MAXIM MAX19998

19-4827; Rev 0; 10/09
TION KIT
EVALUA BLE
AVAILA
SiGe, High-Linearity, 2300MHz to 4000MHz
Downconversion Mixer with LO Buffer
Features
The MAX19998 single, high-linearity downconversion
mixer provides 8.7dB of conversion gain, +24.3dBm
input IP3, +11.3dBm 1dB input compression point,
and a noise figure of 9.7dB for 2300MHz to 4000MHz
WiMAXK, LTE, and MMDS receiver applications. With
an ultra-wide LO 2600MHz to 4300MHz frequency
range, the MAX19998 can be used in either low-side
or high-side LO injection architectures for virtually all
2.5GHz and 3.5GHz applications. For a 2.5GHz variant tuned specifically for high-side injection, refer to the
MAX19996A.
S 2300MHz to 4000MHz RF Frequency Range
In addition to offering excellent linearity and noise performance, the MAX19998 also yields a high level of
component integration. This device includes a doublebalanced passive mixer core, an IF amplifier, and an LO
buffer. On-chip baluns are also integrated to allow for
single-ended RF and LO inputs. The MAX19998 requires
a nominal LO drive of 0dBm, and supply current is typically 230mA at VCC = 5.0V or 150mA at VCC = 3.3V.
S Integrated LO Buffer
The MAX19998 is pin compatible with the MAX19996/
MAX19996A 2000MHz to 3900MHz mixer family. The
device is also pin similar with the MAX9984/MAX9986/
MAX9986A 400MHz to 1000MHz mixers and the
MAX9993/MAX9994/MAX9996 1700MHz to 2200MHz
mixers, making this entire family of downconverters ideal
for applications where a common PCB layout is used for
multiple frequency bands.
S 2600MHz to 4300MHz LO Frequency Range
S 50MHz to 500MHz IF Frequency Range
S 8.7dB Conversion Gain
S 9.7dB Noise Figure
S +24.3dBm Typical Input IP3
S +11.3dBm Typical Input 1dB Compression Point
S 67dBc Typical 2RF - 2LO Spurious Rejection at
PRF = -10dBm
S Integrated RF and LO Baluns for Single-Ended
Inputs
S Low -3dBm to +3dBm LO Drive
S Pin Compatible with the MAX19996/MAX19996A
2000MHz to 3900MHz Mixers
S Pin Similar with the MAX9984/MAX9986/
MAX9986A Series of 400MHz to 1000MHz Mixers
and the MAX9993/MAX9994/MAX9996 Series of
1700MHz to 2200MHz Mixers
S Single 5.0V or 3.3V Supply
S External Current-Setting Resistors Provide Option
for Operating Device in Reduced-Power/ReducedPerformance Mode
The MAX19998 is available in a compact, 5mm x 5mm,
20-pin thin QFN with an exposed pad. Electrical performance is guaranteed over the extended -40NC to +85NC
temperature range.
Applications
2.5GHz WiMAX and LTE Base Stations
2.7GHz MMDS Base Stations
3.5GHz WiMAX and LTE Base Stations
Fixed Broadband Wireless Access
Wireless Local Loop
Ordering Information
TEMP RANGE
PIN-PACKAGE
MAX19998ETP+
PART
-40NC to +85NC
20 Thin QFN-EP*
MAX19998ETP+T
-40NC to +85NC
20 Thin QFN-EP*
+Denotes a lead(Pb)-free/RoHS-compliant package.
*EP = Exposed pad.
T = Tape and reel.
Private Mobile Radios
Military Systems
WiMAX is a trademark of WiMAX Forum.
________________________________________________________________ Maxim Integrated Products 1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,
or visit Maxim’s website at www.maxim-ic.com.
MAX19998
General Description
MAX19998
SiGe, High-Linearity, 2300MHz to 4000MHz
Downconversion Mixer with LO Buffer
ABSOLUTE MAXIMUM RATINGS
VCC to GND...........................................................-0.3V to +5.5V
IF+, IF-, LOBIAS, IFBIAS to GND.............. -0.3V to (VCC + 0.3V)
RF, LO Input Power........................................................ +12dBm
RF, LO Current
(RF and LO is DC shorted to GND through balun).........50mA
Continuous Power Dissipation (Note 1)..................................5W
BJA (Notes 2, 3)............................................................. +38NC/W
BJC (Notes 1, 3)............................................................. +13NC/W
Operating Case Temperature Range
(Note 4)................................................... TC = -40NC to +85NC
Junction Temperature......................................................+150NC
Storage Temperature Range............................. -65NC to +150NC
Lead Temperature (soldering, 10s).................................+300NC
Note 1: Based on junction temperature TJ = TC + (BJC x VCC x ICC). This formula can be used when the temperature of the
exposed pad is known while the device is soldered down to a PCB. See the Applications Information section for details.
The junction temperature must not exceed +150NC.
Note 2: Junction temperature TJ = TA + (BJA x VCC x ICC). This formula can be used when the ambient temperature of the PCB is
known. The junction temperature must not exceed +150NC.
Note 3: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a fourlayer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.
Note 4: TC is the temperature on the exposed pad of the package. TA is the ambient temperature of the device and PCB.
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect device reliability.
5.0V SUPPLY DC ELECTRICAL CHARACTERISTICS
(Typical Application Circuit, R1 = 698ω, R2 = 604ω, VCC = 4.75V to 5.25V, no input RF or LO signals. TC = -40NC to +85NC, unless
otherwise noted. Typical values are at VCC = 5.0V, TC = +25NC, all parameters are production tested.)
PARAMETER
SYMBOL
Supply Voltage
VCC
Supply Current
ICC
CONDITIONS
MIN
TYP
MAX
4.75
5.0
5.25
V
230
247
mA
Total supply current
UNITS
3.3V SUPPLY DC ELECTRICAL CHARACTERISTICS
(Typical Application Circuit, R1 = 845ω, R2 = 1.1kω, VCC = 3.0V to 3.6V, no input RF or LO signals. TC = -40NC to +85NC, unless otherwise noted. Typical values are at VCC = 3.3V, TC = +25NC, parameters are guaranteed by design, unless otherwise noted.) (Note 5)
PARAMETER
SYMBOL
Supply Voltage
VCC
Supply Current
ICC
CONDITIONS
MIN
3.0
Total supply current
TYP
MAX
3.3
3.6
150
UNITS
V
mA
RECOMMENDED AC OPERATING CONDITIONS
MAX
UNITS
RF Frequency Range
PARAMETER
fRF
(Notes 5, 6)
2300
4000
MHz
LO Frequency
fLO
(Notes 5, 6)
2600
4300
MHz
Using a Mini-Circuits TC4-1W-17 4:1
transformer as defined in the Typical
Application Circuit, IF matching components
affect the IF frequency range (Notes 5, 6)
100
500
Using a Mini-Circuits TC4-1W-7A 4:1
transformer as defined in the Typical
Application Circuit, IF matching components
affect the IF frequency range (Notes 5, 6)
50
IF Frequency
LO Drive
SYMBOL
fIF
PLO
CONDITIONS
MIN
TYP
MHz
-3
250
0
2 _______________________________________________________________________________________
+3
dBm
SiGe, High-Linearity, 2300MHz to 4000MHz
Downconversion Mixer with LO Buffer
(Typical Application Circuit, with tuning elements outlined in Table 1, R1 = 698ω, R2 = 604ω, VCC = 4.75V to 5.25V, RF and LO ports
are driven from 50I sources, PLO = -3dBm to +3dBm, PRF = -5dBm, fRF = 3100MHz to 3900MHz, fIF = 300MHz, fLO = 2800MHz to
3600MHz, fRF > fLO, TC = -40NC to +85NC. Typical values are for TC = +25NC, VCC = 5.0V, PRF = -5dBm, PLO = 0dBm, fRF = 3500MHz,
fLO = 3200MHz, fIF = 300MHz. All parameters are guaranteed by design and characterization, unless otherwise noted.) (Note 7)
PARAMETER
Small-Signal Conversion Gain
Gain Variation vs. Frequency
SYMBOL
GC
DGC
CONDITIONS
TC = +25NC (Notes 8, 9)
MAX
UNITS
8.7
9.4
dB
0.15
fRF = 3100MHz to 3900MHz, any 200MHz
band
0.3
TCCG
fRF = 3100MHz to 3900MHz,
TC = -40NC to +85NC
Input 1dB Compression Point
IP1dB
(Note 10)
IIP3
TYP
7.6
fRF = 3100MHz to 3900MHz, any 100MHz
band
Conversion Gain Temperature
Coefficient
Third-Order Input Intercept Point
MIN
fRF1 - fRF2 = 1MHz, PRF1 = PRF2 = -5dBm/tone,
TC = +25NC (Note 9)
dB
-0.01
dB/NC
10.0
11.4
dBm
22
24.3
dBm
Q0.2
dBm
fRF = 3100MHz to 3900MHz, fRF1 - fRF2 = 1MHz,
PRF1 = PRF2 = -5dBm/tone, TC = -40NC to +85NC
IIP3 Variation with TC
No blockers present (Note 5)
9.7
12.5
No blockers present, TC = +25NC (Note 5)
9.7
11.0
Single-Sideband Noise Figure
NFSSB
Noise Figure Temperature
Coefficient
TCNF
Single sideband, no blockers present,
TC = -40NC to +85NC
Noise Figure Under Blocking
NFB
+8dBm blocker tone applied to RF port,
fRF = 3500MHz, fLO = 3200MHz,
fBLOCKER = 3750MHz, PLO = 0dBm,
VCC = +5.0V, TC = +25NC (Notes 5, 11)
2RF - 2LO Spur Rejection
2x2
fSPUR = fLO + 150MHz
3RF - 3LO Spur Rejection
3x3
fSPUR = fLO + 100MHz
RF Input Return Loss
RLRF
LO on and IF terminated into a matched
impedance
25
dB
LO Input Return Loss
RLLO
RF and IF terminated into a matched
impedance
16
dB
IF Output Impedance
ZIF
Nominal differential impedance at the IC’s IF
outputs
200
I
IF Output Return Loss
RLIF
0.018
21
PRF = -10dBm (Note 5)
63
67
PRF = -5dBm (Note 9)
58
62
PRF = -10dBm (Note 5)
80
85
PRF = -5dBm (Note 9)
70
75
RF terminated into 50I, LO
driven by 50I source, IF
transformed to 50I using
external components shown
in the Typical Application
Circuit. See the Typical
Operating Characteristics
for performance vs. inductor
values.
