1 CP VCP to high-side gate drivers VDD fPUMP Charge pump oscillator AM15034v1 6.4 Microstepping The driver is able to divide the single step into up to 16 microsteps. Stepping mode can be programmed by the STEP_SEL parameter in the STEP_MODE register (Table 22). Step mode can only be changed when bridges are disabled. Every time the step mode is changed, the electrical position (i.e. the point of microstepping sinewave that is generated) is reset to the first microstep and the absolute position counter value (Section 6.5) becomes meaningless. Figure 5. Reset position Normal mode and microstepping (16 microsteps) Normal driving Reset position PHASE A current PHASE B current Microstepping PHASE A current PHASE B current microsteps step 1 step 2 step 3 step 4 step 1 step 1 step 2 step 3 step 4 step 1 16 16 16 16 microsteps microsteps microsteps microsteps AM15035v1 20/73 Doc ID 023768 Rev 2 L6482 6.4.1 Functional description Automatic Full-step and Boost modes When motor speed is greater than a programmable full-step speed threshold, the L6482 switches automatically to Full-step mode; the driving mode returns to microstepping when motor speed decreases below the full-step speed threshold. The switching between the microstepping and Full-step mode and vice versa is always performed at an electrical position multiple of π/4 (Figure 6 and Figure 7). Full-step speed threshold is set through the related parameter in the FS_SPD register (Section 9.1.9). When the BOOST_MODE bit of the FS_SPD register is low (default), the amplitude of the voltage squarewave in Full-step mode is equal to the peak of the voltage sinewave multiplied by sine(π/4) (Figure 6). This avoids the current drop between the two driving modes. When the BOOST_MODE bit of the FS_SPD register is high, the amplitude of the voltage squarewave in Full-step mode is equal to the peak of the voltage sinewave (Figure 7). That improves the output current increasing the maximum motor torque. Figure 6. Automatic Full-step switching in Normal mode Vpeak sin(π /4)x Vpeak Phase A Phase B Full-Step Microstepping (2N+1) x π /4 Microstepping (2N+1) x π /4 AM15036v1 Doc ID 023768 Rev 2 21/73 Functional description Figure 7. L6482 Automatic Full-step switching in Boost mode Vpeak Phase A Vpeak Phase B Full-Step Microstepping (2N+1) x π /4 Microstepping (2N+1) x π/4 AM15037v1 6.5 Absolute position counter An internal 22-bit register (ABS_POS) records all the motor motions according to the selected step mode; the stored value unit is equal to the selected step mode (full, half, quarter, etc.). The position range is from -221 to +221-1 steps (see Section 9.1.1). 6.6 Programmable speed profiles The user can easily program a customized speed profile defining independently acceleration, deceleration, and maximum and minimum speed values by ACC, DEC, MAX_SPEED and MIN_SPEED registers respectively (see Section 9.1.5, 9.1.6, 9.1.7 and 9.1.8). When a command is sent to the device, the integrated logic generates the microstep frequency profile that performs a motor motion compliant to speed profile boundaries. All acceleration parameters are expressed in step/tick2 and all speed parameters are expressed in step/tick; the unit of measurement does not depend on the selected step mode. Acceleration and deceleration parameters range from 2-40 to (212-2)• 2-40 step/tick2 (equivalent to 14.55 to 59590 step/s2). Minimum speed parameter ranges from 0 to (212-1)• 2-24 step/tick (equivalent to 0 to 976.3 step/s). Maximum speed parameter ranges from 2-18 to (210-1)• 2-18 step/tick (equivalent to 15.25 to 15610 step/s). 6.6.1 Infinite acceleration/deceleration mode When the ACC register value is set to max. (0xFFF), the system works in “infinite acceleration mode”: acceleration and deceleration phases are totally skipped, as shown in Figure 8. It is not possible to skip the acceleration or deceleration phase independently. 22/73 Doc ID 023768 Rev 2 L6482 Functional description Figure 8. Speed profile in infinite acceleration/deceleration mode SPEED Programmed maximum speed Programmed number of microsteps time time Indexing mode 6.7 Constant speed mode AM15038v1 Motor control commands The L6482 can accept different types of commands: ● constant speed commands (Run, GoUntil, ReleaseSW) ● absolute positioning commands (GoTo, GoTo_DIR, GoHome, GoMark) ● motion commands (Move) ● stop commands (SoftStop, HardStop, SoftHiz, HardHiz). For detailed command descriptions refer to Section 9.2. 6.7.1 Constant speed commands A constant speed command produces a motion in order to reach and maintain a userdefined target speed starting from the programmed minimum speed (set in the MIN_SPEED register) and with the programmed acceleration/deceleration value (set in the ACC and DEC registers). A new constant speed command can be requested anytime. Figure 9. Constant speed command examples Speed (step frequency) SPD3 Run(SPD4,BW) SPD1 SPD2 Run(SPD2,FW) Run(SPD3,FW) Minimum speed Minimum speed time Run(SPD1,FW) SPD4 AM15039v1 6.7.2 Positioning commands An absolute positioning command produces a motion in order to reach a user-defined position that is sent to the device together with the command. The position can be reached Doc ID 023768 Rev 2 23/73 Functional description L6482 performing the minimum path (minimum physical distance) or forcing a direction (see Figure 10). Performed motor motion is compliant to programmed speed profile boundaries (acceleration, deceleration, minimum and maximum speed). Note that with some speed profiles or positioning commands, the deceleration phase can start before the maximum speed is reached. Figure 10. Positioning command examples Forward direction 0 0 Present position Present position Target position Target position -2 21 +2 21-1 -2 21 +2 21-1 GoTo_DIR(Target pos,FW) GoTo(Target pos) AM15040v1 6.7.3 Motion commands Motion commands produce a motion in order to perform a user-defined number of microsteps in a user-defined direction that are sent to the device together with the command (see Figure 11). Performed motor motion is compliant to programmed speed profile boundaries (acceleration, deceleration, minimum and maximum speed). Note that with some speed profiles or motion commands, the deceleration phase can start before the maximum speed is reached. Figure 11. Motion command examples SPEED SPEED programmed number of microsteps programmed number of microsteps programmed maximum speed programmed maximum speed programmed ACCELERATION programmed minimum speed programmed ACCELERATION programmed DECELERATION programmed minimum speed Note: with some Acceleration/Decelaration profiles the programmed maximum speed is never reached programmed DECELERATION time time AM15041v1 24/73 Doc ID 023768 Rev 2 L6482 6.7.4 Functional description Stop commands A stop command forces the motor to stop. Stop commands can be sent anytime. The SoftStop command causes the motor to decelerate with a programmed deceleration value until the MIN_SPEED value is reached and then stops the motor keeping the rotor position (a holding torque is applied). The HardStop command stops the motor instantly, ignoring deceleration constraints and keeping the rotor position (a holding torque is applied). The SoftHiZ command causes the motor to decelerate with a programmed deceleration value until the MIN_SPEED value is reached and then forces the bridges into high impedance state (no holding torque is present). The HardHiZ command instantly forces the bridges into high impedance state (no holding torque is present). 6.7.5 Step-clock mode In Step-clock mode the motor motion is defined by the step-clock signal applied to the STCK pin. At each step-clock rising edge, the motor is moved one microstep in the programmed direction and the absolute position is consequently updated. When the system is in Step-clock mode, the SCK_MOD flag in the STATUS register is raised, the SPEED register is set to zero and the motor status is considered stopped regardless of the STCK signal frequency (the MOT_STATUS parameter in the STATUS register equal to “00”). 6.7.6 GoUntil and ReleaseSW commands In most applications the power-up position of the stepper motor is undefined, so an initialization algorithm driving the motor to a known position is necessary. The GoUntil and ReleaseSW commands can be used in combination with external switch input (see Section 6.14) to easily initialize the motor position. The GoUntil command makes the motor run at target constant speed until the SW input is forced low (falling edge). When this event occurs, one of the following actions can be performed: ● ABS_POS register is set to zero (home position) and the motor decelerates to zero speed (as a SoftStop command) ● ABS_POS register value is stored in the MARK register and the motor decelerates to zero speed (as a SoftStop command). If the SW_MODE bit of the CONFIG register is set to ‘0’, the motor does not decelerate but it immediately stops (as a HardStop command). The ReleaseSW command makes the motor run at a programmed minimum speed until the SW input is forced high (rising edge). When this event occurs, one of the following actions can be performed: ● ABS_POS register is set to zero (home position) and the motor immediately stops (as a HardStop command) ● ABS_POS register value is stored in the MARK register and the motor immediately stops (as a HardStop command). If the programmed minimum speed is less than 5 step/s, the motor is driven at 5 step/s. Doc ID 023768 Rev 2 25/73 Functional description 6.8 L6482 Internal oscillator and oscillator driver The control logic clock can be supplied by the internal 16-MHz oscillator, an external oscillator (crystal or ceramic resonator) or a direct clock signal. These working modes can be selected by EXT_CLK and OSC_SEL parameters in the CONFIG register (see Table 35). At power-up the device starts using the internal oscillator and provides a 2-MHz clock signal on the OSCOUT pin. Attention: In any case, before changing clock source configuration, a hardware reset is mandatory. Switching to different clock configurations during operation may cause unexpected behavior. 