LT1057/LT1058 Dual and Quad, JFET Input Precision High Speed Op Amps U FEATURES ■ ■ ■ ■ ■ ■ ■ ■ DESCRIPTIO The LT ®1057 is a matched JFET input dual op amp in the industry standard 8-pin configuration, featuring a combination of outstanding high speed and precision specifications. It replaces all the popular bipolar and JFET input dual op amps. In particular, the LT1057 upgrades the performance of systems using the LF412A and OP-215 JFET input duals. 14V/µs Slew Rate: 10V/µs Min 5MHz Gain-Bandwidth Product Fast Settling Time: 1.3µs to 0.02% 150µV Offset Voltage (LT1057): 450µV Max 180µV Offset Voltage (LT1058): 600µV Max 2µV/°C VOS Drift: 7µV/°C Max 50pA Bias Current at 70°C Low Voltage Noise: 13nV/√Hz at 1kHz 26nV/√Hz at 10Hz The LT1058 is the lowest offset quad JFET input operational amplifier in the standard 14-pin configuration. It offers significant accuracy improvement over presently available JFET input quad operational amplifiers. The LT1058 can replace four single precision JFET input op amps, while saving board space, power dissipation and cost. U APPLICATIO S ■ ■ ■ ■ ■ ■ Precision, High Speed Instrumentation Fast, Precision Sample-and-Hold Logarithmic Amplifiers D/A Output Amplifiers Photodiode Amplifiers Voltage-to-Frequency Converters Frequency-to-Voltage Converters Both the LT1057 and LT1058 are available in the plastic PDIP package and the surface mount SO package. , LTC and LT are registered trademarks of Linear Technology Corporation. U ■ TYPICAL APPLICATIO Current Output, High Speed, High Input Impedance Instrumentation Amplifier Distribution of Offset Voltage (All Packages, LT1057 and LT1058) 25 + 1/4 LT1058 2 1 – 4.7k 9.1k 5 – 1/4 LT1058 V1 12 1/4 LT1058 14 4.7k 7.5k + 7 + RX IOUT + 500Ω* – IOUT = 2(V1 – V2) RX 7.5k 6 13 VS = ±15V TA = 25°C 20 7.5k 8 1/4 LT1058 – PERCENT OF UNITS V2 3 LT1057: 610 OP AMPS LT1058: 520 OP AMPS 1130 OP AMPS TESTED 15 10 10 5 9 0 –1.0 6.8k 1k** –0.6 0.6 –0.2 0 0.2 INPUT OFFSET VOLTAGE (mV) 1.0 LT1057/1058 • TA02 *GAIN ADJUST **COMMON MODE REJECTION ADJUST BANDWIDTH ≈ 2MHz LT1057/1058 • TA01 10578fa 1 LT1057/LT1058 W W W AXI U U ABSOLUTE RATI GS (Note 1) Supply Voltage ...................................................... ± 20V Differential Input Voltage ....................................... ± 40V Input Voltage ......................................................... ± 20V Output Short-Circuit Duration .......................... Indefinite Storage Temperature Range ................. – 65°C to 150°C Lead Temperature (Soldering, 10 sec).................. 300°C Operating Temperature Range LT1057AM/LT1057M/ LT1058AM/LT1058M (OBSOLETE)...– 55°C to 125°C LT1057AC/LT1057C/LT1057S LT1058AC/LT1058C/LT1058S ................ 0°C to 70°C LT1057I ...................................... –40°C ≤ TA ≤ 85°C U U W PACKAGE/ORDER I FOR ATIO TOP VIEW 16 NC OUT A 1 NC 2 15 NC – IN A 2 OUT A 3 14 V+ +IN A 3 – IN A 4 – A + +IN A 5 B V– 6 – + NC 7 13 OUT B V+ 4 12 – IN B +IN B 5 11 +IN B – IN B 6 10 NC OUT B 7 NC 8 9 – A + + –B D C – + – + NC 1 SW PACKAGE 16-LEAD PLASTIC (WIDE) SO 16 OUT D +IN A 1 8 –IN A 15 – IN D V– 2 7 OUT A 14 +IN D +IN B 3 6 V+ 13 V– –IN B 4 5 OUT B 12 +IN C 9 NC LT1057SW LT1057ISW LT1058SW LT1058ISW ORDER PART NUMBER 8 7 OUTPUT B OUTPUT A 1 A ORDER PART NUMBER 1057 1057I TOP VIEW V+ TJMAX =150°C, θJA =90°C/W ORDER PART NUMBER S8 PART MARKING Please note that the LT1057S8/LT1057IS8 standard surface mount pinout differs from that of the LT1057 standard CERDIP/PDIP packages. SW PACKAGE 