fIF = 450MHz,
L1 = L2 = 120nH
20
fIF = 350MHz,
L1 = L2 = 270nH
20
fIF = 300MHz,
L1 = L2 = 390nH
20
dB
dB/NC
25
dB
dBc
dBc
dB
_______________________________________________________________________________________ 3
MAX19998
5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS—fRF = 3100MHz to 3900MHz,
LOW-SIDE LO INJECTION
MAX19998
SiGe, High-Linearity, 2300MHz to 4000MHz
Downconversion Mixer with LO Buffer
5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS—fRF = 3100MHz to 3900MHz,
LOW-SIDE LO INJECTION (continued)
(Typical Application Circuit, with tuning elements outlined in Table 1, R1 = 698ω, R2 = 604ω, VCC = 4.75V to 5.25V, RF and LO ports
are driven from 50I sources, PLO = -3dBm to +3dBm, PRF = -5dBm, fRF = 3100MHz to 3900MHz, fIF = 300MHz, fLO = 2800MHz to
3600MHz, fRF > fLO, TC = -40NC to +85NC. Typical values are for TC = +25NC, VCC = 5.0V, PRF = -5dBm, PLO = 0dBm, fRF = 3500MHz,
fLO = 3200MHz, fIF = 300MHz. All parameters are guaranteed by design and characterization, unless otherwise noted.) (Note 7)
PARAMETER
SYMBOL
CONDITIONS
MIN
TYP
27
29.5
dB
LO Leakage at RF Port
fLO = 2800MHz to 3600MHz, PLO = +3dBm
(Note 9)
-26
dBm
2LO Leakage at RF Port
PLO = +3dBm
-29
dBm
LO Leakage at IF Port
PLO = +3dBm (Note 9)
-22
dBm
RF-to-IF Isolation
fRF = 3500MHz, PLO = +3dBm (Note 9)
MAX
UNITS
3.3V SUPPLY AC ELECTRICAL CHARACTERISTICS—fRF = 3100MHz to 3900MHz,
LOW-SIDE LO INJECTION
(Typical Application Circuit, with tuning elements outlined in Table 1, R1 = 845ω, R2 = 1.1kω, RF and LO ports are driven from 50I
sources, fRF > fLO. Typical values are for TC = +25NC, VCC = 3.3V, PRF = -5dBm, PLO = 0dBm, fRF = 3500MHz, fLO = 3200MHz, fIF
= 300MHz, unless otherwise noted.) (Note 7)
PARAMETER
SYMBOL
Small-Signal Conversion Gain
GC
Gain Variation vs. Frequency
DGC
Conversion Gain Temperature
Coefficient
Input 1dB Compression Point
Third-Order Input Intercept Point
CONDITIONS
MIN
TYP
MAX
UNITS
8.4
dB
fRF = 3100MHz to 3900MHz, any 100MHz
band
0.15
dB
TCCG
fRF = 3100MHz to 3900MHz,
TC = -40NC to +85NC
-0.01
dB/NC
IP1dB
IIP3
(Note 10)
fRF1 - fRF2 = 1MHz, PRF1 = PRF2 = -5dBm/tone
7.7
20.1
dBm
dBm
fRF1 - fRF2 = 1MHz, PRF1 = PRF2 = -5dBm/tone,
TC = -40NC to +85NC
Q0.2
dB
9.3
dB
0.018
dB/NC
IIP3 Variation with TC
Single-Sideband Noise Figure
NFSSB
No blockers present
Noise Figure Temperature
Coefficient
TCNF
Single sideband, no blockers present,
TC = -40NC to +85NC
2RF - 2LO Spur Rejection
2x2
fSPUR = fLO + 150MHz
3RF - 3LO Spur Rejection
3x3
fSPUR = fLO + 100MHz
RF Input Return Loss
PRF = -10dBm
64
PRF = -5dBm
59
PRF = -10dBm
74
PRF = -5dBm
64
RLRF
LO on and IF terminated into a matched
impedance
30
dB
LO Input Return Loss
RLLO
RF and IF terminated into a matched impedance
20
dB
IF Output Impedance
ZIF
Nominal differential impedance at the IC’s IF
outputs
200
I
4 _______________________________________________________________________________________
dBc
dBc
SiGe, High-Linearity, 2300MHz to 4000MHz
Downconversion Mixer with LO Buffer
(Typical Application Circuit, with tuning elements outlined in Table 1, R1 = 845ω, R2 = 1.1kω, RF and LO ports are driven from 50I
sources, fRF > fLO. Typical values are for TC = +25NC, VCC = 3.3V, PRF = -5dBm, PLO = 0dBm, fRF = 3500MHz, fLO = 3200MHz, fIF
= 300MHz, unless otherwise noted.) (Note 7)
PARAMETER
IF Output Return Loss
SYMBOL
CONDITIONS
RLIF
RF terminated into 50I, LO fIF = 450MHz,
L1 = L2 = 120nH
driven by 50I source, IF
transformed to 50I using
fIF = 350MHz,
external components shown L1 = L2 = 270nH
in the Typical Application
Circuit. See the Typical
fIF = 300MHz,
Operating Characteristics
for performance vs. inductor L1 = L2 = 390nH
values.
MIN
TYP
MAX
UNITS
17
17
dB
17
RF-to-IF Isolation
fRF = 3100MHz to 3900MHz, PLO = +3dBm
27
dB
LO Leakage at RF Port
-30
dBm
2LO Leakage at RF Port
fLO = 2800MHz to 3600MHz, PLO = +3dBm
fLO = 2800MHz to 3600MHz, PLO = +3dBm
-26.5
dBm
LO Leakage at IF Port
fLO = 2800MHz to 3600MHz, PLO = +3dBm
-27.5
dBm
5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS—fRF = 3100MHz to 3900MHz,
HIGH-SIDE LO INJECTION
(Typical Application Circuit, with tuning elements outlined in Table 1, R1 = 698ω, R2 = 604ω, VCC = 4.75V to 5.25V, RF and LO ports
are driven from 50I sources, PLO = -3dBm to +3dBm, PRF = -5dBm, fRF = 3100MHz to 3900MHz, fIF = 300MHz, fLO = 3400MHz
to 4200MHz, fRF < fLO, TC = -40NC to +85NC. Typical values are for TC = +25NC, VCC = 5.0V, PRF = -5dBm, PLO = 0dBm, fRF =
3500MHz, fLO = 3800MHz, fIF = 300MHz, unless otherwise noted.) (Note 7)
PARAMETER
Small-Signal Conversion Gain
Gain Variation vs. Frequency
SYMBOL
GC
DGC
CONDITIONS
MIN
TYP
TC = +25NC
8.4
fRF = 3100MHz to 3900MHz, any 100MHz
band
0.15
fRF = 3100MHz to 3900MHz, any 200MHz
band
0.3
MAX
UNITS
dB
dB
Conversion Gain Temperature
Coefficient
TCCG
fRF = 3100MHz to 3900MHz,
TC = -40NC to +85NC
-0.01
dB/NC
Input 1dB Compression Point
IP1dB
(Note 10)
11.4
dBm
fRF1 - fRF2 = 1MHz, PRF1 = PRF2 = -5dBm/tone,
TC = +25NC
24.8
dBm
fRF = 3100MHz to 3900MHz, fRF1 - fRF2 = 1MHz,
PRF1 = PRF2 = -5dBm/tone, TC = -40NC to +85NC
Q0.2
dBm
9.8
dB
0.018
dB/NC
Third-Order Input Intercept Point
IIP3
IIP3 Variation with TC
Single-Sideband Noise Figure
NFSSB
No blockers present
Noise Figure Temperature
Coefficient
TCNF
Single sideband, no blockers present,
TC = -40NC to +85NC
2LO - 2RF Spur Rejection
2x2
fSPUR = fLO - 150MHz
3LO - 3RF Spur Rejection
3x3
fSPUR = fLO - 100MHz
PRF = -10dBm
70
PRF = -5dBm
65
PRF = -10dBm
89
PRF = -5dBm
79
dBc
dBc
_______________________________________________________________________________________ 5
MAX19998
3.3V SUPPLY AC ELECTRICAL CHARACTERISTICS—fRF = 3100MHz to 3900MHz,
LOW-SIDE LO INJECTION (continued)
MAX19998
SiGe, High-Linearity, 2300MHz to 4000MHz
Downconversion Mixer with LO Buffer
5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS—fRF = 3100MHz to 3900MHz,
HIGH-SIDE LO INJECTION (continued)
(Typical Application Circuit, with tuning elements outlined in Table 1, R1 = 698ω, R2 = 604ω, VCC = 4.75V to 5.25V, RF and LO ports
are driven from 50I sources, PLO = -3dBm to +3dBm, PRF = -5dBm, fRF = 3100MHz to 3900MHz, fIF = 300MHz, fLO = 3400MHz
to 4200MHz, fRF < fLO, TC = -40NC to +85NC. Typical values are for TC = +25NC, VCC = 5.0V, PRF = -5dBm, PLO = 0dBm, fRF =
3500MHz, fLO = 3800MHz, fIF = 300MHz, unless otherwise noted.) (Note 7)
PARAMETER
SYMBOL
CONDITIONS
MIN
TYP
MAX
UNITS
RF Input Return Loss
RLRF
LO on and IF terminated into a matched
impedance
LO Input Return Loss
RLLO
RF and IF terminated into a matched
impedance
18
dB
IF Output Impedance
ZIF
Nominal differential impedance at the IC’s IF
outputs
200
I
IF Output Return Loss
RLIF
RF terminated into
50I, LO driven by 50I
source, IF transformed
to 50I using external
components shown in
the Typical Application
Circuit. See the Typical
Operating Characteristics
for performance vs.
inductor values.