6.8.1 Internal oscillator In this mode the internal oscillator is activated and OSCIN is unused. If the OSCOUT clock source is enabled, the OSCOUT pin provides a 2, 4, 8 or 16-MHz clock signal (according to OSC_SEL value); otherwise it is unused (see Figure 12). 6.8.2 External clock source Two types of external clock source can be selected: crystal/ceramic resonator or direct clock source. Four programmable clock frequencies are available for each external clock source: 8, 16, 24 and 32-MHz. When an external crystal/resonator is selected, the OSCIN and OSCOUT pins are used to drive the crystal/resonator (see Figure 12). The crystal/resonator and load capacitors (CL) must be placed as close as possible to the pins. Refer to Table 8 for the choice of the load capacitor value according to the external oscillator frequency. Table 8. CL values according to external oscillator frequency Crystal/resonator frequency (1) CL(2) 8 MHz 25 pF (ESRmax = 80 Ω) 16 MHz 18 pF (ESRmax = 50 Ω) 24 MHz 15 pF (ESRmax = 40 Ω) 32 MHz 10 pF (ESRmax = 40 Ω) 1. First harmonic resonance frequency. 2. Lower ESR value allows greater load capacitors to be driven. If a direct clock source is used, it must be connected to the OSCIN pin and the OSCOUT pin supplies the inverted OSCIN signal (see Figure 12). The L6482 integrates a clock detection system that resets the device in the case of a failure of the external clock source (direct or crystal/resonator). The monitoring of the clock source is disabled by default, it can be enabled setting high the WD_EN bit in the GATECFG1 26/73 Doc ID 023768 Rev 2 L6482 Functional description register (Section 9.1.18). When the external clock source is selected, the device continues to work with the integrated oscillator for textosc milliseconds and then the clock management system switches to the OSCIN input. Figure 12. OSCIN and OSCOUT pin configuration EXT_CLK = "0" EXT_CLK = "1" 8/16/24/32 MHz CL CL 8/16/24/32 MHz OSC_SEL = "1xx" OSCIN OSCOUT OSCIN External oscillator configuration OSCOUT External clock source configuration 2/4/8/16 MHz OSC_SEL = "0xx" UNUSED UNUSED UNUSED OSCIN OSCOUT OSCIN Internal oscillator configuration without clock source OSCOUT Internal oscillator configuration with clock generation AM15042v1 Note: When OSCIN is UNUSED, it should be left floating. When OSCOUT is UNUSED, it should be left floating. 6.9 Overcurrent detection The L6482 measures the load current of each half-bridge sensing the VDS voltage of all the Power MOSFETs (Figure 13). When any of the VDS voltages rise above the programmed threshold, the OCD flag in the STATUS register is forced low until the event expires and a GetStatus command is sent to the device (Section 9.1.21 and Section 9.2.20). The overcurrent event expires when all the Power MOSFET VDS voltages fall below the programmed threshold. The overcurrent threshold can be programmed by the OCD_TH register in one of 32 available values ranging from 31.25 mV to 1 V with steps of 31.25 mV (Table 21, Section 9.1.17). Doc ID 023768 Rev 2 27/73 Functional description L6482 Figure 13. Overcurrent detection-principle scheme Vs LOGIC CORE OCD_HSxx Vs + - HVGxx Voltage Comparator BLANKING OUTxx Voltage Comparator OCD_LSxx OC THRESHOLD CURRENT DAC LVGxx + GNDx - GND GND AM15043v1 The overcurrent detection comparators are disabled, in order to avoid wrong voltage measurements, in the following cases: ● The respective half-bridge is in high impedance state (both gates forced off) ● The respective half-bridge is commutating ● The respective half-bridge is commutated and the programmed blanking time has not yet elapsed ● The respective gate is turned off. It is possible to set, if an overcurrent event causes the bridge turn-off or not, through the OC_SD bit in the CONFIG register. When the power bridges are turned off by an overcurrent event, they cannot be turned on until the OCD flag is released by a GetStatus command. 6.10 Undervoltage lockout (UVLO) The L6482 provides a programmable gate driver supply voltage UVLO protection. When one of the supply voltages of the gate driver (VCC for the low sides and VBOOT - VS for the high sides) falls below the respective turn-off threshold, an undervoltage event occurs. In this case, all gates are immediately turned off and the UVLO flag in the STATUS register is forced low. The UVLO flag is forced low and the gates are kept off until the gate driver supply voltages return to above the respective turn-on threshold; in this case the undervoltage event expires and the UVLO flag can be released through a GetStatus command. The UVLO thresholds can be selected between two sets according to the UVLOVAL bit value in the CONFIG register. 28/73 Doc ID 023768 Rev 2 L6482 Functional description Table 9. UVLO thresholds UVLOVAL 6.11 0 1 Low-side gate driver supply turn-off threshold (VCCthOff) 6.3 V 10 V Low-side gate driver supply turn-on threshold (VCCthOn) 6.9 V 10.4 V High-side gate driver supply turn-off threshold (ΔVBOOTthOff) 5.5 V 8.8 V High-side gate driver supply turn-on threshold (ΔVBOOTthOff) 6V 9.2 V VS undervoltage lockout (UVLO_ADC) The device provides an undervoltage signal of the integrated ADC input voltage (the UVLO_ADC flag in the STATUS register). When VADCIN falls below the VADC,UVLO value, the UVLO_ADC flag is forced low and it is kept in this state until the ADCIN voltage is greater than VADC,UVLO and a GetStatus command is sent to the device. The ADCIN undervoltage event does not turn off the gates of the power bridges. The motor supply voltage undervoltage detection can be performed by means of this feature, connecting the ADCIN pin to VS through a voltage divider. 6.12 Thermal warning and thermal shutdown An integrated sensor allows detection of the internal temperature and implementation of a 3level protection. When the Tj(WRN)Set threshold is reached, a warning signal is generated. This is the thermal warning condition and it expires when the temperature falls below the Tj(WRN)Rel threshold. When the Tj(OFF)Set threshold is reached, all the gates are turned off and the gate driving circuitry is disabled (Miller clamps are still operative). This condition expires when the temperature falls below the Tj(OFF)Rel threshold. When the Tj(SD)OFF threshold is reached, all the gates are turned off using Miller clamps, the internal VCC voltage regulator is disabled and the current capability of the internal VREG voltage regulator is reduced (thermal shutdown). In this condition, logic is still active (if supplied). The thermal shutdown condition only expires when the temperature goes below Tj(SD)ON. The thermal condition of the device is shown by TH_STATUS bits in the STATUS register (Table 10). Doc ID 023768 Rev 2 29/73 Functional description Table 10. L6482 Thermal protection summarizing table State Set condition Release condition Normal Description TH_STATUS Normal operation state 00 Warning Tj > Tj(WRN)Set Tj > Tj(WRN)Rel Temperature warning: operation is not limited 01 Bridge shutdown Tj > Tj(OFF)Set Tj > Tj(OFF)Rel High temperature protection: the gates are turned off and the gate drivers are disabled 10 Tj > Tj(SD)Rel Overtemperature protection: the gates are turned off, the gate drivers are disabled, the internal VCC voltage regulator is disabled, the current capability of the internal VREG voltage regulator is limited, and the charge pump is disabled 11 Device shutdown 6.13 Tj > Tj(SD)Set Reset and standby The device can be reset and put into Standby mode through the STBY/RESET pin. When it is forced low, all the gates are turned off (High Z state), the charge pump is stopped, the SPI interface and control logic are disabled and the internal VREG voltage regulator maximum output current is limited; as a result, the L6482 heavily reduces the power consumption. At the same time the register values are reset to their default and all the protection functions are disabled. The STBY/RESET input must be forced low at least for tSTBY,min in order to ensure the complete switch to Standby mode. On exiting Standby mode, as well as for IC power-up, a delay must be given before applying a new command to allow proper oscillator and charge pump startup. Actual delay could vary according to the values of the charge pump external components. On exiting Standby mode all the gates are off and the HiZ flag is high. The registers can be reset to the default values without putting the device into Standby mode through the ResetDevice command (Section 9.2.15). 