19-4827; Rev 0; 10/09 TION KIT EVALUA BLE AVAILA SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer Features The MAX19998 single, high-linearity downconversion mixer provides 8.7dB of conversion gain, +24.3dBm input IP3, +11.3dBm 1dB input compression point, and a noise figure of 9.7dB for 2300MHz to 4000MHz WiMAXK, LTE, and MMDS receiver applications. With an ultra-wide LO 2600MHz to 4300MHz frequency range, the MAX19998 can be used in either low-side or high-side LO injection architectures for virtually all 2.5GHz and 3.5GHz applications. For a 2.5GHz variant tuned specifically for high-side injection, refer to the MAX19996A. S 2300MHz to 4000MHz RF Frequency Range In addition to offering excellent linearity and noise performance, the MAX19998 also yields a high level of component integration. This device includes a doublebalanced passive mixer core, an IF amplifier, and an LO buffer. On-chip baluns are also integrated to allow for single-ended RF and LO inputs. The MAX19998 requires a nominal LO drive of 0dBm, and supply current is typically 230mA at VCC = 5.0V or 150mA at VCC = 3.3V. S Integrated LO Buffer The MAX19998 is pin compatible with the MAX19996/ MAX19996A 2000MHz to 3900MHz mixer family. The device is also pin similar with the MAX9984/MAX9986/ MAX9986A 400MHz to 1000MHz mixers and the MAX9993/MAX9994/MAX9996 1700MHz to 2200MHz mixers, making this entire family of downconverters ideal for applications where a common PCB layout is used for multiple frequency bands. S 2600MHz to 4300MHz LO Frequency Range S 50MHz to 500MHz IF Frequency Range S 8.7dB Conversion Gain S 9.7dB Noise Figure S +24.3dBm Typical Input IP3 S +11.3dBm Typical Input 1dB Compression Point S 67dBc Typical 2RF - 2LO Spurious Rejection at PRF = -10dBm S Integrated RF and LO Baluns for Single-Ended Inputs S Low -3dBm to +3dBm LO Drive S Pin Compatible with the MAX19996/MAX19996A 2000MHz to 3900MHz Mixers S Pin Similar with the MAX9984/MAX9986/ MAX9986A Series of 400MHz to 1000MHz Mixers and the MAX9993/MAX9994/MAX9996 Series of 1700MHz to 2200MHz Mixers S Single 5.0V or 3.3V Supply S External Current-Setting Resistors Provide Option for Operating Device in Reduced-Power/ReducedPerformance Mode The MAX19998 is available in a compact, 5mm x 5mm, 20-pin thin QFN with an exposed pad. Electrical performance is guaranteed over the extended -40NC to +85NC temperature range. Applications 2.5GHz WiMAX and LTE Base Stations 2.7GHz MMDS Base Stations 3.5GHz WiMAX and LTE Base Stations Fixed Broadband Wireless Access Wireless Local Loop Ordering Information TEMP RANGE PIN-PACKAGE MAX19998ETP+ PART -40NC to +85NC 20 Thin QFN-EP* MAX19998ETP+T -40NC to +85NC 20 Thin QFN-EP* +Denotes a lead(Pb)-free/RoHS-compliant package. *EP = Exposed pad. T = Tape and reel. Private Mobile Radios Military Systems WiMAX is a trademark of WiMAX Forum. ________________________________________________________________ Maxim Integrated Products 1 For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com. MAX19998 General Description MAX19998 SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer ABSOLUTE MAXIMUM RATINGS VCC to GND...........................................................-0.3V to +5.5V IF+, IF-, LOBIAS, IFBIAS to GND.............. -0.3V to (VCC + 0.3V) RF, LO Input Power........................................................ +12dBm RF, LO Current (RF and LO is DC shorted to GND through balun).........50mA Continuous Power Dissipation (Note 1)..................................5W BJA (Notes 2, 3)............................................................. +38NC/W BJC (Notes 1, 3)............................................................. +13NC/W Operating Case Temperature Range (Note 4)................................................... TC = -40NC to +85NC Junction Temperature......................................................+150NC Storage Temperature Range............................. -65NC to +150NC Lead Temperature (soldering, 10s).................................+300NC Note 1: Based on junction temperature TJ = TC + (BJC x VCC x ICC). This formula can be used when the temperature of the exposed pad is known while the device is soldered down to a PCB. See the Applications Information section for details. The junction temperature must not exceed +150NC. Note 2: Junction temperature TJ = TA + (BJA x VCC x ICC). This formula can be used when the ambient temperature of the PCB is known. The junction temperature must not exceed +150NC. Note 3: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a fourlayer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial. Note 4: TC is the temperature on the exposed pad of the package. TA is the ambient temperature of the device and PCB. Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. 5.0V SUPPLY DC ELECTRICAL CHARACTERISTICS (Typical Application Circuit, R1 = 698ω, R2 = 604ω, VCC = 4.75V to 5.25V, no input RF or LO signals. TC = -40NC to +85NC, unless otherwise noted. Typical values are at VCC = 5.0V, TC = +25NC, all parameters are production tested.) PARAMETER SYMBOL Supply Voltage VCC Supply Current ICC CONDITIONS MIN TYP MAX 4.75 5.0 5.25 V 230 247 mA Total supply current UNITS 3.3V SUPPLY DC ELECTRICAL CHARACTERISTICS (Typical Application Circuit, R1 = 845ω, R2 = 1.1kω, VCC = 3.0V to 3.6V, no input RF or LO signals. TC = -40NC to +85NC, unless otherwise noted. Typical values are at VCC = 3.3V, TC = +25NC, parameters are guaranteed by design, unless otherwise noted.) (Note 5) PARAMETER SYMBOL Supply Voltage VCC Supply Current ICC CONDITIONS MIN 3.0 Total supply current TYP MAX 3.3 3.6 150 UNITS V mA RECOMMENDED AC OPERATING CONDITIONS MAX UNITS RF Frequency Range PARAMETER fRF (Notes 5, 6) 2300 4000 MHz LO Frequency fLO (Notes 5, 6) 2600 4300 MHz Using a Mini-Circuits TC4-1W-17 4:1 transformer as defined in the Typical Application Circuit, IF matching components affect the IF frequency range (Notes 5, 6) 100 500 Using a Mini-Circuits TC4-1W-7A 4:1 transformer as defined in the Typical Application Circuit, IF matching components affect the IF frequency range (Notes 5, 6) 50 IF Frequency LO Drive SYMBOL fIF PLO CONDITIONS MIN TYP MHz -3 250 0 2 _______________________________________________________________________________________ +3 dBm SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer (Typical Application Circuit, with tuning elements outlined in Table 1, R1 = 698ω, R2 = 604ω, VCC = 4.75V to 5.25V, RF and LO ports are driven from 50I sources, PLO = -3dBm to +3dBm, PRF = -5dBm, fRF = 3100MHz to 3900MHz, fIF = 300MHz, fLO = 2800MHz to 3600MHz, fRF > fLO, TC = -40NC to +85NC. Typical values are for TC = +25NC, VCC = 5.0V, PRF = -5dBm, PLO = 0dBm, fRF = 3500MHz, fLO = 3200MHz, fIF = 300MHz. All parameters are guaranteed by design and characterization, unless otherwise noted.) (Note 7) PARAMETER Small-Signal Conversion Gain Gain Variation vs. Frequency SYMBOL GC DGC CONDITIONS TC = +25NC (Notes 8, 9) MAX UNITS 8.7 9.4 dB 0.15 fRF = 3100MHz to 3900MHz, any 200MHz band 0.3 TCCG fRF = 3100MHz to 3900MHz, TC = -40NC to +85NC Input 1dB Compression Point IP1dB (Note 10) IIP3 TYP 7.6 fRF = 3100MHz to 3900MHz, any 100MHz band Conversion Gain Temperature Coefficient Third-Order Input Intercept Point MIN fRF1 - fRF2 = 1MHz, PRF1 = PRF2 = -5dBm/tone, TC = +25NC (Note 9) dB -0.01 dB/NC 10.0 11.4 dBm 22 24.3 dBm Q0.2 dBm fRF = 3100MHz to 3900MHz, fRF1 - fRF2 = 1MHz, PRF1 = PRF2 = -5dBm/tone, TC = -40NC to +85NC IIP3 Variation with TC No blockers present (Note 5) 9.7 12.5 No blockers present, TC = +25NC (Note 5) 9.7 11.0 Single-Sideband Noise Figure NFSSB Noise Figure Temperature Coefficient TCNF Single sideband, no blockers present, TC = -40NC to +85NC Noise Figure Under Blocking NFB +8dBm blocker tone applied to RF port, fRF = 3500MHz, fLO = 3200MHz, fBLOCKER = 3750MHz, PLO = 0dBm, VCC = +5.0V, TC = +25NC (Notes 5, 11) 2RF - 2LO Spur Rejection 2x2 fSPUR = fLO + 150MHz 3RF - 3LO Spur Rejection 3x3 fSPUR = fLO + 100MHz RF Input Return Loss RLRF LO on and IF terminated into a matched impedance 25 dB LO Input Return Loss RLLO RF and IF terminated into a matched impedance 16 dB IF Output Impedance ZIF Nominal differential impedance at the IC’s IF outputs 200 I IF Output Return Loss RLIF 0.018 21 PRF = -10dBm (Note 5) 63 67 PRF = -5dBm (Note 9) 58 62 PRF = -10dBm (Note 5) 80 85 PRF = -5dBm (Note 9) 70 75 RF terminated into 50I, LO driven by 50I source, IF transformed to 50I using external components shown in the Typical Application Circuit. See the Typical Operating Characteristics for performance vs. inductor values. fIF = 450MHz, L1 = L2 = 120nH 20 fIF = 350MHz, L1 = L2 = 270nH 20 fIF = 300MHz, L1 = L2 = 390nH 20 dB dB/NC 25 dB dBc dBc dB _______________________________________________________________________________________ 3 MAX19998 5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS—fRF = 3100MHz to 3900MHz, LOW-SIDE LO INJECTION MAX19998 SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer 5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS—fRF = 3100MHz to 3900MHz, LOW-SIDE LO INJECTION (continued) (Typical Application Circuit, with tuning elements outlined in Table 1, R1 = 698ω, R2 = 604ω, VCC = 4.75V to 5.25V, RF and LO ports are driven from 50I sources, PLO = -3dBm to +3dBm, PRF = -5dBm, fRF = 3100MHz to 3900MHz, fIF = 300MHz, fLO = 2800MHz to 3600MHz, fRF > fLO, TC = -40NC to +85NC. Typical values are for TC = +25NC, VCC = 5.0V, PRF = -5dBm, PLO = 0dBm, fRF = 3500MHz, fLO = 3200MHz, fIF = 300MHz. All parameters are guaranteed by design and characterization, unless otherwise noted.) (Note 7) PARAMETER SYMBOL CONDITIONS MIN TYP 27 29.5 dB LO Leakage at RF Port fLO = 2800MHz to 3600MHz, PLO = +3dBm (Note 9) -26 dBm 2LO Leakage at RF Port PLO = +3dBm -29 dBm LO Leakage at IF Port PLO = +3dBm (Note 9) -22 dBm RF-to-IF Isolation fRF = 3500MHz, PLO = +3dBm (Note 9) MAX UNITS 3.3V SUPPLY AC ELECTRICAL CHARACTERISTICS—fRF = 3100MHz to 3900MHz, LOW-SIDE LO INJECTION (Typical Application Circuit, with tuning