16-LEAD PLASTIC (WIDE) SO TJMAX = 150°C, θJA = 90°C/W LT1057S8 LT1057IS8 S8 PACKAGE 8-LEAD PLASTIC SO TJMAX = 150°C, θJA = 200°C/W 11 –IN C 10 OUT C NC 8 NC ORDER PART NUMBER TOP VIEW TOP VIEW –IN A 2 – LT1057AMH LT1057MH LT1057ACH LT1057CH B + + – 6 –IN B 5 +IN B +IN A 3 4 V – (CASE) H PACKAGE 8-LEAD METAL CAN OBSOLETE PACKAGE Consider the N8 or S8 Package for Alternate Source TOP VIEW 1 –IN A 2 +IN A 3 V+ 4 +IN B 5 –IN B 6 OUTPUT B 7 14 OUTPUT D – A + – 13 –IN D D + 12 +IN D 11 V– + –B C – + OUTPUT A ORDER PART NUMBER ORDER PART NUMBER LT1058ACN LT1058CN LT1057ACN8 LT1057CN8 –IN C 8 OUTPUT C N14 PACKAGE 14-LEAD PDIP TJMAX = 110°C, θJA = 130°C/W J14 PACKAGE 14-LEAD CERDIP TJMAX = 150°C, θJA = 100°C/W OUTPUT 1 –IN A 2 +IN A 3 10 +IN C 9 TOP VIEW LT1058AMJ LT1058MJ LT1058ACJ LT1058CJ LT1057ACJ8 LT1057CJ8 LT1057AMJ8 LT1057MJ8 OBSOLETE PACKAGES Consider the N8, S8 or N14 Package for Alternate Source V– 4 – A + B – + 8 V+ 7 OUTPUT B 6 – IN B 5 + IN B N8 PACKAGE 8-LEAD PDIP TJMAX = 100°C, θJA = 130°C/W J8 PACKAGE 8-LEAD CERDIP TJMAX = 150°C, θJA = 100°C/W Consult LTC Marketing for parts specified with wider operating temperature ranges. 10578fa 2 LT1057/LT1058 ELECTRICAL CHARACTERISTICS VS = ± 15V, TA = 25°C, VCM = 0V unless otherwise noted. (Note 2) SYMBOL PARAMETER CONDITIONS VOS Input Offset Voltage LT1057 LT1057 (S8 Package) LT1058 LT1057AM/LT1058AM LT1057AC/LT1058AC MIN TYP MAX LT1057M/LT1058M LT1057C/LT1058C MIN TYP MAX 150 450 180 600 200 220 250 800 1200 1000 µV µV µV UNITS lOS Input Offset Current Fully Warmed Up 3 40 4 50 pA lB Input Bias Current Fully Warmed Up ±5 ± 50 ±7 ± 75 pA Input Resistance Differential Common Mode VCM = – 11V to 8V Common Mode VCM = 8V to 11V 1012 1012 1011 1012 1012 1011 Ω Ω Ω 4 4 pF Input Capacitance en Input Noise Voltage 0.1Hz to 10Hz, en Input Noise Voltage Density fO = 10Hz fO = 1kHz (Note 3) 26 13 22 1.5 4 in Input Noise Current Density fO = 10Hz, 1kHz (Note 4) AVOL Large-Signal Voltage Gain VO = ±10V, RL = 2k VO = ±10V, RL = 1k LT1057 LT1058 Input Voltage Range 2.0 2.4 2.1 2.5 µVP-P µVP-P 28 14 24 nV/√Hz nV/√Hz 1.8 6 fA/√Hz 150 120 350 250 100 80 300 220 ±10.5 14.3 – 11.5 ±10.5 14.3 – 11.5 Common Mode Rejection Ratio PSRR Power Supply Rejection Ratio VS = ±10V to ±18V 88 103 86 102 dB VOUT Output Voltage Swing RL = 2k ±12 ±13 ±12 ±13 V SR Slew Rate 10 14 8 13 V/µs GBW Gain-Bandwidth Product 3.5 5 3 5 MHz IS Supply Current Per Amplifier f = 1MHz (Note 6) 86 84 1.6 DC to 5kHz, VIN = ±10V 100 98 V V CMRR Channel Separation LT1057 LT1058 V/mV V/mV 82 80 2.5 98 96 1.7 132 2.8 130 dB dB mA dB (LT1057/LT1058 SW Package Only), VS = ± 15V, TA = 25°C, VCM = 0V unless otherwise noted. SYMBOL PARAMETER CONDITIONS VOS Input Offset Voltage LT1057 LT1058 lOS Input Offset Current lB Input Bias Current Input Resistance –Differential –Common-Mode MIN TYP MAX UNITS 0.3 0.35 2 2.5 mV Fully Warmed Up 5 50 pA Fully Warmed Up ±10 ±100 pA 0.4 0.4 0.05 TΩ VCM = – 11V to 8V VCM = 8V to 11V 4 pF Input Capacitance en Input Noise Voltage 0.1Hz to 10Hz en Input Noise Voltage Density fO = 10Hz fO = 1kHz LT1057 LT1058 2.1 2.5 26 13 µVP-P nV/√Hz 10578fa 3 LT1057/LT1058 ELECTRICAL CHARACTERISTICS (LT1057/LT1058 SW Package Only), VS = ± 15V, TA = 25°C, VCM = 0V unless otherwise noted. SYMBOL PARAMETER CONDITIONS in Input Noise Current Density fO = 10Hz, 1kHz AVOL Large-Signal Voltage Gain VO = ±10V MIN RL = 2k RL = 1k Input Voltage Range MAX UNITS 1.8 fA/√Hz 100 50 300 220 V/mV ±10.5 14.3 – 11.5 V 82 80 98 98 dB CMRR Common-Mode