6.14 External switch (SW pin) The SW input is internally pulled up to VDD and detects if the pin is open or connected to ground (see Figure 14). The SW_F bit of the STATUS register indicates if the switch is open (‘0’) or closed (‘1’) (Section 9.1.21); the bit value is refreshed at every system clock cycle (125 ns). The SW_EVN flag of the STATUS register is raised when a switch turn-on event (SW input falling edge) is detected (Section 9.1.21). A GetStatus command releases the SW_EVN flag (Section 9.2.20). By default, a switch turn-on event causes a HardStop interrupt (SW_MODE bit of the CONFIG register set to ‘0’). Otherwise (SW_MODE bit of the CONFIG register set to ‘1’), 30/73 Doc ID 023768 Rev 2 L6482 Functional description switch input events do not cause interrupts and the switch status information is at the user’s disposal (Table 36, Section 9.1.20). The switch input can be used by GoUntil and ReleaseSW commands as described in Section 9.2.10 and Section 9.2.11. If the SW input is not used, it should be connected to VDD. Figure 14. External switch connection VDD External Switch SW AM15044v1 6.15 Programmable gate drivers The L6482 integrates eight programmable gate drivers that allow the fitting of a wide range of applications. The following parameters can be adjusted: ● gate sink/source current (IGATE) ● controlled current time (tCC) ● turn-off overboost time (tOB). During turn-on, the gate driver charges the gate forcing an IGATE current for all the controlled current time period. At the end of the controlled current phase the gate of the external MOSFET should be completely charged, otherwise the gate driving circuitry continues to charge it using a holding current. This current is equal to IGATE for the low-side gate drivers and 1 mA for the high-side ones. During turn-off, the gate driver discharges the gate sinking an IGATE current for all the controlled current time period. At the beginning of turn-off an overboost phase can be added: in this case the gate driver sinks an IOB current for the programmed tOB period in order to rapidly reach the plateau region. At the end of the controlled current time the gate of the external MOSFET should be completely charged, otherwise the gate driving circuitry discharges it using the integrated Miller clamp. Doc ID 023768 Rev 2 31/73 Functional description L6482 Figure 15. Gate driving currents tOB Gate charged tCC Gate discharged t CC IOB Igate Igate Gate Current Gate turn-on Gate turn-off AM15045v1 The gate current can be set to one of the following values: 4, 8, 16, 24, 32, 64 and 96 mA through the IGATE parameter in the GATECFG1 register (see Section 9.1.18). Controlled current time can be programmed within range from 125 ns to 3.75 μs with a resolution of 125 ns (TCC parameter in the GATECFG1 register) (see Section 9.1.18). Turn-off overboost time can be set to one of the following values: 0, 62.5, 125, 250 ns (TBOOST parameter in the GATECFG1 register). The 62.5 ns value is only available when clock frequency is 16 MHz or 32 MHz; when clock frequency is 8 MHz it is changed to 125 ns and when a 24-MHz clock is used it is changed to 83.3 ns. (see Section 9.1.18). 6.16 Deadtime and blanking time During the bridge commutation, a deadtime is added in order to avoid cross conductions. The deadtime can be programmed within a range from 125 ns to 4 μs with a resolution of 125 ns (TDT parameter in the GATECFG2 register) (see Section 9.1.19). At the end of each commutation the overcurrent and stall detection comparators are disabled (blanking) in order to avoid the respective systems detecting body diode turn-off current peaks. The duration of blanking time is programmable through the TBLANK parameter in the GATECFG2 register at one of the following values: 125, 250, 375, 500, 625, 750, 875, 1000 ns (see Section 9.1.19). 6.17 Integrated analog-to-digital converter The L6482 integrates an NADC bit ramp-compare analog-to-digital converter with a reference voltage equal to VREG. The analog-to-digital converter input is available through the ADCIN pin and the conversion result is available in the ADC_OUT register (Section 9.1.14). The ADC_OUT value can be used for torque regulation or can be at the user’s disposal. 32/73 Doc ID 023768 Rev 2 L6482 6.18 Functional description Supply management and internal voltage regulators The L6482 integrates two linear voltage regulators: the first one can be used to obtain gate driver supply starting from a higher voltage (e.g. the motor supply one). Its output voltage can be set to 7.5 V or 15 V according to the VCCVAL bit value (CONFIG register). The second linear voltage regulator can be used to obtain the 3.3 V logic supply voltage. The regulators are designed to supply the internal circuitry of the IC and should not be used to supply external components. The input and output voltages of both regulators are connected to external pins and the regulators are totally independent: in this way a very flexible supply management can be performed using external components or external supply voltages (Figure 16). Figure 16. Device supply pin management All voltages are internally generated All voltages are externally supplied VBOOT VBOOT CP CP VBUS VBUS VS VS VSREG VSREG VCC 7V5 - 15V VCC Using external components (zener diodes, resistors, ...) it is possible to reduce internal power dissipation constrains. 7V5 - 15V 3.3 V VCCREG 3V3 VCC VCCREG 3V3 VREG VREG AM15046v1 If VCC is externally supplied, the VSREG and VCC pins must be shorted (VSREG must be compliant with VCC range). If VREG is externally supplied, the VCCREG and VREG pins must be shorted and equal to 3.3 V. VSREG must be always less than VBOOT in order to avoid related ESD protection diode turnon. The device can be protected from this event by adding an external low drop diode between the VSREG and VS pins, charge pump diodes should be low drop too. VCCREG must be always less than VCC in order to avoid ESD protection diode turn-on. The device can be protected from this event by adding an external low drop diode between the VCCREG and VSREG pins. Both regulators provide a short-circuit protection limiting the load current within the respective maximum ratings. Doc ID 023768 Rev 2 33/73 Functional description 6.19 L6482 BUSY/SYNC pin This pin is an open drain output which can be used as busy flag or synchronization signal according to the SYNC_EN bit value (STEP_MODE register) (see Section 9.1.17). 6.20 FLAG pin By default, an internal open drain transistor pulls the FLAG pin to ground when at least one of the following conditions occurs: ● Power-up or standby/reset exit ● Overcurrent detection ● Thermal warning ● Thermal shutdown ● UVLO ● UVLO on ADC input ● Switch turn-on event ● Command error. It is possible to mask one or more alarm conditions by programming the ALARM_EN register (see Section 9.1.17 Table 26). If the corresponding bit of the ALARM_EN register is low, the alarm condition is masked and it does not cause a FLAG pin transition; all other actions imposed by alarm conditions are performed anyway. In case of daisy chain configuration, FLAG pins of different ICs can be OR-wired to save host controller GPIOs. 34/73 Doc ID 023768 Rev 2 L6482 7 Phase current control Phase current control The L6482 performs a new current control technique, named predictive current control, allowing the device to obtain the target average phase current. This method is described in detail in Section 7.1. Furthermore, the L6482 automatically selects the better decay mode in order to follow the current profile. Current control algorithm parameters can be programmed by T_FAST, TON_MIN, TOFF_MIN and CONFIG registers (see Section 9.1.11, 9.1.12, 9.1.13 and 9.1.20 for details). Different current amplitude can be set for acceleration, deceleration and constant speed phases and when the motor is stopped through TVAL_ACC, TVAL_DEC, TVAL_RUN and TVAL_HOLD registers (see Section 9.1.10). The output current amplitude can also be regulated by the ADCIN voltage value (see Section 7.4). Each bridge is driven by an independent control system that shares with the other bridge the control parameters only. 7.1 Predictive current control Unlike classical peak current control systems, that make the phase current decay when the target value is reached, this new method keeps the power bridge ON for an extra time after reaching the current threshold. At each cycle the system measures the time required to reach the target current (tSENSE). After that the power stage is kept in a “predictive” ON state (tPRED) for a time equal to the mean value of tSENSE in the last two control cycles (actual one and previous one), as shown in Figure 17. Figure 17. Predictive current control Iout predictive ON state t tPRED (n) = SENSE OFF state (n-1) + tSENSE(n) 2 Iref t SENSE (n-1) tPRED(n-1) tPRED (n) tOFF tSENSE (n) tOFF AM15048v1 At the end of the predictive ON state the power stage is set in OFF state for a fixed time, as in a constant tOFF current control. During the OFF state both slow and fast decay can be performed; the better decay combination is automatically selected by the L6482, as described in Section 7.2. Doc ID 023768 Rev 2 35/73 Phase current control L6482 As shown in Figure 17, the system is able to center the triangular wave on the desired reference value, improving dramatically the accuracy of the current control system: in fact the average value of a triangular wave is exactly equal to the middle point of each of its segment and at steady-state the predictive current control tends to equalize the duration of the tSENSE and the tPRED time. Furthermore, the tOFF value is recalculated each time a new current value is requested (microstep change) in order to keep the PWM frequency as near as possible to the programmed one (TSW parameter in the CONFIG register). The device can be forced to work using classic peak current control setting low the PRED_EN bit in the CONFIG register (default condition). In this case, after the sense phase (tSENSE) the power stage is set in OFF state, as shown in Figure 18. Figure 18. Non-predictive current control Iout sense ON state OFF state Iref tOFF 7.2 tOFF AM15049v1 Auto-adjusted decay mode During the current control, the device automatically selects the better decay mode in order to follow the current profile reducing the current ripple. At reset, the off-time is performed turning on both the low-side MOS of the power stage and the current recirculates in the lower half of the bridge (slow decay). If, during a PWM cycle, the target current threshold is reached in a time shorter than the TON_MIN value, a fast decay of TOFF_FAST/8 (T_FAST register) is immediately performed turning on the opposite MOS of both half-bridges and the current recirculates back to the supply bus. After this time, the bridge returns to ON state: if the time needed to reach the target current value is still less than TON_MIN, a new fast decay is performed with a period twice the previous one. Otherwise, the normal control sequence is followed as described in Section 7.1. The maximum fast decay duration is set by the TOFF_FAST value. 