24
dB
fIF = 450MHz,
L1 = L2 = 120nH
20
fIF = 350MHz,
L1 = L2 = 270nH
20
dB
fIF = 300MHz,
L1 = L2 = 390nH
20
RF-to-IF Isolation
PLO = +3dBm
30
dB
LO Leakage at RF Port
PLO = +3dBm
-30.3
dBm
2LO Leakage at RF Port
PLO = +3dBm
-19
dBm
LO Leakage at IF Port
PLO = +3dBm
-23
dBm
5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS—fRF = 2300MHz to 2900MHz,
HIGH-SIDE LO INJECTION
(Typical Application Circuit, with tuning elements outlined in Table 1, R1 = 698ω, R2 = 604ω, VCC = 4.75V to 5.25V, RF and LO ports
are driven from 50I sources, PLO = -3dBm to +3dBm, PRF = -5dBm, fRF = 2300MHz to 2900MHz, fIF = 300MHz, fLO = 2600MHz
to 3200MHz, fRF < fLO, TC = -40NC to +85NC. Typical values are for TC = +25NC, VCC = 5.0V, PRF = -5dBm, PLO = 0dBm, fRF =
2600MHz, fLO = 2900MHz, fIF = 300MHz, unless otherwise noted.) (Note 7)
PARAMETER
Small-Signal Conversion Gain
Gain Variation vs. Frequency
SYMBOL
GC
DGC
CONDITIONS
MIN
TYP
TC = +25NC
8.4
fRF = 2300MHz to 2900MHz, any 100MHz
band
0.15
fRF = 2300MHz to 2900MHz, any 200MHz
band
0.3
MAX
UNITS
dB
dB
Conversion Gain Temperature
Coefficient
TCCG
fRF = 2300MHz to 2900MHz,
TC = -40NC to +85NC
-0.01
dB/NC
Input 1dB Compression Point
IP1dB
(Note 10)
11.4
dBm
fRF1 - fRF2 = 1MHz, PRF1 = PRF2 = -5dBm/tone,
TC = +25NC
25.0
dBm
Third-Order Input Intercept Point
IIP3
6 _______________________________________________________________________________________
SiGe, High-Linearity, 2300MHz to 4000MHz
Downconversion Mixer with LO Buffer
(Typical Application Circuit, with tuning elements outlined in Table 1, R1 = 698ω, R2 = 604ω, VCC = 4.75V to 5.25V, RF and LO ports
are driven from 50I sources, PLO = -3dBm to +3dBm, PRF = -5dBm, fRF = 2300MHz to 2900MHz, fIF = 300MHz, fLO = 2600MHz
to 3200MHz, fRF < fLO, TC = -40NC to +85NC. Typical values are for TC = +25NC, VCC = 5.0V, PRF = -5dBm, PLO = 0dBm, fRF =
2600MHz, fLO = 2900MHz, fIF = 300MHz, unless otherwise noted. (Note 7)
PARAMETER
SYMBOL
IIP3 Variation with TC
Single-Sideband Noise Figure
CONDITIONS
MIN
TYP
MAX
UNITS
fRF = 2300MHz to 2900MHz, fRF1 - fRF2 = 1MHz,
PRF1 = PRF2 = -5dBm/tone, TC = -40NC to +85NC
Q0.2
dBm
NFSSB
No blockers present
10.0
dB
Noise Figure Temperature
Coefficient
TCNF
Single sideband, no blockers present,
TC = -40NC to +85NC
0.018
dB/NC
2LO - 2RF Spur Rejection
2x2
fSPUR = fLO - 50MHz
3LO - 3RF Spur Rejection
3x3
fSPUR = fLO - 100MHz
RF Input Return Loss
RLRF
LO on and IF terminated into a matched
impedance
30
dB
LO Input Return Loss
RLLO
RF and IF terminated into a matched
impedance
18
dB
IF Output Impedance
ZIF
Nominal differential impedance at the IC’s IF
outputs
200
I
fIF = 450MHz,
L1 = L2 = 120nH
25
fIF = 350MHz,
L1 = L2 = 270nH
25
IF Output Return Loss
RLIF
PRF = -10dBm
77
PRF = -5dBm
72
PRF = -10dBm
86
PRF = -5dBm
76
RF terminated into 50I,
LO driven by 50I source,
IF transformed to 50I
using external components shown in the Typical
Application Circuit. See
the Typical Operating
Characteristics for performance vs. inductor values.
dBc
dBc
dB
fIF = 300MHz,
L1 = L2 = 390nH
25
RF-to-IF Isolation
PLO = +3dBm
45
dB
LO Leakage at RF Port
PLO = +3dBm
-28.8
dBm
2LO Leakage at RF Port
PLO = +3dBm
-42.3
dBm
LO Leakage at IF Port
PLO = +3dBm
-26.3
dBm
Note 5: Not production tested.
Note 6: Operation outside this range is possible, but with degraded performance of some parameters. See the Typical
Operating Characteristics.
Note 7: All limits reflect losses of external components, including a 0.8dB loss at fIF = 300MHz due to the 4:1 impedance transformer. Output measurements were taken at IF outputs of the Typical Application Circuit.
Note 8: Guaranteed by design and characterization.
Note 9: 100% production tested for functional performance.
Note 10: Maximum reliable continuous input power applied to the RF port of this device is +12dBm from a 50I source.
Note 11: Measured with external LO source noise filtered so that the noise floor is -174dBm/Hz. This specification reflects the
effects of all SNR degradations in the mixer including the LO noise, as defined in Application Note 2021: Specifications
and Measurement of Local Oscillator Noise in Integrated Circuit Base Station Mixers.
_______________________________________________________________________________________ 7
MAX19998
5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS—fRF = 2300MHz to 2900MHz,
HIGH-SIDE LO INJECTION (continued)
Typical Operating Characteristics
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 3100MHz to 3900MHz, LO is low-side injected
for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
TC = +85°C
7
8
PLO = -3dBm, 0dBm, +3dBm
7
6
3400
3600
3800
4000
3200
RF FREQUENCY (MHz)
3600
3800
4000
3000
24
25
24
23
3400
3600
3800
4000
3800
VCC = 5.25V
PLO = -3dBm, 0dBm, +3dBm
25
24
VCC = 5.0V
VCC = 4.75V
23
3000
3200
3400
3600
3800
4000
3000
3200
3400
3600
3800
2RF - 2LO RESPONSE
vs. RF FREQUENCY
2RF - 2LO RESPONSE
vs. RF FREQUENCY
2RF - 2LO RESPONSE
vs. RF FREQUENCY
TC = +25°C
60
PRF = -5dBm
80
PLO = +3dBm
70
60
PLO = 0dBm
TC = -40°C
50
3400
3600
RF FREQUENCY (MHz)
3800
4000
4000
PRF = -5dBm
80
70
60
PLO = -3dBm
VCC = 4.75V, 5.0V, 5.25V
50
3200
90
2RF - 2LO RESPONSE (dBc)
TC = +85°C
70
2RF - 2LO RESPONSE (dBc)
80
90
MAX19998 toc08
RF FREQUENCY (MHz)
MAX19998 toc07
RF FREQUENCY (MHz)
PRF = -5dBm
4000
PRF = -5dBm/TONE
RF FREQUENCY (MHz)
90
3000
3600
26
23
3200
3400
INPUT IP3 vs. RF FREQUENCY
PRF = -5dBm/TONE
TC = -40°C
3000
3200
RF FREQUENCY (MHz)
INPUT IP3 (dBm)
MAX19998 toc04
TC = +25°C
26
INPUT IP3 (dBm)
TC = +85°C
3400
INPUT IP3 vs. RF FREQUENCY
PRF = -5dBm/TONE
25
VCC = 4.75V, 5.0V, 5.25V
RF FREQUENCY (MHz)
INPUT IP3 vs. RF FREQUENCY
26
8
6
3000
MAX19998 toc05
3200
9
7
6
3000
INPUT IP3 (dBm)
10
MAX19998 toc06
8
9
MAX19998 toc03
10
CONVERSION GAIN (dB)
9
CONVERSION GAIN vs. RF FREQUENCY
11
MAX19998 toc02
TC = +25°C
CONVERSION GAIN (dB)
CONVERSION GAIN (dB)
MAX19998 toc01
TC = -40°C
10
CONVERSION GAIN vs. RF FREQUENCY
11
MAX19998 toc09
CONVERSION GAIN vs. RF FREQUENCY
11
2RF - 2LO RESPONSE (dBc)
MAX19998
SiGe, High-Linearity, 2300MHz to 4000MHz
Downconversion Mixer with LO Buffer
50
3000
3200
3400
3600
RF FREQUENCY (MHz)
3800
4000
3000
3200
3400
3600
RF FREQUENCY (MHz)
8 _______________________________________________________________________________________
3800
4000
SiGe, High-Linearity, 2300MHz to 4000MHz
Downconversion Mixer with LO Buffer
TC = -40°C, +25°C, +85°C
65
55
75
PLO = -3dBm, 0dBm, +3dBm
65
55
3400
3600
3800
4000
VCC = 4.75V, 5.0V, 5.25V
65
3200
3400
3600
3800
4000
3000
3200
RF FREQUENCY (MHz)
NOISE FIGURE vs. RF FREQUENCY
NOISE FIGURE vs. RF FREQUENCY
TC = +85°C
TC = +25°C
8
3800
4000
NOISE FIGURE vs. RF FREQUENCY
10
9
3600
12
MAX19998 toc14
11
NOISE FIGURE (dB)
11
3400
RF FREQUENCY (MHz)
12
MAX19998 toc13
12
9
75
55
3000
RF FREQUENCY (MHz)
10
PRF = -5dBm
PLO = -3dBm, 0dBm, +3dBm
MAX19998 toc15
3200
11
NOISE FIGURE (dB)