Rejection Ratio VCM = ±15V PSRR Power Supply Rejection Ratio VS = ±10V to ±18V 86 102 dB VOUT Output Voltage Swing RL = 2k ±12 ±13 V SR Slew Rate 8 13 V/µs GBW Gain-Bandwidth Product 3 5 MHz IS Supply Current Per Amplifier Channel Seperation LT1057 LT1058 TYP f = 1MHz (Note 6) 1.7 DC to 5kHz, VIN =±10V 2.8 mA 130 dB The ● denotes the specifications which apply over the temperature range of 0°C ≤ TA ≤ 70°C or -40°C ≤ TA ≤ 85°C (LT1057IS8), otherwise specifications are TA = 25°C. VS = ±15V, VCM = 0V, unless noted. MAX MAX UNITS 330 500 400 400 1400 2300 1900 1800 µV µV µV µV 2.3 4 4 4.5 3 5 12 16 16 16 15 22 µV/°C µV/°C µV/°C µV/°C µV/°C µV/°C PARAMETER CONDITIONS VOS Input Offset Voltage LT1057 LT1057IS8 LT1057S8 LT1058 ● ● ● ● 250 800 300 1200 LT1057 H/J8 Package N8 Package LT1057S8 (Note 5) LT1057IS8 (Note 5) LT1058 J Package (Note 5) N Package (Note 5) ● ● ● ● ● ● 1.8 3 7 10 2.5 4 10 15 Warmed Up, TA = 70°C LT1057IS8 18 150 20 35 250 600 pA ● Warmed Up, TA = 70°C LT1057IS8 ± 50 ± 250 ± 60 ± 100 ± 350 ± 900 pA ● IOS IB lnput Offset Current Input Bias Current MIN LT1057C LT1058C TYP SYMBOL Average Temperature Coefficient of Input (Offset Voltage) MIN LT1057AC LT1058AC TYP AVOL Large-Signal Voltage Gain VO = ± 10V, RL = 2k ● 70 220 50 200 V/mV CMRR Common Mode Rejection Ratio VCM = ± 10.4V ● 85 98 80 96 dB PSRR VOUT Power Supply Rejection Ratio Output Voltage Swing VS = ± 10V to ± 18V RL = 2k ● 87 ±12 102 ±12.8 84 ±12 100 ±12.8 dB V IS Supply Current Per Amplifier ● 2.8 ● TA = 70°C 1.4 3.2 1.5 mA mA 10578fa 4 LT1057/LT1058 ELECTRICAL CHARACTERISTICS (LT1057/LT1058 SW Package Only.) The ● denotes specifications which apply over the temperature range of VS = ± 15V, VCM = 0V, 0°C ≤ TA ≤ 70°C (LT1057SW, LT1058SW) or –40°C ≤ TA ≤ 85°C (LT1057ISW, LT1058ISW), unless otherwise noted. SYMBOL PARAMETER CONDITIONS VOS Input Offset Voltage LT1057 LT1058S LT1058IS MIN Average Temperature Coefficient of Input Offset Voltage TYP MAX UNITS ● ● ● 0.5 0.6 0.7 2.5 3.0 4.0 mV ● 5 µV/°C lOS Input Offset Current Warmed Up, TA = 70°C Warmed Up, TA = 85°C 20 35 250 400 pA lB Input Bias Current Warmed Up, TA = 70°C Warmed Up, TA = 85°C ± 60 ± 100 ± 400 ± 700 pA AVOL Large Signal Volage Gain VO = ± 10V, RL = 2k LT1057 LT1058 ● ● 50 40 200 200 mV CMRR Common-Mode Rejection Ratio VCM = ± 10.5V LT1057 LT1058 ● ● 80 78 96 96 dB PSRR Power Supply Rejection Ratio VS = ± 10V to ± 18V LT1057 LT1058 ● ● Output Voltage Swing RL = 2k 100 100 ± 12.8 dB VOUT 84 82 ± 12 ● V The ● denotes specifications which apply over the temperature range of – 55°C ≤ TA ≤ 125°C, VS = ±15V, VCM = 0V, unless otherwise noted. MAX MAX UNITS µV µV PARAMETER CONDITIONS VOS lnput Offset Voltage LT1057 LT1058 ● ● 300 380 1100 1600 400 550 2000 2500 Average Temperature Coefficient of Input Offset Voltage LT1057 LT1058 (Note 5) ● ● 2.0 2.5 7 10 2.5 3 12 15 µV/°C µV/°C IOS lnput Offset Current Warmed Up, TA = 125°C 0.15 2 0.2 3 nA IB Input Bias Current Warmed Up, TA = 125°C ± 0.6 ± 4.5 ± 0.7 ±6 nA AVOL Large-Signal Voltage Gain VO = ± 10V, RL = 2k ● 40 120 30 110 V/mV CMRR Common Mode Rejection Ratio VCM = ± 10.4V ● 84 97 80 95 dB PSRR Power Supply Rejection Ratio VS = ± 10V to ± 17V ● 86 100 83 98 dB VOUT Output Voltage Swing RL = 2k ● ± 12 ± 12.7 ± 12 ± 12.6 V IS Supply Current Per Amplifier TA = 125°C 1.25 1.9 MIN LT1057M LT1058M TYP SYMBOL Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired. Note 2: Typical parameters are defined as the 60% yield of distributions of individual