36/73 Doc ID 023768 Rev 2 L6482 Phase current control Figure 19. Adaptive decay - fast decay tuning 1st fast decay: Tfast = TOFF_FAST/8 3rd fast decay: Tfast = TOFF_FAST/2 Ton > TON_MIN Tfast = TOFF_FAST/2 2nd fast decay (*): Tfast = TOFF_FAST/4 reference current (*)Note: starting from 2nd fast decay the system combines fast and slow decay during the OFF phase. AM15050v1 When two or more fast decays are performed with the present target current, the control system adds a fast decay at the end of every off-time keeping the OFF state duration constant (tOFF is split into tOFF, SLOW and tOFF, FAST). When the current threshold is increased by a microstep change (rising step), the system returns to normal decay mode (slow decay only) and the tFAST value is halved. Stopping the motor or reaching the current sinewave zero crossing causes the current control system to return to the reset state. Doc ID 023768 Rev 2 37/73 Phase current control L6482 Figure 20. Adaptive decay - switch from normal to slow+fast decay mode and vice versa 2 nd fast decay switch to fast + slow decay mode 1st fast decay reference current Time tOFF tOFF tOFF,SLOW t FAST tOFF,FAST Target current is increased (raising step) system returns to slow decay mode and tFAST vaule is halved reference current Time AM15051v1 7.3 Auto-adjusted fast decay during the falling steps When the target current is decreased by a microstep change (falling step), the device performs a fast decay in order to reach the new value as fast as possible. However, exceeding the fast duration could cause a strong ripple on the step change. The L6482 automatically adjusts these fast decays reducing the current ripple. At reset the fast decay value (tFALL) is set to FALL_STEP/4 (T_FAST register). The tFALL value is doubled every time, within the same falling step, an extra fast decay is necessary to obtain an on-time greater than TON_MIN (see Section 9.1.12). The maximum tFALL value is equal to FALL_STEP. At the next falling step, the system uses the last tFALL value of the previous falling step. Stopping the motor or reaching the current sinewave zero crossing causes the current control system to return to the reset state. 38/73 Doc ID 023768 Rev 2 L6482 Phase current control Figure 21. Fast decay tuning during the falling steps Falling step 1st fast decay: t FALL = FALL_STEP/4 Falling step 1st fast decay: tFALL= FALL_STEP/2 reference current 2 nd fast decay: tFALL = FALL_STEP/2 Time AM15052v1 7.4 Torque regulation (output current amplitude regulation) The phase currents are monitored through two shunt resistors (one for each power bridge) connected to the respective sense pin (see Figure 22). The integrated comparator compares the sense resistor voltage with the internal reference generated using the peak value, which is proportional to the output current amplitude, and the microstepping code. The comparison result is provided to the logic in order to implement the current control algorithm as described in previous sections. The peak reference voltage can be regulated in two ways: writing TVAL_ACC, TVAL_DEC, TVAL_RUN and TVAL_HOLD registers or varying the ADCIN voltage value. The EN_TQREG bit (CONFIG register) sets the torque regulation method. If this bit is high, ADC_OUT prevalue is used to regulate output current amplitude (see Table 20, Section 9.1.14). Otherwise the internal analog-to-digital converter is at the user’s disposal and the output current amplitude is managed by TVAL_HOLD, TVAL_RUN, TVAL_ACC and TVAL_DEC registers (see Table 14, Section 9.1.10). The voltage applied to the ADCIN pin is sampled at fS frequency and converted in an NADC bit digital signal. The analog-to-digital conversion result is available in the ADC_OUT register. Doc ID 023768 Rev 2 39/73 Phase current control L6482 Figure 22. Current sensing and reference voltage generation Peak reference DAC To gate drivers To gate drivers TVAL_X or ADCIN Load Microstepping DAC Microstep To gate drivers To current control logic To gate drivers Vref SENSEX Rsense AM15047v1 40/73 Doc ID 023768 Rev 2 L6482 8 Serial interface Serial interface The integrated 8-bit serial peripheral interface (SPI) is used for a synchronous serial communication between the host microprocessor (always master) and the L6482 (always slave). The SPI uses chip select (CS), serial clock (CK), serial data input (SDI) and serial data output (SDO) pins. When CS is high the device is unselected and the SDO line is inactive (high impedance). The communication starts when CS is forced low. The CK line is used for synchronization of data communication. All commands and data bytes are shifted into the device through the SDI input, most significant bit first. The SDI is sampled on the rising edges of the CK. All output data bytes are shifted out of the device through the SDO output, most significant bit first. The SDO is latched on the falling edges of the CK. When a return value from the device is not available, an all zero byte is sent. After each byte transmission the CS input must be raised and be kept high for at least tdisCS in order to allow the device to decode the received command and put the return value into the shift register. All timing requirements are shown in Figure 23 (see Section 3 for values). Multiple devices can be connected in daisy chain configuration, as shown in Figure 24. Figure 23. SPI timings diagram CS t disCS t setCS t rCK t hCK t fCK t lCK CK t enSDO t setSDI t holCS MSB SDI N-1 HiZ MSB N-2 LSB t vSDO t holSDO SDO t disSDO t holSDI N-1 N-2 LSB MSB AM15053v1 Doc ID 023768 Rev 2 41/73 Serial interface L6482 Figure 24. Daisy chain configuration DEV 1 CS CS CK CK HOSTSDO M SDIM SDI SDO DEV 2 CS CK HOST SPI signals SDI SDO CS SDOM Byte N SDIM Byte N Byte N-1 Byte 1 Byte N DEV N Byte N-1 Byte 1 Byte N CS CK SDI SDO AM15054v1 42/73 Doc ID 023768 Rev 2 L6482 Programming manual 9 Programming manual 9.1 Register and flag description Table 11 shows the user registers available (a detailed description can be found in the respective paragraphs): Table 11. Address [Hex] Register map Register name h01 ABS_POS h02 EL_POS h03 h04 Register function Len. [bit] Current position 22 Electrical position 9 MARK Mark position SPEED Current speed Reset Reset Hex value 000000 0 000 Remarks (1) R, WS 0 R, WS 22 000000 0 R, WR 20 00000 0 step/tick (0 step/s) step/tick2 (2008 R h05 ACC Acceleration 12 08A 125.5e-12 step/s2) h06 DEC Deceleration 12 08A 125.5e-12 step/tick2 (2008 step/s2) R, WS h07 MAX_SPEED Maximum speed 10 041 248e-6 step/tick (991.8 step/s) R, WR h08 MIN_SPEED Minimum speed 12 000 0 step/tick (0 step/s) R, WS h15 FS_SPD Full-step speed 10 027 150.7e-6 step/tick (602.7 step/s) R, WR h09 TVAL_HOLD Holding reference voltage 7 29 328 mV R, WR h0A TVAL_RUN Constant speed reference voltage 7 29 328 mV R, WR h0B TVAL_ACC Acceleration starting reference voltage 7 29 328 mV R, WR h0C TVAL_DEC Deceleration starting reference voltage 7 29 328 mV R, WR h0D RESERVED 16 - h0E T_FAST Fast decay settings 8 19 1 us / 5 us R, WH h0F TON_MIN Minimum on-time 8 29 20.5 us R, WH h10 TOFF_MIN Minimum off-time 8 29 20.5 us R, WH h11 RESERVED 8 - - - ADC output 5 XX(2) 0 R OCD threshold 5 8 281.25 mV - 8 - - Step mode 8 7 16 μsteps, SYNC mode disabled R, WH Alarms enabled 8 FF All alarms enabled R, WS h12 ADC_OUT h13 OCD_TH h14 RESERVED h16 STEP_MODE h17 ALARM_EN - - Doc ID 023768 Rev 2 - R, WS - R, WR - 43/73 Programming manual Table 11. Address [Hex] L6482 Register map (continued) Register name Register function Len. [bit] Reset Reset Hex value Remarks (1) h18 GATECFG1 Gate driver configuration 11 0 Igate = 4 mA, tCC = 125 ns, no boost R, WH h19 GATECFG2 Gate driver configuration 8 0 tBLANK = 125 ns, tDT = 125 ns R, WH 2C88 Internal 16 MHz oscillator (OSCOUT@2 MHz), SW event causes HardStop, motor supply voltage compensation disabled, overcurrent shutdown, VCC = 7.5 V, UVLO threshold low, tSW = 44 us R, WH h1A h1B CONFIG STATUS IC configuration 16 Status 16 High impedance state, motor stopped, XXXX(2) reverse direction, all fault flags released UVLO/Reset flag set R 1. R: readable, WH: writable, only when outputs are in high impedance, WS: writable only when motor is stopped, WR: always writable. 2. According to startup conditions. 9.1.1 ABS_POS The ABS_POS register contains the current motor absolute position in agreement with the selected step mode; the stored value unit is equal to the selected step mode (full, half, quarter, etc.). The value is in 2's complement format and it ranges from -221 to +221-1. At power-on the register is initialized to “0” (HOME position). Any attempt to write the register when the motor is running causes the command to be ignored and the NOTPERF_CMD flag to rise (Section 9.1.21). 