3000
NOISE FIGURE (dB)
85
MAX19998 toc12
PRF = -5dBm
3RF - 3LO RESPONSE (dBc)
75
85
3RF - 3LO RESPONSE
vs. RF FREQUENCY
MAX19998 toc11
PRF = -5dBm
3RF - 3LO RESPONSE (dBc)
3RF - 3LO RESPONSE (dBc)
85
3RF - 3LO RESPONSE
vs. RF FREQUENCY
MAX19998 toc10
3RF - 3LO RESPONSE
vs. RF FREQUENCY
8
10
9
VCC = 4.75V, 5.0V, 5.25V
8
TC = -40°C
7
3200
3400
3600
3800
4000
7
3000
3200
RF FREQUENCY (MHz)
INPUT P1dB vs. RF FREQUENCY
3800
4000
INPUT P1dB vs. RF FREQUENCY
TC = +25°C
11
PLO = -3dBm, 0dBm, +3dBm
3400
3600
RF FREQUENCY (MHz)
3800
4000
3600
3800
4000
VCC = 5.25V
VCC = 5.0V
12
11
VCC = 4.75V
10
9
9
3400
INPUT P1dB vs. RF FREQUENCY
10
10
3200
3200
13
MAX19998 toc17
12
INPUT P1dB (dBm)
11
3000
3000
RF FREQUENCY (MHz)
13
MAX19998 toc16
TC = +85°C
12
INPUT P1dB (dBm)
3600
RF FREQUENCY (MHz)
13
TC = -40°C
3400
INPUT P1dB (dBm)
3000
MAX19998 toc18
7
9
3000
3200
3400
3600
RF FREQUENCY (MHz)
3800
4000
3000
3200
3400
3600
3800
4000
RF FREQUENCY (MHz)
_______________________________________________________________________________________ 9
MAX19998
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 3100MHz to 3900MHz, LO is low-side injected
for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 3100MHz to 3900MHz, LO is low-side injected
for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
TC = +85°C
-20
TC = +25°C
TC = -40°C
-40
2900
3100
3300
3500
3700
-40
2700
2900
3100
3300
3500
3700
2700
2900
3100
3300
3500
LO FREQUENCY (MHz)
RF-TO-IF ISOLATION
vs. RF FREQUENCY
RF-TO-IF ISOLATION
vs. RF FREQUENCY
RF-TO-IF ISOLATION
vs. RF FREQUENCY
TC = -40°C
10
30
PLO = -3dBm, 0dBm, +3dBm
20
10
3200
3400
3600
3800
4000
40
30
VCC = 4.75V, 5.0V, 5.25V
20
10
3000
3200
3400
3600
3800
4000
3000
3200
3400
3600
3800
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
TC = +85°C
TC = +25°C
-35
-40
-25
-30
PLO = -3dBm, 0dBm, +3dBm
-35
-40
3000
3500
LO FREQUENCY (MHz)
4000
-20
LO LEAKAGE AT RF PORT (dBm)
-30
MAX19998 toc26
TC = -40°C
-20
LO LEAKAGE AT RF PORT (dBm)
MAX19998 toc25
-20
3700
MAX19998 toc24
40
RF-TO-IF ISOLATION (dB)
RF-TO-IF ISOLATION (dB)
TC = +25°C
20
50
MAX19998 toc23
50
MAX19998 toc22
TC = +85°C
30
2500
VCC = 4.75V, 5.0V, 5.25V
-30
LO FREQUENCY (MHz)
40
-25
-20
LO FREQUENCY (MHz)
50
3000
MAX19998 toc21
MAX19998 toc20
PLO = -3dBm, 0dBm, +3dBm
-30
-40
2700
RF-TO-IF ISOLATION (dB)
-20
-10
4000
MAX19998 toc27
-30
-10
LO LEAKAGE AT IF PORT (dBm)
MAX19998 toc19
LO LEAKAGE AT IF PORT (dBm)
-10
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
LO LEAKAGE AT IF PORT (dBm)
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
LO LEAKAGE AT RF PORT (dBm)
MAX19998
SiGe, High-Linearity, 2300MHz to 4000MHz
Downconversion Mixer with LO Buffer
-25
-30
VCC = 4.75V, 5.0V, 5.25V
-35
-40
2500
3000
3500
LO FREQUENCY (MHz)
4000
2500
3000
3500
LO FREQUENCY (MHz)
10 �������������������������������������������������������������������������������������
4000
SiGe, High-Linearity, 2300MHz to 4000MHz
Downconversion Mixer with LO Buffer
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
TC = +85°C
-40
-50
-30
-40
PLO = -3dBm, 0dBm, +3dBm
-50
3000
3500
4000
-30
-40
VCC = 4.75V, 5.0V, 5.25V
-50
3000
2500
LO FREQUENCY (MHz)
3500
4000
3000
2500
LO FREQUENCY (MHz)
20
30
0
IF PORT RETURN LOSS (dB)
fIF = 300MHz
10
4000
IF PORT RETURN LOSS
vs. IF FREQUENCY
MAX19998 toc31
0
3500
LO FREQUENCY (MHz)
RF PORT RETURN LOSS
vs. RF FREQUENCY
fLO = 3600MHz
10
20
VCC = 4.75V, 5.0V, 5.25V
30
40
PLO = -3dBm, 0dBm, +3dBm
40
50
3000
3200
3400
3600
3800
4000
50
230
320
410
IF FREQUENCY (MHz)
LO PORT RETURN LOSS
vs. LO FREQUENCY
SUPPLY CURRENT
vs. TEMPERATURE (TC)
250
MAX19998 toc33
0
20
PLO = 0dBm
240
SUPPLY CURRENT (mA)
PLO = -3dBm
10
140
RF FREQUENCY (MHz)
VCC = 5.25V
500
MAX19998 toc34
RF PORT RETURN LOSS (dB)
2500
-20
MAX19998 toc32
-30
-20
2LO LEAKAGE AT RF PORT (dBm)
2LO LEAKAGE AT RF PORT (dBm)
TC = +25°C
TC = -40°C
-10
MAX19998 toc29
-10
MAX19998 toc28
-20
LO PORT RETURN LOSS (dB)
2LO LEAKAGE AT RF PORT (dBm)
-10
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
MAX19998 toc30
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
VCC = 5.0V
230
220
VCC = 4.75V
210
PLO = +3dBm
200
30
2600
2950
3300
3650
LO FREQUENCY (MHz)
4000
-40
-15
10
35
60
85
TEMPERATURE (°C)
______________________________________________________________________________________ 11
MAX19998
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 3100MHz to 3900MHz, LO is low-side injected
for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 3.3V, fRF = 3100MHz to 3900MHz, LO is low-side injected
for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
TC = +85NC
6
8
PLO = -3dBm, 0dBm, +3dBm
7
6
3400
3600
3800
4000
3200
RF FREQUENCY (MHz)
TC = +85NC
20
TC = +25NC
3600
3800
4000
TC = -40NC
18
3600
3800
VCC = 3.3V
PRF = -5dBm/TONE
20
PLO = -3dBm, 0dBm, +3dBm
4000
3800
21
VCC = 3.6V
VCC = 3.3V
20
VCC = 3.0V
19
18
3000
3200
3400
3600
3800
4000
3000
3200
3400
3600
3800
2RF - 2LO RESPONSE
vs. RF FREQUENCY
2RF - 2LO RESPONSE
vs. RF FREQUENCY
2RF - 2LO RESPONSE
vs. RF FREQUENCY
TC = +85NC
60
50
80
70
PLO = +3dBm
60
PLO = 0dBm
50
TC = -40NC
40
MAX19998 toc42
VCC = 3.3V
PRF = -5dBm
40
3200
3400
3600
RF FREQUENCY (MHz)
3800
4000
PRF = -5dBm
80
70
60
VCC = 3.0V, 3.3V, 3.6V
50
PLO = -3dBm
4000
90
2RF - 2LO RESPONSE (dBc)
TC = +25NC
90
2RF - 2LO RESPONSE (dBc)
MAX19998 toc41
RF FREQUENCY (MHz)
80
4000
PRF = -5dBm/TONE
RF FREQUENCY (MHz)
VCC = 3.3V
PRF = -5dBm
3000
3600
RF FREQUENCY (MHz)
90
70
3400
INPUT IP3 vs. RF FREQUENCY
18
3400
3200
22
19
3200
MAX19998 toc37
3000
RF FREQUENCY (MHz)
21
19
3000
7
INPUT IP3 vs. RF FREQUENCY
INPUT IP3 (dBm)
INPUT IP3 (dBm)
3400
22
MAX19998 toc38
VCC = 3.3V
PRF = -5dBm/TONE
21
VCC = 3.0V, 3.3V, 3.6V
RF FREQUENCY (MHz)
INPUT IP3 vs. RF FREQUENCY
22
8
6
3000
INPUT IP3 (dBm)
3200
MAX19998 toc39
3000
9
MAX19998 toc40
8
9
MAX19998 toc43
TC = +25NC
7
VCC = 3.3V
CONVERSION GAIN vs. RF FREQUENCY
10
CONVERSION GAIN (dB)
9
MAX19998 toc35
VCC = 3.3V
CONVERSION GAIN (dB)
CONVERSION GAIN (dB)
TC = -40NC
CONVERSION GAIN vs. RF FREQUENCY
10
MAX19998 toc36
CONVERSION GAIN vs. RF FREQUENCY
10
2RF - 2LO RESPONSE (dBc)
MAX19998
SiGe, High-Linearity, 2300MHz to 4000MHz
Downconversion Mixer with LO Buffer
40
3000
3200
3400
3600
RF FREQUENCY (MHz)
3800
4000
3000
3200
3400
3600
RF FREQUENCY (MHz)
12 �������������������������������������������������������������������������������������
3800
4000
SiGe, High-Linearity, 2300MHz to 4000MHz
Downconversion Mixer with LO Buffer
TC = -40°C, +25°C, +85°C
55
65
60
PLO = -3dBm, 0dBm, +3dBm
55
50
3400
3600
3800
4000
3200
RF FREQUENCY (MHz)
NOISE FIGURE vs. RF FREQUENCY
TC = -40NC
3600
3800
4000
VCC = 3.6V
3000
MAX19998 toc47
VCC = 3.3V
11
3200
10
9
3600
3800
4000
9
7
3000
3200
RF FREQUENCY (MHz)
INPUT P1dB vs. RF FREQUENCY
4000
3000
3200
TC = +25NC
3400
3600
3800
4000
RF FREQUENCY (MHz)
VCC = 3.3V
INPUT P1dB (dBm)
INPUT P1dB (dBm)
3800
