参考设计报告—使用LinkSwitch®-PH LNK406EG设 标题 计而成的高效率(≥85%)、高功率因数(>0.9) 可控硅调 光的14 WTYP LED驱动器 规格 90 VAC – 265 VAC输入;28 VTYP,0.5 A输出 应用 LED驱动器 作者 应用工程部 文档编号 RDR -194 日期 2010年6月9日 修订版本 1.0 特色概述 • 卓越的性能及最终用户体验 o 兼容可控硅调光器(包括低成本前沿类型调光器) 无输出闪烁 >1000:1的调光范围 o 干净的启动—无输出闪烁 o 快速启动(<300 ms)—无可见延迟 o 产品间具有一致的调光性能 • 极高能效 o 115 VAC时≥85%,230 VAC时≥87% • 元件数量少、印刷电路板占用面积小的低成本解决方案 o 无需电流检测 o 采用频率抖动技术,使用更小的成本低的EMI滤波元件 • 集成的保护及可靠性能 o 输出开路/输出短路保护,带自动恢复功能 Power Integrations 5245 Hellyer Avenue, San Jose, CA 95138 USA. 电话:+1 408 414 9200 传真:+1 408 414 9201 www.powerint.com RDR-194:使用LNK406EG设计的14 W PAR38 LED驱动器 • 2010年6月9日 o 输入过压关断可扩展输入故障时的电压耐受范围 o 更大迟滞的自动恢复热关断可同时保护元件和印刷电路板 o 在电压缓慢升高和降落期间不会造成损坏 满足IEC 61000-4-5振铃波、IEC 61000-3-2 C级谐波和EN55015 B传导EMI要求 专利信息 此处介绍的产品和应用(包括产品之外的变压器结构和电路)可能包含一项或多项美国及国外专利,或正在申请的美国或国外专利。 有关Power Integrations专利的完整列表,请参见www.powerint.com。Power Integrations按照在<http://www.powerint.com/ip.htm> 中所述规定,向客户授予特定专利权利的许可。 Power Integrations, Inc. 电话:+1 408 414 9200 传真:+1 408 414 9201 www.powerint.com 第2页(共44页) 2010年6月9日 RDR-194:使用LNK406EG设计的14 W PAR38 LED驱动器 目录 简介.............................................................................................................................5 电源规格 .....................................................................................................................8 电路原理图..................................................................................................................9 电路描述 ...................................................................................................................10 4.1 输入滤波 ............................................................................................................10 4.2 LinkSwitch-PH 初级 ...........................................................................................10 4.3 反馈 ...................................................................................................................11 4.4 输出整流 ............................................................................................................12 4.5 可控硅相位调光控制兼容性................................................................................12 5 PCB 布局 ..................................................................................................................13 6 物料清单 ...................................................................................................................14 7 变压器规格................................................................................................................16 7.1 电气原理图.........................................................................................................16 7.2 电气规格 ............................................................................................................16 7.3 材料 ...................................................................................................................16 7.4 变压器结构图 .....................................................................................................17 7.5 变压器构造.........................................................................................................17 8 变压器设计表格.........................................................................................................18 9 性能数据 ...................................................................................................................21 9.1 功率效率 ............................................................................................................21 9.1.1 28 V ............................................................................................................21 9.1.2 25 V ............................................................................................................21 9.1.3 31 V ............................................................................................................22 9.2 调节 ...................................................................................................................23 9.2.1 输出电压和线电压.......................................................................................23 9.2.2 输入电压和输出电压调节 ............................................................................24 10 热性能 ...................................................................................................................26 10.1 VIN = 115 VAC(U1:无散热片)......................................................................26 10.2 VIN = 230 VAC(U1:无散热片)......................................................................26 11 谐波数据................................................................................................................27 12 波形 .......................................................................................................................29 12.1 输入线电压和电流 ..........................................................................................29 12.2 漏极电压和电流 ..............................................................................................29 12.3 输出电压和纹波电流.......................................................................................30 12.4 输出电压和漏极电流启动特征.........................................................................30 12.5 输出短路期间的输出电流和漏极电压..............................................................31 12.6 开路负载输出电压 ..........................................................................................31 1 2 3 4 第3页(共44页) Power Integrations 电话:+1 408 414 9200 传真:+1 408 414 9201 www.powerint.com RDR-194:使用LNK406EG设计的14 W PAR38 LED驱动器 2010年6月9日 13 调光.......................................................................................................................32 13.1 输入相位与输出..............................................................................................32 13.2 输出电压和输出电流波形 ...............................................................................33 13.2.1 VIN = 115 VAC / 60 Hz................................................................................33 13.2.2 VIN = 230 VAC / 50Hz.................................................................................34 14 输入浪涌................................................................................................................35 15 传导 EMI ...............................................................................................................36 16 批量生产的数据分布...............................................................................................38 17 版本历史................................................................................................................39 18 附录.......................................................................................................................40 18.1 使用可控硅调光器开关的调光测试 .................................................................40 18.1.1 115 VAC 输入,60 Hz ................................................................................40 18.1.2 230 VAC 输入,50 Hz ................................................................................40 18.2 噪音测试数据 .................................................................................................41 18.2.1 VIN = 115 VAC,满相 .................................................................................41 18.2.2 VIN = 115 VAC,半相 .................................................................................41 18.2.3 VIN = 230 VAC,满相 .................................................................................42 18.2.4 VIN = 230 VAC,半相 .................................................................................42 重要说明:虽然本电路板的设计满足安全隔离要求,但工程原型仍未获得机构认证。因此,必须使用隔离变 压器向原型板提供AC输入,以执行所有测试。 Power Integrations, Inc. 电话:+1 408 414 9200 传真:+1 408 414 9201 www.powerint.com 第4页(共44页) 2010年6月9日 RDR-194:使用LNK406EG设计的14 W PAR38 LED驱动器 1 简介 本文档介绍的是一款高功率因数、可控硅调光的LED驱动器,它可以在90 VAC至265 VAC 的输入电压范围内为LED灯串提供额定电压28 V、额定电流0.5 A的驱动。该LED驱动器采 用了LinkSwitch-PH系列IC中的LNK406EG器件。 LinkSwitch-PH IC可以帮助您设计出具有成本效益且元件数量极少的LED驱动器,不仅能 满足功率因素和谐波限值,同时还能为最终用户带来不同凡响的使用体验。其特性包括超 宽调光范围、无闪烁工作(即使使用的是低成本的AC输入可控硅调光器)以及快速、平滑 的导通。 所使用的拓扑结构是运行于连续导通模式下的隔离反激。输出电流调节完全从初级侧检测, 因此无需使用次级反馈元件。在初级侧也无需检测外部电流,而是在IC内部进行,从而进 一步减少了元件和损耗。内部控制器调整MOSFET占空比以保持输入电流为正弦交流电, 从而确保高功率因数和低谐波电流。 LNK406EG也可提供各种复杂的保护功能,包括环路开环或输出短路条件下自动重新启 动。输入过压可提供增强的抗输入故障和浪涌能力,输出过压在负载断开时可保护电源, 精确的迟滞热关断可确保在所有条件下PCB板平均温度都处于安全范围内。 在任何LED照明装置中,驱动器的性能直接决定了最终客户(用户)对照明的感受,包括 启动时间、调光、闪烁和驱动器之间的一致性。此设计中重点关注的是在115 VAC和230 VAC条件下尽可能多地兼容各种调光器和尽可能大地兼容调光范围。即使是这样,在两种 单输入电压工作范围仍可以实现设计简化,包括不需要调光的或调光器(高质量)调光范 围受限的应用。 本文档包含LED驱动器规格、电路原理图、PCB电路图、物料清单、变压器文档和典型性 能特征。 第5页(共44页) Power Integrations 电话:+1 408 414 9200 传真:+1 408 414 9201 www.powerint.com RDR-194:使用LNK406EG设计的14 W PAR38 LED驱动器 2010年6月9日 图1—装配后的电路板图片(顶视图)。设计满足PAR38壳体内部结构的PCB外观。 图2—装配后的电路板图片(底视图)。 Power Integrations, Inc. 电话:+1 408 414 9200 传真:+1 408 414 9201 www.powerint.com 第6页(共44页) 2010年6月9日 第7页(共44页) RDR-194:使用LNK406EG设计的14 W PAR38 LED驱动器 Power Integrations 电话:+1 408 414 9200 传真:+1 408 414 9201 www.powerint.com RDR-194:使用LNK406EG设计的14 W PAR38 LED驱动器 2010年6月9日 2 电源规格 下表标示设计的最低可接受性能。实际性能请参见测量结果部分。 说明 符号 最小值 典型值 最大值 单位 建议 双导线—无P.E. 输入 电压a 频率 VIN fLINE 90 47 115 50/60 265 64 VAC Hz 输出 输出电压 输出电流a VOUT IOUT 24 0.475 28 0.5 32 0.525 V A 总输出功率 连续输出功率 POUT 14 VOUT = 28,VIN = 115 VAC,25 °C W 效率 η 满载 80 % 在POUT 25 °C条件下测得 环境 传导EMI CISPR 15B / EN55015B 安全 其设计符合IEC950 / UL1950 II类要求 振铃波(100 kHz) 差模(L1-L2) 共模(L1-L2) 功率因数 IEC 61000-4-5,200 A 在VOUT(TYP)、IOUT(TYP) 和115/230 VAC条件下测得 0.9 谐波 环境温度 kV 2.5 EN 61000-3-2 D级 b TAMB 60 o C 自然对流,海平面 注释: a 在使用相位控制(可控硅)调光时,为获得最大的调光范围,LinkSwitch-PH设计的输出电 流随线电压而变化。因此,输出电流规格仅在单输入电压范围条件下确定。在此设计中, 选择115 VAC的线电压。线电压升高,输出电流也将升高;线电压降低,输出电流也随之 降低。如果线电压的变化率为+200%,典型的输出电流变化为+20%。只改变一个电阻的 阻值即可对某一单输入电压范围的标称输出电流进行调整设定。请参阅表1,以了解反馈电 阻值与标称线电压的关系。 b 在LinkSwitch-PH器件上添加一个小散热片可使电源工作于更高的环境温度。例如,如果使 用与板同宽、与电解电容同高的铝散热片,可保证在环境温度为70°C 时器件的温度只有 100 °C。如果输出电流的变化量能够控制的更好,器件温度即使达到115 °C也是可以接受 的。 Power Integrations, Inc. 电话:+1 408 414 9200 传真:+1 408 414 9201 www.powerint.com 第8页(共44页) 2010年6月9日 RDR-194:使用LNK406EG设计的14 W PAR38 LED驱动器 3 电路原理图 图3—电路原理图。 第9页(共44页) Power Integrations 电话:+1 408 414 9200 传真:+1 408 414 9201 www.powerint.com RDR-194:使用LNK406EG设计的14 W PAR38 LED驱动器 2010年6月9日 4 电路描述 LinkSwitch-PH是一种将控制器和725 V MOSFET集成在一起的器件,用于LED驱动器应 用。LinkSwitch-PH采用单级连续导通模式反激式拓扑结构,提供初级侧调节的恒流输出, 同时使AC输入保持高功率因数。 4.1 输入滤波 保险丝F1在元件发生故障时提供保护,而RV1用来对差模浪涌测试期间可能产生的最大电压 进行箝位。RV1的额定电压为275 VAC,略高于最大指定工作电压265 VAC。二极管桥堆 BR1对AC线电压进行整流,电容C2为初级开关电流提供低阻抗通路(去耦)。为使功率 因数保持在0.9以上,需要确保较低的电容(C1、C2和C11总和)值。 EMI滤波功能由电感L1-L3、C1和有Y1安全要求的C7提供。L1和L2两端的电阻R16和R17 可抑制输入电感、电容和AC输入阻抗之间在传导EMI测量中通常出现的共振。 4.2 LinkSwitch-PH初级 变压器(T1)一端连接到DC总线,另一端连接到LinkSwitch-PH的漏极引脚。在MOSFET的 导通时间内,初级绕组中的电流升高,存储的能量随后在MOSFET关断时间内传送到输 出。选择RM8磁芯,因为它在板上占用的面积很小。由于骨架达不到230 VAC工作条件下 的6.2 mm的安全爬电距离要求,因此使用飞线将次级绕组端接到PCB板中。 为使U1得到峰值输入电压信息,AC输入整流后经由D2对C3充电。然后电流经过R2和 R3,注入U1的V引脚。电阻容差将会导致不同电源之间的V引脚电流有所差异,因此选择 1%误差的电阻可以将这种变化降至最低。器件也会利用V引脚电流来设置输入过压和欠压 保护阈值。欠压保护可确保不同电源在相同的输入电压下启动,过压保护可使整流后的线 电压承受能力(在浪涌和线电压陡升期间)达到内部MOSFET的额定725 BVDSS。电阻R1 为C3提供放电通路,时间常数远大于经整流AC的放电时间,以防止V引脚电流被线电压频 率所调制。 V引脚电流和FB引脚电流在内部用来控制LED平均输出电流。对于相位角调光应用,可在 R引脚(R4)和V引脚上分别使用49.9 kΩ电阻和4 MΩ (R2+R3)电阻,使输入电压和输出电流 保持线性关系,从而获得最大调光范围。电阻R4还设置内部的线电压输入升高、降落和输 入过压保护阈值。 在MOSFET导通期间,由于漏感的影响,二极管D3和VR1将漏极电压箝位到一个安全水 平。在C2上的电压降到反向输出电压(VOR)以下时,需要使用二极管D4来防止反向电流流 经U1。选择肖特基势垒二极管来减少此元件中的损耗并提高效率,也可使用超快速PN型 二极管(UF54002)代替,从而降低成本。 Power Integrations, Inc. 电话:+1 408 414 9200 传真:+1 408 414 9201 www.powerint.com 第10页(共44页) 2010年6月9日 RDR-194:使用LNK406EG设计的14 W PAR38 LED驱动器 二极管D6、C5、R7和R8构成初级偏置供电,能量来自变压器的辅助绕组。电容C4对U1的 BP引脚进行局部去耦,该引脚是内部控制器的供电引脚。在启动期间,与漏极引脚相连的 内部高压电流源将C4充电至约6 V。此时器件开始开关,器件的供电电流再由偏置供电经 过R5提供。二极管D5隔离BP引脚和C5,以防止启动时间由于对C4和C5的充电而延长。 建议使用外部偏置供电(通过D5和R5)以实现最低的器件功耗和最高的效率,尽管这些元 件如果需要的话可以省去。这种自供电能力可提供更好的相位角调光性能,因为在输入导 通相位角很小而导致等效输入电压较低时,IC仍然能够保持正常工作。 电容C4同时用来选择输出功率模式,选择10 µF(低功率模式)可以将器件功耗减至最低, 降低对散热片的要求。 4.3 反馈 偏置绕组电压用来间接地反映输出电压的高低,而无需使用次级侧反馈元件。偏置绕组上 的电压与输出电压成比例(由偏置绕组与次级绕组之间的匝数比决定)的。电阻R6将偏置 电压转换为电流,注入至U1的反馈(FB)引脚。U1中的内部控制电路综合FB引脚电流、V测 引脚电流和漏极电流信息,在2:1的输出电压变化范围内提供恒定的输出电流,同时保持较 高的输入功率因数。 为限制空载时的输出电压,D7、C12、R20、VR3、C13、Q3和R19共同组成输出过压箝 位电路。如果断开输出负载的连接,偏置电压将升高,直至VR3导通,这样会使Q3导通并减 小流入FB引脚的电流。当该电流低于20 µ时,器件进入自动重启动模式,开关被禁止800 ms,使输出电压(和偏置电压)下降。 第11页(共44页) Power Integrations 电话:+1 408 414 9200 传真:+1 408 414 9201 www.powerint.com RDR-194:使用LNK406EG设计的14 W PAR38 LED驱动器 4.4 2010年6月9日 输出整流 变压器次级绕组由D8进行整流,由C8和C10进行滤波。选择肖特基势垒二极管用以提高效 率,所选取的C8和C10的总值可使LED纹波电流等于平均值的40%。如果需要更低纹波的 设计,可提高输出电容值。R15用作小的假负载,可限制空载条件下的输出电压。 4.5 可控硅相位调光控制兼容性 对于用低成本的可控硅前沿相控调光器提供输出调光的要求,我们需要在设计时进行全面 的权衡。 由于LED照明的功耗非常低,整个灯具所消耗的电流要小于调光器内可控硅的维持电流。 这样会因为可控硅触发不一致而产生某些不良情况,比如调光范围受限和/或闪烁。由于 LED灯的阻抗相对较大,因此在可控硅导通时,浪涌电流会对输入电容进行充电,产生很 严重的振荡。这同样会造成类似的不良情况,因为振荡会使可控硅电流降至零并关断。 要克服这些问题,需增加两个电路—有源衰减电路和无源泄放电路。这些电路的缺点是会 增大功耗,进而降低电源的效率。对于非调光应用,可以省略这些元件。 有源衰减电路由元件R9、R10、R11、R12、D1、Q1、C6、VR2、Q2以及R13共同组 成。该电路可以限制可控硅导通时流入C2并对其充电的浪涌电流,实现方式是在导通前1 ms内将R13串联。在大约1 ms后,Q2导通并将R13短路。这样可使R13的功耗保持在低水 平,在限流时可以使用更大的值。电阻R9、R10、R11和C6在可控硅导通后提供1 ms延 迟。晶体管Q1在可控硅不导通时对C6进行放电,VR2将Q2的栅极电压箝位在15 V,R12 用于防止MOSFET发生振荡。 无源泄放电路由C11和R18构成。这样可以使输入电流始终大于可控硅的维持电流,而与 驱动器相应的输入电流将在每个AC半周期内增大,防止每个导通角度的起始阶段出现可控 硅的开关振荡。 这种设计可实现无闪烁调光,并对所有相位角调光器进行了测试,包括欧洲、中国和韩国 生产的调光器,同时包括了前沿和后沿类型不同调光器。 Power Integrations, Inc. 电话:+1 408 414 9200 传真:+1 408 414 9201 www.powerint.com 第12页(共44页) 2010年6月9日 RDR-194:使用LNK406EG设计的14 W PAR38 LED驱动器 5 PCB布局 图4—印刷电路板布局。 第13页(共44页) Power Integrations 电话:+1 408 414 9200 传真:+1 408 414 9201 www.powerint.com RDR-194:使用LNK406EG设计的14 W PAR38 LED驱动器 2010年6月9日 6 物料清单 参考 项 数量 序号 说明 生产商型号 生产商 1 1 BR1 600 V,2 A,桥式整流器,玻璃钝化 2KBP06M-E4/51 Vishay 2 1 C1 47 nF,275 VAC,薄膜,X2 ECQU2A473ML Panasonic 3 1 C2 100 nF,630 V,薄膜 ECQ-E6104KF Panasonic 4 1 C3 1 µF,400 V,电解,(6.3 x 11) EKMG401ELL1R0MF11D United Chemi-Con 5 1 C4 10 µF,16 V,电解,通用,(5 x 11) EKMG160ELL100ME11D United Chemi-Con 6 1 C5 22 µF,50 V,电解,低ESR,900 mΩ,(5 x 11.5) ELXZ500ELL220MEB5D Nippon Chemi-Con 7 1 C6 15 nF,50 V,陶瓷,X7R,0805 ECJ-2VB1H153K Panasonic 8 1 2.2 nF,陶瓷,Y1 440LD22-R Vishay EKZE500ELL331MJ25S Nippon Chemi-Con ECQ-E6224KF Panasonic 08055D105KAT2A AVX Corporation ECJ-2YB1H104K Panasonic DL4002-13-F Diodes Inc 9 2 C7 C8 C10 10 1 C11 220 nF,630 V,薄膜 11 1 C12 1 µF,50 V,陶瓷,X7R,0805 12 1 C13 13 1 D1 14 1 D2 100 nF,50 V,陶瓷,X7R,0805 100 V,1 A,整流管,玻璃钝化,DO-213AA (MELF) 1000 V,1 A,整流管,玻璃钝化,DO-213AA (MELF) DL4007-13-F Diodes Inc 15 1 D3 1,000 V,1 A,超快速恢复,75 ns,DO-41 UF4007-E3 Vishay 16 1 D4 200 V,1 A,超快速恢复,50 ns,DO-41 UF4003-E3 Vishay 17 1 D5 100 V,1 A,快速恢复,150 ns,SMA RS1B-13-F Diodes, Inc 18 1 D6 400V,1 A,整流管,快速恢复,MELF (DL-41) DL4936-13-F Diodes Inc 19 1 D7 250 V,0.2 A,快速开关,50 ns,SOD-323 BAV21WS-7-F Diode Inc. MBRS4201T3G ON Semiconductor 37213150411 Wickman 不适用 不适用 5012 Keystone RLB0914-102KL Bourns 5011 Keystone FMMT558TA Zetex Inc 330 µF,50 V,电解,极低ESR,28 mΩ,(10 x 25) 20 1 D8 200 V,4 A,肖特基,SMC,DO-214AB 21 1 3.15 A,250 V,慢,TR5 22 2 F1 FL1 FL2 PCB接线孔,22 AWG 3 L L1 L2 L3 测试点,白色,直插式安装 25 2 N V- 测试点,黑色,直插式安装 26 1 Q1 PNP,400V 150MA,SOT-23 27 1 Q2 400 V,1.7 A,3.6 Ω,N通道,DPAK IRFR310TRPBF Vishay 28 1 Q3 NPN,弱信号BJT,40 V,0.2 A,SOT-23 MMBT3904LT1G On Semiconductor 29 1 240 kΩ,5%,1/2 W,碳膜 CFR-50JB-240K Yageo 23 1 24 1000 µH,0.3 A 30 2 R1 R2 R3 2.00 MΩ,1%,1/4 W,厚膜,1206 ERJ-8ENF2004V Panasonic 31 1 R4 49.9 kΩ,1%,1/8 W,厚膜,0805 ERJ-6ENF4992V Panasonic 32 1 R5 3 kΩ,5%,1/4 W,厚膜,1206 ERJ-8GEYJ302V Panasonic 33 1 R6 150 kΩ,1%,1/8 W,厚膜,0805 ERJ-6ENF1503V Panasonic 34 1 R7 10 kΩ,5%,1/4 W,厚膜,1206 ERJ-8GEYJ103V Panasonic 35 1 150 Ω,5%,1/8 W,厚膜,0805 ERJ-6GEYJ151V Panasonic 36 2 R8 R9 R10 750 kΩ,1%,1/4 W,厚膜,1206 ERJ-8ENF7503V Panasonic R11 2.4 MΩ,5%,1/8 W,厚膜,0805 ERJ-6GEYJ245V Panasonic 37 1 Power Integrations, Inc. 电话:+1 408 414 9200 传真:+1 408 414 9201 www.powerint.com 第14页(共44页) 2010年6月9日 RDR-194:使用LNK406EG设计的14 W PAR38 LED驱动器 38 1 R12 15 Ω,5%,1/8 W,厚膜,0805 ERJ-6GEYJ150V 39 1 R13 130 Ω,5%,1/2 W,碳膜 CFR-50JB-130R Yageo 40 1 20 kΩ,5%,1/4 W,厚膜,1206 ERJ-8GEYJ203V Panasonic Panasonic 41 3 R15 R16 R17 R19 1 kΩ,5%,1/8 W,厚膜,0805 ERJ-6GEYJ102V Panasonic 42 1 R18 510 Ω,5%,1 W,金属氧化物 RSF100JB-510R Yageo ERJ-6GEYJ103V Panasonic ERZ-V10D431 Panasonic 43 1 R20 10 kΩ,5%,1/8 W,厚膜,0805 44 1 RV1 275 V,80J,10 mm,径向 45 1 T1 自定义变压器,RM8,12引脚 46 1 U1 LinkSwitch,LNK406EG,eSIP 47 1 V+ 测试点,红色,直插式安装 48 1 VR1 200 V,1500W,TVS,GP-20 1.5KE200A-E3/54 Vishay 49 1 VR2 15 V,5%,500 mW,DO-213AA (MELF) ZMM5245B-7 Diodes Inc 50 1 VR3 39 V,5%,500 mW,DO-213AA (MELF) ZMM5259B-7 Diodes Inc 第15页(共44页) SNX-R1523 Santronics USA LNK406EG Power Integrations 5010 Keystone Power Integrations 电话:+1 408 414 9200 传真:+1 408 414 9201 www.powerint.com RDR-194:使用LNK406EG设计的14 W PAR38 LED驱动器 2010年6月9日 7 变压器规格 7.1 电气原理图 图5—变压器电气原理图。 7.2 电气规格 绝缘强度 1秒,60 Hz,从引脚1、2、3和11到FL1和FL2 初级电感量 引脚1-11,所有其他绕组开路,在100 kHz条件下测得,0.4 VRMS 1150 µH,± 20 % 谐振频率 引脚1-11,所有其他绕组开路 750 kHz(最小) 初级漏感 引脚1-11,FL1-FL2短路,在100 kHz条件下测得,0.4 VRMS 7.3 20 µH(最大) 材料 项 [1] [2] [3] [4] [5] [6] [7] 3000 VAC 说明 2 磁芯:RM8/I,3F3,ALG = 319 nH/n 骨架:12引脚,垂直,Philips生产的CSV-RM8-1S-12P或带有安装夹的同等材料,CLI/P-RM8 胶带:聚酯薄膜,3M 1350F-1或同等材料,9 mm宽 导线:漆包线,#31 AWG,可焊接,双涂层 导线:漆包线,#30 AWG,可焊接,双涂层 导线:三层绝缘,Furukawa TEX-E或同等材料,#25 TIW 变压器清漆:Dolph BC-359或同等材料 Power Integrations, Inc. 电话:+1 408 414 9200 传真:+1 408 414 9201 www.powerint.com 第16页(共44页) 2010年6月9日 7.4 RDR-194:使用LNK406EG设计的14 W PAR38 LED驱动器 变压器结构图 引脚侧 3L Tape W3 - Finish (P2) W3 - Start (P3) 1L Tape 1L Tape W2 - Finish (FL2) W2 - Start (FL1) 1L Tape W1 - Finish (P11) W1 - Start (P1) 图6—变压器结构图。 7.5 变压器构造 骨架准备 WD 1(初级) 绝缘层 WD 2(次级) 绝缘层 WD 3(偏置) 增强绕制 总装 将骨架项[2]放在绕线轴上,例如左侧的引脚侧。绕组方向为顺时针方向。 从引脚1开始,分两层缠绕60匝导线项[4]。在引脚11结束。 缠一层胶带项[3]。 留出大约1”的导线项[6],使用细胶带标记为FL1,穿过骨架上次级侧的槽,分两层缠绕 20匝。在最后一匝退出同一个槽,留出大约1”,标记为FL2。 缠一层胶带项[3]。 从引脚3开始,缠绕20匝导线项[5],铺开导线,最后在引脚2结束。 缠三层胶带项[3]以增强缠绕层。 将FL1和FL2剪切到0.75”。打磨磁芯以使电感值达到1.15 mH。将两半磁芯安装固定 好,用清漆均匀的浸渍。使用清漆项[7]浸渍。 第17页(共44页) Power Integrations 电话:+1 408 414 9200 传真:+1 408 414 9201 www.powerint.com RDR-194:使用LNK406EG设计的14 W PAR38 LED驱动器 2010年6月9日 8 变压器设计表格 ACDC_LinkSwitchPH_042910;修订版1.0; 版权所有 Power Integrations 2010 LinkSwitch-PH_042910:反激式变压 输入 信息 输出 是 信息 是 单位 器设计表格 输入应用变量 需要调光 VACMIN V 最小AC输入电压 265 V 最大AC输入电压 50 Hz AC电网频率 90 VACMAX 265 fL VO !!! 信息。在配置调光时,通过单输入电 压范围达到最佳输出电流线电压调节。 28.00 V LED灯串满载时的典型输出电压 最大预期LED灯串电压。 VO_MAX 30.80 V VO_MIN 25.20 V 最小预期LED灯串电压。 V 过压保护设定点 V_OVP 33.88 IO 典型满载LED电流 0.50 PO 14.0 W 输出功率 n 0.8 估计工作效率 28 V 偏置电压 VB 28 输入LinkSwitch-PH变量 LinkSwitch-PH 所选器件 电流限流模式 宽电压范围 LNK406 LNK406 红色 输出功率 22.5 W 红色 115倍压/230 V 22.5 W 选择“有限”设置为有限电流限制模 式,或选择“完全”设置为完全电流限 制模式。 ILIMITMIN 1.19 A 最小电流限制 ILIMITMAX 1.36 A 最大电流限制 fS 66000 Hz 开关频率 fSmin 62000 Hz 最小开关频率 fSmax 70000 Hz 最大开关频率 39.9 uA V引脚电流 IV RV 4 M-ohm RV2 1E+12 M-ohm IFB 158.8 uA RFB1 157.5 k-ohm VDS 10 V V引脚电阻上限 V引脚电阻下限 FB引脚电流(85 uA < IFB < 210 uA) FB引脚电阻 VD 0.50 V LinkSwitch-PH导通状态漏极-电源电压 输出绕组二极管正向电压降(对肖特基 二极管取值0.5 V,对PN结二极管取值 0.8 V) VDB 0.70 V 偏置绕组二极管正向电压降 关键设计参数 KP 0.87 LP VOR 预期IO(平均) 85.00 初级电感量 1150 uH 85 V 反射输出电压。 0.51 A 预期平均输出电流 KP_VACMAX 1.11 TON_MIN 1.86 Power Integrations, Inc. 电话:+1 408 414 9200 传真:+1 408 414 9201 www.powerint.com 纹波电流与峰值电流的比例(PF > 0.9 时,0.4 < KP < 0.9) 0.87 在VACMAX时的预期纹波电流比率 us 最高AC输入电压时的最大导通时间 第18页(共44页) 2010年6月9日 RDR-194:使用LNK406EG设计的14 W PAR38 LED驱动器 输入变压器磁芯/结构变量 磁芯类型 RM8/I 骨架 RM8/I P/N: RM8/I_BOBBIN AE 0.63 cm^2 LE 3.84 cm AL 3000 nH/T^2 * 磁芯等效截面积 磁芯等效路径长度 无气隙磁芯等效电感量 BW 10 mm 骨架绕线宽度 M 0 mm 安全挡墙宽度(初级至次级爬电距离的 一半) L NS 2.00 2 初级绕组层数 20 20 次级绕组匝数 DC输入电压参数 VMIN 127 V 对应于VACMIN的峰值输入电压 VMAX 375 V 对应于VACMAX的峰值输入电压 电流波形参数 对应于VACMIN峰值的最小占空比 DMAX 0.42 IAVG 0.51 A 平均初级电流 IP 0.95 A 峰值初级电流(在最小输入电压 VACMIN下计算) IRMS 0.31 A 初级RMS电流(在最小输入电压 VACMIN下计算) LP 1150 uH NP 60 变压器初级绕组设计参数 初级电感量 初级绕组匝数 偏置绕组匝数 NB 20 ALG 323 BM 2897 nH/T^2 高斯 BP 3506 高斯 峰值磁通密度(BP < 3700) BAC 1267 高斯 磁芯损耗曲线中的AC磁通密度 (0.5 X 峰值-峰值) ur 1455 LG 0.22 mm 气隙长度(Lg > 0.1 mm) 带气隙磁芯等效电感量 PO的最大磁通密度,VMIN (BM < 3100) 无气隙磁芯的相对磁导率 20 mm 等效骨架宽度 OD 0.34 mm 初级绕组最大线径(包括绝缘层) INS 0.06 mm 估计的总绝缘层厚度(= 2 * 膜厚度) DIA 0.28 mm AWG 30 AWG 裸线直径 初级绕组的导线规格(如果计算出的线 径在两种标准线径之间,则使用较小线 规的导线) CM 102 Cmil 以Cmil为单位的裸线等效面积 CMA 330 Cmil/Amp ISP 2.82 A 峰值次级电流 ISRMS 1.01 A 次级RMS电流 IRIPPLE 0.88 A CMS 203 Cmil BWE 初级绕组电流容量(200 < CMA < 600) 变压器次级绕组设计参数(多路输出) 汇总参数 AWGS 输出电容RMS纹波电流 次级绕组裸线最小Cmil数 次级导线规格(舍入到下一个较大的标 准AWG值) 27 AWG DIAS 0.36 mm 次级绕组裸线最小直径 ODS 0.50 mm 三层绝缘线的次级绕组最大外径 第19页(共44页) Power Integrations 电话:+1 408 414 9200 传真:+1 408 414 9201 www.powerint.com RDR-194:使用LNK406EG设计的14 W PAR38 LED驱动器 2010年6月9日 电压应力参数 VDRAIN 553 V 假定LED灯串电压达到最大时的估计最 大漏极电压(包括漏感效应) PIVS 160 V 输出整流器最大反向峰值电压 (在VOVP下计算,不包括漏感尖峰) PIVB 160 V 偏置整流器最大反向峰值电压 (在VOVP下计算,不包括漏感尖峰) 微调(输入从原型测得的值) V引脚电阻微调 V引脚电阻值上限 RV1 4.00 M-ohm RV2 1E+12 M-ohm VAC1 115.0 V 测试输入电压条件1 VAC2 230.0 V 测试输入电压条件2 IO_VAC1 0.50 A 在VAC1时测得的输出电流 IO_VAC2 RV1(新) 0.50 A 4.00 M-ohm RV2(新) V引脚电阻值下限 在VAC2时测得的输出电流 新RV1 新RV2 20911.63 M-ohm V_OV 319.6 V 触发OV关断的典型AC输入电压 V_UV 66.3 V 超过此值即可使电源启动的典型AC输 入电压 FB引脚电阻微调 FB引脚电阻值上限 RFB1 157 k-ohm RFB2 1E+12 k-ohm FB引脚电阻值下限 VB1 25.2 V 测试偏置电压条件1 VB2 30.8 V 测试偏置电压条件2 IO1 0.50 A 在Vb1时测得的输出电流 IO2 RFB1(新) 0.50 A 157.5 k-ohm 新RFB1 RFB2(新) 1.00E+12 k-ohm 新RFB2 Power Integrations, Inc. 电话:+1 408 414 9200 传真:+1 408 414 9201 www.powerint.com 在Vb2时测得的输出电流 第20页(共44页) 2010年6月9日 RDR-194:使用LNK406EG设计的14 W PAR38 LED驱动器 9 性能数据 所有测量均在室温下进行 9.1 功率效率 9.1.1 28 V Hz VIN (VAC) PIN (W) VOUT (V) IOUT (mA) POUT (W) 60 60 60 60 90 100 115 130 14.62 15.1 15.78 16.34 27.78 27.85 27.99 28.11 439 455 477 497 12.20 12.67 13.35 13.97 Hz VIN (VAC) PIN (W) VOUT (V) IOUT (mA) POUT (W) 50 50 50 50 50 50 185 200 215 230 245 265 18.31 18.79 19.23 19.67 20.08 20.63 28.47 28.54 28.6 28.67 28.73 28.81 558 571 584 596 607 621 15.89 16.30 16.70 17.09 17.44 17.89 Hz VIN (VAC) PIN (W) VOUT (V) IOUT (mA) POUT (W) 60 60 60 60 90 100 115 130 13.22 13.67 14.27 14.83 24.95 25.04 25.16 25.28 440 458 481 501 10.98 11.47 12.10 12.67 Hz VIN (VAC) PIN (W) VOUT (V) IOUT (mA) POUT (W) 50 50 50 50 50 50 185 200 215 230 245 265 16.62 17.05 17.46 17.86 18.24 18.73 25.58 25.64 25.71 25.77 25.82 25.88 561 575 588 600 611 625 14.35 14.74 15.12 15.46 15.78 16.18 效率 (%) 83 84 85 85 效率 (%) 87 87 87 87 87 87 PF 0.98 PF 0.93 9.1.2 25 V 第21页(共44页) 效率 (%) 83 84 85 85 效率 (%) 86 86 87 87 86 86 PF 0.98 PF 0.92 Power Integrations 电话:+1 408 414 9200 传真:+1 408 414 9201 www.powerint.com RDR-194:使用LNK406EG设计的14 W PAR38 LED驱动器 2010年6月9日 9.1.3 31 V Hz VIN (VAC) PIN (W) VOUT (V) IOUT (mA) POUT (W) 60 60 60 60 90 100 115 130 16.35 16.89 17.53 18.14 30.82 30.97 31.12 31.25 437 454 476 495 13.47 14.06 14.81 15.47 Hz VIN (VAC) PIN (W) VOUT (V) IOUT (mA) POUT (W) 50 50 50 50 50 50 185 200 215 230 245 265 20.49 20.91 21.4 21.86 22.34 22.93 31.75 31.8 31.88 31.95 32.02 32.11 560 571 583 595 606 620 17.78 18.16 18.59 19.01 19.40 19.91 效率 (%) 82 83 85 85 效率 (%) 87 87 87 87 87 87 PF 0.98 PF 0.93 88.0 25 V 28 V 32 V Efficiency (%) 87.0 86.0 85.0 84.0 83.0 82.0 75 100 125 150 175 200 Input Voltage (VAC) 225 250 275 图7—效率随输入电压的变化,室温。 Power Integrations, Inc. 电话:+1 408 414 9200 传真:+1 408 414 9201 www.powerint.com 第22页(共44页) 2010年6月9日 9.2 RDR-194:使用LNK406EG设计的14 W PAR38 LED驱动器 调节 9.2.1 输出电压和线电压 650 115 V 230 V Output Current (mA) 625 600 575 550 525 500 475 450 24 25 26 27 28 29 30 31 32 33 Output Voltage (VDC) 图8—电压和线电压调节,室温。 上面显示的线电压稳压结果是将U1设定为相位角调光模式(以提供非常宽的调光范围)的 设计中的典型值。对于一个给定的线电压范围,可通过改变反馈电阻(R6)的值使输出电流 居中。下表显示用于在特定输入电压下调节平均输出电流的电阻值。 线电压(VAC) R6的值(kΩ) 100 115 230 147 150 178 表1—在不同标称线电压下使输出电流居中的反馈电阻值。 第23页(共44页) Power Integrations 电话:+1 408 414 9200 传真:+1 408 414 9201 www.powerint.com RDR-194:使用LNK406EG设计的14 W PAR38 LED驱动器 2010年6月9日 9.2.2 输入电压和输出电压调节 注释:28 V和25 V的数据相同。 535 25 V 28 V 32 V Output Current (mA) 525 515 505 495 485 475 465 85 90 95 100 105 110 115 120 125 130 135 Input Voltage (VAC) 图9—低线电压调节,室温,满载。 Power Integrations, Inc. 电话:+1 408 414 9200 传真:+1 408 414 9201 www.powerint.com 第24页(共44页) 2010年6月9日 RDR-194:使用LNK406EG设计的14 W PAR38 LED驱动器 630 Output Current (mA) 620 25 V 28 V 32 V 610 600 590 580 570 560 550 175 185 195 205 215 225 235 245 255 265 Input Voltage (VAC) 图10—高线电压调节,室温,满载。 第25页(共44页) Power Integrations 电话:+1 408 414 9200 传真:+1 408 414 9201 www.powerint.com 275 RDR-194:使用LNK406EG设计的14 W PAR38 LED驱动器 2010年6月9日 10 热性能 在室温(25 °C)下运行30分钟后采集的图像,满载。表明在50 °C条件下,LinkSwitch-PH的工 作温度为100 °C。在器件旁边增加小型散热片(与板同宽)可将工作温度降低大约25 °C。 10.1 VIN = 115 VAC(U1:无散热片) 图11—顶侧。 图12—底侧。 10.2 VIN = 230 VAC(U1:无散热片) 图13—顶侧。 Power Integrations, Inc. 电话:+1 408 414 9200 传真:+1 408 414 9201 www.powerint.com 图14—底侧。 第26页(共44页) 2010年6月9日 RDR-194:使用LNK406EG设计的14 W PAR38 LED驱动器 11 谐波数据 100 Class C Limit RD-194 Harmonic Data at 115 VAC 90 80 Current (mA) 70 60 50 40 30 20 10 0 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 Harmonic 图15—115 VAC谐波,室温,满载。 第27页(共44页) Power Integrations 电话:+1 408 414 9200 传真:+1 408 414 9201 www.powerint.com RDR-194:使用LNK406EG设计的14 W PAR38 LED驱动器 2010年6月9日 60 Class C Limit RD-194 Harmonic Data at 230 VAC Current (mA) 50 40 30 20 10 0 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 Harmonic 图16—230 VAC谐波,室温,满载。 VIN = 115 VAC THD (%) 限制(%) 裕量(%) 21.0 33 12.0 VIN = 230 VAC THD (%) 27.8 限制(%) 裕量(%) 33 5.2 Power Integrations, Inc. 电话:+1 408 414 9200 传真:+1 408 414 9201 www.powerint.com 第28页(共44页) 2010年6月9日 RDR-194:使用LNK406EG设计的14 W PAR38 LED驱动器 12 波形 12.1 输入线电压和电流 图17—90 VAC,满载。 上:IIN,0.2 A/格 下:VIN,100 V,10 ms/格 图18—265 VAC,满载。 上:IIN,0.1 A/格 下:VIN,200 V/格,10 ms/格 12.2 漏极电压和电流 图19—90 VAC,满载。 上:IDRAIN,0.5 A/格 下:VDRAIN,100 V,5 µs/格 第29页(共44页) 图20—265 VAC,满载。 上:IDRAIN,0.5 A/格 下:VDRAIN,200 V/格,5 µs/格 Power Integrations 电话:+1 408 414 9200 传真:+1 408 414 9201 www.powerint.com RDR-194:使用LNK406EG设计的14 W PAR38 LED驱动器 2010年6月9日 12.3 输出电压和纹波电流 图21—90 VAC,满载。 上:IRIPPLE,0.2 A/格 下:VOUTPUT 10 V,5 ms/格 图22—265 VAC,满载。 上:IRIPPLE,0.2 A/格 下:VOUTPUT 10 V,5 ms/格 12.4 输出电压和漏极电流启动特征 图23—90 VAC,满载。 上:IDRAIN,0.5 A/格 下:VOUTPUT,5 V,20 ms/格 Power Integrations, Inc. 电话:+1 408 414 9200 传真:+1 408 414 9201 www.powerint.com 图24—265 VAC,满载。 上:IRIPPLE,0.5 A/格 下:VOUTPUT,5 V,10 ms/格 第30页(共44页) 2010年6月9日 RDR-194:使用LNK406EG设计的14 W PAR38 LED驱动器 12.5 输出短路期间的输出电流和漏极电压 图25—90 VAC,满载。 上:IOUTPUT,2 A/格 下:VDRAIN,200 V,200 ms/格 图26—265 VAC,满载。 上:IOUPTUT,5 A/格 下:VOUTPUT,200 V,200 ms/格 12.6 开路负载输出电压 图27—输出电压:115 VAC。 VOUT,10 V/格,500 ms/格。 第31页(共44页) 图28—输出电压:230 VAC。 VOUT,10 V/格,500 ms/格 Power Integrations 电话:+1 408 414 9200 传真:+1 408 414 9201 www.powerint.com RDR-194:使用LNK406EG设计的14 W PAR38 LED驱动器 2010年6月9日 13 调光 13.1 输入相位与输出 注释:由于可控硅相位调光器工作范围的限制,调光器最大导通角度被限制在165度。 115 VAC / 60 Hz 相位角(º) 165 98 65 40 16 8 0 230 VAC / 50 Hz IOUT(mA) 420 220 150 56 9 2 0 相位角(º) IOUT(mA) 528 264 142 76 58 3 0 160 79 52 41 34 6 0 600 115 V 230 V LED Current (mA) 500 400 300 200 100 0 0 20 40 60 80 100 120 140 160 180 Phase Angle (°) 图29—输入相位与输出电流。 Power Integrations, Inc. 电话:+1 408 414 9200 传真:+1 408 414 9201 www.powerint.com 第32页(共44页) 2010年6月9日 RDR-194:使用LNK406EG设计的14 W PAR38 LED驱动器 13.2 输出电压和输入电流波形 13.2.1 VIN = 115 VAC / 60 Hz 图30—115 VAC,满相。 上:VOUT,10 V/格 下:IIN,0.1 A/格,5 ms/格 图31—115 VAC,65o相位。 上:VOUT,10 V/格 下:IIN,0.1 A/格,5 ms/格 图32—115 VAC,16o相位。 上:VOUT,10 V/格 下:IIN,0.1 A/格,5 ms/格 图33—115 VAC,8o相位。 上:VOUT,10 V/格 下:IIN,0.1 A/格,5 ms/格 第33页(共44页) Power Integrations 电话:+1 408 414 9200 传真:+1 408 414 9201 www.powerint.com RDR-194:使用LNK406EG设计的14 W PAR38 LED驱动器 2010年6月9日 13.2.2 VIN = 230 VAC / 50Hz 图34—230 VAC,满相。 上:VOUT,10 V/格 下:IIN,0.1 A/格,5 ms/格 图35—230 VAC,54o相位。 上:VOUT,10 V/格 下:IIN,0.1 A/格,5 ms/格 图36—230 VAC,6o相位。 上:VOUT,10 V/格 下:IIN,0.1 A/格,5 ms/格 图37—230 VAC,5o相位。 上:VOUT,10 V/格 下:IIN,0.1 A/格,5 ms/格 Power Integrations, Inc. 电话:+1 408 414 9200 传真:+1 408 414 9201 www.powerint.com 第34页(共44页) 2010年6月9日 RDR-194:使用LNK406EG设计的14 W PAR38 LED驱动器 14 输入浪涌 根据IEC61000-4-5,差模和共模输入线200 A振铃波测试在单个测试电源上完成。输入电 压设置为230 VAC / 60 Hz。输出加满载,在每次浪涌测试后验证工作状况。 浪涌水平 (V) 输入电压 (VAC) 2500 2500 2500 2500 2500 2500 230 230 230 230 230 230 注入位置 注入相位 (°) 测试结果 (通过/失败) L到N L到N L到PE L到PE N到PE N到PE 90 90 90 90 90 90 通过 通过 通过 通过 通过 通过 被测电源在所有测试条件下均通过测试。 第35页(共44页) Power Integrations 电话:+1 408 414 9200 传真:+1 408 414 9201 www.powerint.com RDR-194:使用LNK406EG设计的14 W PAR38 LED驱动器 2010年6月9日 15 传导EMI 注释:蓝色结果表示峰值检测的结果,与准峰值限制线相对应。关于限制的实际裕量(准 峰值测量结果与准峰值限制),请参阅下表。 Power Integrations 21.Apr 10 08:02 RBW MT 9 kHz 500 ms Att 10 dB AUTO dBµV 100 kHz 120 EN55015Q LIMIT CHECK 110 1 MHz PASS 10 MHz SGL 100 1 PK CLRWR 90 2 AV CLRWR TDF 80 70 60 EN55015A 50 6DB 40 30 20 10 0 -10 -20 9 kHz Trace1: 30 MHz EDIT PEAK LIST (Final Measurement Results) EN55015Q Trace2: EN55015A Trace3: --- TRACE FREQUENCY LEVEL dBµV DELTA LIMIT dB 2 Average 134.789536006 kHz 41.13 N gnd 1 Quasi Peak 200.175581485 kHz 51.44 N gnd 2 Average 200.175581485 kHz 43.79 N gnd -9.81 1 Quasi Peak 267.135089486 kHz 44.80 N gnd -16.40 2 Average 267.135089486 kHz 35.58 N gnd -15.62 2 Average 332.507282579 kHz 35.10 L1 gnd -14.28 2 Average 401.705024172 kHz 37.16 N gnd -10.64 1 Quasi Peak 418.01585899 kHz 46.10 N gnd -11.38 2 Average 466.367062279 kHz 37.33 N gnd -9.24 2 Average 536.076911993 kHz 35.42 N gnd -10.57 1 Quasi Peak 641.227045055 kHz 43.24 N gnd -12.75 2 Average 667.263434405 kHz 35.08 L1 gnd -10.91 2 Average 4.97983359306 MHz 38.94 N gnd -7.05 1 Quasi Peak 6.1984778522 MHz 45.35 N gnd -14.64 2 Average 13.6042179984 MHz 40.09 L1 gnd -9.90 1 Quasi Peak 13.8776627802 MHz 49.91 L1 gnd -10.08 -12.16 图38—传导EMI,最大稳态负载,115 VAC,60 Hz,EN55015 B限制。 Power Integrations, Inc. 电话:+1 408 414 9200 传真:+1 408 414 9201 www.powerint.com 第36页(共44页) 2010年6月9日 RDR-194:使用LNK406EG设计的14 W PAR38 LED驱动器 Power Integrations 21.Apr 10 08:08 RBW MT 9 kHz 500 ms Att 10 dB AUTO dBµV 100 kHz 120 EN55015Q LIMIT CHECK 110 1 MHz PASS 10 MHz SGL 1 PK CLRWR 100 90 2 AV CLRWR TDF 80 70 60 EN55015A 50 6DB 40 30 20 10 0 -10 -20 9 kHz Trace1: 30 MHz EDIT PEAK LIST (Final Measurement Results) EN55015Q Trace2: EN55015A Trace3: --- TRACE FREQUENCY LEVEL dBµV DELTA LIMIT dB 2 Average 9.272709 kHz 23.48 N gnd 2 Average 134.789536006 kHz 41.52 N gnd 1 Quasi Peak 190.46019728 kHz 47.24 L1 gnd -16.77 2 Average 200.175581485 kHz 39.24 L1 gnd -14.35 1 Quasi Peak 264.49018761 kHz 45.98 L1 gnd -15.30 2 Average 267.135089486 kHz 37.12 N gnd -14.08 1 Quasi Peak 332.507282579 kHz 41.97 N gnd -17.41 2 Average 332.507282579 kHz 33.19 N gnd -16.19 1 Quasi Peak 401.705024172 kHz 42.37 L1 gnd -15.44 2 Average 401.705024172 kHz 32.83 L1 gnd -14.98 2 Average 466.367062279 kHz 33.81 N gnd -12.76 1 Quasi Peak 471.030732902 kHz 44.01 N gnd -12.47 2 Average 598.084042089 kHz 31.96 N gnd -14.03 1 Quasi Peak 673.936068749 kHz 42.26 N gnd -13.73 2 Average 6.07634335085 MHz 40.39 N gnd -9.60 1 Quasi Peak 6.26046263072 MHz 45.96 N gnd -14.03 2 Average 13.6042179984 MHz 41.54 L1 gnd -8.45 1 Quasi Peak 13.7402601784 MHz 49.67 L1 gnd -10.32 图39—传导EMI,最大稳态负载,230 VAC,60 Hz,EN55015 B限制。 第37页(共44页) Power Integrations 电话:+1 408 414 9200 传真:+1 408 414 9201 www.powerint.com RDR-194:使用LNK406EG设计的14 W PAR38 LED驱动器 2010年6月9日 16 批量生产的数据分布 所有RD-194在交付之前均通过ATE测试,在线电压为115 VAC和器件温度为50 °C的固定条 件下的输出电流数据如下。这些数据显示不同电源之间的变化非常低(Σ值为8.5 mA), 其中包括器件和外部元件的影响。 Histogram of Average Output Current Normal Vin = 115 VAC Mean StDev N 20 0.5 0.008587 83 Frequency 15 10 5 0 0.450 0.465 0.480 0.495 0.510 Iout (A) 0.525 0.540 图40—115 VAC条件下的IOUT生产变化 Power Integrations, Inc. 电话:+1 408 414 9200 传真:+1 408 414 9201 www.powerint.com 第38页(共44页) 2010年6月9日 RDR-194:使用LNK406EG设计的14 W PAR38 LED驱动器 17 版本历史 日期 作者 修订版本 说明和变更 修订者 2010年6月9日 DK 1.0 初始版本 Apps & Mktg 第39页(共44页) Power Integrations 电话:+1 408 414 9200 传真:+1 408 414 9201 www.powerint.com RDR-194:使用LNK406EG设计的14 W PAR38 LED驱动器 2010年6月9日 18 附录 18.1 使用可控硅调光器开关的调光测试 18.1.1 115 VAC输入,60 Hz 调光测试数据 类型 国家/地区 生产商 型号 无关闭开关的 最大电流(mA) 受控最小电流(mA) WS-5005 500 2 0 最小电流(mA) 旋钮式 1 中国台湾 2 美国 Leviton OB4911 500 4 0 1 美国 Lutron GLR11-F38875 450 6 0 2 中国台湾 SG Electric XH004186 490 63 0 滑块式 18.1.2 230 VAC输入,50 Hz 请注意,对于230 VAC工作条件下输出并没有进行归一化(调整反馈电阻值)。在归一化条 件下,~600 mA对应的值与~500 mA对应的值相等。 调光测试数据 类型 国家/地区 生产商 型号 最大电流(mA) 受控最小电流(mA) 无关闭开关的 最小电流(mA) 旋钮式 1 中国台湾 Y-25088A 598 3 0 2 中国台湾 Y-25082A 595 2 0 3 中国台湾 D-2160B 597 4 61 中国 CLIPMEI 593 5 中国 LBR 595 6 中国 KBE 593 7 中国 MANK MK/TG100001 595 8 中国 SB Electric BM2 580 4 0 9 中国 EBAHuang 593 5 0 10 中国 Myongbo 596 135 11 中国 TCL 596 75 12 意大利 RTS34DLI 590 75 L2.0 Power Integrations, Inc. 