9.1.2 EL_POS The EL_POS register contains the current electrical position of the motor. The two MSbits indicate the current step and the other bits indicate the current microstep (expressed in step/16) within the step. Table 12. Bit 8 EL_POS register Bit 7 STEP Bit 6 Bit 5 Bit 4 MICROSTEP Bit 3 Bit 2 Bit 1 Bit 0 0 0 0 When the EL_POS register is written by the user, the new electrical position is instantly imposed. When the EL_POS register is written, its value must be masked in order to match 44/73 Doc ID 023768 Rev 2 L6482 Programming manual with the step mode selected in the STEP_MODE register in order to avoid a wrong microstep value generation (Section 9.1.17); otherwise the resulting microstep sequence is incorrect. Any attempt to write the register when the motor is running causes the command to be ignored and the NOTPERF_CMD flag to rise (Section 9.1.21). 9.1.3 MARK The MARK register contains an absolute position called MARK, according to the selected step mode; the stored value unit is equal to the selected step mode (full, half, quarter, etc.). It is in 2's complement format and it ranges from -221 to +221-1. 9.1.4 SPEED The SPEED register contains the current motor speed, expressed in step/tick (format unsigned fixed point 0.28). In order to convert the SPEED value in step/s, the following formula can be used: Equation 1 – 28 SPEED ⋅ 2 [ step/s ] = ---------------------------------------tick where SPEED is the integer number stored in the register and tick is 250 ns. The available range is from 0 to 15625 step/s with a resolution of 0.015 step/s. Note: The range effectively available to the user is limited by the MAX_SPEED parameter. Any attempt to write the register causes the command to be ignored and the NOTPERF_CMD flag to rise (Section 9.1.21). 9.1.5 ACC The ACC register contains the speed profile acceleration expressed in step/tick2 (format unsigned fixed point 0.40). In order to convert the ACC value in step/s2, the following formula can be used: Equation 2 – 40 2 ACC ⋅ 2 [ step/s ] = ------------------------------2 tick where ACC is the integer number stored in the register and tick is 250 ns. The available range is from 14.55 to 59590 step/s2 with a resolution of 14.55 step/s2. When the ACC value is set to 0xFFF, the device works in infinite acceleration mode. Any attempt to write to the register when the motor is running causes the command to be ignored and the NOTPERF_CMD flag to rise (Section 9.1.21). Doc ID 023768 Rev 2 45/73 Programming manual 9.1.6 L6482 DEC The DEC register contains the speed profile deceleration expressed in step/tick2 (format unsigned fixed point 0.40). In order to convert the DEC value in step/s2, the following formula can be used: Equation 3 – 40 2 DEC ⋅ 2 [ step/s ] = ------------------------------2 tick where DEC is the integer number stored in the register and tick is 250 ns. The available range is from 14.55 to 59590 step/s2 with a resolution of 14.55 step/s2. When the device is working in infinite acceleration mode this value is ignored. Any attempt to write the register when the motor is running causes the command to be ignored and the NOTPERF_CMD flag to rise (Section 9.1.21). 9.1.7 MAX_SPEED The MAX_SPEED register contains the speed profile maximum speed expressed in step/tick (format unsigned fixed point 0.18). In order to convert it in step/s, the following formula can be used: Equation 4 – 18 MAX_SPEED ⋅ 2 [ step/s ] = -------------------------------------------------------tick where MAX_SPEED is the integer number stored in the register and tick is 250 ns. The available range is from 15.25 to 15610 step/s with a resolution of 15.25 step/s. 9.1.8 MIN_SPEED The MIN_SPEED register contains the following parameters: Table 13. MIN_SPEED register Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 0 MIN_SPEED The MIN_SPEED parameter contains the speed profile minimum speed. Its value is expressed in step/tick and to convert it in step/s the following formula can be used: Equation 5 – 24 MIN_SPEED ⋅ 2 [ step/s ] = -----------------------------------------------------tick where MIN_SPEED is the integer number stored in the register and tick is the ramp 250 ns. 46/73 Doc ID 023768 Rev 2 L6482 Programming manual The available range is from 0 to 976.3 step/s with a resolution of 0.238 step/s. Any attempt to write the register when the motor is running causes the NOTPERF_CMD flag to rise. 9.1.9 FS_SPD The FS_SPD register contains the following parameters: Table 14. FS_SPD register Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 BOOST_MODE Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 FS_SPD The FS_SPD threshold speed value over which the step mode is automatically switched to full-step two-phase on. Its value is expressed in step/tick (format unsigned fixed point 0.18) and to convert it in step/s the following formula can be used: Equation 6 – 18 ( FS_SPD + 0.5 ) ⋅ 2 [ step/s ] = -------------------------------------------------------------tick If FS_SPD value is set to hFF (max.) the system always works in Microstepping mode (SPEED must go over the threshold to switch to Full-step mode). Setting FS_SPD to zero does not have the same effect as setting the step mode to full-step two-phase on: the zero FS_SPD value is equivalent to a speed threshold of about 7.63 step/s. The available range is from 7.63 to 15625 step/s with a resolution of 15.25 step/s. The BOOST_MODE bit sets the amplitude of the voltage squarewave during the full-step operation (see Section 6.4.1). 9.1.10 TVAL_HOLD, TVAL_RUN, TVAL_ACC and TVAL_DEC The TVAL_HOLD register contains the reference voltage that is assigned to the torque regulation DAC when the motor is stopped. The TVAL_RUN register contains the reference voltage that is assigned to the torque regulation DAC when the motor is running at constant speed. The TVAL_ACC register contains the reference voltage that is assigned to the torque regulation DAC during acceleration. The TVAL_DEC register contains the reference voltage that is assigned to the torque regulation DAC during deceleration. The available range is from 7.8 mV to 1 V with a resolution of 7.8 mV, as shown in Table 15. Doc ID 023768 Rev 2 47/73 Programming manual L6482 Table 15. Torque regulation by TVAL_HOLD, TVAL_ACC, TVAL_DEC and TVAL_RUN registers TVAL_X [6..0] 9.1.11 Peak reference voltage 0 0 0 0 0 0 1 15.6 mV … 7.8 mV … 0 … 0 … 0 … 0 … 0 … 0 … 0 1 1 1 1 1 1 0 992.2 mV 1 1 1 1 1 1 1 1V T_FAST The T_FAST register contains the maximum fast decay time (TOFF_FAST) and the maximum fall step time (FALL_STEP) used by the current control system (Section 7.2 and Section 7.3 for details): Table 16. Bit 7 FS_SPD register Bit 6 Bit 5 Bit 4 Bit 3 TOFF_FAST Bit 2 Bit 1 Bit 0 FAST_STEP The available range for both parameters is from 2 µs to 32 µs. Table 17. Maximum fast decay times TOFF_FAST [3..0] FAST_STEP[3..0] Fast decay time 0 0 0 0 2 µs 0 0 0 1 4 µs … … … … … 1 1 1 0 28 µs 1 1 1 1 32 µs Any attempt to write to the register when the motor is running causes the command to be ignored and NOTPERF_CMD to rise (Section 9.1.21). 9.1.12 TON_MIN This parameter is used by the current control system when current mode operation is selected. The TON_MIN register contains the minimum on-time value used by the current control system (see Section 7.2). The available range for both parameters is from 0.5 µs to 64 µs. 48/73 Doc ID 023768 Rev 2 L6482 Programming manual Table 18. Minimum on-time TON MIN [6..0] Time 0 0 0 0 0 0 0 0.5 µs 0 0 0 0 0 0 1 1 µs … … … … … … … … 1 1 1 1 1 1 0 63.5 µs 1 1 1 1 1 1 1 64 µs Any attempt to write to the register when the motor is running causes the command to be ignored and the NOTPERF_CMD to rise (see Section 9.1.21). 9.1.13 TOFF_MIN This parameter is used by the current control system when current mode operation is selected. The TOFF_MIN register contains the minimum off-time value used by the current control system (see Section 7.1 for details). The available range for both parameters is from 0.5 µs to 64 µs. Table 19. Minimum off-time TOFF MIN [6..0] Time 0 0 0 0 0 0 0 0.5 µs 0 0 0 0 0 0 1 1 µs … … … … … … … … 1 1 1 1 1 1 0 63.5 µs 1 1 1 1 1 1 1 64 µs Any attempt to write to the register when the motor is running causes the command to be ignored and NOTPERF_CMD to rise (see Section 9.1.21). Doc ID 023768 Rev 2 49/73 Programming manual 9.1.14 L6482 ADC_OUT The ADC_OUT register contains the result of the analog-to-digital conversion of the ADCIN pin voltage. Any attempt to write to the register causes the command to be ignored and the NOTPERF_CMD flag to rise (see Section 9.1.21). Table 20. ADC_OUT value and torque regulation feature VADCIN/ VREG Reference voltage 0 0 0 0 0 0 31.25 mV 1/32 0 0 0 0 1 62.5 mV … … … … … … … 9.1.15 ADC_OUT [4..0] 30/32 1 1 1 1 0 968.8 mV 31/32 1 1 1 1 1 1V OCD_TH The OCD_TH register contains the overcurrent threshold value (see Section 6.9 for details). The available range is from 31.25 mV to 1 V, steps of 31.25 mV, as shown in Table 21. Table 21. Overcurrent detection threshold OCD_TH [4..0] 0 0 0 0 0 31.25 mV 0 0 0 0 1 62.5 mV … … … … … … 50/73 Overcurrent detection threshold 1 1 1 1 0 968.8 mV 1 1 1 1 1 1V Doc ID 023768 Rev 2 L6482 9.1.16 Programming manual STEP_MODE The STEP_MODE register has the following structure: Table 22. STEP_MODE register Bit 7 Bit 6 SYNC_EN Bit 5 Bit 4 Bit 3 1(1) SYNC_SEL Bit 2 Bit 1 Bit 0 STEP_SEL 1. When the register is written this bit must be set to 1. The STEP_SEL parameter selects one of five possible stepping