INPUT P1dB vs. RF FREQUENCY
8
7
3600
9
MAX19998 toc50
VCC = 3.3V
TC = +85NC
3400
RF FREQUENCY (MHz)
9
MAX19998 toc46
10
VCC = 3.0V, 3.3V, 3.6V
INPUT P1dB vs. RF FREQUENCY
9
VCC = 3.6V
INPUT P1dB (dBm)
3400
4000
8
MAX19998 toc51
3200
3800
11
7
3000
3600
NOISE FIGURE vs. RF FREQUENCY
8
7
3400
12
PLO = -3dBm, 0dBm, +3dBm
8
VCC = 3.3V
RF FREQUENCY (MHz)
NOISE FIGURE (dB)
9
3400
12
NOISE FIGURE (dB)
TC = +25NC
60
NOISE FIGURE vs. RF FREQUENCY
VCC = 3.3V
TC = +85NC
10
65
RF FREQUENCY (MHz)
12
11
VCC = 3.0V
50
3000
MAX19998 toc48
3200
70
55
50
3000
NOISE FIGURE (dB)
PRF = -5dBm
MAX19998 toc49
60
70
75
8
PLO = -3dBm, 0dBm, +3dBm
7
MAX19998 toc52
65
VCC = 3.3V
PRF = -5dBm
3RF - 3LO RESPONSE (dBc)
70
75
3RF - 3LO RESPONSE
vs. RF FREQUENCY
MAX19998 toc45
VCC = 3.3V
PRF = -5dBm
3RF - 3LO RESPONSE (dBc)
3RF - 3LO RESPONSE (dBc)
75
3RF - 3LO RESPONSE
vs. RF FREQUENCY
MAX19998 toc44
3RF - 3LO RESPONSE
vs. RF FREQUENCY
8
VCC = 3.3V
7
VCC = 3.0V
TC = -40NC
6
6
3000
3200
3400
3600
RF FREQUENCY (MHz)
3800
4000
6
3000
3200
3400
3600
RF FREQUENCY (MHz)
3800
4000
3000
3200
3400
3600
3800
4000
RF FREQUENCY (MHz)
______________________________________________________________________________________ 13
MAX19998
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 3.3V, fRF = 3100MHz to 3900MHz, LO is low-side injected
for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 3.3V, fRF = 3100MHz to 3900MHz, LO is low-side injected
for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
-30
TC = -40°C, +25°C, +85°C
-40
-50
-30
PLO = -3dBm, 0dBm, +3dBm
-40
-50
2900
3100
3300
3500
3700
-30
VCC = 3.0V
VCC = 3.3V
-40
2900
3100
3300
3500
3700
2700
2900
3100
3300
3500
LO FREQUENCY (MHz)
LO FREQUENCY (MHz)
RF-TO-IF ISOLATION
vs. RF FREQUENCY
RF-TO-IF ISOLATION
vs. RF FREQUENCY
RF-TO-IF ISOLATION
vs. RF FREQUENCY
30
TC = +25NC
TC = -40NC
10
30
PLO = -3dBm, 0dBm, +3dBm
20
10
3200
3400
3600
3800
4000
40
30
VCC = 3.0V, 3.3V, 3.6V
20
10
3000
3200
3400
3600
3800
3000
4000
3200
3400
3600
3800
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
TC = -40°C, +25°C, +85°C
-30
-35
-40
-25
PLO = -3dBm, 0dBm, +3dBm
-30
-35
-40
3000
3500
LO FREQUENCY (MHz)
4000
-20
4000
MAX19998 toc61
VCC = 3.3V
LO LEAKAGE AT RF PORT (dBm)
-25
-20
LO LEAKAGE AT RF PORT (dBm)
VCC = 3.3V
MAX19998 toc59
RF FREQUENCY (MHz)
-20
3700
MAX19998 toc58
40
50
RF-TO-IF ISOLATION (dB)
TC = +85NC
20
VCC = 3.3V
MAX19998 toc57
40
50
RF-TO-IF ISOLATION (dB)
VCC = 3.3V
2500
VCC = 3.6V
LO FREQUENCY (MHz)
50
3000
-20
-50
2700
MAX19998 toc56
2700
RF-TO-IF ISOLATION (dB)
-20
-10
MAX19998 toc55
VCC = 3.3V
LO LEAKAGE AT IF PORT (dBm)
-20
-10
MAX19998 toc60
LO LEAKAGE AT IF PORT (dBm)
VCC = 3.3V
LO LEAKAGE AT IF PORT (dBm)
-10
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
MAX19998 toc54
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
MAX19998 toc53
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
LO LEAKAGE AT RF PORT (dBm)
MAX19998
SiGe, High-Linearity, 2300MHz to 4000MHz
Downconversion Mixer with LO Buffer
-25
VCC = 3.6V
-30
VCC = 3.3V
-35
VCC = 3.0V
-40
2500
3000
3500
LO FREQUENCY (MHz)
4000
2500
3000
3500
LO FREQUENCY (MHz)
14 �������������������������������������������������������������������������������������
4000
SiGe, High-Linearity, 2300MHz to 4000MHz
Downconversion Mixer with LO Buffer
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
TC = -40NC
-30
TC = +85NC
-10
-20
-30
PLO = -3dBm, 0dBm, +3dBm
-40
-50
VCC = 3.0V
-30
VCC = 3.3V
-40
3500
4000
-50
2500
3000
LO FREQUENCY (MHz)
3500
4000
2500
3000
LO FREQUENCY (MHz)
3500
4000
LO FREQUENCY (MHz)
RF PORT RETURN LOSS
vs. RF FREQUENCY
IF PORT RETURN LOSS
vs. IF FREQUENCY
0
MAX19998 toc65
0
VCC = 3.3V
fIF = 300MHz
IF PORT RETURN LOSS (dB)
10
fLO = 3600MHz
PLO = -3dBm, 0dBm, +3dBm
20
30
10
MAX19998 toc66
3000
RF PORT RETURN LOSS (dB)
-20
VCC = 3.6V
-50
20
VCC = 3.0V, 3.3V, 3.6V
30
40
40
3000
3200
3400
3600
3800
50
4000
50
RF FREQUENCY (MHz)
LO PORT RETURN LOSS
vs. LO FREQUENCY
10
PLO = 0dBm
20
30
3300
3650
LO FREQUENCY (MHz)
410
VCC = 3.6V
500
150
VCC = 3.3V
140
VCC = 3.0V
PLO = +3dBm
2950
320
160
SUPPLY CURRENT (mA)
VCC = 3.3V
2600
230
SUPPLY CURRENT
vs. TEMPERATURE (TC)
0
PLO = -3dBm
140
IF FREQUENCY (MHz)
MAX19998 toc67
2500
MAX19998 toc64
VCC = 3.3V
4000
MAX19998 toc68
-40
-10
2LO LEAKAGE AT RF PORT (dBm)
TC = +25NC
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
MAX19998 toc63
-20
LO PORT RETURN LOSS (dB)
2LO LEAKAGE AT RF PORT (dBm)
VCC = 3.3V
2LO LEAKAGE AT RF PORT (dBm)
-10
MAX19998 toc62
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
130
-40
-15
10
35
60
85
TEMPERATURE (°C)
______________________________________________________________________________________ 15
MAX19998
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 3.3V, fRF = 3100MHz to 3900MHz, LO is low-side injected
for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 3100MHz to 3900MHz, LO is high-side injected
for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
8
8
PLO = -3dBm, 0dBm, +3dBm
TC = +85°C
3600
3800
4000
3200
RF FREQUENCY (MHz)
3400
3600
3800
4000
3000
TC = +25°C
26
MAX19998 toc72
PRF = -5dBm/TONE
INPUT IP3 (dBm)
25
TC = -40°C
23
3200
3400
3600
3800
25
4000
3800
PLO = -3dBm, 0dBm, +3dBm
PRF = -5dBm/TONE
25
VCC = 5.0V
24
VCC = 4.75V
23
3000
3200
3400
3600
3800
4000
3000
3200
3400
3600
3800
2LO - 2RF RESPONSE
vs. RF FREQUENCY
2LO - 2RF RESPONSE
vs. RF FREQUENCY
2LO - 2RF RESPONSE
vs. RF FREQUENCY
70
TC = +25°C
60
PRF = -5dBm
80
PLO = +3dBm
70
PLO = -3dBm
60
PLO = 0dBm
TC = -40°C
50
50
3200
3400
3600
RF FREQUENCY (MHz)
3800
4000
90
2LO - 2RF RESPONSE (dBc)
TC = +85°C
2LO - 2RF RESPONSE (dBc)
80
90
MAX19998 toc76
RF FREQUENCY (MHz)
MAX19998 toc75
RF FREQUENCY (MHz)
PRF = -5dBm
4000
VCC = 5.25V
RF FREQUENCY (MHz)
90
3000
3600
INPUT IP3 vs. RF FREQUENCY
PRF = -5dBm/TONE
24
3400
26
23
3000
3200
RF FREQUENCY (MHz)
INPUT IP3 vs. RF FREQUENCY
TC = +85°C
24
VCC = 4.75V, 5.0V, 5.25V
RF FREQUENCY (MHz)
INPUT IP3 vs. RF FREQUENCY
26
8
6
3000
INPUT IP3 (dBm)
3400
MAX19998 toc73
3200
9
7
6
3000
MAX19998 toc71
MAX19998 toc70
9
7
6
INPUT IP3 (dBm)
10
MAX19998 toc74
9
CONVERSION GAIN vs. RF FREQUENCY
11
CONVERSION GAIN (dB)
TC = +25°C
7
10
CONVERSION GAIN (dB)
CONVERSION GAIN (dB)
MAX19998 toc69
TC = -40°C
10
CONVERSION GAIN vs. RF FREQUENCY
11
4000
PRF = -5dBm
80
MAX19998 toc77
CONVERSION GAIN vs. RF FREQUENCY
11
2LO - 2RF RESPONSE (dBc)
MAX19998
SiGe, High-Linearity, 2300MHz to 4000MHz
Downconversion Mixer with LO Buffer
70
60
VCC = 4.75V, 5.0V, 5.25V
50
3000
3200
3400
3600
RF FREQUENCY (MHz)
3800
4000
3000
3200
3400
3600
RF FREQUENCY (MHz)
16 �������������������������������������������������������������������������������������
3800
4000
SiGe, High-Linearity, 2300MHz to 4000MHz
Downconversion Mixer with LO Buffer
TC = +25°C
TC = -40°C
65
55
75
PLO = -3dBm, 0dBm, +3dBm
65
55
3200
3400
3600
3800
4000
3200
RF FREQUENCY (MHz)