电话:+1 408 414 9200 传真:+1 408 414 9201 www.powerint.com 4 0 125 10 0 157 第40页(共44页) 2010年6月9日 RDR-194:使用LNK406EG设计的14 W PAR38 LED驱动器 18.2 噪音测试数据 使用经校准的实验室麦克风在变压器上方25 mm处以开放式方法对被测电源进行测量。 结果显示在使用前沿相位角调光时,电源产生的噪音完全可接受。测得的声级仅稍微高出 背景噪音。 18.2.1 VIN = 115 VAC,满相 +80 +70 +60 +50 +40 d B r +30 +20 A +10 +0 -10 -20 -30 2k 4k 6k 8k 10k 12k 14k 16k 18k 20k 22k Hz 图41—2 kHz – 22 kHz。 18.2.2 VIN = 115 VAC,半相 +80 +70 +60 +50 +40 d B r +30 +20 A +10 +0 -10 -20 -30 2k 4k 6k 8k 10k 12k 14k 16k 18k 20k 22k Hz 图42—2 kHz – 22 kHz。 第41页(共44页) Power Integrations 电话:+1 408 414 9200 传真:+1 408 414 9201 www.powerint.com RDR-194:使用LNK406EG设计的14 W PAR38 LED驱动器 2010年6月9日 18.2.3 VIN = 230 VAC,满相 +80 +70 +60 +50 +40 d B r +30 +20 A +10 +0 -10 -20 -30 2k 4k 6k 8k 10k 12k 14k 16k 18k 20k 22k Hz 图43—2 kHz – 22 kHz。 18.2.4 VIN = 230 VAC,半相 +80 +70 +60 +50 +40 d B r +30 +20 A +10 +0 -10 -20 -30 2k 4k 6k 8k 10k 12k 14k 16k 18k 20k 22k Hz 图44—2 kHz – 22 kHz。 Power Integrations, Inc. 电话:+1 408 414 9200 传真:+1 408 414 9201 www.powerint.com 第42页(共44页) 2010年6月9日 RDR-194:使用LNK406EG设计的14 W PAR38 LED驱动器 有关最新产品信息,请访问:www.powerint.com Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability. Power Integrations does not assume any liability arising from the use of any device or circuit described herein. POWER INTEGRATIONS MAKES NO WARRANTY HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS. PATENT INFORMATION The products and applications illustrated herein (including transformer construction and circuits external to the products) may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations patents may be found at www.powerint.com. Power Integrations grants its customers a license under certain patent rights as set forth at http://www.powerint.com/ip.htm. The PI logo, TOPSwitch, TinySwitch, LinkSwitch, DPA-Switch, PeakSwitch, EcoSmart, Clampless, E-Shield, Filterfuse, StakFET, PI Expert and PI FACTS are trademarks of Power Integrations, Inc. Other trademarks are property of their respective companies. © 2010, Power Integrations, Inc. Power Integrations全球销售支持网络 全球总部 5245 Hellyer Avenue San Jose, CA 95138, USA. Main: +1-408-414-9200 Customer Service: Phone: +1-408-414-9665 Fax: +1-408-414-9765 e-mail: [email protected] 中国(上海) Room 1601 /1610, Tower 1 Kerry Everbright City No. 218 Tianmu Road West Shanghai, P.R.C. 200070 Phone: +86-21-6354-6323 Fax: +86-21-6354-6325 e-mail: [email protected] 中国(深圳) Rm A, B & C 4th Floor, Block C, Electronics Science and Technology Bldg., 2070 Shennan Zhong Rd, Shenzhen, Guangdong, China, 518031 Phone: +86-755-8379-3243 Fax: +86-755-8379-5828 e-mail: [email protected] 第43页(共44页) 德国 Rüeckertstrasse 3 D-80336, Munich Germany Phone: +49-89-5527-3910 Fax: +49-89-5527-3920 e-mail: [email protected] 印度 #1, 14th Main Road Vasanthanagar Bangalore-560052 I nd ia Phone: +91-80-4113-8020 Fax: +91-80-4113-8023 e-mail: [email protected] 意大利 Via De Amicis 2 20091 Bresso MI Italy Phone: +39-028-928-6000 Fax: +39-028-928-6009 e-mail: [email protected] 日本 Kosei Dai-3 Bldg. 2-12-11, Shin-Yokohama, Kohoku-ku Yokohama-shi Kanagwan 222-0033 Japan Phone: +81-45-471-1021 Fax: +81-45-471-3717 e-mail: [email protected] 韩国 RM 602, 6FL Korea City Air Terminal B/D, 159-6 Samsung-Dong, Kangnam-Gu, Seoul, 135-728, Korea Phone: +82-2-2016-6610 Fax: +82-2-2016-6630 e-mail: [email protected] 新加坡 51 Newton Road #15-08/10 Goldhill Plaza Singapore, 308900 Phone: +65-6358-2160 Fax: +65-6358-2015 e-mail: [email protected] 台湾 5F, No. 318, Nei Hu Rd., Sec. 1 Nei Hu Dist. Taipei, Taiwan 114, R.O.C. Phone: +886-2-2659-4570 Fax: +886-2-2659-4550 e-mail: [email protected] 欧洲总部 1 st Floor, St. James’s House East Street, Farnham Surrey GU9 7TJ United Kingdom Phone: +44 (0) 1252-730-141 Fax: +44 (0) 1252-727-689 e-mail: [email protected] 技术支持热线 World Wide +1-408-414-9660 技术支持传真 World Wide +1-408-414-9760 Power Integrations 电话:+1 408 414 9200 传真:+1 408 414 9201 www.powerint.com RDR-194:使用LNK406EG设计的14 W PAR38 LED驱动器 Power Integrations, Inc. 电话:+1 408 414 9200 传真:+1 408 414 9201 www.powerint.com 2010年6月9日 第44页(共44页) Title Reference Design Report for a High Efficiency (≥85%), High Power Factor (>0.9) TRIAC Dimmable 14 W LED Driver Using LinkSwitchTM-PH LNK406EG Specification 90 VAC – 265 VAC Input; 28 VTYP, 0.5 A Output Application LED Driver Author Applications Engineering Department Document Number RDR-195 Date May 13, 2011 Revision 1.1 Summary and Features Superior performance and end user experience o TRIAC dimmer compatible (including low cost leading edge type) No output flicker >1000:1 dimming range o Clean monotonic start-up – no output blinking o Fast start-up (<300 ms) – no perceptible delay o Consistent dimming performance unit to unit Highly energy efficient o ≥85% at 115 VAC, ≥87% at 230 VAC Low cost, low component count and small printed circuit board footprint solution o Regulated output current with no current sensing required o Frequency jitter for smaller, lower cost EMI filter components Integrated protection and reliability features o Output open circuit / output short-circuit protected with auto-recovery o Line input overvoltage shutdown extends voltage withstand during line faults. o Auto-recovering thermal shutdown with large hysteresis protects both components and printed circuit board o No damage during brown-out or brown-in conditions IEC 61000-4-5 ringwave, IEC 61000-3-2 Class C and EN55015 B conducted EMI compliant Power Integrations 5245 Hellyer Avenue, San Jose, CA 95138 USA. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com RDR-195 14 W PAR38 LED Driver Using LNK406EG 13-May-11 PATENT INFORMATION The products and applications illustrated herein (including transformer construction and circuits external to the products) may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at www.powerint.com. Power Integrations grants its customers a license under certain patent rights as set forth at <http://www.powerint.com/ip.htm>. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 2 of 40 13-May-11 RDR-195 14 W PAR38 LED Driver Using LNK406EG Table of Contents 1 2 3 4 Introduction .................................................................................................................5 Power Supply Specification ........................................................................................7 Schematic ...................................................................................................................8 Circuit Description .......................................................................................................9 4.1 Input Filtering .......................................................................................................9 4.2 LinkSwitch-PH Primary ........................................................................................9 4.3 Feedback ...........................................................................................................10 4.4 Output Rectification ...........................................................................................11 4.5 TRIAC Phase Dimming Control Compatibility ....................................................11 5 PCB Layout...............................................................................................................12 6 Bill of Material ...........................................................................................................13 6.1 Electrical ............................................................................................................13 6.2 Mechanical ........................................................................................................14 7 Transformer Specification .........................................................................................15 7.1 Electrical Diagram..............................................................................................15 7.2 Electrical Specifications .....................................................................................15 7.3 Materials ............................................................................................................15 7.4 Transformer Build Diagram ................................................................................16 7.5 Transformer Construction ..................................................................................16 8 Transformer Design Spreadsheet .............................................................................17 9 Performance Data .....................................................................................................20 9.1 Power Efficiency ................................................................................................20 9.1.1 27 V ............................................................................................................20 9.1.2 24 V ............................................................................................................20 9.1.3 30 V ............................................................................................................21 9.2 Regulation .........................................................................................................22 9.2.1 Output Voltage and Line .............................................................................22 9.2.2 Input Voltage and Output Current Regulation .............................................23 10 Thermal Performance............................................................................................25 10.1 VIN = 115 VAC (U1: No Heat Sink) ....................................................................25 10.2 VIN = 230 VAC (U1: No Heat Sink) ....................................................................25 11 Harmonic Data ......................................................................................................26 12 Waveforms ............................................................................................................28 12.1 Input Line Voltage and Current ..........................................................................28 12.2 Drain Voltage and Current .................................................................................28 12.3 Output Voltage and Ripple Current ....................................................................29 12.4 Output Voltage and Drain Current Start-up Profile ............................................29 12.5 Output Current and Drain Voltage During Shorted Output.................................30 12.6 Open Load Output Voltage ................................................................................30 13 Dimming ................................................................................................................31 13.1 Input Phase vs. Output ......................................................................................31 13.2 Output Voltage and Input Current Waveforms ...................................................32 13.2.1 VIN = 115 VAC / 60 Hz ................................................................................32 13.2.2 VIN = 230 VAC / 50Hz .................................................................................33 Page 3 of 40 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com RDR-195 14 W PAR38 LED Driver Using LNK406EG 13-May-11 14 Line Surge............................................................................................................. 34 15 Conducted EMI ..................................................................................................... 35 16 Revision History .................................................................................................... 37 17 Appendix ............................................................................................................... 38 17.1 Dimming Test with TRIAC Dimmer Switches .................................................... 38 17.1.1 VIN = 115 VAC, 60 Hz ................................................................................. 38 17.1.2 VIN = 230 VAC, 50 Hz ................................................................................. 39 Important Note: Although this board is designed to satisfy safety isolation requirements, the engineering prototype has not been agency approved. Therefore, all testing should be performed using an isolation transformer to provide the AC input to the prototype board. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 4 of 40 13-May-11 RDR-195 14 W PAR38 LED Driver Using LNK406EG 1 Introduction The document describes a high power factor (PF) TRIAC dimmable LED driver designed to drive a nominal LED string voltage of 28 V at 0.5 A from an input voltage range of 90 VAC to 265 VAC. The LED driver utilizes the LNK406EG from the LinkSwitch-PH family of ICs. LinkSwitch-PH ICs allow the implementation of cost effective and low component count LED drivers which both meet power factor and harmonics limits and also offer enhanced end user experience. This includes ultra-wide dimming range, flicker-free operation (even with low cost with AC line TRIAC dimmers) and fast, clean turn on. The topology used is an isolated flyback operating in continuous conduction mode. Output current regulation is sensed entirely from the primary side eliminating the need for secondary side feedback components. No external current sensing is required on the primary side either as this is performed inside the IC further reducing components and losses. The internal controller adjusts the MOSFET duty cycle to maintain a sinusoidal input current and therefore high power factor and low harmonic currents. The LNK406EG also provides a sophisticated range of protection features including autorestart for open control loop and output short-circuit conditions. Line overvoltage provides extended line fault and surge withstand, output overvoltage protects the supply should the load be disconnected and accurate hysteretic thermal shutdown ensures safe average PCB temperatures under all conditions. In any LED luminaire the driver determines many of the performance attributes experienced by the end user including startup time, dimming, flicker and unit to unit consistency. For this design a focus was given to compatibility with as wide a range of dimmers and as large of a dimming range as possible, at both 115 VAC and 230 VAC. However simplification of the design is possible for both single input voltage operation, no dimming or operation with a limited range of (higher quality) dimmers. This document contains the LED driver specification, schematic, PCB diagram, bill of materials, transformer documentation and typical performance characteristics. Page 5 of 40 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com RDR-195 14 W PAR38 LED Driver Using LNK406EG 13-May-11 Figure 1 – Populated Circuit Board Photograph (Top View). PCB Outline Designed to Fit Inside PAR38 Enclosure. Figure 2 – Populated Circuit Board Photograph (Bottom View). Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 6 of 40 13-May-11 RDR-195 14 W PAR38 LED Driver Using LNK406EG 2 Power Supply Specification The table below represents the minimum acceptable performance of the design. Actual performance is listed in the results section. Description Input Voltage a Frequency Output Output Voltage Output Current a Total Output Power Continuous Output Power Efficiency Full Load Symbol Min Typ Max Units Comment VIN fLINE 90 47 115 50/60 265 64 VAC Hz 2 Wire – no P.E. VOUT IOUT 24 0.475 28 0.5 32 0.525 V A 14 POUT VOUT = 28, VIN = 115 VAC, 25°C W 80 % o Measured at POUT 25 C Environmental Conducted EMI CISPR 15B / EN55015B Designed to meet IEC950 / UL1950 Class II Safety Ring Wave (100 kHz) Differential Mode (L1-L2) Common mode (L1/L2-PE) 2.5 Power Factor IEC 61000-4-5 , 200 A Measured at VOUT(TYP), IOUT(TYP) and 115/230 VAC 0.9 Harmonics c Ambient Temperature b kV EN 61000-3-2 Class D (C) TAMB 60 o C Free convection, sea level Notes: a When configured for phase controlled (TRIAC) dimming, to give widest dimming range, the output current for a LinkSwitch-PH design intentionally varies with line voltage. Therefore the output current specification is defined at a single line voltage only. For this design a line voltage of 115 VAC was selected. At higher line voltages the output current will increase and reduce with lower line voltages. The typical output current variation is +20% for a +200% in line voltage. A single resistor value change can be used to center the nominal output current for a given nominal line voltage. See Table 1 for the feedback resistor value vs. nominal line voltage. b Maximum ambient temperature may be increased by adding a small heat sink to the LinkSwitch-PH device. For example a strip of aluminum the width of the board and the height of the existing electrolytic capacitors increases maximum allowable ambient to 70 °C for a device temperature of 100 °C. Higher device temperatures, up to 115 °C, are allowable providing a reduction in output current tolerance is acceptable. c For input power <25 W, Class C compliance is gained when Class D harmonic current levels are met. Page 7 of 40 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com RDR-195 14 W PAR38 LED Driver Using LNK406EG 13-May-11 3 Schematic Figure 3 – Schematic. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 8 of 40 13-May-11 RDR-195 14 W PAR38 LED Driver Using LNK406EG 4 Circuit Description The LinkSwitch-PH device is a controller and integrated 725 V power MOSFET intended for use in LED driver applications. The LinkSwitch-PH is configured for use in a singlestage continuous conduction mode flyback topology and provides a primary side regulated constant current output while maintaining high power factor from the AC input. 4.1 Input Filtering Fuse F1 provides protection from component failure and RV1 provides a clamp to limit the maximum voltage during differential line surge events. A 275 VAC rated part was selected, being slightly above the maximum specified operating voltage of 265 VAC. Diode bridge BR1 rectifies the AC line voltage with capacitor C2 providing a low impedance path (decoupling) for the primary switching current. A low value of capacitance (sum of C1 and C2) is necessary to maintain a power factor of greater than 0.9. EMI filtering is provided by inductors L1-L3, C1 and Y1 safety rated C8. Resistor R12 and R13 across L1 and L2 damp any resonances between the input inductors, capacitors and the AC line impedance which would ordinarily show up on the conducted EMI measurements. 4.2 LinkSwitch-PH Primary One side of the transformer (T1) is connected to the DC bus and the other to the DRAIN (D) pin of the LinkSwitch-PH. During the on-time of the MOSFET current ramps through the primary storing energy which is then delivered to the output during the MOSFET off time. An RM8 core size was selected due to its small board area footprint. As the bobbin did not meet the 6.2 mm safety creepage distance required for 230 VAC operation, flying leads were used to terminate the secondary winding into the PC board. To provide peak line voltage information to U1 the incoming rectified AC peak charges C3 via D1. This is then fed into the VOLTAGE MONITOR (V) pin of U1 as a current via R2 and R3. The resistor tolerance will cause V pin current variation unit to unit so 1% resistor types were selected to minimize this variation. The V pin current is also used by the device to set the line input over-voltage and under voltage protection thresholds. Undervoltage ensures a defined turn on voltage threshold unit to unit and overvoltage extends the rectified line voltage withstand (during surges and line swells) to the 725 BVDSS rating of the internal MOSFET. Resistor R1 provides a discharge path for C3 with a time constant much longer than that of the rectified AC to prevent the V pin current being modulated at the line frequency. The V pin current and the FEEDBACK (FB) pin current are used internally to control the average output LED current. For phase angle dimming applications a 49.9 k resistor is used on the R pin (R4) and 4 M (R2+R3) on the V pin to provide a linear relationship between input voltage and the output current and maximizing the dim range. Resistor R4 Page 9 of 40 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com RDR-195 14 W PAR38 LED Driver Using LNK406EG 13-May-11 also sets the internal line input brown-in, brown-out and input overvoltage protection thresholds. During the MOSFET on-time, diode D2 and VR1 clamp the drain voltage to a safe level due to the effects of leakage inductance. Diode D3 is necessary to prevent reverse current from flowing through U1 while the voltage across C2 falls to below the reflected output voltage (VOR). Diode D5, C5, R7 and R8 generate a primary bias supply from an auxiliary winding on the transformer. Capacitor C4 provides local decoupling for the BYPASS (BP) pin of U1 which is the supply pin for the internal controller. During start-up C4 is charged to ~6 V from an internal high-voltage current source tied to the DRAIN pin. This allows the part to start switching at which point the operating supply current is provided from the bias supply via R5. Diode D4 isolates the BP pin from C5 to prevent the start-up time increasing due to charging of both C4 and C5. The use of an external bias supply (via D4 and R5) is recommended to give the lowest device dissipation and highest efficiency however these components may be omitted if desired. This ability to be self powered provides improved phase angle dimming performance as the IC is able to maintain operation even when the input conduction phase angle is very small giving a low equivalent input voltage. Capacitor C4 also selects the output power mode, 10 F was selected (reduced power mode) to minimize the device dissipation and minimize heat sinking requirements. 4.3 Feedback The bias winding voltage is used to sense the output voltage indirectly, eliminating secondary side feedback components. The voltage on the bias winding is proportional to the output voltage (set by the turns ratio between the bias and secondary windings). Resistor R6 converts the bias voltage into a current which is fed into the FB pin of U1. The internal engine within U1 combines the FB pin current, the V pin current, and drain current information to provide a constant output current over a 2:1 output voltage range whilst maintaining high input power factor. To limit the output voltage at no-load an output overvoltage clamp is set by D6, C7, R10, VR2, C6, Q2 and R9. Should the output load be disconnected then the bias voltage will increase until VR2 conducts, turning on Q2 and reducing the current into the FB pin. When this current drops below 20 A the part enters auto-restart and switching is disabled for 800 ms allowing time for the output (and bias) voltages to fall. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 10 of 40 13-May-11 RDR-195 14 W PAR38 LED Driver Using LNK406EG 4.4 Output Rectification The transformer secondary winding is rectified by D7 and filtered by C9 and C10. An ultrafast diode was selected for low cost and the combined value of C9 and C10 was selected to give an LED ripple current equal to 40% of the mean value. For designs where lower ripple is desirable the output capacitance value can be increased. A small pre-load is provided by R11 which limits the output voltage under no-load conditions. 4.5 TRIAC Phase Dimming Control Compatibility The requirement to provide output dimming with low cost, TRIAC based, leading edge phase dimmers introduced a number of trade offs in the design. Due to the much lower power consumed by LED based lighting the current drawn by the overall lamp is below the holding current of the TRIAC within the dimmer. This causes undesirable behaviors such as limited dim range and/or flickering as the TRIAC fires inconsistently. The relatively large impedance the LED lamp presents to the line allows significant ringing to occur due to the inrush current charging the input capacitance when the TRIAC turns on. This too can cause similar undesirable behavior as the ringing may cause the TRIAC current to fall to zero and turn off. To overcome these issues two circuits, the Active Damper and Passive Bleeder were incorporated. The drawback of these circuits is increased dissipation and therefore reduced efficiency of the supply. For non-dimming application these components can simply be omitted. The Active Damper consists of components R14, R15, Q1, and C11 in conjunction with R16. This circuit limits the inrush current that flows to charge C2 when the TRIAC turns on by placing R16 in series for the first 1 ms of the conduction period. After approximately 1 ms, Q1 turns on and shorts R16. This keeps the power dissipation on R16 low and allows a larger value during current limiting. Resistor R14, R15 and C11 provide the 1 ms delay after the TRIAC conducts. The SCR selected for Q1 is a low current, low cost device in a TO-92 package. The Passive Bleeder circuit is comprised of C12 and R17. This keeps the input current above the TRIAC holding current while the input current corresponding to the driver increases during each AC half-cycle preventing the TRIAC from oscillating on and off at the start of each conduction angle period. This arrangement provided flicker-free dimming operation with all the phase angle dimmers tested including units from Europe, China, Korea and both leading and lagging edge types. Page 11 of 40 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com RDR-195 14 W PAR38 LED Driver Using LNK406EG 13-May-11 5 PCB Layout Figure 4 – Printed Circuit Layout (Dimensions in Inches). Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 12 of 40 13-May-11 RDR-195 14 W PAR38 LED Driver Using LNK406EG 6 Bill of Material 6.1 Electrical Item Qty Ref Des 1 1 BR1 2 1 C1 Description Mfg Part Number Mfg 600 V, 2 A, Bridge Rectifier, Glass Passivated 2KBP06M-E4/51 Vishay 47 nF, 275 VAC, Film, X2 ECQU2A473ML Panasonic 3 1 C2 100 nF, 630 V, Film ECQ-E6104KF Panasonic 4 1 C3 1 F, 400 V, Electrolytic, (6.3 x 11) EKMG401ELL1R0MF11D United Chemi-Con 5 1 C4 10 F, 16 V, Electrolytic, Gen. Purpose, (5 x 11) EKMG160ELL100ME11D United Chemi-Con ELXZ500ELL220MEB5D Nippon Chemi-Con ECJ-2YB1H104K Panasonic 6 1 C5 22 F, 50 V, Electrolytic, Low ESR, 900 m, (5 x 11.5) 7 1 C6 100 nF, 50 V, Ceramic, X7R, 0805 8 1 C7 1 F, 50 V, Ceramic, X7R, 0805 9 1 C8 2.2 nF, Ceramic, Y1 10 2 C9, C10 11 1 12 1 13 1 08055D105KAT2A AVX 440LD22-R Vishay 330 F, 50 V, Electrolytic, Very Low ESR, 28 m, (10 x 25) EKZE500ELL331MJ25S Nippon Chemi-Con C11 470 nF, 50 V, Ceramic, X7R, 0805 GRM21BR71H474KA88L Murata C12 220 nF, 630 V, Film ECQ-E6224KF Panasonic D1 1000 V, 1 A, Rectifier, Glass Passivated, DO213AA (MELF) DL4007-13-F Diodes, Inc 14 1 D2 1000 V, 1 A, Ultrafast Recovery, 75 ns, DO-41 UF4007-E3 Vishay 15 1 D3 400 V, 1 A, Ultrafast Recovery, 50 ns, DO-41 UF4004-E3 Vishay 16 1 D4 100 V, 1 A, Fast Recovery, 150 ns, SMA RS1B-13-F Diodes, Inc DL4936-13-F Diodes, Inc BAV21WS-7-F Diodes, Inc 17 1 D5 400V, 1 A, Rectifier, Fast Recovery, MELF (DL-41) 18 1 D6 250 V, 0.2 A, Fast Switching, 50 ns, SOD-323 19 1 D7 100 V, 3 A, Ultrafast Recovery, 25 ns, SMC 20 1 F1 3.15 A, 250 V, Slow, TR5 22 3 L1, L2, L3 22 1 Q1 23 1 Q2 24 1 R1 25 2 R2, R3 26 1 R4 27 1 28 1 29 30 31 ES3D-13-F Diodes, Inc 37213150411 Wickman 1000 H, 0.3 A RLB0914-102KL Bourns SCR, 600 V, 1.25 A, TO-92 X0202MA 2BL2 ST Micro NPN, Small Signal BJT, 40 V, 0.2 A, SOT-23 MMBT3904LT1G On Semir 510 k, 5%, 1/2 W, Carbon Film CFR-50JB-510K Yageo 2.00 M, 1%, 1/4 W, Thick Film, 1206 ERJ-8ENF2004V Panasonic 49.9 k, 1%, 1/8 W, Thick Film, 0805 ERJ-6ENF4992V Panasonic R5 3 k, 5%, 1/8 W, Thick Film, 0805 ERJ-6GEYJ302V Panasonic R6 150 k, 1%, 1/8 W, Thick Film, 0805 ERJ-6ENF1503V Panasonic 1 R7 10 k, 5%, 1/4 W, Thick Film, 1206 ERJ-8GEYJ103V Panasonic 1 R8 150 , 5%, 1/8 W, Thick Film, 0805 ERJ-6GEYJ151V Panasonic 1 R9 1 k, 5%, 1/8 W, Thick Film, 0805 ERJ-6GEYJ102V Panasonic 32 3 R10, R12, R13 10 k, 5%, 1/8 W, Thick Film, 0805 ERJ-6GEYJ103V Panasonic 33 1 R11 20 k, 5%, 1/4 W, Thick Film, 1206 ERJ-8GEYJ203V Panasonic 34 1 R14, R15 374 k, 1%, 1/4 W, Thick Film, 1206 ERJ-8ENF3743V Panasonic 35 1 R16 130 , 5%, 2 W, Metal Oxide RSF200JB-130R Yageo 36 1 R17 510 , 5%, 2 W, Metal Oxide RSF200JB-510R Yageo 37 1 RV1 275 V, 80J, 10 mm, RADIAL ERZ-V10D431 Panasonic Page 13 of 40 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com RDR-195 14 W PAR38 LED Driver Using LNK406EG 38 1 T1 Bobbin, RM8 Low Profile, Vertical, 12 pins Custom Transformer 39 1 U1 LinkSwitch, eSIP 40 1 VR1 200 V, 5 W, 5%, TVS, DO204AC (DO-15) 41 1 VR2 39 V, 5%, 500 mW, DO-213AA (MELF) 6.2 13-May-11 B65812-P1010-D1 SNX-R1523 Epcos Santronics USA LNK406EG Power Integrations P6KE200ARLG On Semi ZMM5259B-7 Diodes, Inc Mechanical Item Qty Ref Des Mfg Part Number Mfg 42 1 L Test Point, WHT,THRU-HOLE MOUNT 5012 Keystone 43 1 V+ Test Point, RED,THRU-HOLE MOUNT 5010 Keystone 44 1 V- Test Point, BLK,THRU-HOLE MOUNT 5011 Keystone 45 1 N Test Point, BLK,THRU-HOLE MOUNT 5011 Keystone 46 1 FL1 PCB Terminal Hole, #22 AWG N/A N/A 47 1 FL2 PCB Terminal Hole, #22 AWG N/A N/A Description Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 14 of 40 13-May-11 RDR-195 14 W PAR38 LED Driver Using LNK406EG 7 Transformer Specification 7.1 Electrical Diagram Figure 5 – Transformer Electrical Diagram. 7.2 Electrical Specifications Electrical Strength Primary Inductance Resonant Frequency Primary Leakage Inductance 7.3 Item [1] [2] [3] [4] [5] [6] [7] 1 second, 60 Hz, from pins 1, 2, 3, 11 to FL1, FL2 Pins 1-11, all other windings open, measured at 100 kHz, 0.4 VRMS Pins 1-11, all other windings open Pins 1-11, with FL1-FL2 shorted, measured at 100kHz, 0.4 VRMS 3000 VAC 1150 H, ±20% 750 kHz (Min.) 20 H (Max.) Materials 2 Description Core: RM8/I, 3F3, ALG = 319 nH/n Bobbin: 12 pin vertical, CSV-RM8-1S-12P, Philips or equivalent with mounting clip, CLI/P-RM8 Tape: Polyester film, 3M 1350F-1 or equivalent, 9 mm wide Wire: Magnet, #31 AWG, solderable double coated Wire: Magnet, #30 AWG, solderable double coated Wire: Triple Insulated, Furukawa TEX-E or Equivalent, #25 TIW Transformer Varnish: Dolph BC-359 or equivalent Page 15 of 40 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com RDR-195 14 W PAR38 LED Driver Using LNK406EG 7.4 13-May-11 Transformer Build Diagram Pins Side 3L Tape W3 - Finish (P2) W3 - Start (P3) 1L Tape 1L Tape W2 - Finish (FL2) W2 - Start (FL1) 1L Tape W1 - Finish (P11) W1 - Start (P1) Figure 6 – Transformer Build Diagram. 7.5 Transformer Construction Bobbin Preparation WD 1 (Primary) Insulation WD 2 (Secondary) Insulation WD 3 (Bias) Finish Wrap Final Assembly Place the bobbin item [2] on the mandrel such that pin side on the left side. Winding direction is the clockwise direction. Starting at pin 1, wind 60 turns of wire item [4] in two layers. Finish at pin 11. Apply one layer of tape item [3]. Leave about 1” of wire item [6], use small tape to mark as FL1, enter into slot of secondary side of bobbin, wind 20 turns in two layers. At the last turn exit the same slot, leave about 1”, and mark as FL2. Apply one layer of tape item [3]. Starting at pin 3, wind 20 turns of wire item [5], spreading the wire, finish at pin 2. Apply three layers of tape item [3] for finish wrap. Cut FL1 and FL2 to 0.75”.Grind core to get 1.15 mH inductance value. Assemble and secure core halves. Dip impregnate using varnish item [7]. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 16 of 40 13-May-11 RDR-195 14 W PAR38 LED Driver Using LNK406EG 8 Transformer Design Spreadsheet ACDC_LinkSwitchPH_042910; Rev.1.0; Copyright Power Integrations 2010 INPUT INFO OUTPUT Info YES UNIT LinkSwitch-PH_042910: Flyback Transformer Design Spreadsheet ENTER APPLICATION VARIABLES Dimming required YES VACMIN VACMAX 265 fL VO !!! Info. When configured for dimming, best output current line regulation is achieved over a single input voltage range. 90 V Minimum AC Input Voltage 265 V Maximum AC input voltage 50 Hz AC Mains Frequency V Typical output voltage of LED string at full load 28.00 VO_MAX 30.80 V Maximum expected LED string Voltage. VO_MIN 25.20 V Minimum expected LED string Voltage. V_OVP 33.88 V Over-voltage protection setpoint IO 0.50 Typical full load LED current PO 14.0 n VB W Output Power V Bias Voltage 0.8 28 28 Estimated efficiency of operation ENTER LinkSwitch-PH VARIABLES LinkSwitch-PH LNK406 Chosen Device Current Limit Mode Universal LNK406 RED Power Out 22.5W RED 115 Doubled/230V 22.5W Select "RED" for reduced Current Limit mode or "FULL" for Full current limit mode Minimum current limit ILIMITMIN 1.19 A ILIMITMAX 1.36 A Maximum current limit fS 66000 Hz Switching Frequency fSmin 62000 Hz Minimum Switching Frequency fSmax 70000 Hz Maximum Switching Frequency V pin current IV 39.9 uA RV 4 M-ohms Upper V pin resistor RV2 1E+12 M-ohms Lower V pin resistor IFB 158.8 uA RFB1 157.5 k-ohms VDS 10 V VD 0.50 V VDB 0.70 V FB pin current (85 uA < IFB < 210 uA) FB pin resistor LinkSwitch-PH on-state Drain to Source Voltage Output Winding Diode Forward Voltage Drop (0.5 V for Schottky and 0.8 V for PN diode) Bias Winding Diode Forward Voltage Drop Key Design Parameters KP 0.87 LP VOR Expected IO (average) Page 17 of 40 85.00 Ripple to Peak Current Ratio (For PF > 0.9, 0.4 < KP < 0.9) 0.87 1150 uH 85 V Reflected Output Voltage. Primary Inductance 0.51 A Expected Average Output Current Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com RDR-195 14 W PAR38 LED Driver Using LNK406EG KP_VACMAX TON_MIN 13-May-11 1.11 Expected ripple current ratio at VACMAX 1.86 Minimum on time at maximum AC input voltage us ENTER TRANSFORMER CORE/CONSTRUCTION VARIABLES Core Type RM8/I Bobbin RM8/I RM8/I_BOBBIN * AE 0.63 P/N: cm^2 LE 3.84 cm AL 3000 nH/T^2 BW 10 mm Bobbin Physical Winding Width M 0 mm Safety Margin Width (Half the Primary to Secondary Creepage Distance) L NS Core Effective Cross Sectional Area Core Effective Path Length Ungapped Core Effective Inductance 2.00 2 Number of Primary Layers 20 20 Number of Secondary Turns DC INPUT VOLTAGE PARAMETERS VMIN 127 V Peak input voltage at VACMIN VMAX 375 V Peak input voltage at VACMAX CURRENT WAVEFORM SHAPE PARAMETERS DMAX 0.42 IAVG 0.51 A Average Primary Current Minimum duty cycle at peak of VACMIN IP 0.95 A Peak Primary Current (calculated at minimum input voltage VACMIN) IRMS 0.31 A Primary RMS Current (calculated at minimum input voltage VACMIN) LP 1150 uH NP 60 TRANSFORMER PRIMARY DESIGN PARAMETERS NB 20 ALG 323 Primary Inductance Primary Winding Number of Turns Bias Winding Number of Turns nH/T^2 Gapped Core Effective Inductance BM 2897 Gauss Maximum Flux Density at PO, VMIN (BM<3100) BP 3506 Gauss Peak Flux Density (BP<3700) BAC 1267 Gauss AC Flux Density for Core Loss Curves (0.5 X Peak to Peak) ur 1455 LG 0.22 mm 20 mm Effective Bobbin Width BWE Relative Permeability of Ungapped Core Gap Length (Lg > 0.1 mm) OD 0.34 mm Maximum Primary Wire Diameter including insulation INS 0.06 mm Estimated Total Insulation Thickness (= 2 * film thickness) DIA 0.28 mm Bare conductor diameter AWG 30 AWG Primary Wire Gauge (Rounded to next smaller standard AWG value) CM 102 Cmils Bare conductor effective area in circular mils CMA 330 Cmils/Amp Primary Winding Current Capacity (200 < CMA < 600) TRANSFORMER SECONDARY DESIGN PARAMETERS (SINGLE OUTPUT EQUIVALENT) Lumped parameters ISP 2.82 A Peak Secondary Current ISRMS 1.01 A Secondary RMS Current IRIPPLE 0.88 A Output Capacitor RMS Ripple Current Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 18 of 40 13-May-11 RDR-195 14 W PAR38 LED Driver Using LNK406EG CMS 203 Cmils Secondary Bare Conductor minimum circular mils AWGS 27 AWG Secondary Wire Gauge (Rounded up to next larger standard AWG value) DIAS 0.36 mm Secondary Minimum Bare Conductor Diameter ODS 0.50 mm Secondary Maximum Outside Diameter for Triple Insulated Wire VDRAIN 553 V Estimated Maximum Drain Voltage assuming maximum LED string voltage (Includes Effect of Leakage Inductance) PIVS 160 V Output Rectifier Maximum Peak Inverse Voltage (calculated at VOVP, excludes leakage inductance spike) PIVB 160 V Bias Rectifier Maximum Peak Inverse Voltage (calculated at VOVP, excludes leakage inductance spike) VOLTAGE STRESS PARAMETERS FINE TUNING (Enter measured values from prototype) V pin Resistor Fine Tuning RV1 4.00 M-ohms Upper V Pin Resistor Value RV2 1E+12 M-ohms Lower V Pin Resistor Value VAC1 115.0 V VAC2 230.0 V Test Input Voltage Condition2 IO_VAC1 0.50 A Measured Output Current at VAC1 Measured Output Current at VAC2 Test Input Voltage Condition1 IO_VAC2 0.50 A RV1 (new) 4.00 M-ohms New RV1 RV2 (new) 20911.63 M-ohms New RV2 V_OV 319.6 V Typical AC input voltage at which OV shutdown will be triggered V_UV 66.3 V Typical AC input voltage beyond which power supply can startup FB pin resistor Fine Tuning RFB1 157 k-ohms Upper FB Pin Resistor Value RFB2 1E+12 k-ohms Lower FB Pin Resistor Value VB1 25.2 V Test Bias Voltage Condition1 VB2 30.8 V Test Bias Voltage Condition2 IO1 0.50 A Measured Output Current at Vb1 IO2 0.50 A Measured Output Current at Vb2 RFB1 (new) 157.5 k-ohms New RFB1 RFB2(new) 1.00E+12 k-ohms New RFB2 Page 19 of 40 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com RDR-195 14 W PAR38 LED Driver Using LNK406EG 13-May-11 9 Performance Data All measurements performed at room temperature 9.1 Power Efficiency 9.1.1 27 V Hz 60 60 60 60 Hz 50 50 50 50 50 VIN (VAC) 90 100 115 130 VIN (VAC) 195 210 230 245 265 PIN (W) 15 15.4 15.9 16.4 PIN (W) 18.3 18.7 19.3 19.6 20.1 VOUT (V) 26.9 26.9 27 27 VOUT (V) 27.2 27.2 27.2 27.3 27.3 IOUT (mA) 0.46 0.48 0.5 0.52 IOUT (mA) 0.58 0.59 0.61 0.62 0.63 POUT (W) 12.37 12.91 13.50 14.04 POUT (W) 15.78 16.05 16.59 16.93 17.20 Efficiency (%) 82 84 85 86 Efficiency (%) 86 86 86 86 86 VIN (VAC) 90 100 115 130 VIN (VAC) 195 210 230 245 265 PIN (W) 13.1 13.5 13.9 14.4 PIN (W) 16.2 16.6 17.2 17.6 18.1 VOUT (V) 23.6 23.7 23.8 23.8 VOUT (V) 24 24.1 24.1 24.2 24.23 IOUT (mA) 0.46 0.48 0.5 0.52 IOUT (mA) 0.58 0.59 0.61 0.62 0.64 POUT (W) 10.86 11.38 11.90 12.38 POUT (W) 13.92 14.22 14.70 15.00 15.51 Efficiency (%) 83 84 86 86 Efficiency (%) 86 86 85 85 86 PF 0.98 PF 0.93 9.1.2 24 V Hz 60 60 60 60 Hz 50 50 50 50 50 Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com PF 0.98 PF 0.92 Page 20 of 40 13-May-11 RDR-195 14 W PAR38 LED Driver Using LNK406EG 9.1.3 30 V VIN (VAC) 90 100 115 130 VIN (VAC) 195 210 230 245 265 Hz 60 60 60 60 Hz 50 50 50 50 50 PIN (W) 16.8 17.2 17.7 18.2 PIN (W) 20.2 20.6 21.2 21.5 22.1 VOUT (V) 29.6 29.7 29.7 29.8 VOUT (V) 30 30 30.1 30.1 30.1 IOUT (mA) 0.47 0.49 0.5 0.522 IOUT (mA) 0.58 0.59 0.61 0.62 0.63 POUT (W) 13.91 14.55 14.85 15.56 POUT (W) 17.40 17.70 18.36 18.66 18.96 Efficiency (%) 83 85 84 85 Efficiency (%) 86% 86% 87% 87% 86% PF 0.98 PF 0.93 87.0 86.5 86.0 Efficiency (%) 85.5 85.0 84.5 24 V 27 V 30 V 84.0 83.5 83.0 82.5 82.0 80 95 110 125 140 155 170 185 200 215 230 245 260 Input Voltage (VAC) Figure 7– Efficiency vs. Input Voltage, Room Temperature. Page 21 of 40 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com 275 RDR-195 14 W PAR38 LED Driver Using LNK406EG 9.2 13-May-11 Regulation 9.2.1 Output Voltage and Line 0.7 115 VAC 230 VAC Output Current (A) 0.65 0.6 0.55 0.5 0.45 0.4 23 23.5 24 24.5 25 25.5 26 26.5 27 27.5 28 28.5 29 29.5 30 30.5 Output Voltage (V) Figure 8 – Voltage and Line Regulation, Room Temperature. The line regulation result shown above is typical for a design where the phase angle dimming mode of U1 is selected (to provide a very wide dimming range). For a given line voltage the output current can be centered by changing the value of the FEEDBACK resistor (R6). The table below shows the resistor values to adjust the mean output current at specific input voltages, Line Voltage (VAC) 100 115 230 Value of R6 (kΩ) 147 150 178 Table 1 – Feedback Resistor Value to Center Output Current at Different Nominal Line Voltages. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 22 of 40 13-May-11 RDR-195 14 W PAR38 LED Driver Using LNK406EG 9.2.2 Input Voltage and Output Current Regulation Note: 24 V and 27 V data identical at low-line input, and 27 V and 30 V data identical at high-line input. 0.53 24 V 27 V 30 V 0.52 Output Current (A) 0.51 0.5 0.49 0.48 0.47 0.46 0.45 85 90 95 100 105 110 115 120 125 130 Input Voltage (VAC) Figure 9 – Low Line Regulation, Room Temperature, Full Load. Page 23 of 40 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com 135 RDR-195 14 W PAR38 LED Driver Using LNK406EG 13-May-11 0.65 24 V 27 V 30 V 0.64 Output Current (A) 0.63 0.62 0.61 0.6 0.59 0.58 0.57 175 185 195 205 215 225 235 245 255 265 275 Input Voltage (VAC) Figure 10 – High-Line Regulation, Room Temperature, Full Load. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 24 of 40 13-May-11 RDR-195 14 W PAR38 LED Driver Using LNK406EG 10 Thermal Performance Images captured after running for 30 minutes at room temperature (25 °C), full load. This indicates an operating temperature of 100 °C at 50 °C for the LinkSwitch-PH. The addition of a small heat sink (width of board) to the device reduces the operating temperature by ~25 °C. 10.1 VIN = 115 VAC (U1: No Heat Sink) Figure 11 – Top Side. Figure 12 – Bottom Side. 10.2 VIN = 230 VAC (U1: No Heat Sink) Figure 13 – Top Side. Page 25 of 40 Figure 14 – Bottom Side. Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com RDR-195 14 W PAR38 LED Driver Using LNK406EG 13-May-11 11 Harmonic Data Per IEC 61000-3-2 (2005) for Class C compliance for an active input power <25 W requires meeting Class D limits. Where Figures 15 and 16 show Class D limits these are intended to show the limits for Class C compliance (Class D limits). 100 Class D Limit RD-195 Harmonic Data at 115 VAC 90 80 Current (mA) 70 60 50 40 30 20 10 0 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 Harmonic Figure 15 – 115 VAC Harmonic, Room Temperature, Full Load. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 26 of 40 13-May-11 RDR-195 14 W PAR38 LED Driver Using LNK406EG 60 Class D Limit RD-195 Harmonic Data at 230 VAC Current (mA) 50 40 30 20 10 0 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 Harmonic Figure 16 – 230 VAC Harmonic, Room Temperature, Full Load. THD (%) 21.0 THD (%) 27.8 Page 27 of 40 VIN =115 VAC Limit (%) Margin (%) 33 12.0 VIN = 230 VAC Limit (%) Margin (%) 33 5.2 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com RDR-195 14 W PAR38 LED Driver Using LNK406EG 13-May-11 12 Waveforms 12.1 Input Line Voltage and Current Figure 17 – 90 VAC, Full Load. Upper: IIN, 0.2 A / div. Lower: VIN, 100 V, 10 ms / div. Figure 18 – 265 VAC, Full Load. Upper: IIN, 0.1 A / div. Lower: VIN, 200 V / div., 10 ms / div. 12.2 Drain Voltage and Current Figure 19 – 90 VAC, Full Load. Upper: IDRAIN, 0.5 A / div. Lower: VDRAIN, 100 V, 5 s / div. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Figure 20 – 265 VAC, Full Load. Upper: IDRAIN, 0.5 A / div. Lower: VDRAIN, 200 V / div., 5 s / div. Page 28 of 40 13-May-11 RDR-195 14 W PAR38 LED Driver Using LNK406EG 12.3 Output Voltage and Ripple Current Figure 21 – 90 VAC, Full Load. Upper: IRIPPLE, 0.2 A / div. Lower: VOUT, 10 V, 5 ms / div. Figure 22 – 265 VAC, Full Load. Upper: IRIPPLE, 0.2 A / div. Lower: VOUT, 10 V, 5 ms / div. 12.4 Output Voltage and Drain Current Start-up Profile Figure 23 – 90 VAC, Full Load. Upper: IDRAIN, 0.5 A / div. Lower: VOUT, 5 V, 20 ms / div. Page 29 of 40 Figure 24 – 265 VAC, Full Load. Upper: IRIPPLE, 0.5 A / div. Lower: VOUT, 5 V, 10 ms / div. Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com RDR-195 14 W PAR38 LED Driver Using LNK406EG 13-May-11 12.5 Output Current and Drain Voltage During Shorted Output Figure 25 – 90 VAC, Full Load. Upper: IOUT, 2 A / div. Lower: VDRAIN, 200 V, 200 ms / div. Figure 26 – 265 VAC, Full Load. Upper: IOUT, 5 A / div. Lower: VOUT, 200 V, 200 ms / div. 12.6 Open Load Output Voltage Figure 27 – Output Voltage: 115 VAC. VOUT, 10 V / div., 500 ms / div. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Figure 28 – Output Voltage: 230 VAC. VOUT, 10 V / div., 500 ms / div. Page 30 of 40 13-May-11 RDR-195 14 W PAR38 LED Driver Using LNK406EG 13 Dimming 13.1 Input Phase vs. Output Note: Due to operation of TRIAC based phase dimmers maximum conduction angle was limited to 165 ºC. 115 VAC / 60 Hz Phase Angle (º) 167 98 67 46 39 15 9 7 0 IOUT (mA) 485 250 130 67 37 3 1 0.5 0 230 VAC / 50 Hz Phase Angle (º) 167 95 59 36 27 11 7 5 5 IOUT (mA) 580 310 140 60 32 7 4 3 1 600 115 VAC 230 VAC LED Current (mA) 500 400 300 200 100 0 0 20 40 60 80 100 120 140 160 Phase Angle (º) Figure 29 – Input Phase vs. Output Current. Page 31 of 40 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com 180 RDR-195 14 W PAR38 LED Driver Using LNK406EG 13-May-11 13.2 Output Voltage and Input Current Waveforms 13.2.1 VIN = 115 VAC / 60 Hz Figure 30 – 115 VAC, Full Phase. Upper: VOUT, 10 V / div. Lower: IIN, 0.1 A / div., 5 ms / div. Figure 31 – 115 VAC, 65o Phase. Upper: VOUT, 10 V / div. Lower: IIN, 0.1 A / div., 5 ms / div. Figure 32 – 115 VAC, 16 o Phase. Upper: VOUT, 10 V / div. Lower: IIN, 0.1 A / div., 5 ms / div. Figure 33 – 115 VAC, 8o Phase. Upper: VOUT, 10 V / div. Lower: IIN, 0.1 A / div., 5 ms / div. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 32 of 40 13-May-11 RDR-195 14 W PAR38 LED Driver Using LNK406EG 13.2.2 VIN = 230 VAC / 50Hz Figure 34 – 230 VAC, Full Phase. Upper: VOUT, 10 V / div. Lower: IIN, 0.1 A / div., 5 ms / div. Figure 35 – 230 VAC, 54o Phase. Upper: VOUT, 10 V / div. Lower: IIN, 0.1 A / div., 5 ms / div. Figure 36 – 230 VAC, 6o Phase. Upper: VOUT, 10 V / div. Lower: IIN, 0.1 A / div., 5 ms / div. Figure 37 – 230 VAC, 5o Phase. Upper: VOUT, 10 V / div. Lower: IIN, 0.1 A / div., 5 ms / div. Page 33 of 40 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com RDR-195 14 W PAR38 LED Driver Using LNK406EG 13-May-11 14 Line Surge Differential and common input line 200 A ring wave testing was completed on a single test unit to IEC61000-4-5. Input voltage was set at 230 VAC / 60 Hz. Output was loaded at full load and operation was verified following each surge event. Surge Level (V) 2500 2500 2500 2500 2500 2500 Input Voltage (VAC) 230 230 230 230 230 230 Injection Location L to N L to N L to PE L to PE N to PE N to PE Injection Phase (°) 90 90 90 90 90 90 Test Result (Pass/Fail) Pass Pass Pass Pass Pass Pass Unit passes under all test conditions. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 34 of 40 13-May-11 RDR-195 14 W PAR38 LED Driver Using LNK406EG 15 Conducted EMI Note: Blue results represents peak detector vs. quasi peak limit line. For actual margin to limit (quasi peak measurement vs. quasi peak limit) please refer to the table. Power Integrations 21.Apr 10 08:02 RBW MT 9 kHz 500 ms Att 10 dB AUTO dBµV 100 kHz 120 EN55015Q LIMIT CHECK 110 1 MHz PASS 10 MHz SGL 100 1 PK CLRWR 90 2 AV CLRWR TDF 80 70 60 EN55015A 50 6DB 40 30 20 10 0 -10 -20 9 kHz Trace1: 30 MHz EDIT PEAK LIST (Final Measurement Results) EN55015Q Trace2: EN55015A Trace3: --- TRACE FREQUENCY LEVEL dBµV DELTA LIMIT dB 2 Average 134.789536006 kHz 41.13 N gnd 1 Quasi Peak 200.175581485 kHz 51.44 N gnd 2 Average 200.175581485 kHz 43.79 N gnd -9.81 1 Quasi Peak 267.135089486 kHz 44.80 N gnd -16.40 2 Average 267.135089486 kHz 35.58 N gnd -15.62 2 Average 332.507282579 kHz 35.10 L1 gnd -14.28 2 Average 401.705024172 kHz 37.16 N gnd -10.64 1 Quasi Peak 418.01585899 kHz 46.10 N gnd -11.38 2 Average 466.367062279 kHz 37.33 N gnd -9.24 2 Average 536.076911993 kHz 35.42 N gnd -10.57 1 Quasi Peak 641.227045055 kHz 43.24 N gnd -12.75 2 Average 667.263434405 kHz 35.08 L1 gnd -10.91 2 Average 4.97983359306 MHz 38.94 N gnd -7.05 1 Quasi Peak 6.1984778522 MHz 45.35 N gnd -14.64 2 Average 13.6042179984 MHz 40.09 L1 gnd -9.90 1 Quasi Peak 13.8776627802 MHz 49.91 L1 gnd -10.08 -12.16 Figure 38 – Conducted EMI, Maximum Steady State Load, 115 VAC, 60 Hz, and EN55015 B Limits. Page 35 of 40 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com RDR-195 14 W PAR38 LED Driver Using LNK406EG Power Integrations 21.Apr 10 08:08 RBW MT 13-May-11 9 kHz 500 ms Att 10 dB AUTO dBµV 100 kHz 120 EN55015Q LIMIT CHECK 110 1 MHz PASS 10 MHz SGL 1 PK CLRWR 100 90 2 AV CLRWR TDF 80 70 60 EN55015A 50 6DB 40 30 20 10 0 -10 -20 9 kHz Trace1: 30 MHz EDIT PEAK LIST (Final Measurement Results) EN55015Q Trace2: EN55015A Trace3: --- TRACE FREQUENCY LEVEL dBµV DELTA LIMIT dB 2 Average 9.272709 kHz 23.48 N gnd 2 Average 134.789536006 kHz 41.52 N gnd 1 Quasi Peak 190.46019728 kHz 47.24 L1 gnd -16.77 2 Average 200.175581485 kHz 39.24 L1 gnd -14.35 1 Quasi Peak 264.49018761 kHz 45.98 L1 gnd -15.30 2 Average 267.135089486 kHz 37.12 N gnd -14.08 1 Quasi Peak 332.507282579 kHz 41.97 N gnd -17.41 2 Average 332.507282579 kHz 33.19 N gnd -16.19 1 Quasi Peak 401.705024172 kHz 42.37 L1 gnd -15.44 2 Average 401.705024172 kHz 32.83 L1 gnd -14.98 2 Average 466.367062279 kHz 33.81 N gnd -12.76 1 Quasi Peak 471.030732902 kHz 44.01 N gnd -12.47 2 Average 598.084042089 kHz 31.96 N gnd -14.03 1 Quasi Peak 673.936068749 kHz 42.26 N gnd -13.73 2 Average 6.07634335085 MHz 40.39 N gnd -9.60 1 Quasi Peak 6.26046263072 MHz 45.96 N gnd -14.03 2 Average 13.6042179984 MHz 41.54 L1 gnd -8.45 1 Quasi Peak 13.7402601784 MHz 49.67 L1 gnd -10.32 Figure 39 – Conducted EMI, Maximum Steady State Load, 230 VAC, 60 Hz, and EN55015 B Limits. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 36 of 40 13-May-11 RDR-195 14 W PAR38 LED Driver Using LNK406EG 16 Revision History Date 14-Dec-10 13-May-11 Page 37 of 40 Author DK DK Revision 1.0 1.1 Description & changes Initial Release Corrected D7 mfg part number Reviewed Apps & Mktg Apps & Mktg Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com RDR-195 14 W PAR38 LED Driver Using LNK406EG 13-May-11 17 Appendix 17.1 Dimming Test with TRIAC Dimmer Switches 17.1.1 VIN = 115 VAC, 60 Hz Style Country Manufacturer Model Number Dimming Test Data Min. Current Max. without Compatibility Current Off Switch Notes (mA) (mA) Rotary 1 Taiwan 2 Taiwan 3 4 WS-5005 458 0 Diing Chung DC-306 480 0 Japan Toshiba WE0905 450 0 Japan Panasonic WN575149 418 0 Increase preload, R7 = 5 K, R11 = 10 K Increase preload, R7 = 5 K, R11 = 10 K Increase preload, R7 = 5 K, R11 = 10 K Slider 1 USA Lutron TGLV-600PR 420 42 2 USA Skylark S-600PR 422 0 3 USA Leviton 6615-POW 460 87 4 USA Cooper S106P 451 0 5 Japan Panasonic WT7615 423 0 Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Increase preload, R7 = 5K, R11 = 10 K Page 38 of 40 13-May-11 RDR-195 14 W PAR38 LED Driver Using LNK406EG 17.1.2 VIN = 230 VAC, 50 Hz Note output was not normalized (value of feedback resistor adjusted) for 230 VAC operation. When normalized a value of ~600 mA equates to a value of ~500 mA. Style Country Manufacturer Rated Power (if marked) Model Number Dimming Test Data Min.Current Max. without Compatibility Current Off Switch Notes (mA) (mA) Rotary 1 Taiwan Diing Chung DG-306 578 0 2 China TCL 630 W Not marked 600 132 3 China Sang Bo Lang 300 W Not marked 600 128 4 China EBAHuang Not marked 575 0 5 China SB Electric Not marked 559 0 6 China Myongbo Not marked 600 76 7 China KBE Not marked 575 0 8 China CLIPMEI Not marked 600 55 9 China MANK 200 W Not marked 600 160 10 German 11 German Rev 300 W Not marked 567 0 Busch 600 W 2250 577 73 12 German MERTEN 400 W 572499 591 58 13 German Busch 420 W (trailing edge) 6513 577 110 14 German Berker 2875 568 88 15 Korea Anam Not marked 594 175 16 Korea Shin Sung 500 W Not marked 599 143 17 Korea Jin Heoung 500 W Fantasia 593 170 18 Korea Shin Sung 700 W Not marked 600 120 19 Italy RELCO 300 W RH34LED PT 560 0 20 Italy RELCO 160 W RM34DMA 594 112 21 Italy RELCO 500 W RTM34LED DAXS 478 50 22 Italy RELCO 500 W RM34DMA 600 112 23 Italy RELCO 300 W RTS34.43RLI 600 0 24 Italy RELCO 500 W RT34DSL 600 112 Page 39 of 40 600 W 650 W Increase preload, R7 = 5 K, R11 = 10 K Increase preload, R7 = 5 K, R11 = 10 K Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com RDR-195 14 W PAR38 LED Driver Using LNK406EG 13-May-11 For the latest updates, visit our website: www.powerint.com Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability. Power Integrations does not assume any liability arising from the use of any device or circuit described herein. POWER INTEGRATIONS MAKES NO WARRANTY HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS. PATENT INFORMATION The products and applications illustrated herein (including transformer construction and circuits external to the products) may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations’ patents may be found at www.powerint.com. Power Integrations grants its customers a license under certain patent rights as set forth at http://www.powerint.com/ip.htm. The PI Logo, TOPSwitch, TinySwitch, LinkSwitch, DPA-Switch, PeakSwitch, CAPZero, SENZero, LinkZero, HiperPFS, HiperTFS, Qspeed, EcoSmart, Clampless, E-Shield, Filterfuse, StackFET, PI Expert and PI FACTS are trademarks of Power Integrations, Inc. Other trademarks are property of their respective companies. ©Copyright 2011 Power Integrations, Inc. Power Integrations Worldwide Sales Support Locations WORLD HEADQUARTERS 5245 Hellyer Avenue San Jose, CA 95138, USA. Main: +1-408-414-9200 Customer Service: Phone: +1-408-414-9665 Fax: +1-408-414-9765 e-mail: [email protected] GERMANY Rueckertstrasse 3 D-80336, Munich Germany Phone: +49-89-5527-3911 Fax: +49-89-5527-3920 e-mail: [email protected] JAPAN Kosei Dai-3 Building 2-12-11, Shin-Yokohama, Kohoku-ku, Yokohama-shi, Kanagawa 222-0033 Japan Phone: +81-45-471-1021 Fax: +81-45-471-3717 e-mail: [email protected] TAIWAN 5F, No. 318, Nei Hu Rd., Sec. 1 Nei Hu District Taipei 114, Taiwan R.O.C. Phone: +886-2-2659-4570 Fax: +886-2-2659-4550 e-mail: [email protected] CHINA (SHANGHAI) Rm 1601/1610, Tower 1 Kerry Everbright City No. 218 Tianmu Road West Shanghai, P.R.C. 200070 Phone: +86-021-6354-6323 Fax: +86-021-6354-6325 e-mail: [email protected] INDIA th #1, 14 Main Road Vasanthanagar Bangalore-560052 India Phone: +91-80-4113-8020 Fax: +91-80-4113-8023 e-mail: [email protected] KOREA RM 602, 6FL Korea City Air Terminal B/D, 159-6 Samsung-Dong, Kangnam-Gu, Seoul, 135-728 Korea Phone: +82-2-2016-6610 Fax: +82-2-2016-6630 e-mail: [email protected] EUROPE HQ 1st Floor, St. James’s House East Street, Farnham Surrey GU9 7TJ United Kingdom Phone: +44 (0) 1252-730-141 Fax: +44 (0) 1252-727-689 e-mail: [email protected] CHINA (SHENZHEN) th Rm A, B & C 4 Floor, Block C, Electronics Science and Technology Building 2070 Shennan Zhong Road Shenzhen, Guangdong, P.R.C. 518031 Phone: +86-755-8379-3243 Fax: +86-755-8379-5828 e-mail: [email protected] ITALY Via De Amicis 2 20091 Bresso MI Italy Phone: +39-028-928-6000 Fax: +39-028-928-6009 e-mail: [email protected] SINGAPORE 51 Newton Road, #19-01/05 Goldhill Plaza Singapore, 308900 Phone: +65-6358-2160 Fax: +65-6358-2015 e-mail: [email protected] APPLICATIONS HOTLINE World Wide +1-408-414-9660 Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com APPLICATIONS FAX World Wide +1-408-414-9760 Page 40 of 40 Design Example Report Title 14 W PWM-Analog Dimmable LED Driver Using LinkSwitchTM-PH LNK406EG Specification 90 VAC – 265 VAC Input; 28 V, 500 mA Output Application LED Driver Author Applications Engineering Department Document Number DER-263 Date November 17, 2011 Revision 1.1 Summary and Features • High efficiency, power factor corrected o >87% at 230 VAC and >86% at 115 VAC o >0.9 PF, meets EN61000-3-2 Class C • 0-10 V analog dimming o >1000:1 dimming range • Low cost, low component count and small printed circuit board footprint o No current sensing required o Frequency jitter for smaller, lower cost EMI filter components • Integrated protection and reliability features o Output open circuit / output short-circuit protected with auto-recovery o Line input overvoltage shutdown extends voltage withstand during line faults. o Auto-recovering thermal shutdown with large hysteresis protects both components and printed circuit board PATENT INFORMATION The products and applications illustrated herein (including transformer construction and circuits external to the products) may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at www.powerint.com. Power Integrations grants its customers a license under certain patent rights as set forth at <http://www.powerint.com/ip.htm>. Power Integrations 5245 Hellyer Avenue, San Jose, CA 95138 USA. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-263 14 W PWM-Analog Dimmable LED Driver Using LNK406EG 17-Nov-11 Table of Contents 1 2 3 4 5 Introduction ................................................................................................................. 4 Power Supply Specification ........................................................................................ 6 Schematic ................................................................................................................... 7 PCB Layout ................................................................................................................ 8 Circuit Description ...................................................................................................... 9 5.1 PWM-Analog Dimming ........................................................................................ 9 5.2 Analog-PWM Converter..................................................................................... 11 5.3 Active Load Circuit ............................................................................................ 12 6 Bill of Materials ......................................................................................................... 13 7 Transformer Specification ......................................................................................... 15 7.1 Electrical Diagram ............................................................................................. 15 7.2 Electrical Specifications ..................................................................................... 15 7.3 Materials ............................................................................................................ 15 7.4 Transformer Build Diagram ............................................................................... 16 7.5 Transformer Construction .................................................................................. 16 8 Transformer Design Spreadsheet............................................................................. 17 9 Performance Data .................................................................................................... 20 9.1 Efficiency – Full Brightness ............................................................................... 20 9.2 Line and Load Regulation – Full Brightness ...................................................... 21 9.3 Power Factor – Full Brightness ......................................................................... 22 9.4 A-THD – Full Brightness .................................................................................... 23 9.5 115 VAC Dimming Characteristic ...................................................................... 24 9.5.1 Output Current vs. Control Voltage ............................................................ 24 9.5.2 Dimming Ratio vs. Control Voltage ............................................................ 25 9.6 230 VAC Dimming Characteristic ...................................................................... 26 9.6.1 Output Current vs. Control Voltage ............................................................ 26 9.6.2 Dimming Ratio vs. Control Voltage ............................................................ 27 9.7 Harmonics – Full Brightness.............................................................................. 28 9.7.1 8 LED Load ................................................................................................ 28 9.7.2 9 LED Load ................................................................................................ 30 9.7.3 10 LED Load .............................................................................................. 32 9.8 Test Data ........................................................................................................... 34 9.8.1 Efficiency, Regulation, Power Factor, and THD - Non-Dimming ................ 34 9.8.2 115 VAC Dimming Test Data ..................................................................... 35 9.8.3 230 VAC, 50 Hz Dimming Test Data .......................................................... 36 10 Waveforms ............................................................................................................ 37 10.1 Input Line Current.............................................................................................. 37 10.2 Drain Voltage and Current Normal Operation.................................................... 38 10.3 Drain Voltage and Current Start-up Operation .................................................. 39 10.4 Output Current and Output Voltage ................................................................... 40 10.5 Output Current and Voltage at Power-up, Power-down .................................... 41 10.6 Output Short ...................................................................................................... 42 10.7 Open Load/LED Condition................................................................................. 42 11 Thermals ............................................................................................................... 43 Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 2 of 48 17-Nov-11 DER-263 14 W PWM-Analog Dimmable LED Driver Using LNK406EG 11.1 115 VAC Thermal Measurements......................................................................43 11.2 230 VAC Thermal Measurements......................................................................44 12 Conducted EMI .....................................................................................................45 12.1 Conducted EMI Test Setup................................................................................45 12.2 115 VAC, 60 Hz Conducted EMI Measurements ...............................................45 12.3 230 VAC, 60 Hz Conducted EMI Measurements ...............................................46 13 Revision History ....................................................................................................47 Important Note: Although this board is designed to satisfy safety isolation requirements, the engineering prototype has not been agency approved. Therefore, all testing should be performed using an isolation transformer to provide the AC input to the prototype board. Page 3 of 48 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-263 14 W PWM-Analog Dimmable LED Driver Using LNK406EG 17-Nov-11 1 Introduction The document describes a high power-factor secondary referenced, analog dimmable LED driver. The circuit is designed to drive a nominal LED string voltage of 28 V at 500 mA from an input voltage range of 90 VAC to 265 VAC. The LED driver utilizes the LNK406EG from the LinkSwitch-PH family of ICs. Analog dimming is controlled by an external secondary referenced analog control signal of 0-10 V. 0 volts correspond to minimum light output and 10 V corresponds to maximum brightness. The analog controlled signal is transferred to the primary-side and controls the feedback current IFB of LNK406EG which in turn controls the output power/light output of the driver while maintaining high power factor and low THD. An active load circuit and control are also included to extend dimming ratio beyond 1000:1 but may be omitted if extended dimming operation is not required. This document contains the LED driver specification, schematic, PCB diagram, bill of materials, conducted EMI measurements, thermal measurements, transformer documentation and typical performance characteristics. Figure 1 – Top View. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 4 of 48 17-Nov-11 DER-263 14 W PWM-Analog Dimmable LED Driver Using LNK406EG Figure 2 – Bottom Side. Page 5 of 48 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-263 14 W PWM-Analog Dimmable LED Driver Using LNK406EG 17-Nov-11 2 Power Supply Specification The table below represents the minimum acceptable performance of the design. Actual performance is listed in the results section. Description Input Voltage Frequency Power Factor Output Voltage Current Ripple Power Dimming Range Efficiency 115 VAC 230 VAC Symbol Min Typ Max Units Comment VIN fLINE PF 90 115 / 230 60 / 50 265 VAC Hz DC Input Only. 28 500 60 14 35 V mA % W ± 5% VOUT IOUT 0.92 28 IRIPPLE POUT 1000:1 η115 η230 IO(PK-PK) / IO VIN(TYP) 86 % VOUT = 28 V 87 % VOUT = 28 V °C Class C specifies Class D Limits when PIN <25 W May be increased with larger heat sink Environmental Conducted EMI Meets EN55015B Harmonic Currents Temperature EN 61000-3-2 Class D (C) TAMB Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com 40 Page 6 of 48 17-Nov-11 DER-263 14 W PWM-Analog Dimmable LED Driver Using LNK406EG 3 Schematic Figure 3 – Schematic. Page 7 of 48 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-263 14 W PWM-Analog Dimmable LED Driver Using LNK406EG 17-Nov-11 4 PCB Layout Figure 4 – PCB Showing Top, Bottom Traces and Dimensions in Inches [mm]. Figure 5 – PCB Bottom Side. Figure 6 – PCB Top Side. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 8 of 48 17-Nov-11 DER-263 14 W PWM-Analog Dimmable LED Driver Using LNK406EG 5 Circuit Description The LinkSwitch-PH device is a controller and integrated 725 V MOSFET intended for use in LED driver applications. The LinkSwitch-PH is configured for use in a single-stage continuous conduction mode flyback topology and provides a primary-side regulated constant current output while maintaining high power factor from the AC input. Controlling the IFB current with an external control signal regulates the output power and thus the output current to the LED Load. 5.1 PWM-Analog Dimming Figure 7 – PWM-Analog Dimming. Dimming is controlled by an external analog secondary reference control signal of 0-10 V magnitude. 0 V corresponds to full dimming or minimum light output and 10 V corresponds to maximum brightness. Resistor RF and CF (Figure 7) form a simple low pass filter to provide noise filtering of the incoming control signal. The PWM generator block converts the analog signal to PWM. Conversion to PWM preserves the integrity of the analog control signal information when it is transferred from the secondary to the primary-side. If 0 V to 10 V dimming is not required and a PWM source is already present, for example from a micro controller, then the PWM generator block may be omitted and U2A driven directly. Optocoupler U2 is switched on and off with a duty cycle proportional to the control voltage. Diode D1 prevents C6 from pulling down the FB pin during start-up condition. Resistors R6 and R12 sets the IFB current at maximum brightness. The equation for operating IFB with U2 open (maximum brightness) is Page 9 of 48 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-263 14 W PWM-Analog Dimmable LED Driver Using LNK406EG I FB = 17-Nov-11 VBIAS − VFB VR4 − VFB + R6 + R12 R10 During full dimming, transistor U2 is fully on and voltage across C6 falls to VFB + 0.6 V approximately 3 V. Resistor R11 is then selected based on the following relationship: R11 = 3V × R6 ; VBIAS( FD) − 3V where VBIAS(FD) is the minimum bias voltage at full dimming. PWM filter capacitor C6 is chosen to be greater than: 5 f PWM × R11 Resistor R10 provides a stable current of approximately 20 µA into the FB pin from the bias winding through VR4 biased by R7. This prevents the FB pin current from entering into auto-restart region (i.e. IFB <20 µA) thus allowing operation in deep dimming mode operation. However, during short-circuit condition the VR4 bias voltage will collapse and allows IFB current to fall below 20 µA thus enabling auto-restart protection mode. Resistor R10 also guarantees that the unit starts-up normally while the PWM filter capacitor C6 charges up and causes delay for the feedback current to cross the auto-restart region from the bias supply during initial start-up. Want More? Use your smartphone and free software from www.neoreader.com (or any other free QR Code Reader from your smartphone’s App Store) and you will be connected to related content on our website. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 10 of 48 17-Nov-11 5.2 DER-263 14 W PWM-Analog Dimmable LED Driver Using LNK406EG Analog-PWM Converter Figure 8 – Analog Signal to PWM Converter. The PWM converter uses 2 comparator circuits implemented using LM393. The first comparator circuit is a relaxation oscillator that produces a nearly triangular waveform at the inverting input. The frequency of the sawtooth and the PWM output at pin 7 is given by the following relation 1 FPWM ≈ 2 × ln( 2) × R 21 × C 22 where R21 = R22 = R23 = R24. The approximation was used to simplify the formula and ignore the small effect of the pull-up resistor R20. Resistor R20 would not be necessary if U3 is an op-amp with an output that saturates to its rail voltage. The oscillating frequency for this design is approximately 150 Hz. The second comparator circuitry compares the triangular waveform with the scaled analog input. The minimum control signal is scaled to VCC/3 and maximum control signal is scaled to approximately 2×(VCC/3) to produce a 0-100% duty cycle. The scaling is done by resistors R26-R28. Page 11 of 48 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-263 14 W PWM-Analog Dimmable LED Driver Using LNK406EG 5.3 17-Nov-11 Active Load Circuit Figure 9 – Active Load Circuit. The active load circuit is designed such that: 1. At full dimming, the active load circuit dissipates the minimum output power when IFB is at minimum (IFB ~20 µA) thereby reducing the LED load current. 2. Without dimming, or full brightness, the active load is inactive. VAL (active load control voltage) is at its minimum value and set such that Q1 is off. This disconnects the active load from the output and does not affect the full load efficiency of the converter The emitter follower configuration formed by Q1, R13, R14, D10 and D9 draws a current proportional to VAL once VAL exceeds 1.8 V threshold. Resistor R14 sets the ratio between VAL and desired offset current. Resistor R13 is used to proportion the power dissipated between Q1 and R13 and thus enable the use of a lower power rating transistor. The network formed by R32-R35 and U4 is configured as an inverting amplifier to satisfy relationship between control signal and VAL as shown on the figure above. Resistor R30, R31, and Q2 comprise the pull-up circuit and ensure that if the analog control signal is not present, the active load circuit is not connected to the output. The active load circuit is optional for designs where a reduced dimming range is acceptable. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 12 of 48 17-Nov-11 DER-263 14 W PWM-Analog Dimmable LED Driver Using LNK406EG 6 Bill of Materials Item Qty Part Ref 1 1 BR1 Description 2 1 C1 47 nF, 275 VAC, Film, X2 ECQU2A473ML Panasonic 3 1 C2 ECQ-E6104KF Panasonic 4 1 C3 100 nF, 630 V, Film 1 µF, 400 V, Electrolytic, (6.3 x 11) EKMG401ELL1R0MF11D United Chemi-Con 5 1 C4 ECJ-3YB1E106M Panasonic 6 1 C5 ELXZ500ELL220MEB5D Nippon Chemi-Con 7 1 C6 KME50VB10RM5X11LL Nippon Chemi-Con 8 1 C7 440LD10-R Vishay 9 2 C8 C10 EKZE500ELL331MJ25S Nippon Chemi-Con 10 1 C9 1 nF, Ceramic, Y1 330 µF, 50 V, Electrolytic, Very Low ESR, 28 mΩ, (10 x 25) 1000 pF, 630 V, Ceramic, X7R, 1206 11 1 C13 100 nF, 25 V, Ceramic, X7R, 0805 12 2 C14 C20 08055C102KAT2A AVX 13 1 C21 100 nF, 25 V, Ceramic, X7R, 1206 ECJ-3VB1E104K Panasonic 14 1 C22 Panasonic 1 GRM31MF51H225ZA01L Murata 16 4 C23 D1 D5 D9 D10 47 nF, 50 V, Ceramic, X7R, 0805 2.2 µF, 50 V, Ceramic, Y5V, 1206 ECJ-2YB1H473K 15 LL4148-13 Diodes, Inc. 17 1 D2 DL4007-13-F Diodes, Inc. 18 1 19 1 20 21 800 V, 1 A, Bridge Rectifier, SMD, DFS 10 µF, 25 V, Ceramic, X5R, 1206 22 µF, 50 V, Electrolytic, Low ESR, 900 mΩ, (5 x 11.5) 10 µF, 50 V, Electrolytic, Gen. Purpose, (5 x 11) 1 nF, 50 V, Ceramic, X7R, 0805 75 V, 0.15 A, Fast Switching, 4 ns, MELF Mfg Part Number Mfg DF08S Diodes, Inc. ECJ-3FB2J102K Panasonic ECJ-2VB1E104K Panasonic D3 1000 V, 1 A, Rectifier, Glass Passivated, DO213AA (MELF) 600 V, 1 A, Ultrafast Recovery, 35 ns, SMB Case MURS160T3G On Semi D4 200 V, 2 A, Ultrafast Recovery, 20 ns, DO-214AA ES2D Diodes, Inc. 1 D6 DIODE ULTRA FAST, SW, 200 V, 1 A, SMA 1 D8 200 V, 4 A, Schottky, SMC, DO-214AB 22 1 F1 3.15 A, 250V, Slow, RST 23 2 J1 J2 24 3 L1 L2 L3 25 1 Q1 NPN, Power BJT, 70 V, 1 A, TO-92 ZTX692B Zetex 26 1 Q2 PNP, Small Signal BJT, 40 V, 0.2 A, SOT-23 MMBT3906LT1G On Semi 27 2 Q3 Q4 On Semi 2 R2 R3 NPN, Small Signal BJT, 40 V, 0.2 A, SOT-23 2.00 MΩ, 1%, 1/4 W, Thick Film, 1206 MMBT3904LT1G 28 ERJ-8ENF2004V Panasonic 29 1 R4 24.9 kΩ, 1%, 1/8 W, Thick Film, 0805 ERJ-6ENF2492V Panasonic 30 1 R5 3 kΩ, 5%, 1/4 W, Thick Film, 1206 ERJ-8GEYJ302V Panasonic 31 1 R6 24 kΩ, 5%, 1/4 W, Thick Film, 1206 ERJ-8GEYJ243V Panasonic 32 1 R7 10 kΩ, 5%, 1/4 W, Thick Film, 1206 ERJ-8GEYJ103V Panasonic 33 1 R8 150 Ω, 5%, 1/4 W, Thick Film, 1206 ERJ-8GEYJ151V Panasonic 34 2 R9 R15 390 kΩ, 5%, 1/4 W, Thick Film, 1206 ERJ-8GEYJ394V Panasonic 35 1 R10 174 kΩ, 1%, 1/8 W, Thick Film, 0805 ERJ-6ENF1743V Panasonic 36 1 R11 3.6 kΩ, 5%, 1/8 W, Thick Film, 0805 ERJ-6GEYJ362V Panasonic 37 1 R12 150 kΩ, 5%, 1/4 W, Thick Film, 1206 ERJ-8GEYJ154V Panasonic 38 1 R13 130 Ω, 5%, 1 W, Metal Oxide RSF100JB-130R Yageo 39 1 R14 200 Ω, 5%, 1 W, Metal Oxide RSF100JB-200R Yageo 40 2 R16 R17 4.7 kΩ, 5%, 1/4 W, Thick Film, 1206 ERJ-8GEYJ472V Panasonic 41 2 R18 R40 1.5 kΩ, 5%, 1/4 W, Thick Film, 1206 ERJ-8GEYJ152V Panasonic 42 1 R19 1 kΩ, 5%, 1/8 W, Thick Film, 0805 ERJ-6GEYJ102V Panasonic 43 2 4.3 kΩ, 5%, 1/8 W, Thick Film, 0805 ERJ-6GEYJ432V Panasonic 44 4 R20 R35 R21 R22 R23 R24 100 kΩ, 5%, 1/8 W, Thick Film, 0805 ERJ-6GEYJ104V Panasonic Page 13 of 48 PCB Terminal Hole, 30 AWG 1 mH, 0.30 A, Ferrite Core US1D-13-F Diodes, Inc. MBRS4201T3G ON Semi 507-1181 Belfuse N/A N/A CTCH895F-102K CTParts Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-263 14 W PWM-Analog Dimmable LED Driver Using LNK406EG 17-Nov-11 45 2 R25 R31 10 kΩ, 5%, 1/8 W, Thick Film, 0805 ERJ-6GEYJ103V 46 1 R26 154 kΩ, 1%, 1/4 W, Thick Film, 1206 ERJ-8ENF1543V Panasonic 47 1 R27 22.1 kΩ, 1%, 1/4 W, Thick Film, 1206 ERJ-8ENF2212V Panasonic 48 1 R28 47.5 kΩ, 1%, 1/4 W, Thick Film, 1206 ERJ-8ENF4752V Panasonic 49 1 R29 3.3 kΩ, 5%, 1/4 W, Thick Film, 1206 ERJ-8GEYJ332V Panasonic 50 1 R30 1 MΩ, 5%, 1/8 W, Thick Film, 0805 ERJ-6GEYJ105V Panasonic 51 1 R32 80.6 kΩ, 1%, 1/4 W, Thick Film, 1206 ERJ-8ENF8062V Panasonic 52 1 R33 12.4 kΩ, 1%, 1/4 W, Thick Film, 1206 ERJ-8ENF1242V Panasonic 100 kΩ, 5%, 1/4 W, Thick Film, 1206 ERJ-8GEYJ104V Panasonic 1 kΩ, 5%, 1/4 W, Thick Film, 1206 ERJ-8GEYJ102V Panasonic 1 MΩ, 1%, 1/4 W, Metal Film MFR-25FBF-1M00 Yageo 275 V, 23 J, 7 mm, RADIAL V275LA4P Littlefuse 53 1 Panasonic 54 3 55 1 R34 R36 R37 R38 R39 56 1 RV1 57 1 T1 Bobbin, RM8, Vertical, 12 pins RM8/12/1 Schwartzpunkt 58 1 U1 LinkSwitch-PH, eSIP LNK406EG Power Integrations 59 1 U2 Optocoupler, 35 V, CTR 80-160%, 4-DIP LTV-817A Liteon 60 1 U3 Dual Diff Comparator, 8-SOIC LM393D National 61 1 U4 1.24 V Shunt Reg IC LMV431ACZ National Semi 62 1 VR3 36 V, 5%, 500 mW, DO-213AA (MELF) ZMM5258B-7 Diodes, Inc. 63 1 VR4 16 V, 5%, 1 W, DO-41 1N4745A-T Diodes, Inc. 64 1 VR5 6.2 V, 5%, 150 mW, SOD-323 MAZS0620ML Panasonic Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 14 of 48 17-Nov-11 DER-263 14 W PWM-Analog Dimmable LED Driver Using LNK406EG 7 Transformer Specification 7.1 Electrical Diagram Figure 10 – Transformer Electrical Diagram. 7.2 Electrical Specifications Electrical Strength Primary Inductance Resonant Frequency Primary Leakage Inductance 7.3 Item [1] [2] [3] [4] [5] [6] [7] 1 second, 60 Hz, from pins 1, 2, 3, 11 to FL1, FL2 Pins 1-11, all other windings open, measured at 100 kHz, 0.4 VRMS Pins 1-11, all other windings open Pins 1-11, with FL1-FL2 shorted, measured at 100 kHz, 0.4 VRMS 3000 VAC 1195 µH, ±10% 750 kHz (Min.) 20 µH (Max.) Materials Description Core: RM8/I, 3F3 Bobbin: 12 pin vertical, CSV-RM8-1S-12P Philips or equivalent with mounting clip, CLI/P-RM8 Tape: Polyester film, 3M 1350F-1 or equivalent, 9 mm wide Wire: Magnet, #31 AWG, solderable double coated Wire: Magnet, #30 AWG, solderable double coated Wire: Triple Insulated, Furukawa TEX-E or Equivalent, #25 TIW Transformer Varnish: Dolph BC-359 or equivalent Page 15 of 48 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-263 14 W PWM-Analog Dimmable LED Driver Using LNK406EG 7.4 17-Nov-11 Transformer Build Diagram Pins Side Figure 11 – Transformer Build Diagram. 7.5 Transformer Construction Bobbin Preparation WD 1 (Primary) Insulation WD 2 (Secondary) Insulation WD 3 (Bias) Finish Wrap Final Assembly Place the bobbin item [2] on the mandrel such that pin side on the left side. Winding direction is the clockwise direction. Starting at pin 1, wind 60 turns of wire item [4] in two layers. Finish at pin 11. Apply one layer of tape item [3]. Leave about 1” of wire item [6], use small tape to mark as FL1, enter into slot of secondary side of bobbin, wind 20 turns in two layers. At the last turn exit the same slot, leave about 1”, and mark as FL2. Apply one layer of tape item [3]. Starting at pin 3, wind 20 turns of wire item [5], spreading the wire, finish at pin 2. Apply three layers of tape item [3] for finish wrap. Cut FL1 and FL2 to 0.75”.Grind core to get 1.15 mH inductance value. Assemble and secure core halves. Dip impregnate using varnish item [7]. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 16 of 48 17-Nov-11 DER-263 14 W PWM-Analog Dimmable LED Driver Using LNK406EG 8 Transformer Design Spreadsheet ACDC_LinkSwitchPH_032511; Rev.1.3; INPUT Copyright Power Integrations 2011 ENTER APPLICATION VARIABLES Dimming required VACMIN VACMAX fL VO VO_MAX VO_MIN V_OVP IO INFO NO OUTPUT UNIT NO 90 265 50 28.00 30.80 25.20 33.88 0.50 V V Hz V V V V A PO 14.0 W n 0.84 VB 25 ENTER LinkSwitch-PH VARIABLES LinkSwitch-PH LNK416 0.84 25 V Chosen Device Current Limit Mode Universal LNK416 RED ILIMITMIN ILIMITMAX fS fSmin fSmax IV RV RV2 IFB RFB1 VDS Power Out 10W RED 1.19 1.38 66000 62000 70000 38.7 3.909 1.402 142.2 154.7 A A Hz Hz Hz uA M-ohms M-ohms uA k-ohms 10 V VD 0.50 V VDB Key Design Parameters 0.70 V KP 0.88 0.88 LP 1195 VOR 85.00 85 Expected IO (average) 0.49 KP_VACMAX 1.11 TON_MIN 1.90 PCLAMP 0.11 ENTER TRANSFORMER CORE/CONSTRUCTION VARIABLES Core Type RM8/I RM8/I Bobbin RM8/I_BOBBIN AE 0.63 LE 3.84 AL 3000 BW 8.6 M L NS Page 17 of 48 0 2.00 20 2 20 uH V A us W P/N: cm^2 cm nH/T^2 mm mm LinkSwitch-PH_032511: Flyback Transformer Design Spreadsheet Select 'YES' option if dimming is required. Otherwise select 'NO'. Minimum AC Input Voltage Maximum AC input voltage AC Mains Frequency Typical output voltage of LED string at full load Maximum expected LED string Voltage. Minimum expected LED string Voltage. Over-voltage protection setpoint Typical full load LED current !!! For Universal Input reduce Continuous Output Power PO_CONT below 10W (or use larger LinkSwitch-PH) Estimated efficiency of operation Bias Voltage 115 Doubled/230V 4.5W Select "RED" for reduced Current Limit mode or "FULL" for Full current limit mode Minimum current limit Maximum current limit Switching Frequency Minimum Switching Frequency Maximum Switching Frequency V pin current Upper V pin resistor Lower V pin resistor FB pin current (85 uA < IFB < 210 uA) FB pin resistor LinkSwitch-PH on-state Drain to Source Voltage Output Winding Diode Forward Voltage Drop (0.5 V for Schottky and 0.8 V for PN diode) Bias Winding Diode Forward Voltage Drop Ripple to Peak Current Ratio (For PF > 0.9, 0.4 < KP < 0.9) Primary Inductance Reflected Output Voltage. Expected Average Output Current Expected ripple current ratio at VACMAX Minimum on time at maximum AC input voltage Estimated dissipation in primary clamp * Core Effective Cross Sectional Area Core Effective Path Length Ungapped Core Effective Inductance Bobbin Physical Winding Width Safety Margin Width (Half the Primary to Secondary Creepage Distance) Number of Primary Layers Number of Secondary Turns Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-263 14 W PWM-Analog Dimmable LED Driver Using LNK406EG DC INPUT VOLTAGE PARAMETERS VMIN VMAX CURRENT WAVEFORM SHAPE PARAMETERS DMAX IAVG 127 375 V V 0.42 0.18 A IP 0.91 A IRMS 0.30 A TRANSFORMER PRIMARY DESIGN PARAMETERS LP NP NB ALG 1195 60 18 336 uH 17-Nov-11 Peak input voltage at VACMIN Peak input voltage at VACMAX Minimum duty cycle at peak of VACMIN Average Primary Current Peak Primary Current (calculated at minimum input voltage VACMIN) Primary RMS Current (calculated at minimum input voltage VACMIN) Primary Inductance Primary Winding Number of Turns Bias Winding Number of Turns nH/T^2 Gapped Core Effective Inductance Maximum Flux Density at PO, VMIN BM 2901 Gauss (BM<3100) BP 3511 Gauss Peak Flux Density (BP<3700) AC Flux Density for Core Loss Curves (0.5 X BAC 1277 Gauss Peak to Peak) ur 1455 Relative Permeability of Ungapped Core LG 0.21 mm Gap Length (Lg > 0.1 mm) BWE 17.2 mm Effective Bobbin Width Maximum Primary Wire Diameter including OD 0.29 mm insulation Estimated Total Insulation Thickness (= 2 * film INS 0.05 mm thickness) DIA 0.24 mm Bare conductor diameter Primary Wire Gauge (Rounded to next smaller AWG 31 AWG standard AWG value) CM 81 Cmils Bare conductor effective area in circular mils Primary Winding Current Capacity (200 < CMA CMA 272 Cmils/Amp < 600) LP_TOL 10 Tolerance of primary inductance TRANSFORMER SECONDARY DESIGN PARAMETERS (SINGLE OUTPUT EQUIVALENT) Lumped parameters ISP 2.72 A Peak Secondary Current ISRMS 0.98 A Secondary RMS Current IRIPPLE 0.84 A Output Capacitor RMS Ripple Current Secondary Bare Conductor minimum circular CMS 196 Cmils mils Secondary Wire Gauge (Rounded up to next AWGS 27 AWG larger standard AWG value) DIAS 0.36 mm Secondary Minimum Bare Conductor Diameter Secondary Maximum Outside Diameter for ODS 0.43 mm Triple Insulated Wire VOLTAGE STRESS PARAMETERS Estimated Maximum Drain Voltage assuming VDRAIN 553 V maximum LED string voltage (Includes Effect of Leakage Inductance) Output Rectifier Maximum Peak Inverse PIVS 160 V Voltage (calculated at VOVP, excludes leakage inductance spike) Bias Rectifier Maximum Peak Inverse Voltage PIVB 144 V (calculated at VOVP, excludes leakage inductance spike) FINE TUNING (Enter measured values from prototype) V Pin Resistor Fine Tuning RV1 3.9 3.90 M-ohms Upper V Pin Resistor Value RV2 1.33 1.33 M-ohms Lower V Pin Resistor Value VAC1 115 115.0 V Test Input Voltage Condition1 VAC2 230 230.0 V Test Input Voltage Condition2 IO_VAC1 0.486 0.49 A Measured Output Current at VAC1 IO_VAC2 0.49 0.49 A Measured Output Current at VAC2 Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 18 of 48 17-Nov-11 DER-263 14 W PWM-Analog Dimmable LED Driver Using LNK406EG RV1 (new) RV2 (new) 3.95 1.09 M-ohms M-ohms V_OV 322.9 V V_UV 73.2 V 155 1E+012 22.5 27.5 0.50 0.50 154.7 1.00E+12 k-ohms k-ohms V V A A k-ohms k-ohms FB Pin Resistor Fine Tuning RFB1 RFB2 VB1 VB2 IO1 IO2 RFB1 (new) RFB2(new) Page 19 of 48 New RV1 New RV2 Typical AC input voltage at which OV shutdown will be triggered Typical AC input voltage beyond which power supply can startup Upper FB Pin Resistor Value Lower FB Pin Resistor Value Test Bias Voltage Condition1 Test Bias Voltage Condition2 Measured Output Current at Vb1 Measured Output Current at Vb2 New RFB1 New RFB2 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-263 14 W PWM-Analog Dimmable LED Driver Using LNK406EG 17-Nov-11 9 Performance Data All measurements performed at room temperature and using strings of LEDs for the load. 9.1 Efficiency – Full Brightness 88.0 87.5 87.0 Efficiency (%) 86.5 86.0 85.5 85.0 84.5 8 LED 9 LED 84.0 10 LED 83.5 70 90 110 130 150 170 190 210 230 250 270 290 Input Voltage (VAC) Figure 12 – Efficiency at Full Brightness. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 20 of 48 17-Nov-11 9.2 DER-263 14 W PWM-Analog Dimmable LED Driver Using LNK406EG Line and Load Regulation – Full Brightness 510 8 LED 505 9 LED 10 LED Output Current (mA) 500 495 490 485 480 475 470 465 70 90 110 130 150 170 190 210 230 250 270 Input Voltage (VAC) Figure 13 – Line and load Regulation. Page 21 of 48 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com 290 DER-263 14 W PWM-Analog Dimmable LED Driver Using LNK406EG 9.3 17-Nov-11 Power Factor – Full Brightness 1.00 8 LED 0.99 9 LED 10 LED Power Factor 0.98 0.97 0.96 0.95 0.94 0.93 0.92 70 90 110 130 150 170 190 210 230 250 270 290 Input Voltage (VAC) Figure 14 – Power Factor at Full Brightness. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 22 of 48 17-Nov-11 9.4 DER-263 14 W PWM-Analog Dimmable LED Driver Using LNK406EG A-THD – Full Brightness 34 31 A-THD (%) 28 25 22 19 16 8 LED 9 LED 13 10 LED 10 70 90 110 130 150 170 190 210 230 250 270 Input Voltage (VAC) Figure 15 – Total Harmonic Distortion. Page 23 of 48 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com 290 DER-263 14 W PWM-Analog Dimmable LED Driver Using LNK406EG 9.5 17-Nov-11 115 VAC Dimming Characteristic 9.5.1 Output Current vs. Control Voltage 600 Output Current (mA) 500 400 300 200 100 0 0 1 2 3 4 5 6 7 8 9 10 Control Voltage (VDC) Figure 16 – 115 VAC Output Current vs. Control Voltage (9 LED Load). Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 24 of 48 17-Nov-11 DER-263 14 W PWM-Analog Dimmable LED Driver Using LNK406EG 9.5.2 Dimming Ratio vs. Control Voltage 1000000 Dimming Ratio 100000 10000 1000 100 10 1 0 1 2 3 4 5 6 7 8 9 Control Voltage (VDC) Figure 17 – 115 VAC Dimming Ratio vs. Control Voltage (9 LED Load). Page 25 of 48 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com 10 DER-263 14 W PWM-Analog Dimmable LED Driver Using LNK406EG 9.6 17-Nov-11 230 VAC Dimming Characteristic 9.6.1 Output Current vs. Control Voltage 600 Output Current (mA) 500 400 300 200 100 0 0 1 2 3 4 5 6 7 8 9 10 Control Voltage (VDC) Figure 18 – 230 VAC Output Current vs. Control Voltage (9 LED Load). Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 26 of 48 17-Nov-11 DER-263 14 W PWM-Analog Dimmable LED Driver Using LNK406EG 9.6.2 Dimming Ratio vs. Control Voltage 10000 Dimming Ratio 1000 100 10 1 0 1 2 3 4 5 6 7 8 9 Control Voltage (VDC) Figure 19 – 230 VAC Dimming Ratio vs. Control Voltage (9 LED Load). Page 27 of 48 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com 10 DER-263 14 W PWM-Analog Dimmable LED Driver Using LNK406EG 17-Nov-11 9.7 Harmonics – Full Brightness The design met the limits for Class C equipment for an active input power of <25 W. In this case IEC61000-3-2 specifies that harmonic currents shall not exceed the limits of Class D equipment1. Therefore the limits shown in the charts below are Class D limits which must not be exceeded to meet Class C compliance. 9.7.1 8 LED Load 120 Class C limit 115 VAC Harmonics, 8 LED Load Harmonic Content (mA) 100 80 60 40 20 0 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 Harmonic Number (N) Figure 20 – 115 VAC Harmonics, 8 LED Load. 1 IEC6000-3-2 Section 7.3, table 2, column 2. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 28 of 48 17-Nov-11 DER-263 14 W PWM-Analog Dimmable LED Driver Using LNK406EG 60 Class C limit 230 VAC Harmonics, 8 LED Load Harmonic Content (mA) 50 40 30 20 10 0 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 Harmonic Number (N) Figure 21 – 230 VAC Harmonics, 8 LED Load. Page 29 of 48 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-263 14 W PWM-Analog Dimmable LED Driver Using LNK406EG 17-Nov-11 9.7.2 9 LED Load 120 Class C limit 115 VAC Harmonics, 9 LED Load Harmonic Content (mA) 100 80 60 40 20 0 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 Harmonic Number (N) Figure 22 – 115 VAC Harmonics, 9 LED Load. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 30 of 48 17-Nov-11 DER-263 14 W PWM-Analog Dimmable LED Driver Using LNK406EG 60 Class C limit 230 VAC Harmonics, 9 LED Load Harmonic Content (mA) 50 40 30 20 10 0 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 Harmonic Number (N) Figure 23 – 230 VAC Harmonics, 9 LED Load. Page 31 of 48 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-263 14 W PWM-Analog Dimmable LED Driver Using LNK406EG 17-Nov-11 9.7.3 10 LED Load 140 Class C limit 115 VAC Harmonics, 10 LED Load Harmonic Content (mA) 120 100 80 60 40 20 0 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 Harmonic Number (N) Figure 24 – 115 VAC Harmonics, 10 LED Load. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 32 of 48 17-Nov-11 DER-263 14 W PWM-Analog Dimmable LED Driver Using LNK406EG 70 Class C limit 230 VAC Harmonics, 10 LED Load Harmonic Content (mA) 60 50 40 30 20 10 0 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 Harmonic Number (N) Figure 25 – 230 VAC Harmonics 10 LED Load. Page 33 of 48 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-263 14 W PWM-Analog Dimmable LED Driver Using LNK406EG 9.8 17-Nov-11 Test Data 9.8.1 Efficiency, Regulation, Power Factor, and THD - Non-Dimming Input VAC (VRMS) Input Measurement Freq (Hz) VIN (VRMS) IIN (mARMS) PIN (W) PF Load Measurement %ATHD VOUT (VDC) IOUT (mADC) POUT (W) Calculation PCAL (W) Efficiency (%) Loss (W) Regulation (%) 90 60 90.01 162.64 14.43 0.986 16.02 24.55 497 12.26 12.20 84.96 2.17 -0.60 100 60 99.98 146.84 14.41 0.982 18.56 24.51 499 12.31 12.23 85.42 2.10 -0.20 115 60 115.02 128.00 14.37 0.976 21.34 24.49 502 12.36 12.29 86.02 2.01 0.40 132 60 132.04 112.13 14.35 0.969 24.2 24.47 505 12.41 12.36 86.49 1.94 1.00 180 50 180.05 82.88 14.25 0.955 28.88 24.43 505 12.41 12.34 87.11 1.84 1.00 230 50 230.14 64.61 14.00 0.941 30.76 24.39 497 12.20 12.12 87.16 1.80 -0.60 240 50 240.10 61.83 13.93 0.939 30.85 24.37 495 12.13 12.06 87.07 1.80 -1.00 265 50 265.12 55.79 13.76 0.930 30.95 24.33 489 11.95 11.90 86.87 1.81 -2.20 Table 1 – 8 LED Load Measurement Data. Input VAC (VRMS) Input Measurement Freq (Hz) VIN (VRMS) IIN (mARMS) PIN (W) PF Load Measurement %ATHD VOUT (VDC) IOUT (mADC) POUT (W) Calculation PCAL (W) Efficiency (%) Loss (W) Regulation (%) 90 60 90.01 179.01 15.91 0.987 14.86 27.36 489 13.44 13.38 84.48 2.47 -2.20 100 60 99.98 161.04 15.83 0.983 17.61 27.35 490 13.47 13.40 85.12 2.36 -2.00 115 60 115.02 140.41 15.78 0.977 20.73 27.34 492 13.51 13.45 85.63 2.27 -1.60 132 60 132.04 122.87 15.74 0.970 23.71 27.34 494 13.56 13.51 86.14 2.18 -1.20 180 50 180.05 91.11 15.69 0.956 28.72 27.33 496 13.63 13.56 86.88 2.06 -0.80 230 50 230.15 71.09 15.45 0.944 30.58 27.30 489 13.42 13.35 86.88 2.03 -2.20 240 50 240.11 67.92 15.36 0.942 30.71 27.28 486 13.33 13.26 86.80 2.03 -2.80 265 50 265.13 61.14 15.14 0.934 30.96 27.25 479 13.12 13.05 86.65 2.02 -4.20 Table 2 – 9 LED Load Measurement Data. Input Input Measurement VAC (VRMS) Freq (Hz) VIN (VRMS) IIN (mARMS) PIN (W) PF Load Measurement Calculation %ATHD VOUT (VDC) IOUT (mADC) POUT (W) PCAL (W) Efficiency (%) Loss (W) Regulation (%) -4.22 90 60 90.00 195.02 17.354 0.989 14.02 30.31 479 14.57 14.52 83.96 2.78 100 60 99.97 175.41 17.260 0.984 16.92 30.29 480 14.60 14.55 84.59 2.66 -3.96 115 60 115.01 152.62 17.161 0.978 20.42 30.28 482 14.63 14.58 85.25 2.53 -3.70 132 60 132.03 133.52 17.121 0.971 23.39 30.28 484 14.69 14.64 85.80 2.43 -3.28 180 50 180.04 99.53 17.166 0.958 28.36 30.28 489 14.87 14.81 86.62 2.30 -2.20 230 50 230.14 77.57 16.896 0.947 30.36 30.25 482 14.64 14.58 86.65 2.26 -3.58 240 50 240.10 74.05 16.787 0.944 30.55 30.23 479 14.54 14.48 86.61 2.25 -4.18 265 50 265.12 66.52 16.530 0.937 30.99 30.19 472 14.30 14.24 86.51 2.23 -5.66 Table 3 – 10 LED Load Measurement Data. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 34 of 48 17-Nov-11 DER-263 14 W PWM-Analog Dimmable LED Driver Using LNK406EG 9.8.2 115 VAC Dimming Test Data VDIM (VDC) 10 VIN (VRMS) 115.02 Input Measurement IIN PIN PF (mARMS) (W) 140.35 15.77 0.977 9.5 115.02 140.24 15.76 0.977 20.8 27.36 492.000 13.51 13.46 85.74 2.25 9 115.03 111.41 12.42 0.969 24.7 26.93 391.000 10.57 10.53 85.12 1.85 %ATHD 20.8 Load Measurement VOUT IOUT POUT (VDC) (mADC) (W) 27.38 492.000 13.52 PCAL (W) 13.47 Calculation Efficiency (%) 85.74 Loss (W) 2.25 8.5 115.04 86.62 9.60 0.964 26.6 26.50 304.000 8.07 8.06 84.05 1.53 8 115.04 67.20 7.42 0.959 27.5 26.07 232.200 6.06 6.05 81.73 1.36 7.5 115.05 36.64 4.09 0.971 17.2 25.22 118.500 2.99 2.99 73.05 1.10 7 115.05 27.70 3.07 0.964 14.7 24.80 80.600 2.00 2.00 65.10 1.07 6.5 115.05 23.20 2.55 0.956 13.1 24.50 59.600 1.46 1.46 57.23 1.09 6 115.05 19.85 2.16 0.944 12.8 24.18 41.500 1.00 1.00 46.57 1.15 5.5 115.06 18.13 1.95 0.934 12.8 23.95 30.900 0.74 0.74 38.04 1.21 5 115.05 16.70 1.78 0.924 12.9 23.68 20.820 0.49 0.49 27.77 1.28 4.5 115.06 15.86 1.67 0.917 12.9 23.44 14.110 0.33 0.33 19.78 1.34 4 115.06 15.11 1.58 0.909 13.2 23.11 7.410 0.17 0.17 10.82 1.41 3.5 115.06 14.49 1.50 0.902 13.4 22.56 2.152 0.05 0.05 3.23 1.46 3 115.06 13.94 1.44 0.895 13.6 21.34 0.179 0.00 0.00 0.26 1.43 2.5 115.06 13.36 1.36 0.886 14.0 19.26 0.018 0.00 0.00 0.02 1.36 2 115.06 13.28 1.35 0.885 13.9 18.33 0.007 0.00 0.00 0.01 1.35 1.5 115.06 13.30 1.35 0.886 13.8 17.43 0.005 0.00 0.00 0.01 1.35 1 115.06 13.29 1.35 0.886 13.8 16.65 0.003 0.00 0.00 0.00 1.35 0.5 115.06 13.30 1.36 0.886 13.7 16.39 0.003 0.00 0.00 0.00 1.36 0.1 115.06 13.29 1.35 0.886 13.7 16.38 0.003 0.00 0.00 0.00 1.35 Table 4 – 115 VAC, 60 Hz Dimming Measurements. Page 35 of 48 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-263 14 W PWM-Analog Dimmable LED Driver Using LNK406EG 17-Nov-11 9.8.3 230 VAC, 50 Hz Dimming Test Data Input Measurement IIN PIN PF (mARMS) (W) 71.13 15.46 0.944 Load Measurement VOUT IOUT POUT (VDC) (mADC) (W) 27.38 488.000 13.43 VIN (VRMS) 230.14 9.5 230.14 71.09 15.45 0.944 30.6 27.36 488.000 13.42 13.35 86.86 2.03 9 230.14 59.15 12.77 0.938 31.0 27.01 405.000 10.99 10.94 86.05 1.78 %ATHD 30.6 PCAL (W) 13.36 Calculation Efficiency (%) 86.87 VDIM (VDC) 10 Loss (W) 2.03 8.5 230.14 45.22 9.64 0.926 31.0 26.51 305.000 8.11 8.09 84.13 1.53 8 230.14 39.95 8.47 0.921 30.1 26.29 264.900 6.98 6.96 82.46 1.49 7.5 230.15 26.76 5.49 0.892 24.2 25.57 163.600 4.19 4.18 76.28 1.30 7 230.15 22.72 4.53 0.867 21.9 25.32 126.400 3.20 3.20 70.61 1.33 6.5 230.15 20.38 3.95 0.843 21.0 25.09 103.300 2.59 2.59 65.52 1.36 6 230.15 18.51 3.48 0.816 20.7 24.86 82.900 2.06 2.06 59.25 1.42 5.5 230.15 17.30 3.16 0.795 20.9 24.67 68.400 1.69 1.69 53.41 1.47 5 230.15 16.45 2.94 0.777 21.3 24.52 57.100 1.40 1.40 47.64 1.54 4.5 230.14 15.79 2.77 0.762 21.7 24.36 47.700 1.16 1.16 41.96 1.61 4 230.13 15.24 2.62 0.748 22.1 24.19 38.900 0.94 0.94 35.87 1.68 3.5 230.13 14.83 2.52 0.737 22.6 24.05 32.100 0.77 0.77 30.67 1.75 3 230.13 14.41 2.41 0.726 23.2 23.84 24.470 0.58 0.58 24.26 1.82 2.5 230.13 14.07 2.32 0.717 23.8 23.63 17.920 0.42 0.42 18.28 1.90 2 230.14 13.78 2.25 0.708 24.3 23.39 11.970 0.28 0.28 12.47 1.97 1.5 230.14 13.56 2.19 0.701 24.8 23.10 6.900 0.16 0.16 7.32 2.03 1 230.14 13.41 2.15 0.696 25.1 22.75 3.210 0.07 0.07 3.40 2.08 0.5 230.14 13.38 2.14 0.695 25.2 22.31 1.112 0.02 0.02 1.16 2.12 0 230.14 13.34 2.13 0.694 25.2 21.60 0.256 0.01 0.01 0.26 2.12 Table 5 – 230 VAC, 50 Hz Dimming Measurements. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 36 of 48 17-Nov-11 DER-263 14 W PWM-Analog Dimmable LED Driver Using LNK406EG 10 Waveforms 10.1 Input Line Current Figure 26 – 90 VAC 60 Hz, Full Load. Upper: IIN, 100 mA / div. Lower: VIN, 100 V, 10 ms / div. Figure 27 – 115 VAC 60 Hz, Full Load. Upper: IIN, 100 mA / div. Lower: VIN, 100 V, 10 ms / div. Figure 28 – 230 VAC 50 Hz, Full Load. Upper: IIN, 50 mA / div. Lower: VIN, 100 V, 10 ms / div. Figure 29 – 265 VAC 50 Hz, Full Load. Upper: IIN, 50 mA / div. Lower: VIN, 100 V, 10 ms / div. Page 37 of 48 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-263 14 W PWM-Analog Dimmable LED Driver Using LNK406EG 17-Nov-11 10.2 Drain Voltage and Current Normal Operation Figure 30 – 90 VAC 60 Hz, Full Load. Upper: IDRAIN, 200 mA / div. Lower: VDRAIN, 100 V, 5 ms / div. Figure 31 – 90 VAC 60 Hz, Full Load. Upper: IDRAIN, 200 mA / div. Lower: VDRAIN, 100 V, 5 µs / div. Figure 32 – 265 VAC 50 Hz, Full Load. Upper: IDRAIN, 200 mA / div. Lower: VDRAIN, 100 V, 5 ms / div. Figure 33 – 265 VAC 50 Hz, Full Load. Upper: IDRAIN, 200 mA / div. Lower: VDRAIN, 100 V, 5 µs / div. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 38 of 48 17-Nov-11 DER-263 14 W PWM-Analog Dimmable LED Driver Using LNK406EG 10.3 Drain Voltage and Current Start-up Operation Figure 34 – 265 VAC 50 Hz, Full Load Start-Up. Upper: IDRAIN, 500 mA / div. Lower: VDRAIN, 100 V, 5 ms / div. Page 39 of 48 Figure 35 – 265 VAC 50 Hz, Full Load Start-Up. Upper: IDRAIN, 500 mA / div. Lower: VDRAIN, 100 V, 0.5 ms / div. Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-263 14 W PWM-Analog Dimmable LED Driver Using LNK406EG 17-Nov-11 10.4 Output Current and Output Voltage Figure 36 – 90 VAC 60 Hz, Full Load. Upper: IOUT, 100 mA / div. Lower: VOUT, 5 V, 5 ms / div. Figure 37 – 115 VAC 60 Hz, Full Load. Upper: IOUT, 100 mA / div. Lower: VOUT, 5 V, 5 ms / div. Figure 38 – 230 VAC 50 Hz, Full Load. Upper: IOUT, 100 mA / div. Lower: VOUT, 5 V, 5 ms / div. Figure 39 – 265 VAC 50 Hz, Full Load. Upper: IOUT, 100 mA / div. Lower: VOUT, 10 V, 5 ms / div. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 40 of 48 17-Nov-11 DER-263 14 W PWM-Analog Dimmable LED Driver Using LNK406EG 10.5 Output Current and Voltage at Power-up, Power-down Figure 40 – 90 VAC 60 Hz, Output Rise. Upper: IOUT, 100 mA / div. Lower: VOUT, 5 V, 500 ms / div. Figure 41 – 90 VAC 60 Hz, Output Fall. Upper: IOUT, 100 mA / div. Lower: VOUT, 5 V, 500 ms / div. Figure 42 – 265 VAC 50 Hz, Output Rise. Upper: IOUT, 100 mA / div. Lower: VOUT, 5 V, 500 ms / div. Figure 43 – 265 VAC 50 Hz, Output Fall. Upper: IOUT, 100 mA / div. Lower: VOUT, 5 V, 500 ms / div. Page 41 of 48 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-263 14 W PWM-Analog Dimmable LED Driver Using LNK406EG 17-Nov-11 10.6 Output Short Figure 44 – 265 VAC 60 Hz, Output Short. Upper: IDRAIN, 500 mA / div. Lower: VDRAIN, 100 V, 500 ms / div. Figure 45 – 265 VAC 60 Hz, Output Short. Upper: IDRAIN, 500 mA / div. Lower: VDRAIN, 100 V, 20 ms / div. 10.7 Open Load/LED Condition Figure 46 – 265 VAC 60 Hz, Open Load. CH1: VDRAIN, 100 V / div. CH4: VOUT, 10 V, 1 s / div. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Figure 47 – 265 VAC 60 Hz, Open Load Start-Up. CH1: VDRAIN, 100 V / div. CH4: VOUT, 10 V, 1 s / div. Page 42 of 48 17-Nov-11 DER-263 14 W PWM-Analog Dimmable LED Driver Using LNK406EG 11 Thermals The following measurements were taken at room temperature and using 9 LED Load, approximately 14 W output power. 11.1 115 VAC Thermal Measurements Figure 48 – 115 VAC, 60 Hz Top-Side Thermal Image. Figure 49 – 115 VAC, 60 Hz Bottom-Side Thermal Image. Page 43 of 48 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-263 14 W PWM-Analog Dimmable LED Driver Using LNK406EG 17-Nov-11 11.2 230 VAC Thermal Measurements Figure 50 – 230 VAC, 50 Hz Top-Side Thermal Image. Figure 51 – 230 VAC, 50 Hz Bottom-Side Thermal Image. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 44 of 48 17-Nov-11 DER-263 14 W PWM-Analog Dimmable LED Driver Using LNK406EG 12 Conducted EMI 12.1 Conducted EMI Test Setup The unit was tested using 9 strings of LED load (~27 V VOUT) with input voltage of 115 VAC and 230 VAC, 60 Hz line frequency, and at room temperature. 12.2 115 VAC, 60 Hz Conducted EMI Measurements Power Integrations 05.Jul 11 18:14 RBW MT 9 kHz 500 ms Att 10 dB AUTO dBµV 120 EN55015Q 110 100 kHz LIMIT CHECK 1 MHz PASS 10 MHz SGL 1 QP CLRWR 100 90 2 AV CLRWR TDF 80 70 60 EN55015A 50 6DB 40 30 20 10 0 -10 -20 9 kHz 30 MHz Figure 52 – Conducted EMI, 9 LED Load, 115 VAC, 60 Hz, EN55015B Limits. Page 45 of 48 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-263 14 W PWM-Analog Dimmable LED Driver Using LNK406EG 17-Nov-11 12.3 230 VAC, 60 Hz Conducted EMI Measurements Power Integrations 05.Jul 11 17:37 RBW MT 9 kHz 500 ms Att 10 dB AUTO dBµV 120 EN55015Q 110 100 kHz LIMIT CHECK 1 MHz PASS 10 MHz SGL 1 QP CLRWR 100 90 2 AV CLRWR TDF 80 70 60 EN55015A 50 6DB 40 30 20 10 0 -10 -20 9 kHz 30 MHz Figure 53 – Conducted EMI, 9 LED Load, 230 VAC, 60 Hz, EN55015B Limits. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 46 of 48 17-Nov-11 DER-263 14 W PWM-Analog Dimmable LED Driver Using LNK406EG 13 Revision History Date 09-Sep-11 17-Nov-11 Page 47 of 48 Author CA KM Revision 1.0 1.1 Description and Changes Initial Release Updated Harmonics text on page 6 and 28 Reviewed Apps & Mktg Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-263 14 W PWM-Analog Dimmable LED Driver Using LNK406EG 17-Nov-11 For the latest updates, visit our website: www.powerint.com Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability. Power Integrations does not assume any liability arising from the use of any device or circuit described herein. POWER INTEGRATIONS MAKES NO WARRANTY HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS. PATENT INFORMATION The products and applications illustrated herein (including transformer construction and circuits’ external to the products) may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations’ patents may be found at www.powerint.com. Power Integrations grants its customers a license under certain patent rights as set forth at http://www.powerint.com/ip.htm. The PI Logo, TOPSwitch, TinySwitch, LinkSwitch, DPA-Switch, PeakSwitch, CAPZero, SENZero, LinkZero, HiperPFS, HiperTFS, HiperLCS, Qspeed, EcoSmart, Clampless, E-Shield, Filterfuse, StackFET, PI Expert and PI FACTS are trademarks of Power Integrations, Inc. Other trademarks are property of their respective companies. ©Copyright 2011 Power Integrations, Inc. Power Integrations Worldwide Sales Support Locations WORLD HEADQUARTERS 5245 Hellyer Avenue San Jose, CA 95138, USA. Main: +1-408-414-9200 Customer Service: Phone: +1-408-414-9665 Fax: +1-408-414-9765 e-mail: [email protected] GERMANY Rueckertstrasse 3 D-80336, Munich Germany Phone: +49-89-5527-3911 Fax: +49-89-5527-3920 e-mail: [email protected] JAPAN Kosei Dai-3 Building 2-12-11, Shin-Yokohama, Kohoku-ku, Yokohama-shi, Kanagawa 222-0033 Japan Phone: +81-45-471-1021 Fax: +81-45-471-3717 e-mail: [email protected] TAIWAN 5F, No. 318, Nei Hu Rd., Sec. 1 Nei Hu District Taipei 114, Taiwan R.O.C. Phone: +886-2-2659-4570 Fax: +886-2-2659-4550 e-mail: [email protected] CHINA (SHANGHAI) Rm 1601/1610, Tower 1 Kerry Everbright City No. 218 Tianmu Road West Shanghai, P.R.C. 200070 Phone: +86-021-6354-6323 Fax: +86-021-6354-6325 e-mail: [email protected] INDIA #1, 14th Main Road Vasanthanagar Bangalore-560052 India Phone: +91-80-4113-8020 Fax: +91-80-4113-8023 e-mail: [email protected] KOREA RM 602, 6FL Korea City Air Terminal B/D, 159-6 Samsung-Dong, Kangnam-Gu, Seoul, 135-728 Korea Phone: +82-2-2016-6610 Fax: +82-2-2016-6630 e-mail: [email protected] EUROPE HQ 1st Floor, St. James’s House East Street, Farnham Surrey GU9 7TJ United Kingdom Phone: +44 (0) 1252-730-141 Fax: +44 (0) 1252-727-689 e-mail: [email protected] CHINA (SHENZHEN) Rm A, B & C 4th Floor, Block C, Electronics Science and Technology Building 2070 Shennan Zhong Road Shenzhen, Guangdong, P.R.C. 518031 Phone: +86-755-8379-3243 Fax: +86-755-8379-5828 e-mail: [email protected] ITALY Via De Amicis 2 20091 Bresso MI Italy Phone: +39-028-928-6000 Fax: +39-028-928-6009 e-mail: [email protected] SINGAPORE 51 Newton Road, #19-01/05 Goldhill Plaza Singapore, 308900 Phone: +65-6358-2160 Fax: +65-6358-2015 e-mail: [email protected] APPLICATIONS HOTLINE World Wide +1-408-414-9660 Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com APPLICATIONS FAX World Wide +1-408-414-9760 Page 48 of 48 设计范例报告 使用LinkSwitchTM-PH LNK406EG设计的高效率 标题 (≥85%)、高功率因数(>0.9) 15 W T8隔离式LED 驱动器 规格 90 VAC – 265 VAC输入;50 V,0.3 A输出 应用 T8灯LED驱动器 作者 应用工程部 文档编号 DER-256 日期 2010年10月7日 修订版本 1.2 特色概述 • • • • • 超薄设计,元件高度<10 mm o 允许将驱动板置于LED后面,使T8替换灯泡发光均匀 卓越的性能及最终用户体验 o 单晶片启动—无输出闪烁 o 快速启动(<200 ms) —无可觉察的延迟 极高能效 o ≥86%,115 VAC;≥87%,230 VAC 元件数量少、印刷电路板占用面积小的低成本解决方案 o 无需电流检测 o 采用频率抖动技术,可降低EMI滤波元件的数量及尺寸 集成的保护及可靠性能 o 使用自动重启动实现输出开路/输出短路保护 Power Integrations 5245 Hellyer Avenue, San Jose, CA 95138 USA. 电话:+1 408 414 9200 传真:+1 408 414 9201 www.powerint.com DER-256:使用LNK406EG设计的15 W T8 LED驱动器 • 2010年10月7日 o 输入过压关断可扩展输入故障时的电压耐受范围 o 更大迟滞的自动恢复热关断可同时保护元件和印刷电路板 o 在电压缓慢升高和降落期间不会造成损坏 满足IEC 61000-3-2 C级谐波和EN55015 B传导EMI要求 专利信息 此处介绍的产品和应用(包括产品之外的变压器结构和电路)可能包含一项或多项美国及国外专利,或正在申请的美国或国外专利。 有关Power Integrations专利的完整列表,请参见www.powerint.com。Power Integrations按照在<http://www.powerint.com/ip.htm>中所 述规定,向客户授予特定专利权利的许可。 Power Integrations 电话:+1 408 414 9200 传真:+1 408 414 9201 www.powerint.com 第2页(共38页) 2010年10月7日 DER-256:使用LNK406EG设计的15 W T8 LED驱动器 目录 1 2 3 4 简介...............................................................................................................................4 电源规格........................................................................................................................6 电路原理图....................................................................................................................7 电路描述........................................................................................................................9 4.1 输入 EMI 滤波和保护 .............................................................................................9 4.2 LinkSwitch-PH 初级 ...............................................................................................9 4.2.1 偏置绕组和输出 OVP 检测 .......................................................................... 10 4.3 输出电压检测 ...................................................................................................... 10 4.4 输出整流 ............................................................................................................. 10 5 PCB 布局.................................................................................................................... 11 6 物料清单..................................................................................................................... 13 7 变压器规格................................................................................................................. 15 7.1 电气原理图.......................................................................................................... 15 7.2 电气规格 ............................................................................................................. 15 7.3 材料..................................................................................................................... 15 7.4 变压器结构图 ...................................................................................................... 16 7.5 变压器构造.......................................................................................................... 16 8 变压器设计表格.......................................................................................................... 17 9 性能数据..................................................................................................................... 21 9.1 效率与输入.......................................................................................................... 21 9.2 恒流与输入.......................................................................................................... 23 9.3 功率因数与输入,满载 ....................................................................................... 24 10 热性能..................................................................................................................... 26 11 谐波数据................................................................................................................. 28 12 波形 ........................................................................................................................ 30 12.1 输入线电压和电流............................................................................................... 30 12.2 漏极电压和电流 .................................................................................................. 30 12.3 输出电压和纹波电流 ........................................................................................... 31 12.4 漏极电压和电流启动特征.................................................................................... 31 12.5 输出短路时的输出电流和漏极电压 ..................................................................... 32 12.6 开路负载输出电压............................................................................................... 32 13 传导 EMI................................................................................................................. 33 14 辐射 EMI................................................................................................................. 35 15 版本历史................................................................................................................. 37 重要说明:虽然本电路板的设计满足安全隔离要求,但工程原型仍未获得机构认证。因此,必须使用隔离变 压器向原型板提供AC输入,以执行所有测试。 第3页(共38页) Power Integrations 电话:+1 408 414 9200 传真:+1 408 414 9201 www.powerint.com DER-256:使用LNK406EG设计的15 W T8 LED驱动器 2010年10月7日 1 简介 本文档介绍的是一款功率因数校正LED驱动器,它可以在90 VAC至265 VAC的输入电压范 围内为LED灯串提供额定电压50 V、额定电流0.3 A的驱动。该LED驱动器采用了Power Integrations的LinkSwitch-PH系列IC中的LNK406EG器件。 LinkSwitch-PH IC可以帮助您设计出具有成本效益且元件数量极少的LED驱动器,不仅能满 足功率因素和谐波限值,同时还能为最终用户带来不同凡响的使用体验。其特性包括超宽 调光范围(本样板未采用)、无闪烁工作(即使使用的是低成本的AC输入可控硅调光器) 以及快速、平滑的开启上电过程。 所使用的拓扑结构是运行于连续导通模式下的隔离反激。输出电流调节完全从初级侧检测, 因此无需配备次级反馈元件。在初级侧也无需检测外部电流,而是在IC内部进行,从而进 一步减少了元件和损耗。内部控制器调整MOSFET占空比以保持输入电流为正弦交流电, 从而确保高功率因数和低谐波电流。 LNK406EG也可提供各种复杂的保护功能,包括环路开环或输出短路条件下自动重新启 动。输入过压可帮助电源改善对输入电压故障和浪涌的耐受能力,输出过压可避免在负载 断开时可能对电源造成的损坏,精确的迟滞热关断可确保在所有条件下PCB板平均温度都 处于安全范围内。 此设计的主要目标是超薄和高效率。这样有助于使驱动器板适应T8灯管内LED负载板后的 空间,并将工作时的温升保持在可接受的范围以内。为此,必须认真选择元件和安装方 法,但这相比于方案的更换更加简单,因为初级侧调节的LinkSwitch-PH设计所需的元件数 量很少。 本文档包含LED驱动器规格、电路原理图、PCB电路图、物料清单、变压器文件和典型性 能特征。 Power Integrations 电话:+1 408 414 9200 传真:+1 408 414 9201 www.powerint.com 第4页(共38页) 第5页(共38页) 图3—元件高度(10 mm)。 图2—装配后的电路板图片(底视图),电路板尺寸为260.44 mm x 19.53 mm。 DER-256:使用LNK406EG设计的15 W T8 LED驱动器 图1—装配后的电路板图片(顶视图)。 2010年10月7日 Power Integrations 电话:+1 408 414 9200 传真:+1 408 414 9201 www.powerint.com DER-256:使用LNK406EG设计的15 W T8 LED驱动器 2010年10月7日 2 电源规格 下表给出的是设计的最低可接受指标。实际性能在后续的测试结果部分给出。 说明 符号 最小值 典型值 最大值 单位 建议 输入 电压 频率 VIN fLINE 90 47 115/230 50/60 265 64 VAC Hz 双导线—无P.E. 输出 输出电压 输出电流 VOUT IOUT 45 50 0.3 55 V A 总输出功率 连续输出功率 POUT 15 W 效率 η 满载 85 % 在115 / 230 VAC条件下测得 环境 传导EMI 符合CISPR 15B / EN55015B 辐射EMI FCC B级 / EN55015 安全 其设计符合IEC950 / UL1950 II类要求 谐波 EN 61000-3-2 C级和D级 电路板尺寸 环境温度 在VOUT(TYP)、IOUT(TYP)和 115 VAC / 230 VAC条件下测得 0.9 功率因数 260.44 x 19.53 x 13 (10) TAMB Power Integrations 电话:+1 408 414 9200 传真:+1 408 414 9201 www.powerint.com 40 mm o C 设计适应T8灯管中LED负载板后的 空间。包括PCB和负载突出部位的 总高度为13 mm,PCB的元件最大 高度为10 mm 自然对流,海平面 第6页(共38页) 2010年10月7日 DER-256:使用LNK406EG设计的15 W T8 LED驱动器 3 电路原理图 第7页(共38页) Power Integrations 电话:+1 408 414 9200 传真:+1 408 414 9201 www.powerint.com DER-256:使用LNK406EG设计的15 W T8 LED驱动器 2010年10月7日 图4—电路原理图。 Power Integrations 电话:+1 408 414 9200 传真:+1 408 414 9201 www.powerint.com 第8页(共38页) 2010年10月7日 DER-256:使用LNK406EG设计的15 W T8 LED驱动器 4 电路描述 LinkSwitch-PH器件由集成控制器以及725 V功率MOSFET构成,用于LED驱动器应用。 LinkSwitch-PH配置为应用于单级连续导通模式反激式拓扑结构,提供初级侧调节的恒流隔 离输出,同时使AC输入保持高功率因数。 4.1 输入EMI滤波和保护 保险丝F1可以在元件发生严重故障时提供保护,而RV1 (MOV)可提供箝位以限制元件在差 模浪涌期间的最大电压应力。MOV的使用在此设计中非常关键,因为输入电容的容值很 低。由于电容值很低,在设定的差模浪涌发生时会使得整流总线电压(C2两端)显著升 高。所选器件的额定电压为275 VAC,略高于最大指定工作电压265 VAC。二极管桥堆 BR1对AC线电压进行整流,电容C2为初级开关电流提供低阻抗通路(去耦)。为使功率因 数保持在0.9以上,需要确保较低的电容(C1、C2和C3总和)值。 EMI滤波功能由电感L1、L2、L3和L4以及C1和有Y1安全要求的C8提供。L2、L3和L4两端 的电阻R1、R2和R3可抑制输入电感、电容和AC输入阻抗之间在传导EMI升高时可能出现 的任何共振。 4.2 LinkSwitch-PH初级 二极管D1和C3检测峰值AC线电压。此电压通过R5、R6和R7转换为电流并注入V引脚。 器件也会利用此电流来设置输入过压/欠压保护阈值。V引脚电流和FB引脚电流在内部用来 控制平均输出LED电流。LinkSwitch的非调光模式通过R引脚上的24.9 kΩ电阻进行选择。 在非调光配置下,LinkSwitch-PH在整个输入电压范围内对电源进行优化,保证在整个输入 电压范围内保持恒定的输出电流。电阻R8还用于设置内部参考,以选择输入电压渐升和渐 降过程以及输入过压保护的工作阈值。电阻R7进一步提供线电压补偿,在此设计中线电压 调节率达到±3%。 反激式变压器一端连接到DC总线,另一端由U1中的集成的725 V功率MOSFET驱动。在功 率MOSFET打开期间,初级电流升高,将能量存储在变压器中。这些能量在功率MOSFET 关闭时传递到次级绕组。为减小高度,使用EER25磁芯;同时使用带有飞线的三层绝缘次 级绕组以满足安全间距要求。 由于功率MOSFET关闭时漏极会出现漏感电压尖峰,二极管D2、R17、C12和R18将漏极 电压加以箝位,保证漏极电压在安全范围以内。当初级绕组两端的电压(VOR 或反激电 压)超过C2两端的电压和瞬态AC正弦波时,需要借助D3防止LinkSwitch-PH器件上产生反 向电流。 第9页(共38页) Power Integrations 电话:+1 408 414 9200 传真:+1 408 414 9201 www.powerint.com DER-256:使用LNK406EG设计的15 W T8 LED驱动器 2010年10月7日 4.2.1 偏置绕组和输出OVP检测 二极管D5、C5、R13和R11利用变压器的反馈绕组产生直流电压。此电压通过D4和R9向 U1的旁路引脚供应工作电流。电容C4对旁路引脚进行局部去耦。在启动期间,内部连接至 漏极引脚的高压恒流源对此电容充电至约6 V。在充电后,存储的能量用于为U1供电,直到 输出达到稳定状态。 二极管D6、R16、C7、R14、VR2、C6、R12和Q1提供负载开路保护功能。如果断开输 出负载,输出电压将会升高,导致偏置电压上升,C7上的电压也随之升高。使用单独的二 极管和低值电容(D6和C7)对偏置绕组进行整流是为了缩短触发OV之前的延时,从而限 制最大输出电压。一旦C7上的电压超过VR2设置的阈值(约为33 V),Q1将会偏置,使 进入FB引脚的电流降到自动重新启动阈值以下。一旦进入自动重新启动模式,开关将交替 停止和开启,确保输出电压在重新连接负载之前一直处在可接受的限制内。这样可以避免 在生产测试时负载断开的情况下可能出现的过高电压对电容C9和C10造成的损坏。 4.3 输出电压检测 与输出电压成比例的电流通过R10从初级偏置供电注入至反馈引脚。此电流与V引脚电流一 起用于确保平均输出电流在输入和输出电压发生变化时保持恒定。 4.4 输出整流 二极管D7对次级绕组进行整流,电容C9和C10对输出进行滤波。用作假负载的 R15,可限 制空载情况下的输出电压。电感L5用于降低辐射EMI。 Power Integrations 电话:+1 408 414 9200 传真:+1 408 414 9201 www.powerint.com 第10页(共38页) 2010年10月7日 DER-256:使用LNK406EG设计的15 W T8 LED驱动器 5 PCB布局 PCB设计确保驱动器板可直接安装于LED负载PCB后,且适合T8灯管内部的结构。这样的 要求需要进行一些特殊考量。 • • • 1 mm的PCB厚度 o 此选择增加元件的可用高度。 SMD元件方向 o 由于板形细长,因此在处理时灵活性非常高。为了防止元件被机械应力损坏, 所有SMD元件在板上的方向均为元件长边与板长边成90度角。 SMD元件仅布置在PCB顶面 o PCB底面未放置任何SMD元件,这样可降低板整体高度—LinkSwitch-PH解 决方案的元件数量少,很容易达到此要求。 第11页(共38页) Power Integrations 电话:+1 408 414 9200 传真:+1 408 414 9201 www.powerint.com DER-256:使用LNK406EG设计的15 W T8 LED驱动器 图5—印刷电路板布局(顶部)。 Power Integrations 电话:+1 408 414 9200 传真:+1 408 414 9201 www.powerint.com 2010年10月7日 图6—印刷电路板布局(底部)。 第12页(共38页) 2010年10月7日 DER-256:使用LNK406EG设计的15 W T8 LED驱动器 6 物料清单 项 数量 参考描述 1 1 BR1 2 1 3 说明 值 600 V,1 A,桥式整流器,玻璃钝化 DB106S C1 47 nF,275 VAC,薄膜,X2 47 nF 1 C2 100 nF,400 V,薄膜 100 nF 4 1 C3 1 µF,400 V,电解,(6.3 x 11) 1 µF 5 1 C4 100 µF,25 V,电解,低ESR,130 mΩ,(6.3 x 11) 100 µF 6 1 C5 22 µF,50 V,电解,低ESR,900 mΩ,(5 x 11.5) 22 µF 7 2 C6 C11 100 nF,50 V,陶瓷,X7R,0805 100 nF 8 1 C7 1.0 µF,50 V,陶瓷,X7R,1206 1.0 µF 9 1 C8 2.2 nF,陶瓷,Y1 2.2 nF 10 2 C9 C10 100 µF,63,电解,低ESR,255 mΩ,(10 x 12.5) 100 µF 11 1 C12 1 nF,1 kV,圆盘状陶瓷 1 nF 12 2 D1 D6 1000 V,1 A,整流器,DO-41 1N4007 13 2 D2 D5 1000 V,1 A,快速恢复,500 ns,DO-41 FR107 14 1 D3 200 V,1 A,超快速恢复,50 ns,DO-41 MUR120 15 1 D4 75 V,0.15 A,快速开关,DO-35 LL4148 16 1 D7 600 V,1 A,超快速恢复,75 ns,DO-41 MUR160 17 1 F1 3.15 A,250 V,慢 3.15 A 18 1 L1 4 mH,0.2 A,T13,U10000,35匝 4 mH 19 3 L2 L3 L4 1000 µH,0.18 A,8 x 10 mm 1000 µH 20 1 L5 300 µH,1 A,T8,U10000,10匝 300 µH 21 1 Q1 NPN,60 V 1000 MA,SOT-23 FMMT491 22 3 R1 R2 R3 4.7 kΩ,5%,1/4 W,碳膜 4.7 kΩ 23 1 R4 240 kΩ,5%,1/4 W,金属膜,1206 240 kΩ 24 1 R5 1.8 MΩ,1%,1/4 W,金属膜,1206 1.8 MΩ 25 1 R6 1.6 MΩ,1%,1/4 W,金属膜,1206 1.6 MΩ 26 1 R7 1.8 MΩ,1%,1/8 W,金属膜,0805 1.8 MΩ 27 1 R8 24.9 kΩ,1%,1/4 W,金属膜 24.9 kΩ 28 1 R9 6.2 kΩ,5%,1/8 W,金属膜,0805 6.2 kΩ 29 1 R10 130 kΩ,1%,1/8 W,金属膜,0805 130 kΩ 30 1 R11 20 kΩ,5%,1/8 W,金属膜,0805 20 kΩ 31 1 R12 1 kΩ,5%,1/8 W,金属膜,0805 1 kΩ 32 1 R13 150 Ω,5%,1/8 W,碳膜 150 Ω 33 1 R14 10 kΩ,5%,1/8 W,金属膜,0805 10 kΩ 34 1 R15 56 kΩ,5%,1/4 W,金属膜,1206 56 kΩ 35 1 R16 100 Ω,5%,1/8 W,金属膜,0805 100 Ω 36 1 R17 100 Ω,5%,1/4 W,金属膜,1206 100 Ω 第13页(共38页) Power Integrations 电话:+1 408 414 9200 传真:+1 408 414 9201 www.powerint.com DER-256:使用LNK406EG设计的15 W T8 LED驱动器 2010年10月7日 37 1 R18 82 kΩ,5%,1/2 W,碳膜 82 kΩ 38 1 RV1 275 V,80J,10 mm,径向 10D431 39 1 T1 EER25,特有的超薄外形,5 + 5 EER2510 40 1 U1 LinkSwitch-PH,LNK406EG,eSIP LNK406EG 41 1 VR2 33 V,5%,500 mW,DO-213AA (MELF) ZMM5257B Power Integrations 电话:+1 408 414 9200 传真:+1 408 414 9201 www.powerint.com 第14页(共38页) 2010年10月7日 DER-256:使用LNK406EG设计的15 W T8 LED驱动器 7 变压器规格 7.1 电气原理图 图7—变压器电气原理图。 7.2 电气规格 绝缘强度 1秒,60 Hz,从引脚3、4、5、6、7到R+和GND 初级电感量 引脚4-5,所有其他绕组开路,在100 kHz条件下测得,0.4 VRMS 0.8 mH ±10% 初级漏感 引脚4-5,R+和GND短路,在100 kHz条件下测得,0.4 VRMS 20 µH ±10% 7.3 3000 VAC 材料 项 [1] [2] [3] [4] [5] 说明 磁芯:PC40 EER25或同等材料。 骨架:10引脚,垂直。 漆包线:#30 AWG。 漆包线:#29 AWG T.I.W。 胶带:3M 1298聚酯薄膜,4 mm宽。 第15页(共38页) Power Integrations 电话:+1 408 414 9200 传真:+1 408 414 9201 www.powerint.com DER-256:使用LNK406EG设计的15 W T8 LED驱动器 7.4 2010年10月7日 变压器结构图 引脚侧 3L Tape W4 - Finish (P4) W4 - Finish (P3) 3L Tape W3 - Start (R+) W3 - Finish (GND) Core Connect to GND 1L Tape W2 - Finish (P7) W2 - Start (P6) 1L Tape W1 - End (P3) W1 - Start (P5) 图8—变压器结构图。 7.5 变压器构造 骨架准备 将骨架项[2]放在心轴上,例如左侧的引脚侧。绕组方向为顺时针方向。 WD 1 从引脚5开始,从左到右分两层缠绕27匝#30 AWG项[3]。在引脚3结束。 绝缘层 缠一层胶带[5]作为绝缘层。 WD 2 从引脚6开始,从左到右缠绕15匝#30 AWG [3]导线。在引脚7结束。留出足够长度的浮动导线 以连接磁芯。 绝缘层 缠一层胶带[5]作为绝缘层。 WD 3 从导线项[4]的R+(飞线)开始,分三层缠绕30匝。在GND(飞线)结束。 绝缘层 缠一层胶带[5]作为绝缘层。 WD 4 从引脚3开始,从左到右分两层缠绕26匝#30 AWG [3]导线。在引脚4结束。 绝缘层 缠三层胶带[5]作为绝缘层。 总装 除去WD2的浮动导线上的绝缘层,连接到磁芯,使用胶带扎好并浸漆。 Power Integrations 电话:+1 408 414 9200 传真:+1 408 414 9201 www.powerint.com 第16页(共38页) 2010年10月7日 DER-256:使用LNK406EG设计的15 W T8 LED驱动器 8 变压器设计表格 ACDC_LinkSwitchPH_061010;修订版1.1; 版权所有 Power Integrations 2010 输入 信息 输出 单位 LinkSwitch-PH_061010:反激式变压器设计表格 输入应用变量 需要调光 无 无 VACMIN VACMAX fL VO VO_MAX VO_MIN V_OVP IO PO n VB 90 265 90 265 50 50.00 55.00 45.00 60.50 如果需要调光则选择“是”。否则,选择“否”。 V V Hz V V V V 0.30 15.0 0.8 20 0.80 20 W V 最小AC输入电压 最大AC输入电压 AC电网频率 LED灯串满载时的典型输出电压 最大预期LED灯串电压。 最小预期LED灯串电压。 过压保护设定点 典型满载LED电流 输出功率 估计工作效率 偏置电压 输入LinkSwitch-PH变量 LinkSwitch-PH 所选器件 电流限流模式 ILIMITMIN ILIMITMAX fS fSmin fSmax IV RV RV2 IFB RFB1 VDS LNK406 LNK406 完全 输出功率 宽电压范围 22.5 W 完全 1.48 1.69 66000 62000 70000 38.7 3.909 1.402 130.0 130.8 10 130.00 A A Hz Hz Hz uA M-ohm M-ohm uA k-ohm V VD 0.50 V VDB 0.70 V 115倍压/230 V 22.5 W 选择“有限”设置为有限电流限制模式,或选择 “完全”设置为完全电流限制模式。 最小电流限制 最大电流限制 开关频率 最小开关频率 最大开关频率 V引脚电流 V引脚电阻上限 V引脚电阻下限 FB引脚电流(85 uA < IFB < 210 uA) FB引脚电阻 LinkSwitch-PH导通状态漏极—电源电压 输出绕组二极管正向电压降(对肖特基二极管取值 0.5 V,对PN结二极管取值0.8 V) 偏置绕组二极管正向电压降 关键设计参数 KP 1.05 1.05 LP VOR 预期IO(平均) 90.00 809 90 0.29 KP_VACMAX 信息 TON_MIN PCLAMP uH V A 1.28 1.62 0.11 us W 纹波电流与峰值电流的比例(PF > 0.9时, 0.4 < KP < 0.9) 初级电感量 反射输出电压。 预期平均输出电流 !!! 信息。较高线电压的PF可能会低于0.9。降低KP 以获得更高的PF 最高AC输入电压时的最大导通时间 初级箝位的估计损耗 输入变压器磁芯/结构变量 磁芯类型 骨架 AE LE 第17页(共38页) EER251 0 EER2510 不适用 0.5400 3.6000 0.54 3.6 P/N: cm^2 cm 不适用 磁芯等效截面积 磁芯等效路径长度 Power Integrations 电话:+1 408 414 9200 传真:+1 408 414 9201 www.powerint.com DER-256:使用LNK406EG设计的15 W T8 LED驱动器 AL BW M L NS 4.2 4.00 30 2010年10月7日 不适用 4.2 0 4 30 nH/T^2 mm mm 127 375 V V 对应于VACMIN的峰值输入电压 对应于VACMAX的峰值输入电压 0.42 0.18 1.04 0.31 A A A 对应于VACMIN峰值的最小占空比 平均初级电流 峰值初级电流(在最小输入电压VACMIN下计算) 初级RMS电流(在最小输入电压VACMIN下计算) 无气隙磁芯等效电感量 骨架绕线宽度 安全挡墙宽度(初级至次级爬电距离的一半) 初级绕组层数 次级绕组匝数 DC输入电压参数 VMIN VMAX 电流波形参数 DMAX IAVG IP IRMS 变压器初级绕组设计参数 LP NP NB ALG BM BP BAC ur LG BWE OD INS DIA 不适用 809 53 12 283 2917 3530 1459 不适用 不适用 16.8 0.31 0.05 0.26 uH nH/T^2 高斯 高斯 高斯 mm mm mm mm mm AWG 30 AWG CM CMA LP_TOL 102 325 10 Cmil Cmil/Amp 1.86 0.60 0.52 120 29 0.29 0.14 A A A Cmil AWG mm mm VDRAIN 563 V PIVS 271 V PIVB 110 V 3.91 1.40 115.0 230.0 0.30 M-ohm M-ohm V V A 初级电感量 初级绕组匝数 偏置绕组匝数 带气隙磁芯等效电感量 PO的最大磁通密度,VMIN (BM < 3100) 峰值磁通密度(BP < 3700) 磁芯损耗曲线中的AC磁通密度(0.5 X 峰值-峰值) 无气隙磁芯的相对磁导率 不适用 等效骨架宽度 初级绕组最大线径(包括绝缘层) 估计的总绝缘层厚度(= 2 * 膜厚度) 裸线直径 初级绕组的导线规格(如果计算出的线径在两种标 准线径之间,则使用较小线规的导线) 以Cmil为单位的裸线等效面积 初级绕组电流容量(200 < CMA < 600) 初级电感量容差 变压器次级绕组设计参数(多路输出) 汇总参数 ISP ISRMS IRIPPLE CMS AWGS DIAS ODS 峰值次级电流 次级RMS电流 输出电容RMS纹波电流 次级绕组裸线最小Cmil数 次级导线规格(舍入到下一个较大的标准AWG值) 次级绕组裸线最小直径 三层绝缘线的次级绕组最大外径 电压应力参数 假定LED灯串电压达到最大时的估计最大漏极电压 (包括漏感效应) 输出整流器最大反向峰值电压(在VOVP下计算, 不包括漏感尖峰) 偏置整流器最大反向峰值电压(在VOVP下计算, 不包括漏感尖峰) 微调(输入从原型测得的值) V引脚电阻微调 RV1 RV2 VAC1 VAC2 IO_VAC1 Power Integrations 电话:+1 408 414 9200 传真:+1 408 414 9201 www.powerint.com V引脚电阻值上限 V引脚电阻值下限 测试输入电压条件1 测试输入电压条件2 在VAC1时测得的输出电流 第18页(共38页) 2010年10月7日 IO_VAC2 RV1(新) RV2(新) V_OV V_UV 第19页(共38页) DER-256:使用LNK406EG设计的15 W T8 LED驱动器 0.30 3.91 1.40 318.3 70.8 A M-ohm M-ohm V V 在VAC2时测得的输出电流 新RV1 新RV2 触发OV关断的典型AC输入电压 超过此值即可使电源启动的典型AC输入电压 Power Integrations 电话:+1 408 414 9200 传真:+1 408 414 9201 www.powerint.com DER-256:使用LNK406EG设计的15 W T8 LED驱动器 2010年10月7日 FB引脚电阻微调 RFB1 RFB2 VB1 VB2 IO1 IO2 RFB1(新) RFB2(新) 131 1E+012 18.0 22.0 0.30 0.30 130.8 1.00E+12 k-ohm k-ohm V V A A k-ohm k-ohm FB引脚电阻值上限 FB引脚电阻值下限 测试偏置电压条件1 测试偏置电压条件2 在Vb1时测得的输出电流 在Vb2时测得的输出电流 新RFB1 新RFB2 注:以下实际值分别为:RV1 = 3.4 MΩ,RV2 = 1.8 MΩ。在230 VAC条件下测得的PF为0.9。 Power Integrations 电话:+1 408 414 9200 传真:+1 408 414 9201 www.powerint.com 第20页(共38页) 2010年10月7日 DER-256:使用LNK406EG设计的15 W T8 LED驱动器 9 性能数据 所有测量均在室温下进行。使用Yokogawa WT210功率表测量输入功率和输出功率。 9.1 效率与输入 VIN (VAC) PIN (W) VO (V) IO (A) PO (W) 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 265 16.63 16.97 17.30 17.57 17.72 17.78 17.81 17.78 17.68 17.55 17.39 17.23 17.04 16.83 16.62 16.39 16.12 15.71 49.53 49.54 49.77 49.87 49.93 49.96 49.97 49.96 49.92 49.87 49.8 49.74 49.68 49.6 49.52 49.53 49.33 49.17 0.286 0.293 0.300 0.305 0.308 0.310 0.311 0.311 0.310 0.308 0.306 0.304 0.301 0.298 0.294 0.290 0.286 0.279 14.17 14.52 14.93 15.21 15.38 15.49 15.54 15.54 15.48 15.36 15.24 15.12 14.95 14.78 14.56 14.36 14.11 13.72 第21页(共38页) 效率 (%) 85.18 85.53 86.31 86.57 86.79 87.11 87.26 87.39 87.53 87.52 87.63 87.76 87.76 87.82 87.60 87.64 87.52 87.32 Power Integrations 电话:+1 408 414 9200 传真:+1 408 414 9201 www.powerint.com DER-256:使用LNK406EG设计的15 W T8 LED驱动器 2010年10月7日 88.0 Efficiency (%) 87.5 87.0 86.5 86.0 85.5 85.0 85 100 115 130 145 160 175 190 205 220 235 250 265 280 Input Voltage (VAC) 图9—效率随输入电压的变化,室温。 Power Integrations 电话:+1 408 414 9200 传真:+1 408 414 9201 www.powerint.com 第22页(共38页) 2010年10月7日 9.2 DER-256:使用LNK406EG设计的15 W T8 LED驱动器 恒流与输入 0.33 Output Current (A) 0.32 0.31 0.30 0.29 0.28 0.27 0.26 85 100 115 130 145 160 175 190 205 220 235 250 265 Input Voltage (VAC) 图10—输出电流随输入电压的变化,室温。 第23页(共38页) Power Integrations 电话:+1 408 414 9200 传真:+1 408 414 9201 www.powerint.com 280 DER-256:使用LNK406EG设计的15 W T8 LED驱动器 9.3 2010年10月7日 功率因数与输入,满载 VIN (VAC) 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 265 PIN (W) 16.63 16.97 17.30 17.57 17.72 17.78 17.81 17.78 17.68 17.55 17.39 17.23 17.04 16.83 16.62 16.39 16.12 15.71 VO (V) 49.53 49.54 49.77 49.87 49.93 49.96 49.97 49.96 49.92 49.87 49.8 49.74 49.68 49.6 49.52 49.53 49.33 49.17 Power Integrations 电话:+1 408 414 9200 传真:+1 408 414 9201 www.powerint.com IO (A) 0.286 0.293 0.300 0.305 0.308 0.310 0.311 0.311 0.310 0.308 0.306 0.304 0.301 0.298 0.294 0.290 0.286 0.279 PO (W) 14.17 14.52 14.93 15.21 15.38 15.49 15.54 15.54 15.48 15.36 15.24 15.12 14.95 14.78 14.56 14.36 14.11 13.72 PF 0.9796 0.9745 0.9715 0.9687 0.966 0.9638 0.9615 0.9592 0.9571 0.955 0.9528 0.9505 0.9484 0.9459 0.9431 0.9401 0.9362 0.9279 第24页(共38页) 2010年10月7日 DER-256:使用LNK406EG设计的15 W T8 LED驱动器 0.99 0.98 Power Factor 0.97 0.96 0.95 0.94 0.93 0.92 85 100 115 130 145 160 175 190 205 220 235 250 265 Input Voltage (VAC) 图11—功率因数随输入电压的变化,室温,满载。 第25页(共38页) Power Integrations 电话:+1 408 414 9200 传真:+1 408 414 9201 www.powerint.com 280 DER-256:使用LNK406EG设计的15 W T8 LED驱动器 2010年10月7日 10 热性能 在室温(25 °C)下运行30分钟后采集的图像,满载(50 V, 0.3 A)。这表示LinkSwitch-PH (U1) 在40 °C的外部板环境下工作温度为大约80 °C。U1是板上温度最高的元件,因此它可通过内 部热关断为整个系统提供热保护。由于底侧没有任何元件,因此下面的所有数据都是顶侧 的数据。 图12—115 VAC EMI和整流器。 图13—230 VAC EMI和整流器。 图14—115 VAC主开关和变压器。 图15—230 VAC主开关和变压器。 Power Integrations 电话:+1 408 414 9200 传真:+1 408 414 9201 www.powerint.com 第26页(共38页) 2010年10月7日 图16—115 VAC输出整流器。 第27页(共38页) DER-256:使用LNK406EG设计的15 W T8 LED驱动器 图17—230 VAC输出整流器。 Power Integrations 电话:+1 408 414 9200 传真:+1 408 414 9201 www.powerint.com DER-256:使用LNK406EG设计的15 W T8 LED驱动器 2010年10月7日 11 谐波数据 此设计通过了IEC61000-3-2 C级要求。 70 Class C Limit DER-256 Harmonic Data at 115 VAC 60 Current (mA) 50 40 30 20 10 0 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 Harmonic 图18—115 VAC谐波,室温,满载。 Power Integrations 电话:+1 408 414 9200 传真:+1 408 414 9201 www.powerint.com 第28页(共38页) 2010年10月7日 DER-256:使用LNK406EG设计的15 W T8 LED驱动器 70 Class C Limit DER-256 Harmonic Data at 230 VAC 60 Current (mA) 50 40 30 20 10 0 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 Harmonic 图19—230 VAC谐波,室温,满载。 第29页(共38页) Power Integrations 电话:+1 408 414 9200 传真:+1 408 414 9201 www.powerint.com DER-256:使用LNK406EG设计的15 W T8 LED驱动器 2010年10月7日 12 波形 12.1 输入线电压和电流 图20—90 VAC,满载。 上:IIN,0.2 A/格 下:VIN,100 V,8 ms/格 图21—265 VAC,满载。 上:IIN,0.1 A/格 下:VIN,500 V/格,8 ms/格 12.2 漏极电压和电流 图22—90 VAC,满载。 上:IDRAIN,0.5 A/格 下:VDRAIN,100 V,5 µs/格 Power Integrations 电话:+1 408 414 9200 传真:+1 408 414 9201 www.powerint.com 图23—265 VAC,满载。 上:IDRAIN,0.5 A/格 下:VDRAIN,200 V/格,5 µs/格 第30页(共38页) 2010年10月7日 DER-256:使用LNK406EG设计的15 W T8 LED驱动器 12.3 输出电压和纹波电流 图24—90 VAC,满载。 上:IRIPPLE,0.1 A/格 下:VOUTPUT 10 V,5 ms/格 图25—265 VAC,满载。 上:IRIPPLE,0.1 A/格 下:VOUTPUT 10 V,5 ms/格 12.4 漏极电压和电流启动特征 ` 图26—90 VAC,满载。 上:IDRAIN,0.5 A/格 下:VOUTPUT,20 V,40 ms/格 第31页(共38页) 图27—265 VAC,满载。 上:IRIPPLE,0.5 A/格 下:VOUTPUT,20 V,40 ms/格 Power Integrations 电话:+1 408 414 9200 传真:+1 408 414 9201 www.powerint.com DER-256:使用LNK406EG设计的15 W T8 LED驱动器 2010年10月7日 12.5 输出短路时的输出电流和漏极电压 图28—90 VAC,满载。 上:IOUTPUT,1 A/格 下:VDRAIN,100 V,200 ms/格 图29—265 VAC,满载。 上:IOUTPUT,2 A/格 下:VDRAIN,200 V,200 ms/格 12.6 开路负载输出电压 图30—输出电压:115 VAC。 VOUT,20 V/格,500 ms/格。 Power Integrations 电话:+1 408 414 9200 传真:+1 408 414 9201 www.powerint.com 图31—输出电压:230 VAC。 VOUT,20 V/格,500 ms/格 第32页(共38页) 2010年10月7日 DER-256:使用LNK406EG设计的15 W T8 LED驱动器 13 传导EMI 进行测量时,电源满载工作,且板放置在10 mm外,并与AC接地线上连接的金属板成 90度角。 dBµV 120 EN55015Q 110 100 kHz LIMIT CHECK 1 MHz PASS 10 MHz SGL 1 PK CLRWR 100 90 2 AV CLRWR TDF 80 70 60 EN55015A 50 6DB 40 30 20 10 0 -10 -20 9 kHz 30 MHz 图32—传导EMI,最大稳态负载,115 VAC,60 Hz 第33页(共38页) Power Integrations 电话:+1 408 414 9200 传真:+1 408 414 9201 www.powerint.com DER-256:使用LNK406EG设计的15 W T8 LED驱动器 dBµV 100 kHz 120 EN55015Q 110 LIMIT CHECK 1 MHz PASS 2010年10月7日 10 MHz SGL 1 PK CLRWR 100 90 2 AV CLRWR TDF 80 70 60 EN55015A 50 6DB 40 30 20 10 0 -10 -20 9 kHz 30 MHz 图33—传导EMI,最大稳态负载,230 VAC,50 Hz。 Power Integrations 电话:+1 408 414 9200 传真:+1 408 414 9201 www.powerint.com 第34页(共38页) 2010年10月7日 DER-256:使用LNK406EG设计的15 W T8 LED驱动器 14 辐射EMI 注:关于余量的大小请参见表格中的数据—蓝线表示峰值测量的数值,但限制线为准峰 值。RFI测试数据适用于整个系统,测量时样板安装于铝壳的T8 LED灯管内,且输出达到 最大稳态负载。 第35页(共38页) Power Integrations 电话:+1 408 414 9200 传真:+1 408 414 9201 www.powerint.com DER-256:使用LNK406EG设计的15 W T8 LED驱动器 2010年10月7日 图34—115 V / 60 Hz,水平。 图35—115 V / 60 Hz,垂直。 图36—230 V / 50 Hz,水平。 图37—230 V / 50 Hz,垂直。 