modes: Table 23. Step mode selection STEP_SEL[2..0] Step mode 0 0 0 Full-step 0 0 1 Half-step 0 1 0 1/4 microstep 0 1 1 1/8 microstep 1 X X 1/16 microstep Every time the step mode is changed, the electrical position (i.e. the point of microstepping sinewave that is generated) is reset to the first microstep. Warning: Every time STEP_SEL is changed, the value in the ABS_POS register loses meaning and should be reset. Any attempt to write the register when the motor is running causes the command to be ignored and the NOTPERF_CMD flag to rise (see Section 9.1.21). When the SYNC_EN bit is set low, the BUSY/SYNC output is forced low during the command execution, otherwise, when the SYNC_EN bit is set high, the BUSY/SYNC output provides a clock signal according to the SYNC_SEL parameter. Doc ID 023768 Rev 2 51/73 Programming manual Table 24. L6482 SYNC output frequency SYNC_SEL STEP_SEL (fFS is the full-step frequency) 000 001 010 011 100 101 110 111 000 fFS/2 fFS/2 fFS/2 fFS/2 fFS/2 fFS/2 fFS/2 fFS/2 001 NA fFS fFS fFS fFS fFS fFS fFS 010 NA NA 2· fFS 2· fFS 2· fFS 2· fFS 2· fFS 2· fFS 011 NA NA NA 4· fFS 4· fFS 4· fFS 4· fFS 4· fFS 100 NA NA NA NA 8· fFS 8· fFS 8· fFS 8· fFS 101 NA NA NA NA NA NA NA NA 110 NA NA NA NA NA NA NA NA 111 NA NA NA NA NA NA NA NA The synchronization signal is obtained starting from the electrical position information (EL_POS register), according to Table 25: Table 25. SYNC signal source SYNC_SEL[2..0] Source 0 0 0 EL_POS[7] 0 0 1 EL_POS[6] 0 1 0 EL_POS[5] 0 1 1 EL_POS[4] 1 0 0 EL_POS[3] 1 0 1 UNUSED (1) 1 1 0 UNUSED (1) 1 1 1 UNUSED (1) 1. When this value is selected, the BUSY output is forced low. 9.1.17 ALARM_EN The ALARM_EN register allows the selection of which alarm signals are used to generate the FLAG output. If the respective bit of the ALARM_EN register is set high, the alarm condition forces the FLAG pin output down. Table 26. 52/73 ALARM_EN register ALARM_EN bit Alarm condition 0 (LSB) Overcurrent 1 Thermal shutdown Doc ID 023768 Rev 2 L6482 Programming manual Table 26. 9.1.18 ALARM_EN register (continued) ALARM_EN bit Alarm condition 2 Thermal warning 3 UVLO 4 ADC UVLO 5 Unused 6 Switch turn-on event 7 (MSB) Command error GATECFG1 The GATECFG1 register has the following structure: Table 27. GATECFG1 register Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 WD_EN Bit 7 Bit 6 Bit 5 Bit 4 IGATE Bit 3 Bit 8 TBOOST Bit 2 Bit 1 Bit 0 TCC The IGATE parameter selects the sink/source current used by gate driving circuitry to charge/discharge the respective gate during commutations. Seven possible values ranging from 4 mA to 96 mA are available, as shown in Table 28. Table 28. IGATE parameter IGATE [2..0} Gate current [mA} 0 0 0 4 0 0 1 4 0 1 0 8 0 1 1 16 1 0 0 24 1 0 1 32 1 1 0 64 1 1 1 96 The TCC parameter defines the duration of constant current phase during gate turn-on and turn-off sequences (Section 6.15). Doc ID 023768 Rev 2 53/73 Programming manual Table 29. L6482 TCC parameter Constant current time [ns] TCC [4..0] 0 0 0 0 0 125 0 0 0 0 1 250 ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ 1 1 1 0 0 3625 1 1 1 0 1 3750 1 1 1 1 0 3750 1 1 1 1 1 3750 The TBOOST parameter defines the duration of the overboost phase during gate turn-off (Section 6.15). Table 30. TBOOST parameter TBOOST Turn-off boost time [2..0] [ns] 0 0 0 0 0 0 1 62.5(1)/83.3(2)/125(3) 0 1 0 125 0 1 1 250 1 0 0 375 1 0 1 500 1 1 0 750 1 1 1 1000 1. Clock frequency equal to 16 MHz or 32 MHz. 2. Clock frequency equal to 24 MHz. 3. Clock frequency equal to 8 MHz. The WD_EN bit enables the clock source monitoring (Section 6.8.2). 9.1.19 GATECFG2 The GATECFG2 register has the following structure: Table 31. Bit 7 GATECFG2 register (voltage mode) Bit 6 Bit 5 Bit 4 Bit 3 TBLANK 54/73 Bit 2 Bit 1 TDT Doc ID 023768 Rev 2 Bit 0 L6482 Programming manual The TCC parameter defines the deadtime duration between the gate turn-off and the opposite gate turn-on sequences (Section 6.16). Table 32. TDT parameter TDT [4..0] Deadtime [ns] 0 0 0 0 0 125 0 0 0 0 1 250 ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ 1 1 1 1 0 3875 1 1 1 1 1 4000 The TBLANK parameter defines the duration of the blanking of the current sensing comparators (stall detection and overcurrent) after each commutation (Section 6.16). Table 33. TBLANK parameters TBLANK [2..0] 9.1.20 Blanking time [ns] 0 0 0 125 0 0 1 250 ⇓ ⇓ ⇓ ⇓ 1 1 0 875 1 1 1 1000 CONFIG The CONFIG register has the following structure: Table 34. Bit 15 CONFIG register Bit 14 Bit 13 PRED_E Bit 12 Bit 11 Bit 10 TSW Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 OC_SD RESERVED EN_TQREG SW_MOD E EXT_CLK Bit 2 Bit 9 Bit 8 VCCVAL UVLOVAL Bit 1 Bit 0 OSC_SEL The OSC_SEL and EXT_CLK bits set the system clock source: Doc ID 023768 Rev 2 55/73 Programming manual Table 35. EXT_CLK L6482 Oscillator management OSC_SEL[2..0] Clock source OSCIN OSCOUT Internal oscillator: 16 MHz Unused Unused 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 1 0 0 0 Internal oscillator: 16 MHz Unused Supplies a 2-MHz clock 1 0 0 1 Internal oscillator: 16 MHz Unused Supplies a 4-MHz clock 1 0 1 0 Internal oscillator: 16 MHz Unused Supplies an 8-MHz clock 1 0 1 1 Internal oscillator: 16 MHz Unused Supplies a 16-MHz clock 0 1 0 0 External crystal or resonator: 8 MHz Crystal/resonator driving Crystal/resonator driving 0 1 0 1 External crystal or resonator: 16 MHz Crystal/resonator driving Crystal/resonator driving 0 1 1 0 External crystal or resonator: 24 MHz Crystal/resonator driving Crystal/resonator driving 0 1 1 1 External crystal or resonator: 32 MHz Crystal/resonator driving Crystal/resonator driving 1 1 0 0 Ext. clock source: 8 MHz (crystal/resonator driver disabled) Clock source Supplies inverted OSCIN signal 1 1 0 1 Ext. clock source: 16 MHz (crystal/resonator driver disabled) Clock source Supplies inverted OSCIN signal 1 1 1 0 Ext. clock source: 24 MHz (crystal/resonator driver disabled) Clock source Supplies inverted OSCIN signal 1 1 1 1 Ext. clock source: 32 MHz (crystal/resonator driver disabled) Clock source Supplies inverted OSCIN signal The SW_MODE bit sets the external switch to act as HardStop interrupt or not: Table 36. 56/73 External switch HardStop interrupt mode SW_MODE Switch mode 0 HardStop interrupt 1 User disposal Doc ID 023768 Rev 2 L6482 Programming manual The OC_SD bit sets if an overcurrent event causes or not the bridges to turn off; the OCD flag in the status register is forced low anyway: Table 37. Overcurrent event OC_SD Overcurrent event 1 Bridges shutdown 0 Bridges do not shutdown The VCCVAL bit sets the internal VCC regulator output voltage. Table 38. Programmable VCC regulator output voltage VCCVAL VCC voltage 0 7.5 V 1 15 V The UVLOVAL bit sets the UVLO protection thresholds. Table 39. Programmable UVLO thresholds UVLOVAL VCCthOn VCCthOff ΔVBOOTthOn ΔVBOOTthOff 0 6.9 V 6.3 V 6V 5.5 V 1 10.4 V 10 V 9.2 V 8.8 V The EN_TQREG bit sets if the torque regulation is performed through ADCIN voltage (external) or the TVAL_HOLD, TVAL_ACC, TVAL_DEC and TVAL_RUN registers (internal). Table 40. External torque regulation enable EN_TQREG External torque regulation 0 Disabled 1 Enabled The TSW parameter is used by the current control system and it sets the target switching period. Table 41. Switching period TSW [4..0] Switching period 0 0 0 0 0 4 µs (250 kHz) 0 0 0 0 1 4 µs (250 kHz) 0 0 0 1 0 8 µs (125 kHz) Doc ID 023768 Rev 2 57/73 Programming manual Table 41. L6482 Switching period (continued) TSW [4..0] Switching period … … … … … … 1 1 1 1 1 124 µs (8 kHz) Any attempt to write the CONFIG register when the motor is running causes the command to be ignored and the NOTPERF_CMD flag to rise (see Section 9.1.21). The EN_PRED bit sets if the predictive current control method is enabled or not. . Table 42. Motor supply voltage compensation enable EN_PRED Predictive current control 0 Disabled 1 Enabled Any attempt to write the CONFIG register when the motor is running causes the command to be ignored and the NOTPERF_CMD flag to rise (Section 9.1.20). 9.1.21 STATUS The STATUS register has the following structure: Table 43. STATUS register Bit 15 Bit 14 Bit 13 Unused Unused OCD Bit 7 Bit 6 Bit 5 NOTPERF_CM D MOT_STATUS Bit 12 Bit 11 TH_SD Bit 10 UVLO_AD C Bit 9 Bit 8 UVLO STCK_MOD Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 DIR SW_EV N SW_F BUSY HiZ When the HiZ flag is high it indicates that the bridges are in high impedance state. Any motion command causes the device to exit from High Z state (HardStop and SoftStop included), unless error flags forcing a High Z state are active. The UVLO flag is active low and is set by an undervoltage lockout or reset events (power-up included). The UVLO_ADC flag is active low and indicates an ADC undervoltage event. The OCD flag is active low and indicates an overcurrent detection event. The CMD_ERROR flag is active high and indicates that the command received by SPI can't be performed or does not exist at all. The SW_F reports the SW input status (low for open and high for closed). The SW_EVN flag is active high and indicates a switch turn-on event (SW input falling edge). 