elements outlined in Table 1, R1 = 845ω, R2 = 1.1kω, RF and LO ports are driven from 50I sources, fRF > fLO. Typical values are for TC = +25NC, VCC = 3.3V, PRF = -5dBm, PLO = 0dBm, fRF = 3500MHz, fLO = 3200MHz, fIF = 300MHz, unless otherwise noted.) (Note 7) PARAMETER SYMBOL Small-Signal Conversion Gain GC Gain Variation vs. Frequency DGC Conversion Gain Temperature Coefficient Input 1dB Compression Point Third-Order Input Intercept Point CONDITIONS MIN TYP MAX UNITS 8.4 dB fRF = 3100MHz to 3900MHz, any 100MHz band 0.15 dB TCCG fRF = 3100MHz to 3900MHz, TC = -40NC to +85NC -0.01 dB/NC IP1dB IIP3 (Note 10) fRF1 - fRF2 = 1MHz, PRF1 = PRF2 = -5dBm/tone 7.7 20.1 dBm dBm fRF1 - fRF2 = 1MHz, PRF1 = PRF2 = -5dBm/tone, TC = -40NC to +85NC Q0.2 dB 9.3 dB 0.018 dB/NC IIP3 Variation with TC Single-Sideband Noise Figure NFSSB No blockers present Noise Figure Temperature Coefficient TCNF Single sideband, no blockers present, TC = -40NC to +85NC 2RF - 2LO Spur Rejection 2x2 fSPUR = fLO + 150MHz 3RF - 3LO Spur Rejection 3x3 fSPUR = fLO + 100MHz RF Input Return Loss PRF = -10dBm 64 PRF = -5dBm 59 PRF = -10dBm 74 PRF = -5dBm 64 RLRF LO on and IF terminated into a matched impedance 30 dB LO Input Return Loss RLLO RF and IF terminated into a matched impedance 20 dB IF Output Impedance ZIF Nominal differential impedance at the IC’s IF outputs 200 I 4 _______________________________________________________________________________________ dBc dBc SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer (Typical Application Circuit, with tuning elements outlined in Table 1, R1 = 845ω, R2 = 1.1kω, RF and LO ports are driven from 50I sources, fRF > fLO. Typical values are for TC = +25NC, VCC = 3.3V, PRF = -5dBm, PLO = 0dBm, fRF = 3500MHz, fLO = 3200MHz, fIF = 300MHz, unless otherwise noted.) (Note 7) PARAMETER IF Output Return Loss SYMBOL CONDITIONS RLIF RF terminated into 50I, LO fIF = 450MHz, L1 = L2 = 120nH driven by 50I source, IF transformed to 50I using fIF = 350MHz, external components shown L1 = L2 = 270nH in the Typical Application Circuit. See the Typical fIF = 300MHz, Operating Characteristics for performance vs. inductor L1 = L2 = 390nH values. MIN TYP MAX UNITS 17 17 dB 17 RF-to-IF Isolation fRF = 3100MHz to 3900MHz, PLO = +3dBm 27 dB LO Leakage at RF Port -30 dBm 2LO Leakage at RF Port fLO = 2800MHz to 3600MHz, PLO = +3dBm fLO = 2800MHz to 3600MHz, PLO = +3dBm -26.5 dBm LO Leakage at IF Port fLO = 2800MHz to 3600MHz, PLO = +3dBm -27.5 dBm 5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS—fRF = 3100MHz to 3900MHz, HIGH-SIDE LO INJECTION (Typical Application Circuit, with tuning elements outlined in Table 1, R1 = 698ω, R2 = 604ω, VCC = 4.75V to 5.25V, RF and LO ports are driven from 50I sources, PLO = -3dBm to +3dBm, PRF = -5dBm, fRF = 3100MHz to 3900MHz, fIF = 300MHz, fLO = 3400MHz to 4200MHz, fRF < fLO, TC = -40NC to +85NC. Typical values are for TC = +25NC, VCC = 5.0V, PRF = -5dBm, PLO = 0dBm, fRF = 3500MHz, fLO = 3800MHz, fIF = 300MHz, unless otherwise noted.) (Note 7) PARAMETER Small-Signal Conversion Gain Gain Variation vs. Frequency SYMBOL GC DGC CONDITIONS MIN TYP TC = +25NC 8.4 fRF = 3100MHz to 3900MHz, any 100MHz band 0.15 fRF = 3100MHz to 3900MHz, any 200MHz band 0.3 MAX UNITS dB dB Conversion Gain Temperature Coefficient TCCG fRF = 3100MHz to 3900MHz, TC = -40NC to +85NC -0.01 