amplifiers; (i.e., out of 100 LT1058s or, 100 LT1057s, typically 240 op amps, or 120 for the LT1057, will be better than the indicated specification). Note 3: This parameter is tested on a sample basis only. MIN LT1057AM LT1058AM TYP 1.3 2.2 mA Note 4: Current noise is calculated from the formula: in = (2qlb)1/2 where q = 1.6 • 10– 19 coulomb. The noise of source resistors up to1G swamps the contribution of current noise. Note 5: This parameter is not 100% tested. Note 6: Gain-bandwidth product is not tested. It is guaranteed by design and by inference from the slew rate measurement. 10578fa 5 LT1057/LT1058 U W TYPICAL PERFOR A CE CHARACTERISTICS Input Bias Current Over the Common-Mode Range BIAS CURRENT 30 OFFSET CURRENT 10 25 75 100 50 AMBIENT TEMPERATURE (°C) 0 INPUT BIAS CURRENT, TA = 125°C (nA) 125 140 1.2 120 1.0 100 TA = 125°C 0.8 60 0.4 40 20 0.2 TA = 25°C 0 0 –5 –10 10 5 COMMON MODE INPUT VOLTAGE (V) Distribution of Offset Voltage Drift with Temperature (Plastic N Package) 120 LT1057J: 130 OP AMPS LT1058J: 136 OP AMPS 368 OP AMPS 100 100 80 NUMBER OF UNITS 96 70 60 40 32 80 70 60 60 40 16 2 4 5 22 20 4 1 UNIT EACH AT –19, –16, –13 14, 16µV/°C 31 27 11 9 4 2 1 0 3 6 –12 –9 –6 –3 9 0 12 OFFSET VOLTAGE DRIFT WITH TEMPERATURE (µV/°C) 5 LT1057 N, LT1058 J PACKAGE LT1057 H PACKAGE 20 0 1 3 4 2 TIME AFTER POWER ON (MINUTES) 5 Long-Term Drift of Representative Units VS = ±15V TA = 25°C 30 20 10 0 –10 –20 –30 –40 –50 0 1 3 2 TIME (MONTHS) 4 5 LT1057/1058 • TPC06 LT1057/1058 • TPC05 Voltage Noise vs Frequency 0.1Hz to 10Hz Noise Voltage Gain vs Temperature 1000 VS = ±15V TA = 25°C VS = ±15V TA = 25°C RL = 2k 50 30 20 VOLTAGE GAIN (V/mV) NOISE VOLTAGE (1µV/DIV) RMS VOLTAGE NOISE DENSITY (nV/√Hz) 40 LT1057/1058 • TPC03 3 1000 70 LT1058 N PACKAGE LT1057 J PACKAGE 0 3 6 9 –12 –9 – 6 – 3 0 12 OFFSET VOLTAGE DRIFT WITH TEMPERATURE (µV/°C) LT1057/1058 • TPC04 60 40 44 24 20 65 80 50 LT1057N: 180 OP AMPS LT1058N: 176 OP AMPS 356 OP AMPS VS = ±15V VS = ± 15V TA = 25°C 0 15 Distribution of Offset Voltage Drift with Temperature (H and J Package) 112 LT1057H: 102 OP AMPS 0 –20 – 0.2 –15 LT1057/1058 • TPC02 VS = ±15V 80 0.6 LT1057/1058 • TPC01 120 NUMBER OF UNITS TA = 70°C 100 OFFSET VOLTAGE CHANGE (µV) INPUT BIAS AND OFFSET CURRENT (pA) 100 VS = ±15V 1.4 INPUT BIAS CURRENT, TA = 25°C TO 70°C (pA) VS = ±15V VCM = 0V WARMED UP 300 3 Warm-Up Drift 160 1.6 1000 CHANGE IN OFFSET VOLTAGE (µV) Input Bias and Offset Currents vs Temperature VS = ±15V V0 = ±10V 300 RL = 1k 100 30 1/f CORNER = 28Hz 10 3 10 30 100 300 1000 3000 10000 FREQUENCY (Hz) LT1057/1058 • TPC07 0 2 6 4 TIME (SECONDS) 8 10 LT1057/1058 • TPC08 10 –75 25 –25 75 TEMPERATURE (°C) 125 LT1057/1058 • TPC09 10578fa 6 LT1057/LT1058 U W TYPICAL PERFOR A CE CHARACTERISTICS Slew Rate, Gain-Bandwidth Product vs Temperature 30 Undistorted Output Swing vs Frequency 10 VS = ±15V SLEW RATE (V/µs) 5V/DIV AV = +1 CL = 100pF SLEW FALL 20 6 GBW 4 SLEW RISE 10 2 0.5µs/DIV 0 –50 –25 50 25 75 0 TEMPERATURE (°C) 100 GAIN BANDWIDTH PRODUCT (MHz) 8 30 PEAK-TO-PEAK OUTPUT SWING (V) Large-Signal Response VS = ±15V TA = 25°C 24 18 12 6 0 100k 125 1M FREQUENCY (Hz) LT1057/1058 • TPC11 LT1057/1058 • TPC10 Small-Signal Response Gain, Phase Shift vs Frequency 140 Capacitive Load Handling 80 100 60 140 GAIN PHASE 20 160 VS = ±15V 0 TA = 25°C CL = 10pF –20 1 10 100 0.2µs/DIV 60 OVERSHOOT (%) GAIN (dB) 20mV/DIV 80 PHASE SHIFT (DEGREES) 120 PHASE MARGIN = 58° 40 AV = +1 CL = 100pF VS = ±15V TA = 25°C 70 120 100 50 AV = –1 40 AV = +1 30 20 AV = 10 10 0 180 1k 10k 100k 1M 10M 100M FREQUENCY (Hz) 10 100 1000 CAPACITIVE LOAD (pF) Settling Time Channel Separation vs Frequency FROM LEFT TO RIGHT: SETTLING TIME TO 10mV, 5mV, 2mV, 1mV, 0.5mV 0 0.5mV –5 10mV VS = ±15V TA = 25°C 0 1 2 140 SETTLING TIME (µs) LT1057/1058 • TPC14 LIMITED BY THERMAL INTERACTION AT DC = 132dB 120 RS = 10Ω RS = 1k LIMITED BY PIN-TO-PIN CAPACITANCE 100 VS = ±15V TA = 25°C VIN = 20VP-P TO 5kHz RL = 2k 80 60 3 100 OUTPUT IMPEDANCE (Ω) 0.5mV CHANNEL SEPARATION (dB) OUTPUT VOLTAGE SWING FROM 0V (V) 10mV –10 Output Impedance vs Frequency 160 5 1 10 100 1k 10k FREQUENCY (Hz) 10000 LT1057/1058 • TPC13 LT1057/1058 • TPC12 10 10M VS = ±15V TA = 25°C AV = 100 10 AV = 10 1 AV = 1 100k 1M LT1057/1058 • TPC15 0.1 1k 10k 100k FREQUENCY (Hz) 10M LT1057/1058 • TPC16 10578fa 7 LT1057/LT1058 U W TYPICAL PERFOR A CE CHARACTERISTICS Common Mode Rejection Ratio vs Frequency 15 VS = ±15V TA = 25°C 80 CMRR (dB) 120 VS = ±10V TO ±17V FOR PSRR VS = ±15V, VCM = ±10.5V FOR CMRR 14 COMMON MODE RANGE (V) 100 Common Mode and Power Supply Rejections vs Temperature 60 40 20 13 12 CMRR, PSRR (dB) 120 Common Mode Range vs Temperature 11 ±10 –11 –12 110 PSRR CMRR 100 –13 –14 0 10 100 1M 1k 10k 100k FREQUENCY (Hz) VS = ±15V –15 50 –50 0 TEMPERATURE (°C) 10M LT1057/1058 • TPC17 LT1057/1058 • TPC19 Supply Current vs Temperature 140 Short-Circuit Current vs Time (One Output Shorted to Ground) 50 3 120 100 POSITIVE SUPPLY 80 NEGATIVE SUPPLY 60 40 20 0 10 100 100k 10k 1k FREQUENCY (Hz) 1M 10M 40 SHORT-CIRCUIT CURRENT (mA) SUPPLY CURRENT PER AMPLIFIER (mA) TA = 25°C 2 VS = ±15V VS = ±10V 1 VS = ±15V TA = –55°C 30 20 TA = 25°C 10 TA = 125°C 0 TA = 125°C –10 TA = 25°C –20 –30 TA = –55°C –40 0 –50 –25 125 25 75 TEMPERATURE (°C) –25 LT1057/1058 • TPC18 Power Supply Rejection Ratio vs Frequency POWER SUPPLY REJECTION RATIO (dB) 90 100 –50 50 25 75 0 TEMPERATURE (°C) LT1057/1058 • TPC20 100 2 1 0 3 TIME FROM OUTPUT SHORT TO GROUND (MINUTES) 125 LT1057/1058 • TPC22 LT1057/1058 • TPC21 U W U U APPLICATIO S I FOR ATIO The LT1057 may be inserted directly in LF353, LF412, LF442, TL072, TL082 and OP-215 sockets. The LT1058 plugs into LF347, LF444, TL074 and TL084 sockets. Of course, all standard dual and quad bipolar op amps can also be replaced by these devices. with RS and RF in the kilohm range, this pole can create excess phase shift and even oscillation. A small capacitor (CF) in parallel with RF eliminates this problem. With RS(CS + CIN) = RFCF, the effect of the feedback pole is completely removed. CF High Speed Operation When the feedback around the op amp is resistive (RF) a pole will be created with RF, the source resistance and capacitance (RS, CS), and the amplifier input capacitance (CIN ≈ 4pF). In low closed loop gain configurations and RF – CIN RS CS OUTPUT + LT1057/LT1058 • AI01 10578fa 8 LT1057/LT1058 U W U U APPLICATIO S I FOR ATIO Settling time is measured in a test circuit which can be found in the LT1055/LT1056 data sheet and in Application Note 10. Achieving Picoampere/Microvolt Performance In order to realize the picoampere/microvolt level accuracy of the LT1057/LT1058, proper care must be exercised. For example, leakage currents in circuitry external to the op amp can significantly degrade performance. High quality insulation should be used (e.g., TeflonTM, Kel-F); cleaning of all insulating surfaces to remove fluxes and other residues will probably be required. Surface coating may be necessary to provide a moisture