58/73 Doc ID 023768 Rev 2 L6482 Programming manual TH_STATUS bits indicate the current device thermal status (Section 6.12): Table 44. STATUS register TH_STATUS bits TH_STATUS Status 0 0 Normal 0 1 Warning 1 0 Bridge shutdown 1 1 Device shutdown UVLO, UVLO_ADC, OCD, CMD_ERROR, SW_EVN and TH_STATUS bits are latched: when the respective conditions make them active (low or high) they remain in that state until a GetStatus command is sent to the IC. The BUSY bit reflects the BUSY pin status. The BUSY flag is low when a constant speed, positioning or motion command is under execution and is released (high) after the command has been completed. The STCK_MOD bit is an active high flag indicating that the device is working in Step-clock mode. In this case the step-clock signal should be provided through the STCK input pin. The DIR bit indicates the current motor direction: Table 45. STATUS register DIR bit DIR Motor direction 1 Forward 0 Reverse MOT_STATUS indicates the current motor status: Table 46. STATUS register MOT_STATE bits MOT_STATUS Motor status 0 0 Stopped 0 1 Acceleration 1 0 Deceleration 1 1 Constant speed Any attempt to write to the register causes the command to be ignored and the NOTPERF_CMD to rise (Section 9.1.21). Doc ID 023768 Rev 2 59/73 Programming manual 9.2 L6482 Application commands The command summary is given in Table 47. Table 47. Application commands Command Mnemonic Command binary code [7..5] [4] 0 [2..1] [0] NOP 000 SetParam(PARAM,VALUE) 000 [PARAM] Writes VALUE in PARAM register GetParam(PARAM) 001 [PARAM] Returns the stored value in PARAM register Run(DIR,SPD) 010 1 0 00 DIR Sets the target speed and the motor direction StepClock(DIR) 010 1 1 00 DIR Puts the device in Step-clock mode and imposes DIR direction Move(DIR,N_STEP) 010 0 0 00 DIR Makes N_STEP (micro)steps in DIR direction (not performable when motor is running) GoTo(ABS_POS) 011 0 0 00 0 GoTo_DIR(DIR,ABS_POS) 011 0 1 00 DIR Brings motor in ABS_POS position forcing DIR direction GoUntil(ACT,DIR,SPD) 100 0 ACT 01 Performs a motion in DIR direction with speed SPD until DIR SW is closed, the ACT action is executed then a SoftStop takes place ReleseSW(ACT, DIR) 100 1 ACT 01 Performs a motion in DIR direction at minimum speed DIR until the SW is released (open), the ACT action is executed then a HardStop takes place GoHome 011 1 0 00 0 Brings the motor in HOME position GoMark 011 1 1 00 0 Brings the motor in MARK position ResetPos 110 1 1 00 0 Resets the ABS_POS register (sets HOME position) ResetDevice 110 0 0 00 0 Device is reset to power-up conditions SoftStop 101 1 0 00 0 Stops motor with a deceleration phase HardStop 101 1 1 00 0 Stops motor immediately SoftHiZ 101 0 0 00 0 Puts the bridges in high impedance status after a deceleration phase HardHiZ 101 0 1 00 0 Puts the bridges in high impedance status immediately GetStatus 110 1 0 00 0 Returns the status register value RESERVED 111 0 1 01 1 RESERVED COMMAND RESERVED 111 1 1 00 0 RESERVED COMMAND 60/73 0 [3] Action 00 0 Nothing Brings motor in ABS_POS position (minimum path) Doc ID 023768 Rev 2 L6482 9.2.1 Programming manual Command management The host microcontroller can control motor motion and configure the L6482 through a complete set of commands. All commands are composed by a single byte. After the command byte, some bytes of arguments should be needed (see Figure 25). Argument length can vary from 1 to 3 bytes. Figure 25. Command with 3-byte argument SDI (from host) SDO (to host) Command byte Argument byte 2 (MSB) Argument byte 1 Argument byte 0 (LSB) 0x00 0x00 0x00 0x00 AM15055v1 By default, the device returns an all zero response for any received byte, the only exceptions are GetParam and GetStatus commands. When one of these commands is received, the following response bytes represent the related register value (see Figure 26). Response length can vary from 1 to 3 bytes. Figure 26. Command with 3-byte response SDI (from host) SDO (to host) Command byte NOP NOP NOP 0x00 Response byte 2 (MSB) Response byte 1 Response byte 0 (LSB) AM15056v1 During response transmission, new commands can be sent. If a command requiring a response is sent before the previous response is completed, the response transmission is aborted and the new response is loaded into the output communication buffer (see Figure 27). Figure 27. Command response aborted SDI (from host) SDO (to host) Command 1 (3 byte resp expected) Command 2 (no resp. expected) Command 3 (2 byte resp expected) Command 4 (no resp. expected) Command 5 (no resp. expected) 0x00 Response byte 2 (MSB) Response byte 1 Response byte 1 (MSB) Response byte 0 (LSB) Command 1 response is aborted AM15057v1 When a byte that does not correspond to a command is sent to the IC it is ignored and the WRONG_CMD flag in the STATUS register is raised (see Section 9.1.21). Doc ID 023768 Rev 2 61/73 Programming manual 9.2.2 L6482 Nop Table 48. Nop command structure Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 0 0 0 0 0 0 0 0 Bit 1 Bit 0 From host Nothing is performed. 9.2.3 SetParam (PARAM, VALUE) Table 49. SetParam command structure Bit 7 Bit 6 Bit 5 0 0 0 Bit 4 Bit 3 Bit 2 PARAM VALUE Byte 2 (if needed) From host VALUE Byte 1 (if needed) VALUE Byte 0 The SetParam command sets the PARAM register value equal to VALUE; PARAM is the respective register address listed in Table 11. The command should be followed by the new register VALUE (most significant byte first). The number of bytes composing the VALUE argument depends on the length of the target register (see Table 11). Some registers cannot be written (see Table 11); any attempt to write one of those registers causes the command to be ignored and the WRONG_CMD flag to rise at the end of the command byte, as if an unknown command code were sent (see Section 9.1.21). Some registers can only be written in particular conditions (see Table 11); any attempt to write one of those registers when the conditions are not satisfied causes the command to be ignored and the NOTPERF_CMD flag to rise at the end of the last argument byte (see Section 9.1.21). Any attempt to set an inexistent register (wrong address value) causes the command to be ignored and the WRONG_CMD flag to rise at the end of the command byte as if an unknown command code were sent. 9.2.4 GetParam (PARAM) Table 50. 62/73 GetParam command structure Bit 7 Bit 6 Bit 5 0 0 1 Bit 4 Bit 3 Bit 2 PARAM Bit 1 Bit 0 from host ANS Byte 2 (if needed) to host ANS Byte 1 (if needed) to host ANS Byte 0 to host Doc ID 023768 Rev 2 L6482 Programming manual This command reads the current PARAM register value; PARAM is the respective register address listed in Table 11. The command response is the current value of the register (most significant byte first). The number of bytes composing the command response depends on the length of the target register (see Table 11). The returned value is the register one at the moment of GetParam command decoding. If register values change after this moment, the response is not updated accordingly. All registers can be read anytime. Any attempt to read an inexistent register (wrong address value) causes the command to be ignored and the WRONG_CMD flag to rise at the end of the command byte as if an unknown command code were sent. 9.2.5 Run (DIR, SPD) Table 51. Run command structure Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 0 1 0 1 0 0 0 DIR X X X X SPD (Byte 2) from host from host SPD (Byte 1) from host SPD (Byte 0) from host The Run command produces a motion at SPD speed; the direction is selected by the DIR bit: '1' forward or '0' reverse. The SPD value is expressed in step/tick (format unsigned fixed point 0.28) that is the same format as the SPEED register (Section 9.1.4). Note: The SPD value should be lower than MAX_SPEED and greater than MIN_SPEED, otherwise the Run command is executed at MAX_SPEED or MIN_SPEED respectively. This command keeps the BUSY flag low until the target speed is reached. This command can be given anytime and is immediately executed. 9.2.6 StepClock (DIR) Table 52. StepClock command structure Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 0 1 0 1 1 0 0 DIR from host The StepClock command switches the device in Step-clock mode (Section 6.7.5) and imposes the forward (DIR = '1') or reverse (DIR = '0') direction. When the device is in Step-clock mode, the SCK_MOD flag in the STATUS register is raised and the motor is always considered stopped (Section 6.7.5 and 9.1.21). The device exits Step-clock mode when a constant speed, absolute positioning or motion command is sent through SPI. Motion direction is imposed by the respective StepClock Doc ID 023768 Rev 2 63/73 Programming manual L6482 command argument and can by changed by a new StepClock command without exiting Step-clock mode. Events that cause bridges to be forced into high impedance state (overtemperature, overcurrent, etc.) do not cause the device to leave Step-clock mode. The StepClock command does not force the BUSY flag low. This command can only be given when the motor is stopped. If a motion is in progress, the motor should be stopped and it is then possible to send a StepClock command. Any attempt to perform a StepClock command when the motor is running causes the command to be ignored and the NOTPERF_CMD flag to rise (Section 9.1.21). 9.2.7 Move (DIR, N_STEP) Table 53. Move command structure Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 0 1 0 0 0 0 0 DIR X X N_STEP (Byte 2) from host from host N_STEP (Byte 1) from host N_STEP (Byte 0) from host The move command produces a motion of N_STEP microsteps; the direction is selected by the DIR bit ('1' forward or '0' reverse). The N_STEP value is always in agreement with the selected step mode; the parameter value unit is equal to the selected step mode (full, half, quarter, etc.). This command keeps the BUSY flag low until the target number of steps is performed. This command can only be performed when the motor is stopped. If a motion is in progress the motor must be stopped and it is then possible to perform a move command. Any attempt to perform a move command when the motor is running causes the command to be ignored and the NOTPERF_CMD flag to rise (Section 9.1.21). 