NOISE FIGURE vs. RF FREQUENCY
3400
3600
3800
VCC = 4.75V, 5.0V, 5.25V
65
4000
3000
3200
NOISE FIGURE vs. RF FREQUENCY
TC = +25°C
11
8
3600
3800
4000
NOISE FIGURE vs. RF FREQUENCY
12
MAX19998 toc82
MAX19998 toc81
TC = +85°C
3400
RF FREQUENCY (MHz)
12
NOISE FIGURE (dB)
NOISE FIGURE (dB)
11
9
75
RF FREQUENCY (MHz)
12
10
85
55
3000
11
NOISE FIGURE (dB)
3000
PRF = -5dBm
MAX19998 toc80
85
95
10
9
PLO = -3dBm, 0dBm, +3dBm
MAX19998 toc83
75
PRF = -5dBm
3LO - 3RF RESPONSE (dBc)
TC = +85°C
85
95
3LO - 3RF RESPONSE
vs. RF FREQUENCY
MAX19998 toc79
PRF = -5dBm
3LO - 3RF RESPONSE (dBc)
3LO - 3RF RESPONSE (dBc)
95
3LO - 3RF RESPONSE
vs. RF FREQUENCY
MAX19998 toc78
3LO - 3RF RESPONSE
vs. RF FREQUENCY
8
10
9
VCC = 4.75V, 5.0V, 5.25V
8
TC = -40°C
7
3175
3350
3525
3700
7
3000
3175
RF FREQUENCY (MHz)
INPUT P1dB vs. RF FREQUENCY
3700
INPUT P1dB vs. RF FREQUENCY
TC = +25°C
TC = -40°C
11
PLO = -3dBm, 0dBm, +3dBm
3600
RF FREQUENCY (MHz)
3800
4000
3525
3700
VCC = 5.0V
12
VCC = 5.25V
11
VCC = 4.75V
10
9
3400
3350
INPUT P1dB vs. RF FREQUENCY
10
9
3200
3175
13
MAX19998 toc85
12
INPUT P1dB (dBm)
11
3000
3000
RF FREQUENCY (MHz)
13
MAX19998 toc84
TC = +85°C
12
INPUT P1dB (dBm)
3525
RF FREQUENCY (MHz)
13
10
3350
INPUT P1dB (dBm)
3000
MAX19998 toc86
7
9
3000
3200
3400
3600
RF FREQUENCY (MHz)
3800
4000
3000
3200
3400
3600
3800
4000
RF FREQUENCY (MHz)
______________________________________________________________________________________ 17
MAX19998
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 3100MHz to 3900MHz, LO is high-side injected
for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 3100MHz to 3900MHz, LO is high-side injected
for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
TC = +25°C
-20
TC = +85°C
-30
-40
-20
-30
PLO = -3dBm, 0dBm, +3dBm
3500
3700
3900
4100
4300
-40
3000
3500
3700
3900
4100
4300
3000
3500
3700
3900
4100
LO FREQUENCY (MHz)
RF-TO-IF ISOLATION
vs. RF FREQUENCY
RF-TO-IF ISOLATION
vs. RF FREQUENCY
RF-TO-IF ISOLATION
vs. RF FREQUENCY
TC = +25°C
20
TC = -40°C
10
30
PLO = -3dBm, 0dBm, +3dBm
20
10
3200
3400
3600
3800
4000
40
30
VCC = 4.75V, 5.0V, 5.25V
20
10
3000
3200
3400
3600
3800
4000
3000
3200
3400
3600
3800
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
-30
TC = +25°C
-35
TC = -40°C
-40
-30
PLO = -3dBm, 0dBm, +3dBm
-35
-40
3550
3800
4050
LO FREQUENCY (MHz)
4300
4000
MAX19998 toc95
MAX19998 toc94
-25
-20
LO LEAKAGE AT RF PORT (dBm)
TC = +85°C
-20
LO LEAKAGE AT RF PORT (dBm)
MAX19998 toc93
-20
4300
MAX19998 toc92
40
RF-TO-IF ISOLATION (dB)
RF-TO-IF ISOLATION (dB)
30
50
MAX19998 toc91
50
MAX19998 toc90
TC = +85°C
3300
VCC = 4.75V, 5.0V, 5.25V
-30
LO FREQUENCY (MHz)
40
-25
-20
LO FREQUENCY (MHz)
50
3000
MAX19998 toc89
-10
-40
3000
RF-TO-IF ISOLATION (dB)
MAX19998 toc88
TC = -40°C
-10
LO LEAKAGE AT IF PORT (dBm)
MAX19998 toc87
LO LEAKAGE AT IF PORT (dBm)
-10
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
LO LEAKAGE AT IF PORT (dBm)
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
LO LEAKAGE AT RF PORT (dBm)
MAX19998
SiGe, High-Linearity, 2300MHz to 4000MHz
Downconversion Mixer with LO Buffer
-25
-30
VCC = 4.75V, 5.0V, 5.25V
-35
-40
3300
3550
3800
4050
LO FREQUENCY (MHz)
4300
3300
3550
3800
4050
LO FREQUENCY (MHz)
18 �������������������������������������������������������������������������������������
4300
SiGe, High-Linearity, 2300MHz to 4000MHz
Downconversion Mixer with LO Buffer
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
-20
PLO = -3dBm
-30
PLO = 0dBm
-40
-40
3800
4050
3800
4050
4300
3550
3300
LO FREQUENCY (MHz)
LO FREQUENCY (MHz)
20
0
fLO = 4100MHz
IF PORT RETURN LOSS (dB)
fIF = 300MHz
10
4050
4300
IF PORT RETURN LOSS
vs. IF FREQUENCY
MAX19998 toc99
0
3800
LO FREQUENCY (MHz)
RF PORT RETURN LOSS
vs. RF FREQUENCY
30
VCC = 4.75V, 5.0V, 5.25V
-30
-40
3550
3300
4300
-20
10
20
30
VCC = 4.75V, 5.0V, 5.25V
40
PLO = -3dBm, 0dBm, +3dBm
40
50
3000
3200
3400
3600
3800
4000
50
230
320
410
IF FREQUENCY (MHz)
LO PORT RETURN LOSS
vs. LO FREQUENCY
SUPPLY CURRENT
vs. TEMPERATURE (TC)
250
MAX19998 toc101
0
10
PLO = 0dBm
240
SUPPLY CURRENT (mA)
PLO = -3dBm
20
140
RF FREQUENCY (MHz)
PLO = +3dBm
VCC = 5.25V
VCC = 5.0V
500
MAX19998 toc102
3550
RF PORT RETURN LOSS (dB)
3300
MAX19998 toc98
PLO = +3dBm
MAX19998 toc100
-30
-10
MAX19998 toc97
MAX19998 toc96
TC = +85°C
TC = +25°C
-10
2LO LEAKAGE AT RF PORT (dBm)
-20
TC = -40°C
LO PORT RETURN LOSS (dB)
2LO LEAKAGE AT RF PORT (dBm)
-10
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
2LO LEAKAGE AT RF PORT (dBm)
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
230
220
VCC = 4.75V
210
200
30
2700
3100
3500
3900
LO FREQUENCY (MHz)
4300
-40
-15
10
35
60
65
TEMPERATURE (°C)
______________________________________________________________________________________ 19
MAX19998
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 3100MHz to 3900MHz, LO is high-side injected
for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 2300MHz to 2900MHz, LO is high-side injected
for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
8
8
PLO = -3dBm, 0dBm, +3dBm
2750
2900
RF FREQUENCY (MHz)
INPUT IP3 vs. RF FREQUENCY
2600
2750
2900
2300
26
25
PLO = -3dBm, 0dBm, +3dBm
24
TC = -40°C
23
2450
2600
2750
2900
26
25
VCC = 5.0V
24
VCC = 4.75V
23
2300
2450
2600
2750
2900
2300
2450
2600
2750
2LO - 2RF RESPONSE
vs. RF FREQUENCY
2LO - 2RF RESPONSE
vs. RF FREQUENCY
TC = -40NC
TC = +25NC
50
PLO = +3dBm
80
70
PLO = -3dBm
PLO = 0dBm
60
50
2450
2600
2750
RF FREQUENCY (MHz)
2900
2900
90
PRF = -5dBm
2LO - 2RF RESPONSE (dBc)
70
PRF = -5dBm
2LO - 2RF RESPONSE (dBc)
80
90
MAX19998 toc110
2LO - 2RF RESPONSE
vs. RF FREQUENCY
MAX19998 toc109
RF FREQUENCY (MHz)
TC = +85NC
2300
VCC = 5.25V
RF FREQUENCY (MHz)
PRF = -5dBm
2900
PRF = -5dBm/TONE
RF FREQUENCY (MHz)
90
60
2750
27
23
2300
2600
INPUT IP3 vs. RF FREQUENCY
PRF = -5dBm/TONE
INPUT IP3 (dBm)
25
2450
RF FREQUENCY (MHz)
27
MAX19998 toc106
TC = +25°C
24
2450
INPUT IP3 vs. RF FREQUENCY
PRF = -5dBm/TONE
TC = +85°C
VCC = 4.75V, 5.0V, 5.25V
RF FREQUENCY (MHz)
27
26
8
6
2300
INPUT IP3 (dBm)
2600
MAX19998 toc107
2450
9
7
6
2300
MAX19998 toc105
MAX19998 toc104
9
7
TC = +85°C
6
INPUT IP3 (dBm)
10
MAX19998 toc108
9
CONVERSION GAIN vs. RF FREQUENCY
11
CONVERSION GAIN (dB)
TC = +25°C
7
10
CONVERSION GAIN (dB)
CONVERSION GAIN (dB)
MAX19998 toc103
TC = -40°C
10
CONVERSION GAIN vs. RF FREQUENCY
11
VCC = 4.75V
80
MAX19998 toc111
CONVERSION GAIN vs. RF FREQUENCY
11
2LO - 2RF RESPONSE (dBc)
MAX19998
SiGe, High-Linearity, 2300MHz to 4000MHz
Downconversion Mixer with LO Buffer
70
VCC = 5.25V
VCC = 5.0V
60
50
2300
2450
2600
2750
RF FREQUENCY (MHz)
2900
2300
2450
2600
2750
RF FREQUENCY (MHz)
20 �������������������������������������������������������������������������������������
2900
SiGe, High-Linearity, 2300MHz to 4000MHz
Downconversion Mixer with LO Buffer
TC = +25NC
TC = -40NC
65
55
75
PLO = -3dBm, 0dBm, +3dBm
65
55
2600
2750
2900
TC = +25NC