Power Integrations 电话:+1 408 414 9200 传真:+1 408 414 9201 www.powerint.com 第36页(共38页) 2010年10月7日 DER-256:使用LNK406EG设计的15 W T8 LED驱动器 15 版本历史 日期 2010年10月7日 第37页(共38页) 作者 KM 修订版本 1.2 说明和变更 修订者 初始版本 Apps & Mktg Power Integrations 电话:+1 408 414 9200 传真:+1 408 414 9201 www.powerint.com DER-256:使用LNK406EG设计的15 W T8 LED驱动器 2010年10月7日 有关最新产品信息,请访问:www.powerint.com Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability. Power Integrations does not assume any liability arising from the use of any device or circuit described herein. POWER INTEGRATIONS MAKES NO WARRANTY HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS. PATENT INFORMATION The products and applications illustrated herein (including transformer construction and circuits external to the products) may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations patents may be found at www.powerint.com. Power Integrations grants its customers a license under certain patent rights as set forth at http://www.powerint.com/ip.htm. The PI logo, TOPSwitch, TinySwitch, LinkSwitch, DPA-Switch, PeakSwitch, EcoSmart, Clampless, E-Shield, Filterfuse, StakFET, PI Expert and PI FACTS are trademarks of Power Integrations, Inc. Other trademarks are property of their respective companies. © 2010, Power Integrations, Inc. Power Integrations全球销售支持网络 全球总部 5245 Hellyer Avenue San Jose, CA 95138, USA. Main: +1-408-414-9200 Customer Service: Phone: +1-408-414-9665 Fax: +1-408-414-9765 e-mail: [email protected] 中国(上海) Room 1601 /1610, Tower 1 Kerry Everbright City No. 218 Tianmu Road West Shanghai, P.R.C. 200070 Phone: +86-21-6354-6323 Fax: +86-21-6354-6325 e-mail: [email protected] 中国(深圳) Rm A, B & C 4th Floor, Block C, Electronics Science and Technology Bldg., 2070 Shennan Zhong Rd, Shenzhen, Guangdong, China, 518031 Phone: +86-755-8379-3243 Fax: +86-755-8379-5828 e-mail: [email protected] 德国 Rüeckertstrasse 3 D-80336, Munich Germany Phone: +49-89-5527-3910 Fax: +49-89-5527-3920 e-mail: [email protected] 印度 #1, 14th Main Road Vasanthanagar Bangalore-560052 I nd ia Phone: +91-80-4113-8020 Fax: +91-80-4113-8023 e-mail: [email protected] 意大利 Via De Amicis 2 20091 Bresso MI Italy Phone: +39-028-928-6000 Fax: +39-028-928-6009 e-mail: [email protected] Power Integrations 电话:+1 408 414 9200 传真:+1 408 414 9201 www.powerint.com 日本 Kosei Dai-3 Bldg. 2-12-11, Shin-Yokohama, Kohoku-ku Yokohama-shi Kanagwan 222-0033 Japan Phone: +81-45-471-1021 Fax: +81-45-471-3717 e-mail: [email protected] 韩国 RM 602, 6FL Korea City Air Terminal B/D, 159-6 Samsung-Dong, Kangnam-Gu, Seoul, 135-728, Korea Phone: +82-2-2016-6610 Fax: +82-2-2016-6630 e-mail: [email protected] 新加坡 51 Newton Road #15-08/10 Goldhill Plaza Singapore, 308900 Phone: +65-6358-2160 Fax: +65-6358-2015 e-mail: [email protected] 台湾 5F, No. 318, Nei Hu Rd., Sec. 1 Nei Hu Dist. Taipei, Taiwan 114, R.O.C. Phone: +886-2-2659-4570 Fax: +886-2-2659-4550 e-mail: [email protected] 欧洲总部 1 st Floor, St. James’s House East Street, Farnham Surrey GU9 7TJ United Kingdom Phone: +44 (0) 1252-730-141 Fax: +44 (0) 1252-727-689 e-mail: [email protected] 技术支持热线 World Wide +1-408-414-9660 技术支持传真 World Wide +1-408-414-9760 第38页(共38页) Design Example Report Title 15.3 W, Isolated, Dimmable, Power Factor Corrected LED Driver Using LinkSwitchTM-PH LNK406EG Specification 185 VAC – 265 VAC Input 36 V, 425 mA Output Application LED Driver for PAR30 / PAR38 Author Application Engineering Department Document Number DER-314 Date January 26, 2012 Revision 1.0 Summary and Features High efficiency, ≥87% at 230 VAC Low cost Single-stage converter Single sided PCB Low component count Enhanced user experience Flicker free, fast monotonic start-up (<300 ms) – no perceptible delay Broad dimmer compatibility Flicker-free Tested with common types from Australia, China, Korea and Germany Integrated protection and reliability features Output open circuit / output short-circuit protected with auto-recovery Line input overvoltage shutdown extends voltage withstand during line faults Auto-recovering thermal shutdown with large hysteresis protects both components and printed circuit board IEC 61000-4-5 ring wave, IEC 61000-3-2 C and EN55015 B conducted EMI compliant Power Integrations 5245 Hellyer Avenue, San Jose, CA 95138 USA. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-314 15.3 W Dimmable LED Driver Using LNK406EG 26-Jan-12 PATENT INFORMATION The products and applications illustrated herein (including transformer construction and circuits external to the products) may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at www.powerint.com. Power Integrations grants its customers a license under certain patent rights as set forth at <http://www.powerint.com/ip.htm>. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 2 of 56 26-Jan-12 DER-314 15.3 W Dimmable LED Driver Using LNK406EG Table of Contents 1 2 3 4 Introduction .................................................................................................................5 Power Supply Specification ........................................................................................7 Schematic ...................................................................................................................8 Circuit Description .......................................................................................................9 4.1 Input Filtering .......................................................................................................9 4.2 LinkSwitch-PH Primary ........................................................................................9 4.3 Feedback ...........................................................................................................10 4.4 Temperature Fold Back Circuit ..........................................................................10 4.5 Output Rectification ...........................................................................................11 4.6 Disconnected Load Protection ...........................................................................11 4.7 TRIAC Phase Dimming Control Compatibility ....................................................11 5 PCB Layout...............................................................................................................13 6 Bill of Materials .........................................................................................................15 7 Transformer Specification .........................................................................................16 7.1 Electrical Diagram..............................................................................................16 7.2 Electrical Specifications .....................................................................................16 7.3 Materials ............................................................................................................16 7.4 Transformer Build Diagram ................................................................................17 7.5 Transformer Construction ..................................................................................17 8 Transformer Design Spreadsheet .............................................................................18 9 Performance Data .....................................................................................................21 9.1 Efficiency ...........................................................................................................21 9.2 Line and Load Regulation ..................................................................................22 9.3 Power Factor .....................................................................................................23 9.4 A-THD................................................................................................................24 9.5 Harmonic Currents.............................................................................................25 9.5.1 35 V LED Load ...........................................................................................25 9.5.3 36 V LED Load ...........................................................................................26 9.5.4 37 V LED Load ...........................................................................................27 9.6 Test Data ...........................................................................................................28 9.6.1 Test Data, 35 V LED Load ..........................................................................28 9.6.2 Test Data, 36 V LED Load ..........................................................................28 9.6.3 Test Data, 37 V LED Load ..........................................................................28 9.6.4 230 VAC 50 Hz, 35 V LED Load Harmonics Data ......................................29 9.6.5 230 VAC 50 Hz, 36 V LED Load Harmonics Data ......................................30 9.6.6 230 VAC 50 Hz, 37 V LED Load Harmonics Data ......................................31 10 Dimming Performance Data......................................................................................32 10.1 Performance with Clipsal Brand (Australian market) Dimmers ..........................32 10.2 Performance with China Dimmers .....................................................................33 10.3 Performance with Korean Dimmers ...................................................................34 10.4 Performance with German Dimmers..................................................................35 11 Thermal Performance ...............................................................................................36 11.1 Non-Dimming VIN = 185 VAC, 50 Hz, 36 V LED Load .......................................36 11.2 Non-Dimming VIN = 265 VAC, 50 Hz, 36 V LED Load .......................................36 Page 3 of 56 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-314 15.3 W Dimmable LED Driver Using LNK406EG 26-Jan-12 11.3 Dimming VIN = 230 VAC, 50 Hz, 90º Conduction Angle, 36 V LED Load .......... 37 11.4 Thermal Fold Back ............................................................................................ 38 Non-Dimming Waveforms ............................................................................................ 39 11.5 Input Voltage and Input Current Waveforms ..................................................... 39 11.6 Output Current and Output Voltage at Normal Operation .................................. 40 11.7 Output Current/Voltage Rise and Fall ................................................................ 41 11.8 Input Voltage and Output Current Waveform at Start-up ................................... 42 11.9 Drain Voltage and Current at Normal Operation................................................ 43 11.10 Drain Voltage and Current at Start-up ........................................................... 44 11.11 Output Short Condition .................................................................................. 45 11.12 Output Diode PIV ........................................................................................... 46 12 Dimming Waveforms ................................................................................................ 47 12.1 Input Voltage and Input Current Waveforms – CLIPSAL 32E450LM ................ 47 12.2 Output Current Waveforms – CLIPSAL 32E450LM ........................................... 48 12.3 Input Voltage and Input Current Waveforms – CLIPSAL 32E450TM ................ 49 12.4 Output Current Waveforms – CLIPSAL 32E450TM .......................................... 50 13 Conducted EMI ......................................................................................................... 51 13.1 Test Set-up ........................................................................................................ 51 13.2 Test Result ........................................................................................................ 52 14 Line Surge ................................................................................................................ 53 15 Revision History........................................................................................................ 55 Important Note: Although this board is designed to satisfy safety isolation requirements, the engineering prototype has not been agency approved. Therefore, all testing should be performed using an isolation transformer to provide the AC input to the prototype board. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 4 of 56 26-Jan-12 DER-314 15.3 W Dimmable LED Driver Using LNK406EG 1 Introduction The document describes an isolated high power factor (PF) TRIAC dimmable LED driver designed to drive a nominal LED string voltage of 36 V at 425 mA from an input voltage range of 185 VAC to 265 VAC. The LED driver utilizes the LNK406EG from the LinkSwitch-PH family of ICs. Key goals for this design were: Lowest cost Small size Efficiency Demonstration of (optional) thermal fold back (output current reduces above temperature threshold) The topology used is a single-stage power factor corrected flyback that meets high efficiency, high power factor, low THD, isolation, low component count, and stringent space requirements for this design. High power factor and low THD is achieved by employing the LinkSwitch-PH IC which also provides a sophisticated range of protection features including auto-restart for open control loop and output short-circuit conditions. Line overvoltage provides extended line fault and surge withstand, and accurate hysteretic thermal shutdown that ensures safe average PCB temperatures under all conditions. This document contains the LED driver specification, schematic, PCB diagram, bill of materials, transformer documentation and typical performance characteristics. Figure 1 – Populated Circuit Board Photograph. Page 5 of 56 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-314 15.3 W Dimmable LED Driver Using LNK406EG 26-Jan-12 Figure 2 – Populated Circuit Board Photograph (Top View). Figure 3 – Populated Circuit Board Photograph (Bottom View). Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 6 of 56 26-Jan-12 DER-314 15.3 W Dimmable LED Driver Using LNK406EG 2 Power Supply Specification The table below represents the minimum acceptable performance of the design. Actual performance is listed in the results section. Description Input Voltage Frequency Output Output Voltage Output Current Total Output Power Continuous Output Power Efficiency Full Load Symbol Min Typ Max Units Comment VIN fLINE 185 230 50 265 VAC Hz 2 Wire – no P.E. VOUT IOUT 36 425 V mA POUT 15.3 W 86 % VOUT = 36, VIN = 230 VAC, 25 °C o Measured at POUT 25 C Environmental Conducted EMI CISPR 15B / EN55015B Safety Ring Wave (100 kHz) Differential Mode (L1-L2) Common mode (L1/L2-PE) Isolated 2.5 kV Differential Surge (1.2/50 s) 500 V Power Factor 0.9 Harmonic Currents Ambient Temperature Page 7 of 56 Measured at VOUT(TYP), IOUT(TYP) and 230 VAC, 50 Hz Class C specifies Class D Limits when PIN <25 W EN 61000-3-2 Class D (C) TAMB 50 o C Free convection, sea level Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-314 15.3 W Dimmable LED Driver Using LNK406EG 26-Jan-12 3 Schematic Figure 4 – Schematic. The following components were not populated 500 V to 1 kV differential surge withstand: VR1 Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 8 of 56 26-Jan-12 DER-314 15.3 W Dimmable LED Driver Using LNK406EG 4 Circuit Description The LinkSwitch-PH device is a controller with an integrated 725 V power MOSFET for use in LED driver applications. The LinkSwitch-PH is configured for use in a single-stage flyback topology which provides a primary side regulated constant current output while maintaining high power factor from the AC input. 4.1 Input Filtering Fuse F1 provides protection from component failure. A relatively high current rating was selected to prevent failure during 1 kV differential (1.2 s /50 s) line surge, at 500 V a lower rated device may be substituted. Varistor RV1 provides a clamp to limit the maximum voltage during differential line surge events. A 275 VAC rated part was selected, being slightly above the maximum specified operating voltage of 265 VAC. Diode bridge BR1 rectifies the AC line voltage with capacitor C4 providing a low impedance path (decoupling) for the primary switching current. Capacitor C2 and differential choke L3 are used for additional differential filtering of noise associated with SCR Q1 switching. A low value of capacitance (sum of C4 and C2) is necessary to maintain a power factor of greater than 0.9. EMI filtering is provided by inductors L1, L2, and L3, and capacitors C4, C2, and C10. Resistor R4 and R5 across L1 and L2 damp any LC resonances due to the filter components and the AC line impedance which would otherwise cause increased conducted EMI measurements. 4.2 LinkSwitch-PH Primary One side of the transformer (T1) is connected to the DC bus and the other to the DRAIN (D) pin of the LinkSwitch-PH via blocking diode D4. During the on-time of the power MOSFET, current ramps through the primary, storing energy which is then delivered to the output during the power MOSFET off-time. An RM8 core size was selected. This meets the power processing and size requirements of the design. One advantage of the low component count is the ability to use larger core sizes for increased efficiency whilst still meeting the size constraint. To provide peak line voltage information to U1 the incoming rectified AC peak charges C6 via D2. This is then fed into the VOLTAGE MONITOR (V) pin of U1 as a current via R10, R11, R12 and R13. Resistor R9 provides a discharge path for C6 with a time constant much longer than that of the rectified AC to prevent the V pin current being modulated at the line frequency (which would degrade power factor). To extend the dimming range R13 disables the line brown-out function of the V pin by supplying a current >IUV- into the V pin. The current is determined by the BYPASS (BP) pin, V pin voltages and the value of R13 and is ~30 A for this design. The line overvoltage shutdown function extends the rectified line voltage withstand (during surges and line swells) to the 725 BVDSS rating of the internal power MOSFET. Page 9 of 56 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-314 15.3 W Dimmable LED Driver Using LNK406EG 26-Jan-12 The V pin current and the FEEDBACK (FB) pin current are used internally to control the average output LED current. For phase angle dimming applications a 49.9 k resistor is used on the REFERENCE (R) pin (R14) and 4 M (R10+R11+R12+R13) on the V pin to provide a linear relationship between input voltage and the output current. This maximizes the dimming range when used with TRIAC dimmers. The value of R14 is used to select between two values of internal line input brown-in and brown-out thresholds. During the power MOSFET off-time, D3, R15, and C7 clamp the drain voltage to a safe level due to the effects of leakage inductance. Diode D4 is necessary to prevent reverse current from flowing through U1 while the voltage across C5 (rectified input AC) falls to below the reflected output voltage (parameter VOR in the design spreadsheet). Diode D6, C9, and R20 generate a primary bias supply from an auxiliary winding on the transformer. Capacitor C5 is used to minimize the loop on the bias winding circuit for reduced EMI. Resistor R20 provides filtering so that the bias voltage tracks the output voltage closely (to maintain constant output current with changes in LED voltage). Capacitor C8 provides local decoupling for the BP pin of U1 which is the supply pin for the internal controller. During start-up, C8 is charged to ~6 V from an internal highvoltage current source connected to the D pin. Once charged U1 starts switching at which point the operating supply current is provided from the bias supply via R17. The use of an external bias supply (via D5 and R17) is recommended to give the lowest device dissipation and highest efficiency however these components may be omitted if desired. The ability to be self-powered provides improved phase angle dimming performance as the IC is able to maintain operation even when the input conduction phase angle is very small (the equivalent to a low AC input voltage). Capacitor C8 also selects the output power mode, 10 F was selected (reduced power mode) to minimize the device dissipation and minimize heat sinking requirements. 4.3 Feedback The bias winding voltage is used to sense the output voltage indirectly, eliminating secondary side feedback components. The voltage on the bias winding is proportional to the output voltage (set by the turn ratio between the bias and secondary windings). Resistors R18 and R21 converts the bias voltage into a current which is fed into the FB pin of U1. The internal engine within U1 combines the FB pin current, the V pin current, and internal drain current information to provide a constant output current whilst maintaining high input power factor. 4.4 Temperature Fold Back Circuit The board also caters for an optional temperature compensation circuit that can enable LinkSwitch-PH to operate with temperature compensation to increase the maximum operating ambient temperature of a given LED driver by reducing the output power linearly as the driver temperature increases. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 10 of 56 26-Jan-12 DER-314 15.3 W Dimmable LED Driver Using LNK406EG Zener diode VR4 and the voltage across the node of resistor R22 and thermistor (NTC) RT1 dictate the start of temperature fold back. As the monitored temperature rises, so does the base voltage of Q2. Once this exceeds the voltage of VR4 plus a VBE drop, Q2 is biased on. Further increases in temperature will start diverting current from the FB pin, which will cause a reduction in output current / power. Resistor R22 can be adjusted to vary the temperature trip point at which output power reduction starts desired. The circuit is ideal for applications in extending the operating ambient temperature of a given LinkSwitch-PH LED driver, or protecting the LED array from excess temperature when installed incorrectly by the end user. 4.5 Output Rectification The transformer secondary winding is rectified by D7 and filtered by C11. Capacitor C11 was selected to give an LED ripple current equal to ~±30% of the mean value. For designs where higher ripple is acceptable, the output capacitance value can be reduced (and for lower ripple increased). 4.6 Disconnected Load Protection In case of open (disconnected) load fault, Zener diode VR3 will fail short circuit and the unit will enter auto-restart condition. This is a non-recovering protection scheme, for selfrecovering protection the bias voltage rise can be sensed via a Zener diode connected from C9 to the base of Q2. The value would be selected to be above the maximum bias voltage when driving the maximum LED load voltage. For this design 39 V or 43 V would be a suitable starting value. 4.7 TRIAC Phase Dimming Control Compatibility The requirement to provide output dimming with low cost, TRIAC based, leading edge phase dimmers introduced a number of tradeoffs in the design. Due to the much lower power consumed by LED based lighting the current drawn by the lamp can fall below the holding current of the TRIAC within the dimmer. This causes undesirable behavior such as the lamp turning off before the end of the dimmer control range and/or flickering as the TRIAC fires inconsistently. The relatively large impedance the LED lamp presents to the line allows significant ringing to occur due to the inrush current charging the input capacitance when the TRIAC turns on. This too can cause similar undesirable behavior as the ringing may cause the TRIAC current to fall to zero. To overcome these issues, active damper and passive bleeder circuits were added. The drawback of these circuits is increased dissipation and therefore reduced efficiency of the supply. For non-dimming applications these components can simply be omitted. Page 11 of 56 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-314 15.3 W Dimmable LED Driver Using LNK406EG 26-Jan-12 The Active Damper consists of components R6, R7, Q1, C3 and R8. This circuit limits the inrush current that flows to charge C4 when the TRIAC turns on by placing R8 in series for the first 1 ms of the conduction period. After approximately 1 ms, Q1 turns on and shorts R8. This keeps the power dissipation on R8 low and allows a larger value to be used for more effective during current limiting. Resistor R6, R7 and C3 provide the 1 ms delay after the TRIAC conducts. The SCR selected for Q1 is a low current, low cost device in a TO-92 package. The passive bleeder circuit is comprised of C1 and parallel combination of R1, and R2. This keeps the input current above the TRIAC holding current while the driver input current increases during each AC half-cycle preventing the TRIAC switch from oscillating at the start (and end) of each conduction angle period. This arrangement provided flicker-free dimming operation with phase angle dimmers from Australia, Europe, China, Korea, both leading-edge and lagging-edge types. Want More? Use your smartphone to get related content on our website. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 12 of 56 26-Jan-12 DER-314 15.3 W Dimmable LED Driver Using LNK406EG 5 PCB Layout Figure 5 – PCB Layout and Outline. Figure 6 – Top Side. Page 13 of 56 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-314 15.3 W Dimmable LED Driver Using LNK406EG 26-Jan-12 Figure 7 – Bottom Side. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 14 of 56 26-Jan-12 DER-314 15.3 W Dimmable LED Driver Using LNK406EG 6 Bill of Materials Item Qty Ref Des 1 1 BR1 Description 2 1 C1 220 nF, 275 VAC, Film, X2 3 1 C2 10 nF, 1 kV, Disc Ceramic, X7R 4 1 C3 470 nF, 50 V, Ceramic, Y5G, 0603 100 nF, 400 V, Film ECQ-E4104KF Panasonic 2.2 nF, 630 V, Ceramic, X7R, 1206 ECJ-3FBJ222K Panasonic 1000 V, 0.8 A, Bridge Rectifier, MBS-1, 4-SOIC Mfg Part Number Mfg B10S-G Comchip LE224-M OKAYA ELECT SV01AC103KAR AVX C1608Y5V1H474Z TDK 5 1 C4 6 2 C5 C7 7 1 C6 2.2 F, 400 V, Electrolytic, (6.3 x 11) TAB2GM2R2E110 Ltec 8 1 C8 10 F, 16 V, Ceramic, X7R, 1206 C3216X7R1C106M TDK 9 1 C9 22 F, 50 V, Electrolytic, (5 x 11.5) ELXZ500ELL220MEB5D Nippon Chemi-Con 10 1 C10 680 pF, Ceramic, Y1 11 1 C11 560 F, 50 V, Electrolytic,(12.5 x 25) 12 2 D1 D5 13 1 D2 14 2 D3 D4 75 V, 0.15 A, Switching, SOD-323 400 V, 1 A, Diode Sup Fast 1 A PWRDI 123 Diode Ultrafast, SW 600 V, 1 A, SMA 440LT68-R Vishay UPW1H561MHD Nichicon BAV16WS-7-F Diodes, Inc. DFLU1400-7 Diodes, Inc. US1J-13-F Diodes, Inc. 15 1 D6 250 V, 0.2 A, Fast Switching, 50 ns, SOD-323 16 1 D7 400 V, 3 A, SMC, DO-214AB 17 1 F1 5 A, 250 V, Fast, Microfuse, Axial 0263005.MXL Littlefuse 18 1 JP1 0 R, 5%, 1/4 W, Thick Film, 1206 ERJ-8GEY0R00V Panasonic 19 2 L1 L2 20 1 L3 2.2 mH, 0.16 A, Ferrite Core 21 1 Q1 SCR, 600 V, 1.25 A, TO-92 22 1 Q2 NPN, Small Signal BJT, 40 V, 0.2 A, SOT-23 23 2 R1 R2 1.0 k, 5%, 2 W, Metal Oxide 24 2 R4 R5 25 2 R6 R7 26 1 R8 100 , 5%, 2 W, Metal Oxide RSMF2JT100R Stackpole 27 1 R9 510 k, 5%, 1/4 W, Thick Film, 1206 ERJ-8GEYJ514V Panasonic 28 2 R10 R12 1.3 M, 1%, 1/8 W, Thick Film, 0805 ERJ-6ENF1304V Panasonic 29 1 R11 1.3 M, 5%, 1/8 W, Carbon Film 30 1 R13 31 1 32 1 33 1 34 35 1000 H, 0.18 A, 7 x 10.5 mm BAV21WS-7-F Diodes, Inc. ER3G-TP Micro Commercial SBC2-102-181 Tokin CTSCH875DF-222K CT Parts X0202MA 2BL2 ST Micro MMBT3904LT1G On Semi RSMF2JT1K00 Stackpole 4.7 k, 5%, 1/8 W, Thick Film, 0805 ERJ-6GEYJ472V Panasonic 374 k, 1%, 1/4 W, Thick Film, 1206 ERJ-8ENF3743V Panasonic CFR-12JB-1M3 Yageo 100 k, 1%, 1/8 W, Thick Film, 0805 ERJ-6ENF1003V Panasonic R14 49.9 k, 1%, 1/16 W, Thick Film, 0603 ERJ-3EKF4992V Panasonic R15 200 k, 5%, 1/2 W, Carbon Film CFR-50JB-200K Yageo R17 8.2 k, 5%, 1/4 W, Thick Film, 1206 ERJ-8GEYJ822V Panasonic 1 R18 187 k, 1%, 1/4 W, Thick Film, 1206 ERJ-8ENF1873V Panasonic 2 R19 R23 20 k, 5%, 1/4 W, Thick Film, 1206 ERJ-8GEYJ203V Panasonic 36 1 R20 39 , 5%, 1/8 W, Thick Film, 0805 ERJ-6GEYJ390V Panasonic 37 1 R21 10 k, 1%, 1/16 W, Thick Film, 0603 ERJ-3EKF1002V Panasonic 38 1 R22 3.48 k, 1%, 1/8 W, Thick Film, 0805 ERJ-6ENF3481V Panasonic 39 1 RT1 NTC Thermistor, 100 k, 0.00014 A NTSA0WF104EE1B0 Murata 40 1 RV1 275 V, 23 J, 7 mm, RADIAL V275LA4P Littlefuse 41 1 T1 Bobbin, RM8, Vertical, 12 pins RM8/12/1 Schwartzpunkt 42 1 U1 LinkSwitch-PH, eSIP LNK406EG Power Integrations 43 1 VR1 350 V, 400 W, 5%, DO214AC (SMA) SMAJ350A Littlefuse 44 1 VR3 43 V, 5 W, 5%, DO204AC (DO-15) P6KE43AG On Semi 45 1 VR4 10 V, 5%, 150 mW, SSMINI-2 DZ2S100M0L Panasonic Page 15 of 56 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-314 15.3 W Dimmable LED Driver Using LNK406EG 26-Jan-12 7 Transformer Specification 7.1 Electrical Diagram Figure 8 – Transformer Electrical Diagram. 7.2 Electrical Specifications Electrical Strength Primary Inductance Resonant Frequency Primary Leakage Inductance 7.3 1 second, 60 Hz, from pins 1, 10, 3, 11 to FL1, FL2 Pins 1-3, all other windings open, measured at 100 kHz, 0.4 VRMS Pins 1-3, all other windings open Pins 1-3, with FL1-FL2 shorted, measured at 100 kHz, 0.4 VRMS 3000 VAC 1.15 mH ±2% 750 kHz (Min.) 20 H ±7% Materials Item [1] [2] [3] [4] [5] [6] [7] Description Core: RM8/I, 3F3. Bobbin, 12 pin vertical, CSV-RM8-1S-12P from Philips or equivalent With mounting clip, CLI/P-RM8. Tape, Polyester film, 3M 1350F-1 or equivalent, 9 mm wide. Wire: Magnet, 31 AWG, solderable double coated. Wire: Magnet, 27 AWG, solderable double coated. Wire: Triple Insulated, Furukawa TEX-E or Equivalent, 23 TIW. Transformer Varnish, Dolph BC-359 or equivalent. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 16 of 56 26-Jan-12 7.4 DER-314 15.3 W Dimmable LED Driver Using LNK406EG Transformer Build Diagram Figure 9 – Transformer Build Diagram. 7.5 Transformer Construction Bobbin Preparation WDG 1 (Primary) Insulation WDG 2 (Secondary) Insulation WDG 3 (Bias) Finish Wrap Final Assembly Page 17 of 56 Place the bobbin item [2] on the mandrel such that pin side on the left side. Winding direction is the clockwise direction. Starting at pin 3, wind 60 turns of wire item [4] in two layers. Apply one layer of tape item [3] between 1st and 2nd layer. Finish at pin 1. Apply one layer of tape item [3]. Leave about 1” of wire item [6], use small tape to mark as FL1, enter into slot of secondary side of bobbin, wind 20 turns in two layers. At the last turn exit the same slot, leave about 1”, and mark as FL2. Apply one layer of tape item [3]. Starting at pin 10, wind 17 turns of wire item [5], spreading the wire, and finish at pin 11. Apply three layers of tape item [3] for finish wrap. Cut FL1 and FL2 to 0.75”. Grind core to get 1.15 mH inductance. Assemble and secure core halves. Dip impregnate using varnish item [7]. Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-314 15.3 W Dimmable LED Driver Using LNK406EG 26-Jan-12 8 Transformer Design Spreadsheet ACDC_LinkSwitch-PH_032511; Rev.1.3; Copyright Power INPUT Integrations 2011 ENTER APPLICATION VARIABLES Dimming required YES VACMIN VACMAX fL 185 265 VO INFO Info OUTPUT UNIT YES 185 265 50 36.00 V V Hz V VO_MAX 39.60 V VO_MIN 32.40 V V_OVP IO 0.43 PO n 0.87 VB 30 ENTER LinkSwitch-PH VARIABLES LinkSwitch-PH LNK406 Chosen Device 43.56 V A W Current Limit Mode 15.5 0.87 30 LNK406 RED Power Out V Universal 10W RED ILIMITMIN ILIMITMAX fS fSmin fSmax IV RV RV2 1.19 1.38 66000 62000 70000 80.6 4 1E+012 A A Hz Hz Hz uA M-ohms M-ohms 169.8 uA RFB1 159.0 k-ohms VDS 10 V IFB 169.84 VD 0.50 V VDB 0.70 V LinkSwitch-PH_032511: Flyback Transformer Design Spreadsheet !!! Info. When configured for dimming, best output current line regulation is achieved over a single input voltage range. Minimum AC Input Voltage Maximum AC input voltage AC Mains Frequency Typical output voltage of LED string at full load Maximum expected LED string Voltage. Minimum expected LED string Voltage. Over-voltage protection setpoint Typical full load LED current Output Power Estimated efficiency of operation Bias Voltage 115 Doubled/230V 4.5W Select "RED" for reduced Current Limit mode or "FULL" for Full current limit mode Minimum current limit Maximum current limit Switching Frequency Minimum Switching Frequency Maximum Switching Frequency V pin current Upper V pin resistor Lower V pin resistor FB pin current (85 uA < IFB < 210 uA) FB pin resistor LinkSwitch-PH on-state Drain to Source Voltage Output Winding Diode Forward Voltage Drop (0.5 V for Schottky and 0.8 V for PN diode) Bias Winding Diode Forward Voltage Drop Key Design Parameters KP LP VOR Expected IO (average) KP_VACMAX 1.24 1.24 109.50 1159 109.5 0.42 Info TON_MIN 1.28 1.97 Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com uH V A us Ripple to Peak Current Ratio (For PF > 0.9, 0.4 < KP < 0.9) Primary Inductance Reflected Output Voltage. Expected Average Output Current !!! Info. PF at high line may be less than 0.9. Decrease KP for higher PF Minimum on time at maximum AC input voltage Page 18 of 56 26-Jan-12 DER-314 15.3 W Dimmable LED Driver Using LNK406EG PCLAMP 0.13 ENTER TRANSFORMER CORE/CONSTRUCTION VARIABLES Core Type RM8/I RM8/I RM8/I_ Bobbin BOBBI N W P/N: AE 0.63 cm^2 LE 3.84 cm AL 3000 nH/T^2 BW 8.6 mm M 0 mm L 2.00 NS 20 DC INPUT VOLTAGE PARAMETERS VMIN VMAX CURRENT WAVEFORM SHAPE PARAMETERS 2 20 262 375 V V DMAX 0.26 IAVG 0.11 A IP 0.95 A IRMS 0.24 A TRANSFORMER PRIMARY DESIGN PARAMETERS LP NP NB 1159 60 17 uH ALG 322 nH/T^2 BM 2906 Gauss BP 3516 Gauss BAC 1453 Gauss ur 1455 LG BWE 0.22 17.2 mm mm OD 0.29 mm INS 0.05 mm DIA 0.24 mm AWG 31 AWG CM 81 Cmils CMA 341 Cmils/Amp LP_TOL 10 10 TRANSFORMER SECONDARY DESIGN PARAMETERS (SINGLE OUTPUT EQUIVALENT) Lumped parameters Page 19 of 56 Estimated dissipation in primary clamp * Core Effective Cross Sectional Area Core Effective Path Length Ungapped Core Effective Inductance Bobbin Physical Winding Width Safety Margin Width (Half the Primary to Secondary Creepage Distance) Number of Primary Layers Number of Secondary Turns Peak input voltage at VACMIN Peak input voltage at VACMAX Minimum duty cycle at peak of VACMIN Average Primary Current Peak Primary Current (calculated at minimum input voltage VACMIN) Primary RMS Current (calculated at minimum input voltage VACMIN) Primary Inductance Primary Winding Number of Turns Bias Winding Number of Turns Gapped Core Effective Inductance Maximum Flux Density at PO, VMIN (BM<3100) Peak Flux Density (BP<3700) AC Flux Density for Core Loss Curves (0.5 X Peak to Peak) Relative Permeability of Ungapped Core Gap Length (Lg > 0.1 mm) Effective Bobbin Width Maximum Primary Wire Diameter including insulation Estimated Total Insulation Thickness (= 2 * film thickness) Bare conductor diameter Primary Wire Gauge (Rounded to next smaller standard AWG value) Bare conductor effective area in circular mils Primary Winding Current Capacity (200 < CMA < 600) Tolerance of primary inductance Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-314 15.3 W Dimmable LED Driver Using LNK406EG 26-Jan-12 ISP ISRMS 2.84 1.05 A A IRIPPLE 0.96 A CMS 211 Cmils AWGS 26 AWG DIAS 0.41 mm ODS 0.43 mm VDRAIN 599 V PIVS 168 V PIVB 141 V 4.00 1.00E+12 115.0 230.0 M-ohms M-ohms V V IO_VAC1 0.43 A IO_VAC2 0.43 A RV1 (new) RV2 (new) 4.00 20911.63 M-ohms M-ohms V_OV 319.6 V V_UV 66.3 V 159 1E+012 27.0 33.0 0.43 0.43 159.0 1.00E+12 k-ohms k-ohms V V A A k-ohms k-ohms Peak Secondary Current Secondary RMS Current Output Capacitor RMS Ripple Current Secondary Bare Conductor minimum circular mils Secondary Wire Gauge (Rounded up to next larger standard AWG value) Secondary Minimum Bare Conductor Diameter Secondary Maximum Outside Diameter for Triple Insulated Wire VOLTAGE STRESS PARAMETERS FINE TUNING (Enter measured values from prototype) V pin Resistor Fine Tuning RV1 RV2 VAC1 VAC2 FB pin resistor Fine Tuning RFB1 RFB2 VB1 VB2 IO1 IO2 RFB1 (new) RFB2(new) Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Estimated Maximum Drain Voltage assuming maximum LED string voltage (Includes Effect of Leakage Inductance) Output Rectifier Maximum Peak Inverse Voltage (calculated at VOVP, excludes leakage inductance spike) Bias Rectifier Maximum Peak Inverse Voltage (calculated at VOVP, excludes leakage inductance spike) Upper V Pin Resistor Value Lower V Pin Resistor Value Test Input Voltage Condition1 Test Input Voltage Condition2 Measured Output Current at VAC1 Measured Output Current at VAC2 New RV1 New RV2 Typical AC input voltage at which OV shutdown will be triggered Typical AC input voltage beyond which power supply can startup Upper FB Pin Resistor Value Lower FB Pin Resistor Value Test Bias Voltage Condition1 Test Bias Voltage Condition2 Measured Output Current at Vb1 Measured Output Current at Vb2 New RFB1 New RFB2 Page 20 of 56 26-Jan-12 DER-314 15.3 W Dimmable LED Driver Using LNK406EG 9 Performance Data All measurements performed at room temperature using an LED load. The following data were measured using 3 sets of loads to represent a voltage of 35 V ~ 37 V. The table in Section 9.6 shows complete test data values. 9.1 Efficiency 87.4 ~35 V ~36 V 87.3 ~37 V Efficiency (%) 87.2 87.1 87.0 86.9 86.8 180 190 200 210 220 230 240 250 260 Input Voltage (VAC) Figure 10 – Efficiency vs. Line and Load. Page 21 of 56 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com 270 DER-314 15.3 W Dimmable LED Driver Using LNK406EG 9.2 26-Jan-12 Line and Load Regulation 440 ~35 V 435 ~36 V 430 ~37 V Output Current (mA) 425 420 415 410 405 400 395 390 385 180 190 200 210 220 230 240 250 260 270 Input Voltage (VAC) Figure 11 – Regulation vs. Line and Load. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 22 of 56 26-Jan-12 9.3 DER-314 15.3 W Dimmable LED Driver Using LNK406EG Power Factor 0.95 ~35 V 0.94 ~36 V ~37 V Power Factor 0.93 0.92 0.91 0.90 0.89 180 190 200 210 220 230 240 250 260 Input Voltage (VAC) Figure 12 – Power Factor vs. Line and Load. Page 23 of 56 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com 270 DER-314 15.3 W Dimmable LED Driver Using LNK406EG 9.4 26-Jan-12 A-THD 28.7 ~35 V 28.6 ~36 V ~37 V 28.5 A-THD (%) 28.4 28.3 28.2 28.1 28.0 27.9 27.8 27.7 180 190 200 210 220 230 240 250 260 270 Input Voltage (VAC) Figure 13 – A-THD vs. Line and Load. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 24 of 56 26-Jan-12 DER-314 15.3 W Dimmable LED Driver Using LNK406EG 9.5 Harmonic Currents The design met the limits for Class C equipment for an active input power of <25 W. In this case IEC61000-3-2 specifies that harmonic currents shall not exceed the limits of Class D equipment1. Therefore the limits shown in the charts below are Class D limits which must not be exceeded to meet Class C compliance. 9.5.1 35 V LED Load 70 Class C (D) Limit mA Content Harmonic Current (mA) 60 50 40 30 20 10 0 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 Harmonic Number (n) Figure 14 – 35 V LED Load Input Current Harmonics at 230 VAC, 50 Hz. 1 IEC6000-3-2 Section 7.3, table 2, column 2. Page 25 of 56 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-314 15.3 W Dimmable LED Driver Using LNK406EG 26-Jan-12 9.5.3 36 V LED Load 70 Class C (D) Limit mA Content Harmonic Current (mA) 60 50 40 30 20 10 0 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 Harmonic Number (n) Figure 15 – 36 V LED Load Input Current Harmonics at 230 VAC, 50 Hz. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 26 of 56 26-Jan-12 DER-314 15.3 W Dimmable LED Driver Using LNK406EG 9.5.4 37 V LED Load 70 Class C (D) Limit mA Content Harmonic Current (mA) 60 50 40 30 20 10 0 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 Harmonic Number (n) Figure 16 – 37 V LED Load Input Current Harmonics at 230 VAC, 50 Hz. Page 27 of 56 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-314 15.3 W Dimmable LED Driver Using LNK406EG 26-Jan-12 9.6 Test Data All measurements were taken with the board at open frame, 25 °C ambient, and 50 Hz line frequency. 9.6.1 Test Data, 35 V LED Load VIN (VRMS) 185.03 203.06 220.08 230.13 254.10 265.11 Input Measurement IIN PIN PF (mARMS) (W) 90.22 15.734 0.943 85.46 16.204 0.934 81.74 16.626 0.924 79.86 16.871 0.918 76.17 17.454 0.902 74.76 17.715 0.894 %ATHD 27.83 28.18 28.38 28.47 28.48 28.35 Load Measurement VOUT IOUT POUT (VDC) (mADC) (W) 35.11 389.21 13.710 35.18 400.28 14.128 35.23 409.96 14.492 35.25 415.58 14.701 35.32 428.33 15.183 35.35 433.96 15.394 PCAL (W) 13.66 14.08 14.44 14.65 15.13 15.34 Calculation Efficiency Loss (%) (W) 87.14 2.02 87.19 2.08 87.16 2.13 87.14 2.17 86.99 2.27 86.90 2.32 Load Measurement VOUT IOUT POUT (VDC) (mADC) (W) 36.14 389.94 14.14 36.20 400.96 14.56 36.24 410.58 14.93 36.26 416.04 15.14 36.32 428.66 15.62 36.34 434.20 15.83 PCAL (W) 14.09 14.51 14.88 15.09 15.57 15.78 Calculation Efficiency Loss (%) (W) 87.15 2.08 87.21 2.14 87.20 2.19 87.17 2.23 87.03 2.33 86.95 2.38 PCAL (W) 14.40 14.83 15.21 15.42 15.91 16.13 Calculation Efficiency Loss (%) (W) 87.18 2.13 87.24 2.18 87.24 2.23 87.22 2.27 87.09 2.37 87.01 2.42 9.6.2 Test Data, 36 V LED Load VIN (VRMS) 185.00 203.05 220.06 230.11 254.08 265.10 Input Measurement IIN PIN PF (mARMS) (W) 92.88 16.219 0.944 87.90 16.695 0.935 83.99 17.120 0.926 81.98 17.363 0.920 78.08 17.947 0.905 76.59 18.210 0.897 %ATHD 27.81 28.13 28.36 28.49 28.54 28.42 9.6.3 Test Data, 37 V LED Load VIN (VRMS) 185.00 203.04 220.06 230.11 254.07 265.09 Input Measurement IIN PIN PF (mARMS) (W) 94.83 16.573 0.945 89.70 17.055 0.936 85.68 17.490 0.928 83.61 17.737 0.922 79.57 18.329 0.907 78.02 18.595 0.899 %ATHD 27.81 28.17 28.45 28.51 28.6 28.53 Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Load Measurement VOUT IOUT POUT (VDC) (mADC) (W) 36.88 390.53 14.45 36.95 401.45 14.88 37.00 411.10 15.26 37.02 416.54 15.47 37.09 429.01 15.96 37.11 434.58 16.18 Page 28 of 56 26-Jan-12 DER-314 15.3 W Dimmable LED Driver Using LNK406EG 9.6.4 230 VAC 50 Hz, 35 V LED Load Harmonics Data Page 29 of 56 V 230 Freq 50.00 I (mA) 79.86 P 16.8710 PF 0.9180 %THD 28.47 nth Order 1 2 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 mA Content 76.74 0.02 17.52 9.67 5.34 4.46 2.64 2.73 1.49 1.85 0.99 1.26 0.65 0.90 0.50 0.69 0.39 0.58 0.35 0.49 0.34 0.37 0.31 0.32 0.40 0.30 % Content Limit <25 W Limit >25 W Remarks 57.3614 32.0549 16.8710 8.4355 5.9049 4.9964 4.3302 3.8208 3.4186 3.0930 2.8241 2.5981 2.4057 2.2398 2.0953 1.9683 1.8558 1.7555 1.6655 2.00% 27.54% 10.00% 7.00% 5.00% 3.00% 3.00% 3.00% 3.00% 3.00% 3.00% 3.00% 3.00% 3.00% 3.00% 3.00% 3.00% 3.00% 3.00% 3.00% 0.03% 22.83% 12.60% 6.96% 5.81% 3.44% 3.56% 1.94% 2.41% 1.29% 1.64% 0.85% 1.17% 0.65% 0.90% 0.51% 0.76% 0.46% 0.64% 0.44% 0.48% 0.40% 0.42% 0.52% 0.39% Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-314 15.3 W Dimmable LED Driver Using LNK406EG 26-Jan-12 9.6.5 230 VAC 50 Hz, 36 V LED Load Harmonics Data V 230 Freq 50.00 I (mA) 81.98 P 17.3630 PF 0.9204 %THD 28.49 nth Order 1 2 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 mA Content 78.78 0.05 18.01 9.91 5.51 4.57 2.78 2.80 1.58 1.77 0.95 1.24 0.72 0.91 0.56 0.69 0.43 0.52 0.38 0.42 0.36 0.38 0.30 0.32 0.28 0.22 % Content Limit <25 W Limit >25 W Remarks 59.0342 32.9897 17.3630 8.6815 6.0771 5.1421 4.4565 3.9322 3.5183 3.1832 2.9064 2.6739 2.4758 2.3051 2.1564 2.0257 1.9099 1.8067 1.7140 2.00% 27.61% 10.00% 7.00% 5.00% 3.00% 3.00% 3.00% 3.00% 3.00% 3.00% 3.00% 3.00% 3.00% 3.00% 3.00% 3.00% 3.00% 3.00% 3.00% 0.06% 22.86% 12.58% 6.99% 5.80% 3.53% 3.55% 2.01% 2.25% 1.21% 1.57% 0.91% 1.16% 0.71% 0.88% 0.55% 0.66% 0.48% 0.53% 0.46% 0.48% 0.38% 0.41% 0.36% 0.28% Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Page 30 of 56 26-Jan-12 DER-314 15.3 W Dimmable LED Driver Using LNK406EG 9.6.6 230 VAC 50 Hz, 37 V LED Load Harmonics Data Page 31 of 56 V 230 Freq 50.00 I (mA) 83.61 P 17.7370 PF 0.9219 %THD 28.51 nth Order 1 2 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 mA Content 80.35 0.03 18.39 10.09 5.61 4.64 2.82 2.84 1.63 1.89 1.06 1.32 0.77 0.96 0.59 0.72 0.46 0.55 0.40 0.44 0.35 0.37 0.32 0.28 0.27 0.20 % Content Limit <25 W Limit >25 W Remarks 60.3058 33.7003 17.7370 8.8685 6.2080 5.2529 4.5525 4.0169 3.5941 3.2518 2.9690 2.7315 2.5292 2.3547 2.2028 2.0693 1.9511 1.8456 1.7510 2.00% 27.66% 10.00% 7.00% 5.00% 3.00% 3.00% 3.00% 3.00% 3.00% 3.00% 3.00% 3.00% 3.00% 3.00% 3.00% 3.00% 3.00% 3.00% 3.00% 0.04% 22.89% 12.56% 6.98% 5.77% 3.51% 3.53% 2.03% 2.35% 1.32% 1.64% 0.96% 1.19% 0.73% 0.90% 0.57% 0.68% 0.50% 0.55% 0.44% 0.46% 0.40% 0.35% 0.34% 0.25% Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-314 15.3 W Dimmable LED Driver Using LNK406EG 26-Jan-12 10 Dimming Performance Data TRIAC dimming results were taken at an input voltage of 230 VAC, 50 Hz line frequency, room temperature, and a nominal 36 V LED load. The output current High Limit IOUT (HL) and Low Limit IOUT (LL) were incorporated based on the USA NEMA Publication SSL6-2010 Section 4 page 9 for dimming performance system requirements for reference. The standard however refers to 120 VAC operating input voltage and pertains to the limits as relative light output. The limits incorporated on the succeeding graphs assumes that 100% relative light output falls on the maximum operating output current of 425 mA and 0 mA as 0% light output, and input line of 230 VAC, 50 Hz. 10.1 Performance with Clipsal Brand (Australian market) Dimmers 450 32E450TM 350 Output Current (mA) Trailing Edge 32E450LM 400 32E450UDM 300 Iout (HL) 250 Iout (LL) 200 150 100 Leading Edge 50 0 20 40 60 80 100 120 140 160 180 Conduction Angle (˚) Figure 17 – Clipsal Dimmers Dimming Curve at 230 VAC, 50 Hz Input. Dimmer 32E450LM 32E450TM 32E450UDM Minimum Conduction Angle, (º) 49.14 42.3 47.16 Minimum IOUT (mA) 83 83 97 Maximum Conduction Angle, (º) 140.4 140.4 139.5 Maximum IOUT (mA) 376 391 389 Dim Ratio 4.5 4.7 4.0 Figure 18 – Clipsal Dimmers Minimum and Maximum Dimming Characteristic at 230 VAC, 50 Hz Input. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 32 of 56 26-Jan-12 DER-314 15.3 W Dimmable LED Driver Using LNK406EG 10.2 Performance with China Dimmers 450 Clipmei 400 TCL 630 W Output Current (mA) 350 SEN BO LANG 300 W EBA HUANG 300 SB ELECT 600 W 250 MYONGBO 200 Iout (LL) Iout (HL) 150 100 50 0 0 20 40 60 80 100 120 140 160 180 Conduction Angle (˚) Figure 19 – China Dimmers Dimming Curve at 230 VAC, 50 Hz Input. Dimmer CLIPMEI TCL 630 W SEN BO LANG 300 W EBA HUANG SB ELECT 600 W MYONGBO KBE 650 W MANK 200 W Minimum Conduction Angle, (º) 43.2 45 64.8 18 14.4 61.2 14.4 70.2 Minimum IOUT (mA) 70 75 119 4.2 8.4 116 3 136 Maximum Conduction Angle, (º) 167.94 166.14 166.14 167.4 154.8 169.2 165.6 165.6 Maximum IOUT (mA) 412 413 413 413 404 413 412 412 Dim Ratio 5.9 5.5 3.5 98.3 48.1 3.6 137.3 3.0 Figure 20 – China Dimmers Minimum and Maximum Dimming Characteristic at 230 VAC, 50 Hz Input. Page 33 of 56 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-314 15.3 W Dimmable LED Driver Using LNK406EG 26-Jan-12 10.3 Performance with Korean Dimmers 450 ANAM 500 W Output Current (mA) 400 SHIN SUNG 500 W 350 FANTASIA 500 W 300 SS 700 W Iout (LL) 250 Iout (HL) 200 150 100 50 0 20 40 60 80 100 120 140 160 180 Conduction Angle (˚) Figure 21 – Korean Dimmers Dimming Curve at 230 VAC, 50 Hz Input. Dimmer ANAM 500 W SHIN SUNG 500 W FANTASIA 500 W SS 700 W Minimum Conduction Angle, (º) 68.4 63 63 54 Minimum IOUT (mA) 142 126 138 105 Maximum Conduction Angle, (º) 162 165.6 153 162 Maximum IOUT (mA) 408 411 407 411 Dim Ratio 2.9 3.3 2.9 3.9 Figure 22 – Korean Dimmers Minimum and Maximum Dimming Characteristic at 230 VAC, 50 Hz Input. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 34 of 56 26-Jan-12 DER-314 15.3 W Dimmable LED Driver Using LNK406EG 10.4 Performance with German Dimmers 450 REV 300 Output Current (mA) 400 BUSCH2250 600 W 350 MERTEN 572499 300 BUSCH 6513 Trailing Edge BERKER 2875 250 Iout (LL) 200 Iout (HL) 150 100 Leading Edge 50 0 0 20 40 60 80 100 120 140 160 180 Conduction Angle (˚) Figure 23 – German Dimmers Dimming Curve at 230 VAC, 50 Hz Input. Dimmer REV300 BUSCH 2250 600 W MERTEN 572499 400 W BUSCH 6513 420 W BERKER 2875 600 W Minimum Conduction Angle, (º) 14.4 45 43.2 39.6 49.14 Minimum IOUT (mA) 4 69 54 90 74 Maximum Conduction Angle, (º) 150.3 153.72 162 142.2 151.2 Maximum IOUT (mA) 393 398 407 399 393 Dim Ratio 98.3 5.8 7.5 4.4 5.3 Figure 24 – German Dimmers Minimum and Maximum Dimming Characteristic at 230 VAC, 50 Hz Input. Page 35 of 56 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-314 15.3 W Dimmable LED Driver Using LNK406EG 26-Jan-12 11 Thermal Performance Images captured after running for >30 minutes at room temperature (25 °C), open frame for the conditions specified. 11.1 Non-Dimming VIN = 185 VAC, 50 Hz, 36 V LED Load Figure 25 – Top Side. Figure 26 – Bottom Side. 11.2 Non-Dimming VIN = 265 VAC, 50 Hz, 36 V LED Load Figure 27 – Top Side. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Figure 28 – Bottom Side. Page 36 of 56 26-Jan-12 DER-314 15.3 W Dimmable LED Driver Using LNK406EG 11.3 Dimming VIN = 230 VAC, 50 Hz, 90º Conduction Angle, 36 V LED Load Figure 29 – Top Side. Page 37 of 56 Figure 30 – Bottom Side. Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-314 15.3 W Dimmable LED Driver Using LNK406EG 26-Jan-12 11.4 Thermal Fold Back A test board had T type thermocouples attached to key components. The unit was then potted using Silgard 170 and placed inside a thermal chamber. A chart recorder was used to monitor the temperature and output current while the external ambient temperature was swept from -25 ºC to 70 ºC. Testing was performed at 230 VAC, 60 Hz with no dimmer connected. The frequency of 60 Hz was specifically chosen to ensure sampling of chart recorder was synchronized to output of LED driver. Note current is represented in centi-Amps ie a value of 40 = 0.4 A This data shows (point 1) that the thermal fold back occurs at a case temperature of 70 ºC, with an IC temperature of ~92 ºC. This indicates that the fold back threshold may be raised further. At point 2 the oven door was opened and the output current returned to the original value (point 3). Temperature (C) / Output Current (cA) 100 75 50 U1 LinkSwitch-PH R1 T1 D4 D7 output Case Surface COUT (C11) IOUT 25 0 -25 Elapsed Time (H:MM:SS) Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 38 of 56 26-Jan-12 DER-314 15.3 W Dimmable LED Driver Using LNK406EG Non-Dimming Waveforms 11.5 Input Voltage and Input Current Waveforms Figure 31 – 185 VAC, Full Load. Upper: IIN, 50 mA / div. Lower: VIN, 100 V, 10 ms / div. Figure 32 – 220 VAC, Full Load. Upper: IIN, 50 mA / div. Lower: VIN, 100 V, 10 ms / div. Figure 33 – 230 VAC, Full Load. Upper: IIN, 50 mA / div. Lower: VIN, 100 V, 10 ms / div. Figure 34 – 265 VAC, Full Load. Upper: IIN, 50 mA / div. Lower: VIN, 100 V, 10 ms / div. Page 39 of 56 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-314 15.3 W Dimmable LED Driver Using LNK406EG 26-Jan-12 11.6 Output Current and Output Voltage at Normal Operation Input Condition 185 VAC, 50 Hz 220 VAC, 60 Hz 230 VAC, 50 Hz 265 VAC, 50 Hz IOUT, Mean (mA) 388 412 418 437 IOUT, Peak to Peak (mA) 250 260 267 278 IOUT Ripple (%) ±32.2 ±31.6 ±31.94 ±31.81 Figure 35 – 185 VAC, 50 Hz Full Load. Upper: IOUT, 100 mA / div. Lower: VOUT, 5 V, 5 ms / div. Figure 36 – 220 VAC, 50 Hz Full Load. Upper: IOUT, 100 mA / div. Lower: VOUT, 5 V, 5 ms / div. Figure 37 – 230 VAC, 50 Hz Full Load. Upper: IOUT, 100 mA / div. Lower: VOUT, 5 V, 5 ms / div. Figure 38 – 265 VAC, 50 Hz Full Load. Upper: IOUT, 100 mA / div. Lower: VOUT, 5 V, 5 ms / div. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 40 of 56 26-Jan-12 DER-314 15.3 W Dimmable LED Driver Using LNK406EG 11.7 Output Current/Voltage Rise and Fall Figure 39 – 185 VAC Output Rise. Upper: IOUT, 100 mA / div. Lower: VOUT, 5 V, 100 ms / div. Figure 40 – 185 VAC Output Fall. Upper: IOUT, 100 mA / div. Lower: VOUT, 5 V, 100 ms / div. Figure 41 – 265 VAC Output Rise. Upper: IOUT, 100 mA / div. Lower: VOUT, 5 V, 100 ms / div. Figure 42 – 265 VAC Output Fall. Upper: IOUT, 100 mA / div. Lower: VOUT, 5 V, 100 ms / div. Page 41 of 56 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-314 15.3 W Dimmable LED Driver Using LNK406EG 26-Jan-12 11.8 Input Voltage and Output Current Waveform at Start-up Figure 43 – 185 VAC, 50 Hz. Upper: IOUT, 0.1 A / div. Lower: VIN, 100 V, 50 ms / div. Figure 44 – 220 VAC, 50 Hz. Upper: IOUT, 0.1 A / div. Lower: VIN, 100 V, 50 ms / div. Figure 45 – 230 VAC, 50 Hz. Upper: IOUT, 0.1 A / div. Lower: VIN, 100 V, 50 ms / div. Figure 46 – 265 VAC, 50 Hz. Upper: IOUT, 0.1 A / div. Lower: VIN, 100 V, 50 ms / div. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 42 of 56 26-Jan-12 DER-314 15.3 W Dimmable LED Driver Using LNK406EG 11.9 Drain Voltage and Current at Normal Operation Figure 47 – 185 VAC, 50 Hz. Upper: IDRAIN, 0.2 A / div. Lower: VDRAIN, 100 V, 2 ms / div. Figure 48 – 185 VAC, 50 Hz. Upper: IDRAIN, 0.2 A / div. Lower: VDRAIN, 100 V / div., 10 s / div. Figure 49 – 265 VAC, 50 Hz. Upper: IDRAIN, 0.2 A / div. Lower: VDRAIN, 100 V, 2 ms / div. Figure 50 – 265 VAC, 50 Hz. Upper: IDRAIN, 0.2 A / div. Lower: VDRAIN, 100 V / div., 10 s / div. Page 43 of 56 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-314 15.3 W Dimmable LED Driver Using LNK406EG 26-Jan-12 11.10 Drain Voltage and Current at Start-up At higher input voltage, the peak current can reach the current limit of the device and enter the SOA mode which disables the switching of the power MOSFET for 40 cycles or approximately 600 s. The SOA mode protects the device under short circuit and start-up condition and does not affect the output current rise during start-up since this condition happens when the output capacitor voltage is still far from the conduction voltage of the LED load as shown on the Figures below. Figure 51 – 185 VAC, 50 Hz Start-up. Upper: IDRAIN, 200 mA / div. Lower: VDRAIN, 100 V, 5 ms / div. Figure 52 – 265 VAC, 50 Hz Start-up. Upper: IDRAIN, 500 mA / div. Lower: VDRAIN, 100 V, 5 ms / div. Figure 53 – Expanded 265 VAC Start-up Showing 600 s Dead Time. Upper: IDRAIN, 500 mA / div. Lower: VDRAIN, 100 V, 0.2 ms / div. Figure 54 – Output Current rise at 265 VAC Start-up. Upper: IDRAIN, 500 mA / div. Lower: VDRAIN, 100 V, 10 ms / div. IOUT, 100 mA, 10 ms / div. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 44 of 56 26-Jan-12 DER-314 15.3 W Dimmable LED Driver Using LNK406EG 11.11 Output Short Condition During output short condition, the IFB current falls below the IFB(AR) threshold and enters the auto-restart condition. During this condition, to minimize power dissipation on the power components, the auto-restart circuit turns the power supply on and off at an autorestart duty cycle of typically DCAR for as long as the fault condition persists. Figure 55 – 185 VAC, 50 Hz Output Short Condition. Upper: IDRAIN, 500 mA / div. Lower: VDRAIN, 100 V, 10 ms / div. Figure 56 – 185 VAC, 50 Hz Output Short Condition. Upper: IDRAIN, 500 mA / div. Lower: VDRAIN, 100 V, 2 s / div. Figure 57 – 265 VAC, 50 Hz Output Short Condition. Upper: IDRAIN, 500 mA / div. Lower: VDRAIN, 100 V, 10 ms / div. Figure 58 – 265 VAC, 50 Hz Output Short Condition. Upper: IDRAIN, 500 mA / div. Lower: VDRAIN, 100 V, 2 s / div. Page 45 of 56 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-314 15.3 W Dimmable LED Driver Using LNK406EG 26-Jan-12 11.12 Output Diode PIV Figure 59 – 265 VAC, 50 Hz Normal Operation VRM, 50 V / div., 2 ms / div. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Figure 60 – 265 VAC, 50 Hz Output Short VRM, 50 V / div., 2 ms / div. Page 46 of 56 26-Jan-12 DER-314 15.3 W Dimmable LED Driver Using LNK406EG 12 Dimming Waveforms 12.1 Input Voltage and Input Current Waveforms – CLIPSAL 32E450LM Input: 230 VAC, 50 Hz Output: 36 V LED Load Dimmer: Clipsal 32E450LM (Leading Edge Type) Figure 61 – 140º Conduction Angle. Upper: IIN, 50 mA / div. Lower: VIN, 100 V, 5 ms / div. Figure 62 – 108º Conduction Angle. Upper: IIN, 50 mA / div. Lower: VIN, 100 V, 5 ms / div. Figure 63 – 90º Conduction Angle. Upper: IIN, 50 mA / div. Lower: VIN, 100 V, 5 ms / div. Figure 64 – 49º Conduction Angle. Upper: IIN, 50 mA / div. Lower: VIN, 100 V, 5 ms / div. Page 47 of 56 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-314 15.3 W Dimmable LED Driver Using LNK406EG 26-Jan-12 12.2 Output Current Waveforms – CLIPSAL 32E450LM Input: 230 VAC, 50 Hz Output: 36 V LED Load Dimmer: Clipsal 32E450LM (Leading Edge Type) Figure 65 – 140º Conduction Angle. Upper: IOUT, 100 mA / div. Lower: VIN, 100 V, 5 ms / div. Figure 66 – 108º Conduction Angle. Upper: IOUT, 100 mA / div. Lower: VIN, 100 V, 5 ms / div. Figure 67 – 90º Conduction Angle. Upper: IOUT, 100 mA / div. Lower: VIN, 100 V, 5 ms / div. Figure 68 – 49º Conduction Angle. Upper: IOUT, 20 mA / div. Lower: VIN, 100 V, 5 ms / div. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 48 of 56 26-Jan-12 DER-314 15.3 W Dimmable LED Driver Using LNK406EG 12.3 Input Voltage and Input Current Waveforms – CLIPSAL 32E450TM Input: 230 VAC, 50 Hz Output: 36 V LED Load Dimmer: Clipsal 32E450TM (Trailing Edge Type) Figure 69 – 140º Conduction Angle. Upper: IIN, 50 mA / div. Lower: VIN, 100 V, 5 ms / div. Figure 70 – 108º Conduction Angle. Upper: IIN, 50 mA / div. Lower: VIN, 100 V, 5 ms / div. Figure 71 – 90º Conduction Angle. Upper: IIN, 50 mA / div. Lower: VIN, 100 V, 5 ms / div. Figure 72 – 42º Conduction Angle. Upper: IIN, 50 mA / div. Lower: VIN, 100 V, 5 ms / div. Page 49 of 56 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-314 15.3 W Dimmable LED Driver Using LNK406EG 26-Jan-12 12.4 Output Current Waveforms – CLIPSAL 32E450TM Input: 230 VAC, 50 Hz Output: 36 V LED Load Dimmer: Clipsal 32E450TM (Trailing Edge Type) Figure 73 – 140º Conduction Angle. Upper: IOUT, 100 mA / div. Lower: VIN, 100 V, 5 ms / div. Figure 74 – 108º Conduction Angle. Upper: IOUT, 100 mA / div. Lower: VIN, 100 V, 5 ms / div. Figure 75 – 90º Conduction Angle. Upper: IOUT, 100 mA / div. Lower: VIN, 100 V, 5 ms / div. Figure 76 – 42º Conduction Angle. Upper: IOUT, 20 mA / div. Lower: VIN, 100 V, 5 ms / div. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 50 of 56 26-Jan-12 DER-314 15.3 W Dimmable LED Driver Using LNK406EG 13 Conducted EMI 13.1 Test Set-up The unit was tested using LED load (~36 V VOUT) with input voltage of 230 VAC, 60 Hz at room temperature. Figure 77 – EMI Test Set-up with the Unit and LED Load Placed Inside the Cone. Page 51 of 56 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-314 15.3 W Dimmable LED Driver Using LNK406EG 26-Jan-12 13.2 Test Result Power Integrations 20.Dec 11 17:10 RBW MT 9 kHz 500 ms Att 10 dB AUTO dBµV 120 EN55015Q 110 100 kHz LIMIT CHECK 1 MHz PASS 10 MHz SGL 1 QP CLRWR 100 90 2 AV CLRWR TDF 80 70 60 EN55015A 50 6DB 40 30 20 10 0 -10 -20 9 kHz 30 MHz Figure 78 – Conducted EMI, 36 V LED Load, 230 VAC, 60 Hz, and EN55015 B Limits. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 52 of 56 26-Jan-12 DER-314 15.3 W Dimmable LED Driver Using LNK406EG 14 Line Surge The unit was subjected to ±2500 V 100 kHz ring wave and ±500 V Differential Surge at 230 VAC using 10 strikes at each condition. A test failure was defined as a nonrecoverable interruption of output requiring supply repair or recycling of input voltage. Level (V) Input Voltage (VAC) Injection Location Injection Phase (°) +2500 230 L1, L2 0 -2500 230 L1, L2 0 +2500 230 L1, L2 90 -2500 230 L1, L2 90 Level (V) +500 -500 +500 -500 Input Voltage (VAC) 230 230 230 230 Injection Location L1, L2 L1, L2 L1, L2 L1, L2 Injection Phase (°) 0 0 90 90 Type 100 kHz Ring Wave (500 A) 100 kHz Ring Wave (500 A) 100 kHz Ring Wave (500 A) 100 kHz Ring Wave (500 A) Test Result (Pass/Fail) Pass Pass Pass Pass Type Test Result (Pass/Fail) Surge (2 ) Surge (2 ) Surge (2 ) Surge (2 ) Pass Pass Pass Pass Figure 79 – 500 V Differential Line Surge at 90˚ Injection Phase without TVS VR1. CH1: U1 VDS (<650 V); CH2: C6 Voltage. Page 53 of 56 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-314 15.3 W Dimmable LED Driver Using LNK406EG 26-Jan-12 For improved surge performance or higher surge margin requirement, TVS VR1 can be added. Figure 80 – 500 V Differential Line Surge at 90˚ Injection Phase with TVS VR1. CH1: U1 VDS (<600 V); CH2: C6 Voltage. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 54 of 56 26-Jan-12 DER-314 15.3 W Dimmable LED Driver Using LNK406EG 15 Revision History Date 26-Jan-12 Page 55 of 56 Author CA Revision 1.0 Description and Changes Initial Release Reviewed Apps & Mktg Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-314 15.3 W Dimmable LED Driver Using LNK406EG 26-Jan-12 For the latest updates, visit our website: www.powerint.com Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability. Power Integrations does not assume any liability arising from the use of any device or circuit described herein. POWER INTEGRATIONS MAKES NO WARRANTY HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS. PATENT INFORMATION The products and applications illustrated herein (including transformer construction and circuits’ external to the products) may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations’ patents may be found at www.powerint.com. Power Integrations grants its customers a license under certain patent rights as set forth at http://www.powerint.com/ip.htm. The PI Logo, TOPSwitch, TinySwitch, LinkSwitch, DPA-Switch, PeakSwitch, CAPZero, SENZero, LinkZero, HiperPFS, HiperTFS, HiperLCS, Qspeed, EcoSmart, Clampless, E-Shield, Filterfuse, StackFET, PI Expert and PI FACTS are trademarks of Power Integrations, Inc. Other trademarks are property of their respective companies. ©Copyright 2011 Power Integrations, Inc. Power Integrations Worldwide Sales Support Locations WORLD HEADQUARTERS 5245 Hellyer Avenue San Jose, CA 95138, USA. Main: +1-408-414-9200 Customer Service: Phone: +1-408-414-9665 Fax: +1-408-414-9765 e-mail: [email protected] GERMANY Rueckertstrasse 3 D-80336, Munich Germany Phone: +49-89-5527-3911 Fax: +49-89-5527-3920 e-mail: [email protected] JAPAN Kosei Dai-3 Building 2-12-11, Shin-Yokohama, Kohoku-ku, Yokohama-shi, Kanagawa 222-0033 Japan Phone: +81-45-471-1021 Fax: +81-45-471-3717 e-mail: [email protected] TAIWAN 5F, No. 318, Nei Hu Rd., Sec. 1 Nei Hu District Taipei 114, Taiwan R.O.C. Phone: +886-2-2659-4570 Fax: +886-2-2659-4550 e-mail: [email protected] CHINA (SHANGHAI) Rm 1601/1610, Tower 1 Kerry Everbright City No. 218 Tianmu Road West Shanghai, P.R.C. 200070 Phone: +86-021-6354-6323 Fax: +86-021-6354-6325 INDIA th #1, 14 Main Road Vasanthanagar Bangalore-560052 India Phone: +91-80-4113-8020 Fax: +91-80-4113-8023 e-mail: [email protected] KOREA RM 602, 6FL Korea City Air Terminal B/D, 159-6 Samsung-Dong, Kangnam-Gu, Seoul, 135-728 Korea Phone: +82-2-2016-6610 Fax: +82-2-2016-6630 e-mail: [email protected] EUROPE HQ 1st Floor, St. James’s House East Street, Farnham Surrey GU9 7TJ United Kingdom Phone: +44 (0) 1252-730-141 Fax: +44 (0) 1252-727-689 e-mail: [email protected] ITALY Via De Amicis 2 20091 Bresso MI Italy Phone: +39-028-928-6000 Fax: +39-028-928-6009 e-mail: [email protected] SINGAPORE 51 Newton Road, #19-01/05 Goldhill Plaza Singapore, 308900 Phone: +65-6358-2160 Fax: +65-6358-2015 e-mail: [email protected] APPLICATIONS HOTLINE World Wide +1-408-414-9660 e-mail: [email protected] CHINA (SHENZHEN) rd 3 Floor, Block A, Zhongtou International Business Center, No. 1061, Xiang Mei Road, FuTian District, ShenZhen, China, 518040 Phone: +86-755-8379-3243 Fax: +86-755-8379-5828 e-mail: [email protected] Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com APPLICATIONS FAX World Wide +1-408-414-9760 Page 56 of 56 Design Example Report Title 12 W Non-Isolated, Buck-Boost Topology, Power Factor Corrected, LED Driver Using LinkSwitchTM-PH LNK406EG Specification 90 VAC – 265 VAC Input; 36 V, 330 mA Output Application LED Driver Author Applications Engineering Department Document Number DER-273 Date March 31, 2011 Revision 1.0 Summary and Features Dramatically simplifies off-line, power factor corrected, LED driver design Single-stage, power factor corrected, non-isolated LED driver Compact with extremely low component count High PF >0.9 across line and load High efficiency >85% Low THD, <25% at 230 VAC Eliminates all control loop compensation No output current sensing required Advanced performance features Compensates for inductance tolerance Compensates for input voltage variations Compensates for output voltage variations Frequency jittering greatly reduces EMI filter costs Advanced protection and safety features Auto-restart protection for short-circuit Hysteretic thermal shutdown Power Integrations 5245 Hellyer Avenue, San Jose, CA 95138 USA. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-273 12 W Buck-Boost LED Driver Using LNK406EG 31-Mar-11 PATENT INFORMATION The products and applications illustrated herein (including transformer construction and circuits external to the products) may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at www.powerint.com. Power Integrations grants its customers a license under certain patent rights as set forth at <http://www.powerint.com/ip.htm>. Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 2 of 37 31-Mar-11 DER-273 12 W Buck-Boost LED Driver Using LNK406EG Table of Contents 1 2 3 4 5 6 Introduction ................................................................................................................. 5 Power Supply Specification ........................................................................................ 7 Schematic ................................................................................................................... 8 Circuit Description....................................................................................................... 9 PCB Layout............................................................................................................... 10 Bill of Materials ......................................................................................................... 12 6.1 Electrical ............................................................................................................ 12 6.2 Mechanical ........................................................................................................ 12 7 Heat Sink Assembly.................................................................................................. 13 8 Inductor Specification................................................................................................ 15 8.1 Electrical Diagram.............................................................................................. 15 8.2 Electrical Specifications ..................................................................................... 15 8.3 Materials ............................................................................................................ 15 8.4 Inductor Build Diagram ...................................................................................... 15 9 Performance Data..................................................................................................... 16 9.1 Efficiency ........................................................................................................... 16 9.2 Line and Load Regulation.................................................................................. 17 9.3 Power Factor ..................................................................................................... 18 9.4 THD ................................................................................................................... 19 9.5 Harmonics ......................................................................................................... 20 9.5.1 230 VAC .....................................................................................................20 9.5.2 115 VAC .....................................................................................................21 9.6 Test Data ........................................................................................................... 22 9.6.1 Test Data, 13 LED Load .............................................................................22 9.6.2 Test Data, 12 LED Load .............................................................................22 9.6.2 Test Data, 11 LED Load .............................................................................23 9.6.3 230 VAC Harmonics Data ..........................................................................24 9.6.3 115 VAC Harmonics Data ..........................................................................25 10 Waveforms................................................................................................................ 26 10.1 Input Line Current ..........................................................................................26 10.2 Drain Voltage and Current Normal Operation ................................................27 10.3 Drain Voltage and Current Start-up Operation ...............................................28 10.4 Output Current and Output Voltage................................................................29 10.5 Output Current and Voltage at Power-up, Power-down .................................30 10.6 Output Short...................................................................................................31 11 Thermal Measurements ............................................................................................ 32 11 Conducted EMI Measurements ................................................................................ 33 11.1 Conducted EMI Test Set-up .............................................................................. 33 11.2 Conducted EMI Test Results ............................................................................. 34 12 Revision History........................................................................................................ 36 Important Note: Page 3 of 37 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-273 12 W Buck-Boost LED Driver Using LNK406EG 31-Mar-11 Although this board is designed to satisfy safety isolation requirements, the engineering prototype has not been agency approved. Therefore, all testing should be performed using an isolation transformer to provide the AC input to the prototype board. Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 4 of 37 31-Mar-11 DER-273 12 W Buck-Boost LED Driver Using LNK406EG 1 Introduction The document describes a non-isolated, power factor corrected, low THD, high-efficiency LED driver designed to drive 36 V at 330 mA from an input voltage range of 90 VAC to 265 VAC. The LinkSwitch-PH has been developed to cost effectively design a single-stage power factor corrected LED driver with primary-side constant current control. The LinkSwitch-PH controller was optimized for LED driver applications with minimal external parts count and control of the output current through the LED load without the use of an optocoupler. The LinkSwitch-PH monolithically integrates the 725 V power MOSFET and controller. The controller consists of an oscillator, PWM, 6 V regulator, BYPASS (BP) pin programming functions, over-temperature protection, frequency jittering, cycle-by-cycle current limit, leading edge blanking, and charge controller for output CC (constant current) control. The LinkSwitch-PH also provides a sophisticated range of protection features including auto-restart for control loop open/short faults and output short-circuit conditions. Accurate hysteretic thermal shutdown ensures safe average PCB temperatures under all conditions. The non-isolated power factor corrected buck-boost presented in this report shows how LinkSwitch-PH dramatically simplifies off-line, high-efficiency, power factor corrected LED driver design with very low parts count. This document contains the LED driver specification, schematic, PCB diagram, bill of materials, conducted EMI measurements, thermal measurements, inductor documentation and typical performance characteristics. Figure 1 – Populated Circuit Board Photograph. Page 5 of 37 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-273 12 W Buck-Boost LED Driver Using LNK406EG 31-Mar-11 Figure 2 – Populated Circuit Board Photograph, Top. Figure 3 – Populated Circuit Board Photograph, Bottom. Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 6 of 37 31-Mar-11 DER-273 12 W Buck-Boost LED Driver Using LNK406EG 2 Power Supply Specification The table below represents the minimum acceptable performance of the design. Actual performance is listed in the results section. Description Input Voltage Frequency Output LED voltage LED Current Total Output Power Continuous Output Power Symbol Min Typ Max Units Comment VIN fLINE 90 47 265 63 VAC Hz 2 Wire – no P.E. 50/60 VOUT 30 38 V mA 36 330 12 POUT W Environmental Conducted EMI Meets CISPR22B / EN55022B Safety Non-isolated Efficiency 83 Harmonic Class C Power Factor Ambient Temperature Page 7 of 37 61000-3-2 0.9 TAMB 25 o C Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-273 12 W Buck-Boost LED Driver Using LNK406EG 31-Mar-11 3 Schematic Figure 4 – Schematic. Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 8 of 37 31-Mar-11 DER-273 12 W Buck-Boost LED Driver Using LNK406EG 4 Circuit Description The LinkSwitch-PH (U1) is a highly integrated primary-side controller intended for use in LED driver applications. The LinkSwitch-PH provides high power factor in a single-stage conversion topology while regulating the output current in a wide range of input and output voltage variations typical in LED driver application environment. All of the control circuitry responsible for these functions plus a high-voltage power MOSFET is incorporated into the device. Capacitor C1, C2, and differential choke L1, and L2 perform EMI filtering while maintaining high-power factor. This input filter network plus the frequency jittering feature of LinkSwitch-PH easily meets Class B emission limits. Resistor R1 and R2 were used to damp the Q of L1 and L2 for lower EMI. The buck-boost power circuit with floating output connection composed of U1 (power switch + control), D2 and D3 (free-wheeling diode), C5 (output capacitor), and L3 (output inductor). Diode D4 was used to prevent negative voltage appearing across drain-source of U1 near the zero-crossing of the input voltage. Diode D1 and C3 detect the peak AC line voltage. The voltage across C3 along with R3, R4, and R5 sets input current fed into the VOLTAGE MONITOR (V) pin. This current is used by U1 to control line undervoltage (UV), overvoltage (OV), and feed-forward current which in conjunction with the FEEDBACK (FB) pin current provides constant current to the LED load. The FB pin current used by U1 for output voltage feedback is provided by the voltage to current converter network formed by R7-R10, Q1, C6, and D4. Output voltage is converted to feedback current by the following relation: I FB k VOUT where 1 R8 k R7 R8 R9 Voltage across R8 was chosen high enough to eliminate or minimize the effect of the temperature and VCE dependence of Q1’s VBE voltage. Page 9 of 37 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-273 12 W Buck-Boost LED Driver Using LNK406EG 31-Mar-11 5 PCB Layout The RD-257 assembled board was used. Figure 2 – Printed Circuit Layout, Top, 2” (50.8 mm) x 0.95” (24.1 mm). Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 10 of 37 31-Mar-11 DER-273 12 W Buck-Boost LED Driver Using LNK406EG The modifications to the RD-257 PCB are shown below. Inductor L3 was removed and reworked into the location on the PCB for D2. Diodes D2 and D3 were removed and soldered into locations indicated. Cut Trace Inductor L2 in Place of D2 D2, D3 Jumper Figure 3 – Printed Circuit Layout, Bottom. Page 11 of 37 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-273 12 W Buck-Boost LED Driver Using LNK406EG 31-Mar-11 6 Bill of Materials 6.1 Electrical Item Qty Ref Des Description 1 1 BR1 1000 V, 0.8 A, Bridge Rectifier, SMD, MBS-1, 4-SOIC 2 1 C1 3 1 C2 Mfg Part Number Mfg B10S-G Comchip 100 nF, 630 V, Film ECQ-E6104KF Panasonic 100 nF, 400 V, Film ECQ-E4104KF Panasonic SMG400VB2R2M8X11LL Nippon ChemiCon 4 1 C3 2.2 F, 400 V, Electrolytic, (8 x 11.5) 5 1 C4 10 F, 25 V, Ceramic, X7R, 1206 6 1 C5 220 F, 50 V, Electrolytic, Very Low ESR, 42 m, (10 x 16) 7 1 C6 1 F, 25 V, Ceramic, X7R, 1206 8 1 D1 1000 V, 1 A, Rectifier, Glass Passivated, DO-213AA (MELF) 9 2 D2 D3 600 V, 1 A, Ultrafast Recovery, 35 ns, SMB Case 10 1 D4 100 V, 1 A, Ultrafast Recovery, 25 ns, DO-214AC 11 1 D5 100 V, 0.2 A, Fast Switching, 50 ns, SOD-323 12 1 F1 3.15 A, 250 V, Slow, RST 13 2 L1 L2 2.2 mH, 0.19 A, Ferrite Core 14 1 L3 0.68 mH, RM6 Ferrite Core 15 1 Q1 PNP, Small Signal BJT, 500 V, 0.15 A, SOT23 16 2 R1 R2 17 2 R3 R4 18 1 19 20 21 22 23 24 25 6.2 ECJ-3YB1E106M Panasonic EKZE500ELL221MJ16S Nippon ChemiCon HMK316B7105KL-T Taiyo Yuden DL4007-13-F Diodes Inc MURS160T3G On Semi ES1B-13-F Diodes Inc BAV19WS-7-F Diodes Inc 507-1181 Belfuse CTCH895F-222K CT Parts FMMT560TA Zetex 10 k, 5%, 1/4 W, Thick Film, 1206 ERJ-8GEYJ103V Panasonic 2.00 M, 1%, 1/4 W, Thick Film, 1206 ERJ-8ENF2004V Panasonic R6 24.9 k, 1%, 1/16 W, Thick Film, 0603 ERJ-3EKF2492V Panasonic 1 R7 88.7 k, 1%, 1/16 W, Thick Film, 0603 ERJ-3EKF8872V Panasonic 1 R8 34.8 k, 1%, 1/16 W, Thick Film, 0603 ERJ-3EKF3482V Panasonic 1 R9 90.9 k, 1%, 1/16 W, Thick Film, 0603 ERJ-3EKF9092V Panasonic 1 R10 47 k, 5%, 1/10 W, Thick Film, 0603 ERJ-3GEYJ473V Panasonic 1 R12 0 , 5%, 1/4 W, Thick Film, 1206 ERJ-8GEY0R00V Panasonic 1 RV1 275 V, 23 J, 7 mm, RADIAL V275LA4P Littlefuse 1 U1 LinkSwitch-PH, eSIP LNK406EG Power Integrations Part Number Mfg Mechanical Item Qty Ref Des Description 1 1 HSK RD257_HSK 2 1 SCREW1 3 1 ESIP CLIP1 Heat sink Hardware, Edge Clip 16.5 mm L x 7.5 mm W x 0.5 mm H 4 1 NUT1 Nut, Hex 4-40, SS 5 1 TE1 SCREW MACHINE PHIL Flat head 4-40 X 1/4 SS PH-3 Terminal, Eyelet, Tin Plated Brass, Zierick PN 190 190 Zierick 6 1 TP1 Test Point, WHT, Miniature THRU-HOLE MOUNT 5002 Keystone 7 2 TP2 TP4 Test Point, BLK, Miniature THRU-HOLE MOUNT 5001 Keystone 8 1 TP3 Test Point, RED, Miniature THRU-HOLE MOUNT 5000 Keystone Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 12 of 37 31-Mar-11 DER-273 12 W Buck-Boost LED Driver Using LNK406EG 7 Heat Sink Assembly Figure 4 – Heat Sink Dimensions. Page 13 of 37 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-273 12 W Buck-Boost LED Driver Using LNK406EG 31-Mar-11 Figure 5 – Heat Sink Assembly Drawing. Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 14 of 37 31-Mar-11 DER-273 12 W Buck-Boost LED Driver Using LNK406EG 8 Inductor Specification 8.1 Electrical Diagram Figure 6 – Inductor Electrical Diagram. 8.2 Electrical Specifications Inductance Resonant Frequency 8.3 680 H ±5% 1 MHz (Min.) Materials Item [1] [2] [3] [4] 8.4 Pins 1-FLY1, all other windings open, measured at 66 kHz, 0.4 VRMS Pins 1-FLY1, all other windings open Description Core: PC44 RM6 (NC2H). Bobbin: RM6, Vertical, 6 pins, 3/3. Magnet Wire: #27 AWG. Tape: 3M 1298 Polyester Film, 6.4 mm wide. Inductor Build Diagram Figure 7 – Inductor Build Diagram. Page 15 of 37 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-273 12 W Buck-Boost LED Driver Using LNK406EG 31-Mar-11 9 Performance Data The following data were measured using 3 sets of load (i.e. 11, 12, and 13 LED strings to represent the load range of 30 V ~ 36 V output voltage / 10 W ~ 12 W output power). Refer to the table on Section 9.6 for the complete set of test data values. All measurements performed at room temperature. 9.1 Efficiency 87.0 ~12 W Pout ~11 W Pout ~10 W Pout 86.5 Efficiency (%) 86.0 85.5 85.0 84.5 84.0 83.5 83.0 80 100 120 140 160 180 200 220 240 260 280 Input Voltage (VAC) Figure 8 – Efficiency vs. Load and Input Voltage. Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 16 of 37 31-Mar-11 9.2 DER-273 12 W Buck-Boost LED Driver Using LNK406EG Line and Load Regulation 350 ~12 W Pout ~11 W Pout ~10 W Pout 345 Output Currrent (mA) 340 335 330 325 320 315 310 305 300 80 100 120 140 160 180 200 220 240 260 Input Voltage (VAC) Figure 9 – Regulation vs. Load and Input Voltage. Page 17 of 37 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com 280 DER-273 12 W Buck-Boost LED Driver Using LNK406EG 9.3 31-Mar-11 Power Factor 0.99 ~12 W Pout ~11 W Pout ~10 W Pout 0.98 Power Factor (PF) 0.97 0.96 0.95 0.94 0.93 0.92 0.91 0.90 80 100 120 140 160 180 200 220 240 260 280 Input Voltage (VAC) Figure 10 – Power Factor vs. Load and Input Voltage. Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 18 of 37 31-Mar-11 9.4 DER-273 12 W Buck-Boost LED Driver Using LNK406EG THD 25 24 23 THD (A%) 22 21 20 19 18 ~12 W Pout ~11 W Pout ~10 W Pout 17 16 80 100 120 140 160 180 200 220 240 260 Input Voltage (VAC) Figure 11 – THD vs. Load and Input Voltage. Page 19 of 37 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com 280 DER-273 12 W Buck-Boost LED Driver Using LNK406EG 9.5 31-Mar-11 Harmonics 9.5.1 230 VAC 50 Class C Limit 230 VAC Harmonics 45 Harmonic Content (mA) 40 35 30 25 20 15 10 5 0 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 Harmonic # Figure 12 – 230 VAC Input Current Harmonics. Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 20 of 37 31-Mar-11 DER-273 12 W Buck-Boost LED Driver Using LNK406EG 9.5.2 115 VAC 100 Class C Limit 115 VAC Harmonics 90 Harmonic Content (mA) 80 70 60 50 40 30 20 10 0 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 Harmonic # Figure 13 – 115 VAC Input Current Harmonics. Page 21 of 37 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-273 12 W Buck-Boost LED Driver Using LNK406EG 31-Mar-11 9.6 Test Data All measurements were taken with the board at open frame, 25 °C ambient. 9.6.1 Test Data, 13 LED Load Input Input Measurement Load Measurement VAC (VRMS) Freq (Hz) I (mARMS) P (W) PF %ATHD 90 100 115 132 185 200 230 240 265 60 60 60 60 50 50 50 50 50 157.56 142.99 125.86 111.01 81.31 75.68 66.62 64.14 58.81 13.93 13.99 14.11 14.21 14.40 14.41 14.38 14.36 14.29 0.982 0.979 0.974 0.969 0.957 0.952 0.938 0.932 0.917 17.23 18.66 20.27 21.67 23.34 23.62 23.88 23.84 23.64 V (VDC) I (mADC) 37.41 37.19 37.09 37.04 36.99 36.96 36.94 36.93 36.92 MAX MIN 314.30 319.20 324.60 328.60 333.20 333.20 331.40 330.50 327.40 333.20 314.30 PO (W) Efficiency (%) 11.85 11.97 12.14 12.27 12.45 12.44 12.36 12.32 12.20 0.97% 4.76% 85.08 85.54 86.07 86.35 86.48 86.33 85.95 85.79 85.38 9.6.2 Test Data, 12 LED Load Input Input Measurement Load Measurement VAC (VRMS) Freq (Hz) I (mARMS) P (W) PF %ATHD 90 100 115 132 185 200 230 240 265 60 60 60 60 50 50 50 50 50 145.84 132.66 117.06 103.57 76.42 71.29 63.12 60.91 56.17 12.88 12.97 13.10 13.24 13.51 13.55 13.59 13.60 13.60 0.981 0.978 0.973 0.968 0.955 0.950 0.935 0.930 0.913 17.70 19.03 20.56 21.71 22.99 23.14 23.07 23.16 22.83 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com V (VDC) I (mADC) 34.62 34.41 34.33 34.29 34.26 34.24 34.24 34.23 34.22 MAX MIN 313.00 318.30 324.10 328.80 334.90 335.30 334.50 334.00 332.00 335.30 313.00 PO (W) Efficiency (%) 10.93 11.05 11.23 11.37 11.60 11.61 11.58 11.56 11.48 1.61% 5.15% 84.89 85.22 85.71 85.88 85.86 85.70 85.23 85.03 84.44 Page 22 of 37 31-Mar-11 DER-273 12 W Buck-Boost LED Driver Using LNK406EG 9.6.2 Test Data, 11 LED Load Input Input Measurement Load Measurement VAC (VRMS) Freq (Hz) I (mARMS) P (W) PF %ATHD 90 100 115 132 185 200 230 240 265 60 60 60 60 50 50 50 50 50 134.59 122.76 108.88 96.49 71.84 67.25 59.94 57.97 53.79 11.87 11.98 12.17 12.32 12.68 12.75 12.87 12.90 12.97 0.979 0.976 0.971 0.967 0.954 0.948 0.933 0.927 0.909 18.20 19.41 20.64 21.64 22.46 22.51 22.23 22.12 21.62 Page 23 of 37 V (VDC) I (mADC) 31.83 31.66 31.57 31.55 31.53 31.51 31.50 31.49 31.48 MAX MIN 312.50 318.20 324.00 330.00 338.00 339.00 340.00 340.00 340.00 340.00 312.50 PO (W) Efficiency (%) 10.04 10.18 10.37 10.52 10.79 10.82 10.85 10.84 10.83 3.03% 5.30% Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com 84.62 84.97 85.24 85.41 85.11 84.84 84.34 84.06 83.51 DER-273 12 W Buck-Boost LED Driver Using LNK406EG 31-Mar-11 9.6.3 230 VAC Harmonics Data Freq 49.998 V 230.11 I (mA) 66.86 P 14.4300 PF 0.9381 %THD 23.93 nth Order mA content Base Limit mA/W Actual Limit Remarks 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 64.06 10.20 7.66 5.23 3.85 2.69 2.41 1.85 1.66 1.42 1.42 1.00 1.03 0.85 0.83 0.67 0.65 0.56 0.57 0.47 0.48 0.38 0.38 0.38 0.48 3.40000 1.90000 1.00000 0.50000 0.35000 0.29615 0.25667 0.22647 0.20263 0.18333 0.16739 0.15400 0.14259 0.13276 0.12419 0.11667 0.11000 0.10405 0.09872 49.0620 27.4170 14.4300 7.2150 5.0505 4.2735 3.7037 3.2680 2.9240 2.6455 2.4155 2.2222 2.0576 1.9157 1.7921 1.6835 1.5873 1.5015 1.4245 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 24 of 37 31-Mar-11 DER-273 12 W Buck-Boost LED Driver Using LNK406EG 9.6.3 115 VAC Harmonics Data Freq 59.998 Page 25 of 37 V 115.02 I (mA) 127.89 P 14.3350 PF 0.9745 %THD 20.31 nth Order mA Content Base Limit mA/W Actual Limit Remarks 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 124.19 19.23 11.00 7.56 5.72 4.09 2.88 2.22 1.79 1.22 0.99 0.74 0.92 1.18 0.93 0.72 0.45 0.35 0.30 0.24 0.16 0.13 0.10 0.09 0.10 3.40000 1.90000 1.00000 0.50000 0.35000 0.29615 0.25667 0.22647 0.20263 0.18333 0.16739 0.15400 0.14259 0.13276 0.12419 0.11667 0.11000 0.10405 0.09872 97.4780 54.4730 28.6700 14.3350 10.0345 8.4907 7.3586 6.4929 5.8094 5.2562 4.7991 4.4152 4.0881 3.8062 3.5606 3.3448 3.1537 2.9832 2.8302 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-273 12 W Buck-Boost LED Driver Using LNK406EG 31-Mar-11 10 Waveforms 10.1 Input Line Current Figure 14 – 90 VAC 60 Hz, Full Load. Upper: IIN, 100 mA / div. Lower: VIN, 100 V, 10 ms / div. Figure 15 – 115 VAC 60 Hz, Full Load. Upper: IIN, 100 mA / div. Lower: VIN, 100 V, 10 ms / div. Figure 16 – 230 VAC 50 Hz, Full Load. Upper: IIN, 50 mA / div. Lower: VIN, 100 V, 10 ms / div. Figure 17 – 265 VAC 50 Hz, Full Load. Upper: IIN, 50 mA / div. Lower: VIN, 100 V, 10 ms / div. Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 26 of 37 31-Mar-11 10.2 DER-273 12 W Buck-Boost LED Driver Using LNK406EG Drain Voltage and Current Normal Operation Figure 18 – 90 VAC 60Hz, Full Load. Upper: IDRAIN, 500 mA / div. Lower: VDRAIN, 50 V, 5 ms / div. Figure 19 – 90 VAC 60Hz, Full Load. Upper: IDRAIN, 500 mA / div. Lower: VDRAIN, 50 V, 5 s / div. Figure 20 – 265 VAC 50 Hz, Full Load. Upper: IDRAIN, 500 mA / div. Lower: VDRAIN, 100 V, 5 ms / div. Figure 21 – 265 VAC 50 Hz, Full Load. Upper: IDRAIN, 500 mA / div. Lower: VDRAIN, 100 V, 5 s / div. Page 27 of 37 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-273 12 W Buck-Boost LED Driver Using LNK406EG 10.3 31-Mar-11 Drain Voltage and Current Start-up Operation Figure 22 – 90 VAC 60 Hz, Full Load Start-up. Upper: IDRAIN, 500 mA / div. Lower: VDRAIN, 50 V, 5 ms / div. Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Figure 23 – 265 VAC 50 Hz, 90˚ Full Load Start-up. Upper: IDRAIN, 500 mA / div. Lower: VDRAIN, 100 V, 5 ms / div. Page 28 of 37 31-Mar-11 10.4 DER-273 12 W Buck-Boost LED Driver Using LNK406EG Output Current and Output Voltage Figure 24 – 90 VAC 60 Hz, Full Load. Upper: IOUT, 100 mA / div. Lower: VOUT, 10 V, 5 ms / div. Figure 25 – 115 VAC 60 Hz, Full Load. Upper: IOUT, 100 mA / div. Lower: VOUT, 10 V, 5 ms / div. Figure 26 – 230 VAC 50 Hz, Full Load. Upper: IOUT, 100 mA / div. Lower: VOUT, 10 V, 5 ms / div. Figure 27 – 265 VAC 50 Hz, Full Load. Upper: IOUT, 100 mA / div. Lower: VOUT, 10 V, 5 ms / div. Page 29 of 37 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-273 12 W Buck-Boost LED Driver Using LNK406EG 10.5 31-Mar-11 Output Current and Voltage at Power-up, Power-down Figure 28 – 90 VAC 60 Hz, Output Rise. Upper: IOUT, 100 mA / div. Lower: VOUT, 10 V, 50 ms / div. Figure 29 – 90 VAC 60 Hz, Output Fall. Upper: IOUT, 100 mA / div. Lower: VOUT, 10 V, 50 ms / div. Figure 30 – 265 VAC 50 Hz, Output Rise. Upper: IOUT, 100 mA / div. Lower: VOUT, 10 V, 50 ms / div. Figure 31 – 265 VAC 50 Hz, Output Fall. Upper: IOUT, 100 mA / div. Lower: VOUT, 10 V, 50 ms / div. Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 30 of 37 31-Mar-11 10.6 DER-273 12 W Buck-Boost LED Driver Using LNK406EG Output Short Figure 32 – 265 VAC 50 Hz, Output Short. Upper: IDRAIN, 1 A / div. Lower: VDRAIN, 100 V, 500 ms / div. Page 31 of 37 Figure 33 – 265 VAC 50 Hz, Output Short. Upper: IDRAIN, 1 A / div. Lower: VDRAIN, 100 V, 5 ms / div. Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-273 12 W Buck-Boost LED Driver Using LNK406EG 31-Mar-11 11 Thermal Measurements Thermal measurements were done with the EUT operated at room temperature. Figure 34 – 90 VAC 60 Hz, Thermals. Top Side. Device: U1 - LNK406EG Figure 35 – 90 VAC 60 Hz, Thermals. Bottom Side. Device: D2, D3 Figure 36 – 265 VAC 50 Hz, Thermals. Top Side. Device: U1 - LNK406EG Figure 37 – 265 VAC 50 Hz, Thermals. Bottom Side. Device: D2, D3 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 32 of 37 31-Mar-11 DER-273 12 W Buck-Boost LED Driver Using LNK406EG 11 Conducted EMI Measurements 11.1 Conducted EMI Test Set-up Figure 38 – EMI Measurement Set-up. Page 33 of 37 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-273 12 W Buck-Boost LED Driver Using LNK406EG 11.2 31-Mar-11 Conducted EMI Test Results Power Integrations 22.Feb 11 09:02 RBW MT 9 kHz 500 ms Att 10 dB AUTO dBµV 100 kHz 120 EN55015Q LIMIT CHECK 110 1 MHz PASS 10 MHz SGL 1 QP CLRWR 100 90 2 AV CLRWR TDF 80 70 60 EN55015A 50 6DB 40 30 20 10 0 -10 -20 9 kHz Trace1: 30 MHz EDIT PEAK LIST (Final Measurement Results) EN55015Q Trace2: EN55015A Trace3: --- TRACE FREQUENCY LEVEL dBµV DELTA LIMIT dB 2 Average 67.1676282959 kHz 28.02 L1 gnd 2 Average 124.475875068 kHz 30.87 N gnd 2 Average 126.977840157 kHz 41.66 N gnd 2 Average 133.454986145 kHz 22.80 L1 gnd 2 Average 136.137431366 kHz 35.13 L1 gnd 2 Average 138.873793737 kHz 25.74 L1 gnd 1 Quasi Peak 196.231331718 kHz 53.53 N gnd 2 Average 196.231331718 kHz 45.07 L1 gnd -8.69 1 Quasi Peak 261.871472881 kHz 47.87 N gnd -13.50 2 Average 261.871472881 kHz 36.66 L1 gnd -14.71 1 Quasi Peak 325.955575511 kHz 44.22 L1 gnd -15.33 2 Average 325.955575511 kHz 32.07 L1 gnd -17.47 1 Quasi Peak 389.890938834 kHz 40.92 L1 gnd -17.14 1 Quasi Peak 457.177788726 kHz 37.12 L1 gnd -19.62 1 Quasi Peak 782.418853721 kHz 39.38 N gnd -16.61 2 Average 17.975130353 MHz 30.40 L1 gnd -19.59 -10.23 Figure 39 – Conducted EMI, 12 LED Load, 230 VAC, 60 Hz, and EN55015 Limits. Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 34 of 37 31-Mar-11 DER-273 12 W Buck-Boost LED Driver Using LNK406EG Power Integrations 22.Feb 11 09:31 RBW MT 9 kHz 500 ms Att 10 dB AUTO dBµV 100 kHz 120 EN55015Q LIMIT CHECK 110 1 MHz PASS 10 MHz SGL 100 1 QP CLRWR 90 2 AV CLRWR TDF 80 70 60 EN55015A 50 6DB 40 30 20 10 0 -10 -20 9 kHz Trace1: 30 MHz EDIT PEAK LIST (Final Measurement Results) EN55015Q Trace2: EN55015A Trace3: --- TRACE FREQUENCY LEVEL dBµV DELTA LIMIT dB 2 Average 64.5467705779 kHz 33.38 L1 gnd 2 Average 67.1676282959 kHz 34.73 N gnd 2 Average 124.475875068 kHz 41.51 N gnd 2 Average 126.977840157 kHz 41.55 L1 gnd 2 Average 129.530094744 kHz 36.65 N gnd 2 Average 136.137431366 kHz 47.61 L1 gnd 2 Average 138.873793737 kHz 40.17 L1 gnd 2 Average 162.428505844 kHz 33.89 L1 gnd -21.44 1 Quasi Peak 196.231331718 kHz 55.07 N gnd -8.69 2 Average 196.231331718 kHz 46.05 L1 gnd -7.71 1 Quasi Peak 261.871472881 kHz 44.02 L1 gnd -17.34 2 Average 261.871472881 kHz 34.52 L1 gnd -16.84 1 Quasi Peak 393.789848222 kHz 39.10 N gnd -18.87 1 Quasi Peak 457.177788726 kHz 40.27 L1 gnd -16.47 1 Quasi Peak 520.310969312 kHz 38.50 L1 gnd -17.49 1 Quasi Peak 782.418853721 kHz 37.78 N gnd -18.21 Figure 40 – Conducted EMI, 12 LED Load, 115 VAC, 60 Hz, and EN55015 Limits. Page 35 of 37 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-273 12 W Buck-Boost LED Driver Using LNK406EG 31-Mar-11 12 Revision History Date 31-Mar-11 Author CA Revision 1.0 Description & changes Initial release Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Reviewed ME Page 36 of 37 31-Mar-11 DER-273 12 W Buck-Boost LED Driver Using LNK406EG For the latest updates, visit our website: www.powerint.com Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability. Power Integrations does not assume any liability arising from the use of any device or circuit described herein. POWER INTEGRATIONS MAKES NO WARRANTY HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS. PATENT INFORMATION The products and applications illustrated herein (including transformer construction and circuits external to the products) may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations’ patents may be found at www.powerint.com. Power Integrations grants its customers a license under certain patent rights as set forth at http://www.powerint.com/ip.htm. The PI Logo, TOPSwitch, TinySwitch, LinkSwitch, DPA-Switch, PeakSwitch, CAPZero, SENZero, LinkZero, HiperPFS, HiperTFS, Qspeed, EcoSmart, Clampless, E-Shield, Filterfuse, StackFET, PI Expert and PI FACTS are trademarks of Power Integrations, Inc. Other trademarks are property of their respective companies. ©Copyright 2011 Power Integrations, Inc. Power Integrations Worldwide Sales Support Locations WORLD HEADQUARTERS 5245 Hellyer Avenue San Jose, CA 95138, USA. Main: +1-408-414-9200 Customer Service: Phone: +1-408-414-9665 Fax: +1-408-414-9765 e-mail: [email protected] GERMANY Rueckertstrasse 3 D-80336, Munich Germany Phone: +49-89-5527-3911 Fax: +49-89-5527-3920 e-mail: [email protected] JAPAN Kosei Dai-3 Building 2-12-11, Shin-Yokohama, Kohoku-ku, Yokohama-shi, Kanagawa 222-0033 Japan Phone: +81-45-471-1021 Fax: +81-45-471-3717 e-mail: [email protected] TAIWAN 5F, No. 318, Nei Hu Rd., Sec. 1 Nei Hu District Taipei 114, Taiwan R.O.C. Phone: +886-2-2659-4570 Fax: +886-2-2659-4550 e-mail: [email protected] CHINA (SHANGHAI) Rm 1601/1610, Tower 1 Kerry Everbright City No. 218 Tianmu Road West Shanghai, P.R.C. 200070 Phone: +86-021-6354-6323 Fax: +86-021-6354-6325 e-mail: [email protected] INDIA #1, 14th Main Road Vasanthanagar Bangalore-560052 India Phone: +91-80-4113-8020 Fax: +91-80-4113-8023 e-mail: [email protected] KOREA RM 602, 6FL Korea City Air Terminal B/D, 159-6 Samsung-Dong, Kangnam-Gu, Seoul, 135-728 Korea Phone: +82-2-2016-6610 Fax: +82-2-2016-6630 e-mail: [email protected] EUROPE HQ 1st Floor, St. James’s House East Street, Farnham Surrey GU9 7TJ United Kingdom Phone: +44 (0) 1252-730-141 Fax: +44 (0) 1252-727-689 e-mail: [email protected] CHINA (SHENZHEN) Rm A, B & C 4th Floor, Block C, Electronics Science and Technology Building 2070 Shennan Zhong Road Shenzhen, Guangdong, P.R.C. 518031 Phone: +86-755-8379-3243 Fax: +86-755-8379-5828 e-mail: [email protected] ITALY Via De Amicis 2 20091 Bresso MI Italy Phone: +39-028-928-6000 Fax: +39-028-928-6009 e-mail: [email protected] SINGAPORE 51 Newton Road, #19-01/05 Goldhill Plaza Singapore, 308900 Phone: +65-6358-2160 Fax: +65-6358-2015 e-mail: [email protected] APPLICATIONS HOTLINE World Wide +1-408-414-9660 Page 37 of 37 APPLICATIONS FAX World Wide +1-408-414-9760 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com