9.2.8 GoTo (ABS_POS) Table 54. GoTo command structure Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 0 1 1 0 0 0 0 0 X X ABS_POS (Byte 2) from host from host ABS_POS (Byte 1) from host ABS_POS (Byte 0) from host The GoTo command produces a motion to the ABS_POS absolute position through the shortest path. The ABS_POS value is always in agreement with the selected step mode; the parameter value unit is equal to the selected step mode (full, half, quarter, etc.). The GoTo command keeps the BUSY flag low until the target position is reached. 64/73 Doc ID 023768 Rev 2 L6482 Programming manual This command can be given only when the previous motion command has been completed (BUSY flag released). Any attempt to perform a GoTo command when a previous command is under execution (BUSY low) causes the command to be ignored and the NOTPERF_CMD flag to rise (Section 9.1.21). 9.2.9 GoTo_DIR (DIR, ABS_POS) Table 55. GoTo_DIR command structure Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 0 1 1 0 1 0 0 DIR X X ABS_POS (Byte 2) from host from host ABS_POS (Byte 1) from host ABS_POS (Byte 0) from host The GoTo_DIR command produces a motion to the ABS_POS absolute position imposing a forward (DIR = '1') or a reverse (DIR = '0') rotation. The ABS_POS value is always in agreement with the selected step mode; the parameter value unit is equal to the selected step mode (full, half, quarter, etc.). The GoTo_DIR command keeps the BUSY flag low until the target speed is reached. This command can be given only when the previous motion command has been completed (BUSY flag released). Any attempt to perform a GoTo_DIR command when a previous command is under execution (BUSY low) causes the command to be ignored and the NOTPERF_CMD flag to rise (Section 9.1.21). 9.2.10 GoUntil (ACT, DIR, SPD) Table 56. GoUntil command structure Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 1 0 0 0 ACT 0 1 DIR X X X X SPD (Byte 2) from host from host SPD (Byte 1) from host SPD (Byte 0) from host The GoUntil command produces a motion at SPD speed imposing a forward (DIR = '1') or a reverse (DIR = '0') direction. When an external switch turn-on event occurs (Section 6.14), the ABS_POS register is reset (if ACT = '0') or the ABS_POS register value is copied into the MARK register (if ACT = '1'); the system then performs a SoftStop command. The SPD value is expressed in step/tick (format unsigned fixed point 0.28) that is the same format as the SPEED register (Section 9.1.4). The SPD value should be lower than MAX_SPEED and greater than MIN_SPEED, otherwise the target speed is imposed at MAX_SPEED or MIN_SPEED respectively. Doc ID 023768 Rev 2 65/73 Programming manual L6482 If the SW_MODE bit of the CONFIG register is set low, the external switch turn-on event causes a HardStop interrupt instead of the SoftStop one (Section 6.14 and Section 9.1.20). This command keeps the BUSY flag low until the switch turn-on event occurs and the motor is stopped. This command can be given anytime and is immediately executed. 9.2.11 ReleaseSW (ACT, DIR) Table 57. ReleaseSW command structure Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 1 0 0 1 ACT 0 1 DIR from host The ReleaseSW command produces a motion at minimum speed imposing a forward (DIR = '1') or reverse (DIR = '0') rotation. When SW is released (opened) the ABS_POS register is reset (ACT = '0') or the ABS_POS register value is copied into the MARK register (ACT = '1'); the system then performs a HardStop command. Note that, resetting the ABS_POS register is equivalent to setting the HOME position. If the minimum speed value is less than 5 step/s or low speed optimization is enabled, the motion is performed at 5 step/s. The ReleaseSW command keeps the BUSY flag low until the switch input is released and the motor is stopped. 9.2.12 GoHome Table 58. GoHome command structure Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 0 1 1 1 0 0 0 0 from host The GoHome command produces a motion to the HOME position (zero position) via the shortest path. Note that, this command is equivalent to the “GoTo(0…0)” command. If a motor direction is mandatory, the GoTo_DIR command must be used (Section 9.2.9). The GoHome command keeps the BUSY flag low until the home position is reached. This command can be given only when the previous motion command has been completed. Any attempt to perform a GoHome command when a previous command is under execution (BUSY low) causes the command to be ignored and the NOTPERF_CMD to rise (Section 9.1.21). 9.2.13 GoMark Table 59. 66/73 GoMark command structure Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 0 1 1 1 1 0 0 0 Doc ID 023768 Rev 2 from host L6482 Programming manual The GoMark command produces a motion to the MARK position performing the minimum path. Note that, this command is equivalent to the “GoTo (MARK)” command. If a motor direction is mandatory, the GoTo_DIR command must be used. The GoMark command keeps the BUSY flag low until the MARK position is reached. This command can be given only when the previous motion command has been completed (BUSY flag released). Any attempt to perform a GoMark command when a previous command is under execution (BUSY low) causes the command to be ignored and the NOTPERF_CMD flag to rise (Section 9.1.21). 9.2.14 ResetPos Table 60. ResetPos command structure Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 1 1 0 1 1 0 0 0 from host The ResetPos command resets the ABS_POS register to zero. The zero position is also defined as the HOME position (Section 6.5). 9.2.15 ResetDevice Table 61. ResetDevice command structure Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 1 1 0 0 0 0 0 0 from host The ResetDevice command resets the device to power-up conditions (Section 6.1). Note: At power-up the power bridges are disabled. 9.2.16 SoftStop Table 62. SoftStop command structure Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 1 0 1 1 0 0 0 0 from host The SoftStop command causes an immediate deceleration to zero speed and a consequent motor stop; the deceleration value used is the one stored in the DEC register (Section 9.1.6). When the motor is in high impedance state, a SoftStop command forces the bridges to exit from high impedance state; no motion is performed. Doc ID 023768 Rev 2 67/73 Programming manual L6482 This command can be given anytime and is immediately executed. This command keeps the BUSY flag low until the motor is stopped. 9.2.17 HardStop Table 63. HardStop command structure Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 1 0 1 1 1 0 0 0 from host The HardStop command causes an immediate motor stop with infinite deceleration. When the motor is in high impedance state, a HardStop command forces the bridges to exit high impedance state; no motion is performed. This command can be given anytime and is immediately executed. This command keeps the BUSY flag low until the motor is stopped. 9.2.18 SoftHiZ Table 64. SoftHiZ command structure Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 1 0 1 0 0 0 0 0 from host The SoftHiZ command disables the power bridges (high impedance state) after a deceleration to zero; the deceleration value used is the one stored in the DEC register (Section 9.1.6). When bridges are disabled, the HiZ flag is raised. When the motor is stopped, a SoftHiZ command forces the bridges to enter high impedance state. This command can be given anytime and is immediately executed. This command keeps the BUSY flag low until the motor is stopped. 9.2.19 HardHiZ Table 65. HardHiZ command structure Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 1 0 1 0 1 0 0 0 from host The HardHiZ command immediately disables the power bridges (high impedance state) and raises the HiZ flag. When the motor is stopped, a HardHiZ command forces the bridges to enter high impedance state. This command can be given anytime and is immediately executed. This command keeps the BUSY flag low until the motor is stopped. 68/73 Doc ID 023768 Rev 2 L6482 9.2.20 Programming manual GetStatus Table 66. GetStatus command structure Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 1 1 0 1 0 0 0 0 from host STATUS MSByte to host STATUS LSByte to host The GetStatus command returns the Status register value. The GetStatus command resets the STATUS register warning flags. The command forces the system to exit from any error state. The GetStatus command DOES NOT reset the HiZ flag. Doc ID 023768 Rev 2 69/73 Package mechanical data 10 L6482 Package mechanical data In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark. Table 67. HTSSOP38 mechanical data mm Symbol Min. Typ. Max. - 1.1 A A1 0.05 - 0.15 A2 0.85 0.9 0.95 b 0.17 - 0.27 c 0.09 - 0.20 D 9.60 9.70 9.80 E1 4.30 4.40 4.50 e - 0.50 - E - 6.40 - L 0.50 0.60 0.70 P 6.40 6.50 6.60 P1 3.10 3.20 3.30 ∅ 0° - 8° Figure 28. HTSSOP38 package dimensions % % C E $ MM ! ! 0 B ! , 0 70/73 Doc ID 023768 Rev 2 L6482 Package mechanical data Figure 29. HTSSOP38 footprint Doc ID 023768 Rev 2 71/73 Revision history 11 L6482 Revision history Table 68. Document revision history Date Revision 08-Oct-2012 1 Initial release. 2 Changed the title. Inserted footnote in Table 2 and Table 4 Removed Tj parameter in Table 3. Updated Section 9.1.10 and Section 9.1.15. Updated Table 17. Minor text changes. 19-Dec-2012 72/73 Changes Doc ID 023768 Rev 2 L6482 Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2012 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com Doc ID 023768 Rev 2 73/73