10
TC = -40NC
2600
2750
2900
2300
11
2600
2750
PLO = -3dBm, 0dBm, +3dBm
10
2900
12
2450
2600
2750
2900
12
9
2750
RF FREQUENCY (MHz)
2900
2600
2750
2900
INPUT P1dB vs. RF FREQUENCY
11
PLO = -3dBm, 0dBm, +3dBm
13
VCC = 5.25V
VCC = 5.0V
12
11
VCC = 4.75V
10
9
2600
2450
RF FREQUENCY (MHz)
10
2450
2300
MAX19998 toc119
13
INPUT P1dB (dBm)
TC = +25NC
10
2300
VCC = 5.25V
INPUT P1dB vs. RF FREQUENCY
11
TC = -40NC
10
RF FREQUENCY (MHz)
MAX19998 toc118
12
VCC = 5.0V
8
2300
INPUT P1dB vs. RF FREQUENCY
TC = +85NC
2900
VCC = 4.75V
11
9
RF FREQUENCY (MHz)
13
2750
NOISE FIGURE vs. RF FREQUENCY
8
2450
2600
13
9
8
2450
RF FREQUENCY (MHz)
MAX19998 toc116
12
9
2300
65
NOISE FIGURE vs. RF FREQUENCY
NOISE FIGURE (dB)
NOISE FIGURE (dB)
11
2450
13
MAX19998 toc115
TC = +85NC
VCC = 4.75V, 5.0V, 5.25V
RF FREQUENCY (MHz)
NOISE FIGURE vs. RF FREQUENCY
12
75
55
2300
RF FREQUENCY (MHz)
13
85
MAX19998 toc117
2450
NOISE FIGURE (dB)
2300
INPUT P1dB (dBm)
PRF = -5dBm
MAX19998 toc114
85
95
MAX19998 toc120
75
PRF = -5dBm
3LO - 3RF RESPONSE (dBc)
TC = +85NC
85
95
INPUT P1dB (dBm)
3LO - 3RF RESPONSE (dBc)
PRF = -5dBm
3LO - 3RF RESPONSE (dBc)
95
3LO - 3RF RESPONSE
vs. RF FREQUENCY
MAX19998 toc113
3LO - 3RF RESPONSE
vs. RF FREQUENCY
MAX19998 toc112
3LO - 3RF RESPONSE
vs. RF FREQUENCY
9
2300
2450
2600
2750
RF FREQUENCY (MHz)
2900
2300
2450
2600
2750
2900
RF FREQUENCY (MHz)
______________________________________________________________________________________ 21
MAX19998
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 2300MHz to 2900MHz, LO is high-side injected
for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 2300MHz to 2900MHz, LO is high-side injected
for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
TC = +25°C
TC = +85°C
-30
TC = -40°C
-40
-30
PLO = -3dBm, 0dBm, +3dBm
2750
2900
3050
3200
VCC = 4.75V, 5.0V, 5.25V
-40
2600
2750
2900
3050
3200
2600
2750
2900
3050
LO FREQUENCY (MHz)
RF-TO-IF ISOLATION
vs. RF FREQUENCY
RF-TO-IF ISOLATION
vs. RF FREQUENCY
RF-TO-IF ISOLATION
vs. RF FREQUENCY
30
40
PLO = -3dBm, 0dBm, +3dBm
VCC = 5.25V
30
2450
2600
2750
2900
VCC = 5.0V
50
VCC = 4.75V
40
30
2300
2450
2600
2750
2900
2300
2450
2600
2750
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
LO LEAKAGE AT RF PORT vs.
LO FREQUENCY
LO LEAKAGE AT RF PORT vs.
LO FREQUENCY
LO LEAKAGE AT RF PORT vs.
LO FREQUENCY
TC = +25NC
TC = +85NC
-35
-40
-25
-30
PLO = -3dBm, 0dBm, +3dBm
-35
-40
3000
3500
LO FREQUENCY (MHz)
4000
-20
LO LEAKAGE AT RF PORT (dBm)
-30
MAX19998 toc128
TC = -40NC
-25
-20
LO LEAKAGE AT RF PORT (dBm)
MAX19998 toc127
-20
3200
MAX19998 toc126
MAX19998 toc125
50
60
RF-TO-IF ISOLATION (dB)
TC = +25NC
TC = -40NC
60
RF-TO-IF ISOLATION (dB)
MAX19998 toc124
50
2500
-30
RF FREQUENCY (MHz)
TC = +85NC
2300
-20
RF FREQUENCY (MHz)
60
40
MAX19998 toc123
MAX19998 toc122
-20
-10
-40
2600
RF-TO-IF ISOLATION (dB)
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
2900
MAX19998 toc129
-20
-10
LO LEAKAGE AT IF PORT (dBm)
MAX19998 toc121
LO LEAKAGE AT IF PORT (dBm)
-10
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
LO LEAKAGE AT IF PORT (dBm)
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
LO LEAKAGE AT RF PORT (dBm)
MAX19998
SiGe, High-Linearity, 2300MHz to 4000MHz
Downconversion Mixer with LO Buffer
-25
-30
VCC = 4.75V, 5.0V, 5.25V
-35
-40
2500
3000
3500
LO FREQUENCY (MHz)
4000
2500
3000
3500
LO FREQUENCY (MHz)
22 �������������������������������������������������������������������������������������
4000
SiGe, High-Linearity, 2300MHz to 4000MHz
Downconversion Mixer with LO Buffer
2LO LEAKAGE AT RF PORT vs.
LO FREQUENCY
TC = +85NC
-50
-60
PLO = +3dBm
-40
PLO = 0dBm
-50
PLO = -3dBm
-60
3000
3500
4000
VCC = 4.75V
-40
VCC = 5.25V
-50
3500
4000
3000
2500
LO FREQUENCY (MHz)
20
30
0
fLO = 3000MHz
IF PORT RETURN LOSS (dB)
fIF = 300MHz
4000
IF PORT RETURN LOSS vs.
IF FREQUENCY
MAX19998 toc133
0
3500
LO FREQUENCY (MHz)
RF PORT RETURN LOSS vs.
RF FREQUENCY
10
VCC = 5.0V
-60
3000
2500
LO FREQUENCY (MHz)
10
VCC = 4.75V, 5.0V, 5.25V
20
30
40
PLO = -3dBm, 0dBm, +3dBm
50
40
2300
2450
2600
2750
50
2900
230
320
410
IF FREQUENCY (MHz)
LO PORT RETURN LOSS vs.
LO FREQUENCY
SUPPLY CURRENT vs.
TEMPERATURE (TC)
250
MAX19998 toc135
0
20
PLO = 0dBm
240
SUPPLY CURRENT (mA)
PLO = -3dBm
10
140
RF FREQUENCY (MHz)
PLO = +3dBm
VCC = 5.25V
500
MAX19998 toc136
RF PORT RETURN LOSS (dB)
2500
-30
MAX19998 toc134
TC = +25NC
-30
2LO LEAKAGE AT RF PORT (dBm)
2LO LEAKAGE AT RF PORT (dBm)
-40
-20
MAX19998 toc131
-20
MAX19998 toc130
TC = -40NC
-30
LO PORT RETURN LOSS (dB)
2LO LEAKAGE AT RF PORT (dBm)
-20
2LO LEAKAGE AT RF PORT vs.
LO FREQUENCY
MAX19998 toc132
2LO LEAKAGE AT RF PORT vs.
LO FREQUENCY
VCC = 5.0V
230
220
VCC = 4.75V
210
30
200
2600
2950
3300
3650
LO FREQUENCY (MHz)
4000
-40
-15
10
35
60
85
TEMPERATURE (°C)
______________________________________________________________________________________ 23
MAX19998
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 2300MHz to 2900MHz, LO is high-side injected
for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
MAX19998
SiGe, High-Linearity, 2300MHz to 4000MHz
Downconversion Mixer with LO Buffer
VCC
1
RF
2
GND
IF+
IF-
GND
LEXT
TOP VIEW
IFBIAS
Pin Configuration/Functional Diagram
20
19
18
17
16
15
GND
14
VCC
3
13
GND
GND
4
12
GND
GND
5
11
LO
MAX19998
6
7
8
9
10
VCC
LOBIAS
VCC
GND
GND
EP
Pin Description
PIN
NAME
1, 6, 8, 14
VCC
FUNCTION
2
RF
3, 9, 13, 15
GND
Ground. Not internally connected. Pins can be grounded.
4, 5, 10, 12,
17
GND
Ground. Internally connected to the exposed pad. Connect all ground pins and the exposed pad
(EP) together.
7
LOBIAS
LO Amplifier Bias Control. Output bias resistor for the LO buffer. Connect a 604I (5V, 230mA bias
condition) from LOBIAS to ground.
11
LO
Local Oscillator Input. This input is internally matched to 50I. Requires an input DC-blocking capacitor.
16
LEXT
External Inductor Connection. Connect a low-ESR 4.7nH inductor from this pin to ground to increase
the RF-to-IF and LO-to-IF isolation. Connect this pin directly to ground to reduce the component
count at the expense of reduced RF-to-IF and LO-to-IF isolation.
18, 19
IF-, IF+
Mixer Differential IF Output. Connect pullup inductors from each of these pins to VCC (see the Typical
Application Circuit).
20
IFBIAS
IF Amplifier Bias Control. IF bias resistor connection for the IF amplifier. Connect a 698I (5V, 230mA
bias condition) from IFBIAS to GND.
—
EP
Exposed Pad. Internally connected to GND. Solder this exposed pad to a PCB pad that uses multiple
ground vias to provide heat transfer out of the device into the PCB ground planes. These multiple via
grounds are also required to achieve the noted RF performance.
Power Supply. Bypass to GND with 0.01FF capacitors as close as possible to the pin.
Single-Ended 50I RF Input. Internally matched and DC shorted to GND through a balun. Provide an
input DC-blocking capacitor if required.