barrier in high humidity environments. Board leakage can be minimized by encircling the input circuitry with a guard ring operated at a potential close to that of the inputs; in inverting configurations, the guard ring should be tied to ground, in noninverting connections, to the inverting input. Guarding both sides of the printed circuit board is required. Bulk leakage reduction depends on the guard ring width. The LT1057/LT1058 have the lowest offset voltage of any dual and quad JFET input op amps available today. However, the offset voltage and its drift with time and temperature are still not as good as on the best bipolar amplifiers (because the transconductance of FETs is considerably lower than that of bipolar transistors). Conversely, this lower transconductance is the main cause of the significantly faster speed performance of FET input op amps. Offset voltage also changes somewhat with temperature cycling. The AM grades show a typical 40µV hysteresis (50µV on the M grades) when cycled over the – 55°C to 125°C temperature range. Temperature cycling from 0°C to 70°C has a negligible (less than 20µV) hysteresis effect. The offset voltage and drift performance are also affected by packaging. In the plastic N package, the molding compound is in direct contact with the chip, exerting pressure on the surface. While NPN input transistors are largely unaffected by this pressure, JFET device drift is degraded. Consequently for best drift performance, as shown in the Typical Performance Characteristics distribution plots, the J or H packages are recommended. In applications where speed and picoampere bias currents are not necessary, Linear Technology offers the bipolar input, pin compatible LT1013 and LT1014 dual and quad op amps. These devices have significantly better DC specifications than any JFET input device. Phase Reversal Protection Most industry standard JFET input single, dual and quad op amps (e.g., LF156, LF351, LF353, LF411, LF412, OP-15, OP-16, OP-215, TL084) exhibit phase reversal at the output when the negative common mode limit at the input is exceeded (i.e., below – 12V with ± 15V supplies). The photos below show a ± 16V sine wave input (A), the response of an LF412A in the unity gain follower mode (B), and the response of the LT1057/LT1058 (C). The phase reversal of photo (B) can cause lock-up in servo systems. The LT1057/LT1058 does not phase-reverse due to a unique phase reversal protection circuit. Teflon is a trademark of DuPont. (A) ± 16V Sine Wave Input (B) LF412A Output (C) LT1057/LT1058 Output All Photos 5V/Div Vertical Scale, 50µs/Div Horizontal Scale 10578fa 9 LT1057/LT1058 U TYPICAL APPLICATIO S Low Noise, Wideband, Gain = 100 Amplifier with High Input Impedance 4.3k 470Ω – 2.4k 1/4 LT1058 7.5k 500Ω + 4.3k 2.4k – 470Ω 1/4 LT1058 – OUTPUT + 1/4 LT1058 + INPUT 4.3k 470Ω 2.4k –3dB BANDWIDTH = 350kHZ GAIN-BANDWIDTH PRODUCT = 35MHz WIDEBAND NOISE = 13nV/√Hz = 7.5nV/√Hz REFERRED TO INPUT √3 RMS NOISE DC TO FULL BANDWIDTH = 7µV – 1/4 LT1058 + LT1057/1058 • A01 Wideband, High Input Impedance, Gain = 1000 Amplifier 1k 4.7k 1k – – 1/4 LT1058 INPUT 4.7k 1/4 LT1058 + 1/4 LT1058 + + 1/4 LT1058 + – OUTPUT – 4.7k 4.7k 1k 1k 100Ω –3dB BANDWIDTH = 400kHz GAIN-BANDWIDTH PRODUCT = 400MHz WIDEBAND NOISE = 13nV/√Hz REFERRED TO INPUT LT1057/1058 • A02 Low Distortion, Crystal Stabilized Oscillator 130Ω CRYSTAL 20kHz NT CUT COMMON MODE SUPPRESSION – 1/2 LT1057 100k – 0.01µF 100Ω 15pF + #327 LAMP 1VRMS OUT 20kHz 0.005% DISTORTION