dB/NC Input 1dB Compression Point IP1dB (Note 10) 11.4 dBm fRF1 - fRF2 = 1MHz, PRF1 = PRF2 = -5dBm/tone, TC = +25NC 24.8 dBm fRF = 3100MHz to 3900MHz, fRF1 - fRF2 = 1MHz, PRF1 = PRF2 = -5dBm/tone, TC = -40NC to +85NC Q0.2 dBm 9.8 dB 0.018 dB/NC Third-Order Input Intercept Point IIP3 IIP3 Variation with TC Single-Sideband Noise Figure NFSSB No blockers present Noise Figure Temperature Coefficient TCNF Single sideband, no blockers present, TC = -40NC to +85NC 2LO - 2RF Spur Rejection 2x2 fSPUR = fLO - 150MHz 3LO - 3RF Spur Rejection 3x3 fSPUR = fLO - 100MHz PRF = -10dBm 70 PRF = -5dBm 65 PRF = -10dBm 89 PRF = -5dBm 79 dBc dBc _______________________________________________________________________________________ 5 MAX19998 3.3V SUPPLY AC ELECTRICAL CHARACTERISTICS—fRF = 3100MHz to 3900MHz, LOW-SIDE LO INJECTION (continued) MAX19998 SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer 5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS—fRF = 3100MHz to 3900MHz, HIGH-SIDE LO INJECTION (continued) (Typical Application Circuit, with tuning elements outlined in Table 1, R1 = 698ω, R2 = 604ω, VCC = 4.75V to 5.25V, RF and LO ports are driven from 50I sources, PLO = -3dBm to +3dBm, PRF = -5dBm, fRF = 3100MHz to 3900MHz, fIF = 300MHz, fLO = 3400MHz to 4200MHz, fRF < fLO, TC = -40NC to +85NC. Typical values are for TC = +25NC, VCC = 5.0V, PRF = -5dBm, PLO = 0dBm, fRF = 3500MHz, fLO = 3800MHz, fIF = 300MHz, unless otherwise noted.) (Note 7) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS RF Input Return Loss RLRF LO on and IF terminated into a matched impedance LO Input Return Loss RLLO RF and IF terminated into a matched impedance 18 dB IF Output Impedance ZIF Nominal differential impedance at the IC’s IF outputs 200 I IF Output Return Loss RLIF RF terminated into 50I, LO driven by 50I source, IF transformed to 50I using external components shown in the Typical Application Circuit. See the Typical Operating Characteristics for performance vs. inductor values. 24 dB fIF = 450MHz, L1 = L2 = 120nH 20 fIF = 350MHz, L1 = L2 = 270nH 20 dB fIF = 300MHz, L1 = L2 = 390nH 20 RF-to-IF Isolation PLO = +3dBm 30 dB LO Leakage at RF Port PLO = +3dBm -30.3 dBm 2LO Leakage at RF Port PLO = +3dBm -19 dBm LO Leakage at IF Port PLO = +3dBm -23 dBm 5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS—fRF = 2300MHz to 2900MHz, HIGH-SIDE LO INJECTION (Typical Application Circuit, with tuning elements outlined in Table 1, R1 = 698ω, R2 = 604ω, VCC = 4.75V to 5.25V, RF and LO ports are driven from 50I sources, PLO = -3dBm to +3dBm, PRF = -5dBm, fRF = 2300MHz to 2900MHz, fIF = 300MHz, fLO = 2600MHz to 3200MHz, fRF < fLO, TC = -40NC to +85NC. Typical values are for TC = +25NC, VCC = 5.0V, PRF = -5dBm, PLO = 0dBm, fRF = 2600MHz, fLO = 2900MHz, fIF = 300MHz, unless otherwise noted.) (Note 7) PARAMETER Small-Signal Conversion Gain Gain Variation vs. Frequency SYMBOL GC DGC CONDITIONS MIN TYP TC = +25NC 8.4 fRF = 2300MHz to 2900MHz, any 100MHz band 0.15 fRF = 2300MHz to 2900MHz, any 200MHz band 0.3 MAX UNITS dB dB Conversion Gain Temperature Coefficient TCCG fRF = 2300MHz to 2900MHz, TC = -40NC to +85NC -0.01 dB/NC Input 1dB Compression Point IP1dB (Note 10) 11.4 dBm fRF1 - fRF2 = 1MHz, PRF1 = PRF2 = -5dBm/tone, TC = +25NC 25.0 dBm Third-Order Input Intercept Point IIP3 6 _______________________________________________________________________________________ SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer (Typical Application Circuit, with tuning elements outlined in Table 1, R1 = 698ω, R2 = 604ω, VCC = 4.75V to 5.25V, RF and LO ports are driven from 50I sources, PLO = -3dBm to +3dBm, PRF = -5dBm, fRF = 2300MHz to 2900MHz, fIF = 300MHz, fLO = 2600MHz to 3200MHz, fRF < fLO, TC = -40NC to +85NC. Typical values are for TC = +25NC, VCC = 5.0V, PRF = -5dBm, PLO = 0dBm, fRF = 2600MHz, fLO = 2900MHz, fIF = 300MHz, unless otherwise noted. (Note 7) PARAMETER SYMBOL IIP3 Variation with TC Single-Sideband Noise Figure CONDITIONS MIN TYP MAX UNITS fRF = 2300MHz to 2900MHz, fRF1 - fRF2 = 1MHz, PRF1 = PRF2 = -5dBm/tone, TC = -40NC to +85NC Q0.2 dBm NFSSB No blockers present 10.0 dB Noise Figure Temperature Coefficient TCNF Single sideband, no blockers present, TC = -40NC to +85NC 0.018 dB/NC 2LO - 2RF Spur Rejection 2x2 fSPUR = fLO - 50MHz 3LO - 3RF Spur Rejection 3x3 fSPUR = fLO - 100MHz RF Input Return Loss RLRF LO on and IF terminated into a matched impedance 30 dB LO Input Return Loss RLLO RF and IF terminated into a matched impedance 18 dB IF Output Impedance ZIF Nominal differential impedance at the IC’s IF outputs 200 I fIF = 450MHz, L1 = L2 = 120nH 25 fIF = 350MHz, L1 = L2 = 270nH 25 IF Output Return Loss RLIF PRF = -10dBm 77 PRF = -5dBm 72 PRF = -10dBm 86 PRF = -5dBm 76 RF terminated into 50I, LO driven by 50I source, IF transformed to 50I using external components shown in the Typical Application Circuit. See the Typical Operating Characteristics for performance vs. inductor values. dBc dBc dB fIF = 300MHz, L1 = L2 = 390nH 25 RF-to-IF Isolation PLO = +3dBm 45 dB LO Leakage at RF Port PLO = +3dBm -28.8 dBm 2LO Leakage at RF Port PLO = +3dBm -42.3 dBm LO Leakage at IF Port PLO = +3dBm -26.3 dBm Note 5: Not production tested. Note 6: Operation outside this range is possible, but with degraded performance of some parameters. See the Typical Operating Characteristics. Note 7: All limits reflect losses of external components, including a 0.8dB loss at fIF = 300MHz due to the 4:1 impedance transformer. Output measurements were taken at IF outputs of the Typical Application Circuit. Note 8: Guaranteed by design and characterization. Note 9: 100% production tested for functional performance. Note 10: Maximum reliable continuous input power applied to the RF port of this device is +12dBm from a 50I source. Note 11: Measured with external LO source noise filtered so that the noise floor is -174dBm/Hz. This specification reflects the effects of all SNR degradations in the mixer including the LO noise, as defined in Application Note 2021: Specifications and Measurement of Local Oscillator Noise in Integrated Circuit Base Station Mixers. _______________________________________________________________________________________ 7 MAX19998 5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS—fRF = 2300MHz to 2900MHz, HIGH-SIDE LO INJECTION (continued) Typical Operating Characteristics (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 3100MHz to 3900MHz, LO is low-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) TC = +85°C 7 8 PLO = -3dBm, 0dBm, +3dBm 7 6 3400 3600 3800 4000 3200 RF FREQUENCY (MHz) 3600 3800 4000 3000 24 25 24 23 3400 3600 3800 4000 3800 VCC = 5.25V PLO = -3dBm, 