24 �������������������������������������������������������������������������������������
SiGe, High-Linearity, 2300MHz to 4000MHz
Downconversion Mixer with LO Buffer
The MAX19998 provides high linearity and low noise
figure for a multitude of 2300MHz to 4000MHz WiMAX,
LTE, and MMDS base-station applications. This device
operates over a 2600MHz to 4300MHz LO range and
a 50MHz to 500MHz IF range. Integrated baluns and
matching circuitry allow 50I single-ended interfaces to
the RF and LO ports. The integrated LO buffer provides a
high drive level to the mixer core, reducing the LO drive
required at the MAX19998’s input to a range of -3dBm
to +3dBm. The IF port incorporates a differential output,
which is ideal for providing enhanced 2RF - 2LO and
2LO - 2RF performance.
RF Input and Balun
The MAX19998 RF input provides a 50I match when
combined with a series DC-blocking capacitor. This
DC-blocking capacitor is required as the input is internally DC shorted to ground through the on-chip balun.
When using an 8.2pF DC-blocking capacitor, the RF port
input return loss is typically 17dB over the RF frequency
range of 3200MHz to 3900MHz. See Table 1 for lower
band tuning.
LO Inputs, Buffer, and Balun
The LO input is internally matched to 50I, requiring
only a 2pF DC-blocking capacitor. A two-stage internal
LO buffer allows for a -3dBm to +3dBm LO input power
range. The on-chip low-loss balun, along with an LO
buffer, drives the double-balanced mixer. All interfacing
and matching components from the LO inputs to the IF
outputs are integrated on-chip.
High-Linearity Mixer
The core of the MAX19998 is a double-balanced, highperformance passive mixer. Exceptional linearity is provided by the large LO swing from the on-chip LO buffer.
When combined with the integrated IF amplifier, IIP3,
2RF - 2LO rejection, and noise-figure performance are
typically +24.3dBm, 67dBc, and 9.7dB, respectively,
for low-side LO injection architectures covering the
3000MHz to 4000MHz RF band.
Differential IF Output Amplifier
The MAX19998 has a 50MHz to 500MHz IF frequency
range, where the low-end frequency depends on the
frequency response of the external IF components. The
MAX19998 mixer is tuned for a 300MHz IF using 390nH
external pullup bias inductors. Lower IF frequencies
would require higher L1 and L2 inductor values to maintain a good IF match. The differential, open-collector IF
output ports require that these inductors be connected
to VCC.
Note that these differential ports are ideal for providing enhanced 2RF - 2LO performance. Single-ended
IF applications require a 4:1 (impedance ratio) balun to
transform the 200I differential IF impedance to a 50I
single-ended system. Use the TC4-1W-17 4:1 transformer for IF frequencies above 200MHz and the TC4-1W-7A
4:1 transformer for frequencies below 200MHz. The user
can use a differential IF amplifier or SAW filter on the
mixer IF port, but a DC block is required on both IF+/
IF- ports to keep external DC from entering the IF ports
of the mixer.
Applications Information
Input and Output Matching
The RF and LO inputs provide 50I matches when
combined with the proper tuning. Use an 8.2pF capacitor value on the RF port for frequencies ranging from
3000MHz to 4000MHz. Use a 3.3nH series inductor and
a 0.3pF shunt capacitor on the RF port for frequencies
ranging from 2300MHz to 2900MHz. On the LO port, use
a 2pF DC-blocking capacitor to cover operations spanning the 2600MHz to 4300MHz range.
The IF output impedance is 200I (differential). For evaluation, an external low-loss 4:1 (impedance ratio) balun
transforms this impedance down to a 50I single-ended
output (see the Typical Application Circuit).
Reduced-Power Mode
The MAX19998 has two pins (LOBIAS, IFBIAS) that allow
external resistors to set the internal bias currents. See
Table 1 for nominal values for these resistors. Larger
value resistors can be used to reduce power dissipation at the expense of some performance loss. If Q1%
resistors are not readily available, substitute with Q5%
resistors.
Significant reductions in power consumption can also
be realized by operating the mixer with an optional
supply voltage of 3.3V. Doing so reduces the overall
power consumption by 57% (typ). See the 3.3V Supply
AC Electrical Characteristics table and the relevant 3.3V
curves in the Typical Operating Characteristics section
to evaluate the power vs. performance trade-offs.
______________________________________________________________________________________ 25
MAX19998
Detailed Description
MAX19998
SiGe, High-Linearity, 2300MHz to 4000MHz
Downconversion Mixer with LO Buffer
LEXT Inductor
Short LEXT to ground using a 0I resistor. For applications requiring improved RF-to-IF and LO-to-IF isolation,
L3 can be changed to optimize performance (see the
Typical Operating Characteristics). However, the load
impedance presented to the mixer must be such that any
capacitances from IF- and IF+ to ground do not exceed
several picofarads to ensure stable operating conditions.
Since approximately 120mA flows through LEXT, it is
important to use a low-DCR wire-wound inductor.
Layout Considerations
A properly designed PCB is an essential part of any RF/
microwave circuit. Keep RF signal lines as short as possible to reduce losses, radiation, and inductance. The
load impedance presented to the mixer must be such
that any capacitance from both IF- and IF+ to ground
does not exceed several picofarads. For the best performance, route the ground pin traces directly to the
exposed pad under the package. The PCB exposed pad
MUST be connected to the ground plane of the PCB. It is
suggested that multiple vias be used to connect this pad
to the lower level ground planes. This method provides a
good RF/thermal-conduction path for the device. Solder
the exposed pad on the bottom of the device package
to the PCB. The MAX19998 evaluation kit can be used
as a reference for board layout. Gerber files are available
upon request at www.maxim-ic.com.
Power-Supply Bypassing
Proper voltage supply bypassing is essential for highfrequency circuit stability. Bypass each VCC pin with the
capacitors shown in the Typical Application Circuit and
see Table 1 for component values.
Table 1. Component Values
DESIGNATION
QTY
DESCRIPTION
COMPONENT SUPPLIER
8.2pF microwave capacitor (0402). Use for RF
Murata Electronics North America, Inc.
frequencies ranging from 3000MHz to 4000MHz.
C1
1
C2, C6, C8, C11
4
0.01FF microwave capacitors (0402)
Murata Electronics North America, Inc.
C3, C9
0
Not installed, capacitors
—
C10
1
2pF microwave capacitor (0402)
Murata Electronics North America, Inc.
C13, C14
2
1000pF microwave capacitors (0402)
Murata Electronics North America, Inc.
C15
1
82pF microwave capacitor (0402)
Murata Electronics North America, Inc.
Not installed for RF frequencies ranging from
3000MHz to 4000MHz
—
3.3nH microwave inductor (0402). Use for RF
Coilcraft, Inc.
frequencies ranging from 2300MHz to 2900MHz.
C16
1
L1, L2
2
390nH wire-wound high-Q inductors* (0805)
Coilcraft, Inc.
L3
1
4.7nH wire-wound high-Q inductor (0603)
Coilcraft, Inc.
R1
1
0.3pF microwave capacitor (0402). Use for RF
Murata Electronics North America, Inc.
frequencies ranging from 2300MHz to 2900MHz.
698I Q1% resistor (0402). Use for VCC = 5.0V
applications.
845I Q1% resistor (0402). Use for VCC = 3.3V
applications.
604I Q1% resistor (0402). Use for VCC = 5.0V
applications.
Digi-Key Corp.
R2
1
R3
1
0I resistor (1206)
Digi-Key Corp.
T1
1
4:1 IF balun TC4-1W-17*
Mini-Circuits
U1
1
MAX19998 IC (20 Thin QFN-EP)
Maxim Integrated Products, Inc.
1.1kI Q1% resistor (0402). Use for VCC = 3.3V
applications.
Digi-Key Corp.
*Use larger value inductors and a TC4-1W-7A 4:1 balun for IF frequencies below 200MHz.
26 �������������������������������������������������������������������������������������
SiGe, High-Linearity, 2300MHz to 4000MHz
Downconversion Mixer with LO Buffer
heat from the EP. In addition, provide the EP with a lowinductance path to electrical ground. The EP MUST be
soldered to a ground plane on the PCB, either directly or
through an array of plated via holes.
(EP) of the MAX19998’s 20-pin thin
provides a low thermal-resistance
is important that the PCB on which
mounted be designed to conduct
Typical Application Circuit
C15
L1
3
6
IF
OUTPUT
C13
T1
2
L2
R3
1
C14
4
4:1
R1
20
C3
C1
VCC
RF
19
LEXT
GND
18
17
1
16
15
U1
MAX19998
2
14
GND
VCC
+5.0V
C11
C16*
GND
GND
3
13
4
12
GND
GND
EP
11
5
LOBIAS
+5.0V
C6
9
8
LO
C10
LO
INPUT
10
GND
7
GND
6
VCC
GND
VCC
RF
INPUT
C2
IF-
+5.0V
IF+
IFBIAS
L3
R2
+5.0V
C8
C9
NOTE: PINS 4, 5, 10, 12, AND 17 ARE ALL INTERNALLY
CONNECTED TO THE EXPOSED GROUND PAD. CONNECT
THESE PINS TO GROUND TO IMPROVE ISOLATION.
PINS 3, 9, 13, AND 15 HAVE NO INTERNAL CONNECTION, BUT CAN BE
EXTERNALLY GROUNDED TO IMPROVE ISOLATION.
*C16 NOT USED FOR 3000MHz TO 4000MHz APPLICATIONS.
______________________________________________________________________________________ 27
MAX19998
Exposed Pad RF/Thermal Considerations
The exposed pad
QFN-EP package
path to the die. It
the MAX19998 is
MAX19998
SiGe, High-Linearity, 2300MHz to 4000MHz
Downconversion Mixer with LO Buffer
Chip Information
PROCESS: SiGe BiCMOS
Package Information
For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that
a “+”, “#”, or “-” in the package code indicates RoHS
status only. Package drawings may show a different suffix character, but the drawing pertains to the package
regardless of RoHS status.
PACKAGE TYPE
PACKAGE CODE
DOCUMENT NO.
20 Thin QFN-EP
T2055+3
21-0140
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied.
Maxim reserves the right to change the circuitry and specifications without notice at any time.
28
© 2009
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
Maxim Integrated Products Maxim is a registered trademark of Maxim Integrated Products, Inc.