OSCILLATOR 1/2 LT1057 + LT1057/1058 • A03 10578fa 10 LT1057/LT1058 U TYPICAL APPLICATIO S Fast, Precision Bridge Amplifier 330pF – 10k 1/2 LT1057 + 10k 1k 330pF – RLOAD 1/2 LT1057 LT1010 LT1010 + INPUT SLEW RATE = 14V/µs OUTPUT CURRENT TO LOAD = 150mA LOAD CAPACITANCE: UP TO 1µF LT1057/1058 • A04 Analog Divider 80.6k* 20k 1µF LTC1043 7 –5V 6 LT1004 1.2V 12 5V LTC1043 1k 8 + B INPUT 5 1µF – 1/2 LT1057 OUTPUT = A B + 2 –5V 0.001 POLYSTYRENE 11 13 1µF 75k* 14 16 – A INPUT 1/2 LT1057 + 30pF 22k 330k 2N2907 1µF * 1% FILM –5V LT1057/1058 • A05 10578fa 11 LT1057/LT1058 U TYPICAL APPLICATIO S Bipolar Input (AC) V/F Converter LTC1043 1k –5V 6 LT1004 2.5V 2 5 0.1µF 16 18 1M* 15 3 1M* 0.01 POLYSTYRENE 1/4 LT1058 1µF INPUT ±1V + – 2N3906 + 5V 36.5k* – 10k DATA OUTPUT 0kHz TO 1kHz 1/4 LT1058 – 1M* 1/4 LT1058 1M* 10k + 22k 150pF 10k –5V 0.1µF – 1/4 LT1058 *1% FILM MATCH 1M RESISTORS TO 0.05% SIGN BIT + LT1057/1058 • A06 12-Bit A/D Converter 10k 0.001µF – CLOCK 1/4 LT1058 14 – 100k* 2 1/4 LT1058 + 1 10k 4 3 74C74 5 10k 2k 5V 0.01µF EIN + FLIP-FLOP 15V INTEGRATOR BOUT 6 10k 7 – 5V + 180pF 6.8k 1/4 LT1058 68pF 10k – 15V 10k 2N3906 –15V 4 10k OUTPUT GATE 16 LTC1043 CURRENT SWITCH 15 820Ω 18 17 LEVEL SHIFT –15V 3 1k + –15V AOUT 1/4 LT1058 2N4393 – A DATA OUTPUT = OUT BOUT *VISHAY S-102 RESISTOR OUT LT1021 IN 10V NC GND 95k* 10k –15V LT1057/1058 • A07 10578fa 12 LT1057/LT1058 U TYPICAL APPLICATIO S Instrumentation Amplifier with Shield Driver 3 2 + 10k 1k 1 1/4 LT1058 – RF 9.1k GUARD RG 1k + + 1/4 LT1058 8 INPUT – – 15V 5 10 9 1/4 LT1058 6 RG 1k 4 + – 7 OUTPUT 11 –15V GUARD 13 12 RF 9.1k – 1/4 LT1058 GAIN = 10(1+RF/RG) ≈ 100 IB = 5pA RIN = 1012Ω BW = 350kHz 10k 14 1k + LT1057/1058 • A08 100dB Range Logarithmic Photodiode Amplifier 6 Q4 4 10 5 2k 11 1M Q5 1M FULL-SCALE 750k* TRIM 12 50k DARK TRIM 50k* 500pF – IP 1/2 LT1057 0.01µF + – 1/2 LT1057 0.033µF EOUT + LT1021-10V 10k* – 15V IN OUT 1 3k 2 LM301A 10k* 3 Q2 + 2k 33Ω 15 14 Q1 7 Q3 13 9 15V = HP-5082-4204 PIN PHOTODIODE. Q1–Q5 = CA3096. CONNECT SUBSTRATE OF CA3096 ARRAY TO Q4’s EMITTER. *1% RESISTOR 100dB RANGE LOGARITHMIC PHOTODIODE AMPLIFIER 8 LIGHT (900µM) RESPONSE DATA DIODE CURRENT CIRCUIT OUTPUT 1MW 100µW 10µW 1µW 100nW 10nW 350µA 35µA 3.5µA 350nA 35nA 3.5nA 10.0V 7.85V 5.70V 3.55V 1.40V –0.75V LT1057/1058 • A09 10578fa 13 LT1057/LT1058 U PACKAGE DESCRIPTIO H Package 8-Lead TO-5 Metal Can (.200 Inch PCD) (Reference LTC DWG # 05-08-1320) .335 – .370 (8.509 – 9.398) DIA .305 – .335 (7.747 – 8.509) .027 – .045 (0.686 – 1.143) PIN 1 45°TYP .040 (1.016) MAX .028 – .034 (0.711 – 0.864) .200 (5.080) TYP .050 (1.270) MAX SEATING PLANE .165 – .185 (4.191 – 4.699) GAUGE PLANE .010 – .045* (0.254 – 1.143) .110 – .160 (2.794 – 4.064) INSULATING STANDOFF REFERENCE PLANE .500 – .750 (12.700 – 19.050) .016 – .021** (0.406 – 0.533) *LEAD DIAMETER IS UNCONTROLLED BETWEEN THE REFERENCE PLANE AND THE SEATING PLANE .016 – .024 **FOR SOLDER DIP LEAD FINISH, LEAD DIAMETER IS (0.406 – 0.610) H8(TO-5) 0.200 PCD 0801 J8 Package 8-Lead CERDIP (Narrow .300 Inch, Hermetic) (Reference LTC DWG # 05-08-1110) .300 BSC (7.62 BSC) .008 – .018 (0.203 – 0.457) .200 (5.080) MAX CORNER LEADS OPTION (4 PLCS) 0° – 15° .015 – .060 (0.381 – 1.524) .023 – .045 (0.584 – 1.143) HALF LEAD OPTION .045 – .068 (1.143 – 1.650) FULL LEAD OPTION NOTE: LEAD DIMENSIONS APPLY TO SOLDER DIP/PLATE OR TIN PLATE LEADS .405 (10.287) MAX .005 (0.127) MIN 8 .014 – .026 (0.360 – 0.660) 5 .025 (0.635) RAD TYP .220 – .310 (5.588 – 7.874) 1 .045 – .065 (1.143 – 1.651) 6 7 2 3 4 .125 3.175 MIN .100 (2.54) BSC J8 0801 J Package 14-Lead CERDIP (Narrow .300 Inch, Hermetic) (Reference LTC DWG # 05-08-1110) .200 (5.080) MAX .300 BSC (7.62 BSC) .015 – .060 (0.381 – 1.524) .008 – .018 (0.203 – 0.457) NOTE: LEAD DIMENSIONS APPLY TO SOLDER DIP/PLATE OR TIN PLATE LEADS .005 (0.127) MIN .785 (19.939) MAX 14 13 12 11 10 9 8 0° – 15° .045 – .065 (1.143 – 1.651) .014 – .026 (0.360 – 0.660) .100 (2.54) BSC .025 (0.635) .125 RAD TYP (3.175) MIN .220 – .310 (5.588 – 7.874) 1 2 3 4 5 6 7 J14 0801 OBSOLETE PACKAGES 10578fa 14 LT1057/LT1058 U PACKAGE DESCRIPTIO N8 Package 8-Lead PDIP (Narrow .300 Inch) (Reference LTC DWG # 05-08-1510) .400* (10.160) MAX 8 7 6 5 1 2 3 4 .255 ± .015* (6.477 ± 0.381) .300 – .325 (7.620 – 8.255) .065 (1.651) TYP .008 – .015 (0.203 – 0.381) ( +.035 .325 –.015 +0.889 8.255 –0.381 .130 ± .005 (3.302 ± 0.127) .045 – .065 (1.143 – 1.651) .120 (3.048) .020 MIN (0.508) MIN .018 ± .003 .100 (2.54) BSC ) (0.457 ± 0.076) N8 1002 NOTE: 1. DIMENSIONS ARE INCHES MILLIMETERS *THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm) N Package 14-Lead PDIP (Narrow .300 Inch) (Reference LTC DWG # 05-08-1510) .770* (19.558) MAX 14 13 12 11 10 9 8 1 2 3 4 5 6 7 .255 ± .015* (6.477 ± 0.381) .300 – .325 (7.620 – 8.255) .045 – .065 (1.143 – 1.651) .130 ± .005 (3.302 ± 0.127) .020 (0.508) MIN .065 (1.651) TYP .008 – .015 (0.203 – 0.381) +.035 .325 –.015 ( +0.889 8.255 –0.381 NOTE: 1. DIMENSIONS ARE ) .120 (3.048) MIN .005 (0.125) .100 MIN (2.54) BSC .018 ± .003 (0.457 ± 0.076) INCHES MILLIMETERS *THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm) N14 1002 10578fa Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights. 15 LT1057/LT1058 U PACKAGE DESCRIPTIO S8 Package 8-Lead Plastic Small Outline (Narrow .150 Inch) (Reference LTC DWG # 05-08-1610) .189 – .197 (4.801 – 5.004) NOTE 3 .045 ±.005 .050 BSC 7 8 5 6 N N .245 MIN .160 ±.005 1 .030 ±.005 TYP .150 – .157 (3.810 – 3.988) NOTE 3 .228 – .244 (5.791 – 6.197) 2 3 N/2 N/2 RECOMMENDED SOLDER PAD LAYOUT 1 .010 – .020 × 45° (0.254 – 0.508) 3 2 4 .053 – .069 (1.346 – 1.752) .008 – .010 (0.203 – 0.254) .004 – .010 (0.101 – 0.254) 0°– 8° TYP .016 – .050 (0.406 – 1.270) .050 (1.270) BSC .014 – .019 (0.355 – 0.483) TYP NOTE: 1. DIMENSIONS IN INCHES (MILLIMETERS) 2. DRAWING NOT TO SCALE 3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm) SO8 0502 SW Package 16-Lead Plastic Small Outline (Wide .300 Inch) (Reference LTC DWG # 05-08-1620) .050 BSC .045 ±.005 .030 ±.005 TYP .398 – .413 (10.109 – 10.490) NOTE 4 16 N 15 14 13 12 11 10 9 N .325 ±.005 .420 MIN .394 – .419 (10.007 – 10.643) NOTE 3 1 2 3 N/2 N/2 RECOMMENDED SOLDER PAD LAYOUT 1 .005 (0.127) RAD MIN .009 – .013 (0.229 – 0.330) .291 – .299 (7.391 – 7.595) NOTE 4 .010 – .029 × 45° (0.254 – 0.737) 2 3 4 5 6 .093 – .104 (2.362 – 2.642) 8 .037 – .045 (0.940 – 1.143) 0° – 8° TYP .050 (1.270) BSC NOTE 3 .016 – .050 (0.406 – 1.270) NOTE: 1. DIMENSIONS IN Linear Technology Corporation .004 – .012 (0.102 – 0.305) .014 – .019 (0.356 – 0.482) TYP INCHES (MILLIMETERS) 2. DRAWING NOT TO SCALE 3. PIN 1 IDENT, NOTCH ON TOP AND CAVITIES ON THE BOTTOM OF PACKAGES ARE THE MANUFACTURING OPTIONS. THE PART MAY BE SUPPLIED WITH OR WITHOUT ANY OF THE OPTIONS 4. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm) 16 7 S16 (WIDE) 0502 10578fa LW/TP 1102 1K REV A • PRINTED IN USA 1630 McCarthy Blvd., Milpitas, CA 95035-7417 (408) 432-1900 ● FAX: (408) 434-0507 ● www.linear.com LINEAR TECHNOLOGY CORPORATION 1989