0dBm, +3dBm 25 24 VCC = 5.0V VCC = 4.75V 23 3000 3200 3400 3600 3800 4000 3000 3200 3400 3600 3800 2RF - 2LO RESPONSE vs. RF FREQUENCY 2RF - 2LO RESPONSE vs. RF FREQUENCY 2RF - 2LO RESPONSE vs. RF FREQUENCY TC = +25°C 60 PRF = -5dBm 80 PLO = +3dBm 70 60 PLO = 0dBm TC = -40°C 50 3400 3600 RF FREQUENCY (MHz) 3800 4000 4000 PRF = -5dBm 80 70 60 PLO = -3dBm VCC = 4.75V, 5.0V, 5.25V 50 3200 90 2RF - 2LO RESPONSE (dBc) TC = +85°C 70 2RF - 2LO RESPONSE (dBc) 80 90 MAX19998 toc08 RF FREQUENCY (MHz) MAX19998 toc07 RF FREQUENCY (MHz) PRF = -5dBm 4000 PRF = -5dBm/TONE RF FREQUENCY (MHz) 90 3000 3600 26 23 3200 3400 INPUT IP3 vs. RF FREQUENCY PRF = -5dBm/TONE TC = -40°C 3000 3200 RF FREQUENCY (MHz) INPUT IP3 (dBm) MAX19998 toc04 TC = +25°C 26 INPUT IP3 (dBm) TC = +85°C 3400 INPUT IP3 vs. RF FREQUENCY PRF = -5dBm/TONE 25 VCC = 4.75V, 5.0V, 5.25V RF FREQUENCY (MHz) INPUT IP3 vs. RF FREQUENCY 26 8 6 3000 MAX19998 toc05 3200 9 7 6 3000 INPUT IP3 (dBm) 10 MAX19998 toc06 8 9 MAX19998 toc03 10 CONVERSION GAIN (dB) 9 CONVERSION GAIN vs. RF FREQUENCY 11 MAX19998 toc02 TC = +25°C CONVERSION GAIN (dB) CONVERSION GAIN (dB) MAX19998 toc01 TC = -40°C 10 CONVERSION GAIN vs. RF FREQUENCY 11 MAX19998 toc09 CONVERSION GAIN vs. RF FREQUENCY 11 2RF - 2LO RESPONSE (dBc) MAX19998 SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer 50 3000 3200 3400 3600 RF FREQUENCY (MHz) 3800 4000 3000 3200 3400 3600 RF FREQUENCY (MHz) 8 _______________________________________________________________________________________ 3800 4000 SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer TC = -40°C, +25°C, +85°C 65 55 75 PLO = -3dBm, 0dBm, +3dBm 65 55 3400 3600 3800 4000 VCC = 4.75V, 5.0V, 5.25V 65 3200 3400 3600 3800 4000 3000 3200 RF FREQUENCY (MHz) NOISE FIGURE vs. RF FREQUENCY NOISE FIGURE vs. RF FREQUENCY TC = +85°C TC = +25°C 8 3800 4000 NOISE FIGURE vs. RF FREQUENCY 10 9 3600 12 MAX19998 toc14 11 NOISE FIGURE (dB) 11 3400 RF FREQUENCY (MHz) 12 MAX19998 toc13 12 9 75 55 3000 RF FREQUENCY (MHz) 10 PRF = -5dBm PLO = -3dBm, 0dBm, +3dBm MAX19998 toc15 3200 11 NOISE FIGURE (dB) 3000 NOISE FIGURE (dB) 85 MAX19998 toc12 PRF = -5dBm 3RF - 3LO RESPONSE (dBc) 75 85 3RF - 3LO RESPONSE vs. RF FREQUENCY MAX19998 toc11 PRF = -5dBm 3RF - 3LO RESPONSE (dBc) 3RF - 3LO RESPONSE (dBc) 85 3RF - 3LO RESPONSE vs. RF FREQUENCY MAX19998 toc10 3RF - 3LO RESPONSE vs. RF FREQUENCY 8 10 9 VCC = 4.75V, 5.0V, 5.25V 8 TC = -40°C 7 3200 3400 3600 3800 4000 7 3000 3200 RF FREQUENCY (MHz) INPUT P1dB vs. RF FREQUENCY 3800 4000 INPUT P1dB vs. RF FREQUENCY TC = +25°C 11 PLO = -3dBm, 0dBm, +3dBm 3400 3600 RF FREQUENCY (MHz) 3800 4000 3600 3800 4000 VCC = 5.25V VCC = 5.0V 12 11 VCC = 4.75V 10 9 9 3400 INPUT P1dB vs. RF FREQUENCY 10 10 3200 3200 13 MAX19998 toc17 12 INPUT P1dB (dBm) 11 3000 3000 RF FREQUENCY (MHz) 13 MAX19998 toc16 TC = +85°C 12 INPUT P1dB (dBm) 3600 RF FREQUENCY (MHz) 13 TC = -40°C 3400 INPUT P1dB (dBm) 3000 MAX19998 toc18 7 9 3000 3200 3400 3600 RF FREQUENCY (MHz) 3800 4000 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) _______________________________________________________________________________________ 9 MAX19998 Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 3100MHz to 3900MHz, LO is low-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 3100MHz to 3900MHz, LO is low-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) LO LEAKAGE AT IF PORT vs. LO FREQUENCY TC = +85°C -20 TC = +25°C TC = -40°C -40 2900 3100 3300 3500 3700 -40 2700 2900 3100 3300 3500 3700 2700 2900 3100 3300 3500 LO FREQUENCY (MHz) RF-TO-IF ISOLATION vs. RF FREQUENCY RF-TO-IF ISOLATION vs. RF FREQUENCY RF-TO-IF ISOLATION vs. RF FREQUENCY TC = -40°C 10 30 PLO = -3dBm, 0dBm, +3dBm 20 10 3200 3400 3600 3800 4000 40 30 VCC = 4.75V, 5.0V, 5.25V 20 10 3000 3200 3400 3600 3800 4000 3000 3200 3400 3600 3800 RF FREQUENCY (MHz) RF FREQUENCY (MHz) RF FREQUENCY (MHz) LO LEAKAGE AT RF PORT vs. LO FREQUENCY LO LEAKAGE AT RF PORT vs. LO FREQUENCY LO LEAKAGE AT RF PORT vs. LO FREQUENCY TC = +85°C TC = +25°C -35 -40 -25 -30 PLO = -3dBm, 0dBm, +3dBm -35 -40 3000 3500 LO FREQUENCY (MHz) 4000 -20 LO LEAKAGE AT RF PORT (dBm) -30 MAX19998 toc26 TC = -40°C -20 LO LEAKAGE AT RF PORT (dBm) MAX19998 toc25 -20 3700 MAX19998 toc24 40 RF-TO-IF ISOLATION (dB) RF-TO-IF ISOLATION (dB) TC = +25°C 20 50 MAX19998 toc23 50 MAX19998 toc22 TC = +85°C 30 2500 VCC = 4.75V, 5.0V, 5.25V -30 LO FREQUENCY (MHz) 40 -25 -20 LO FREQUENCY (MHz) 50 3000 MAX19998 toc21 MAX19998 toc20 PLO = -3dBm, 0dBm, +3dBm -30 -40 2700 RF-TO-IF ISOLATION (dB) -20 -10 4000 MAX19998 toc27 -30 -10 LO LEAKAGE AT IF PORT (dBm) MAX19998 toc19 LO LEAKAGE AT IF PORT (dBm) -10 LO LEAKAGE AT IF PORT vs. LO FREQUENCY LO LEAKAGE AT IF PORT (dBm) LO LEAKAGE AT IF PORT vs. LO FREQUENCY LO LEAKAGE AT RF PORT (dBm) MAX19998 SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer -25 -30 VCC = 4.75V, 5.0V, 5.25V -35 -40 2500 3000 3500 LO FREQUENCY (MHz) 4000 2500 3000 3500 LO FREQUENCY (MHz) 10 ������������������������������������������������������������������������������������� 4000 SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY TC = +85°C -40 -50 -30 -40 PLO = -3dBm, 0dBm, +3dBm -50 3000 3500 4000 -30 -40 VCC = 4.75V, 5.0V, 5.25V -50 3000 2500 LO FREQUENCY (MHz) 3500 4000 3000 2500 LO FREQUENCY (MHz) 20 30 0 IF PORT RETURN LOSS (dB) fIF = 300MHz 10 4000 IF PORT RETURN LOSS vs. IF FREQUENCY MAX19998 toc31 0 3500 LO FREQUENCY (MHz) RF PORT RETURN LOSS vs. RF FREQUENCY fLO = 3600MHz 10 20 VCC = 4.75V, 5.0V, 5.25V 30 40 PLO = -3dBm, 0dBm, +3dBm 40 50 3000 3200 3400 3600 3800 4000 50 230 320 410 IF FREQUENCY (MHz) LO PORT RETURN LOSS vs. LO FREQUENCY SUPPLY CURRENT vs. TEMPERATURE (TC) 250 MAX19998 toc33 0 20 PLO = 0dBm 240 SUPPLY CURRENT (mA) PLO = -3dBm 10 140 RF FREQUENCY (MHz) VCC = 5.25V 500 MAX19998 toc34 RF PORT RETURN LOSS (dB) 2500 -20 MAX19998 toc32 -30 -20 2LO LEAKAGE AT RF PORT (dBm) 2LO LEAKAGE AT RF PORT (dBm) TC = +25°C TC = -40°C -10 MAX19998 toc29 -10 MAX19998 toc28 -20 LO PORT RETURN LOSS (dB) 2LO LEAKAGE AT RF PORT (dBm) -10 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY MAX19998 toc30 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY VCC = 5.0V 230 220 VCC = 4.75V 210 PLO = +3dBm 200 30 2600 2950 3300 3650 LO FREQUENCY (MHz) 4000 -40 -15 10 35 60 85 TEMPERATURE (°C) ______________________________________________________________________________________ 11 MAX19998 Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 3100MHz to 3900MHz, LO is low-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 3.3V, fRF = 3100MHz to 3900MHz, LO is low-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) TC = +85NC 6 8 PLO = -3dBm, 0dBm, +3dBm 7 6 3400 3600 3800 4000 3200 RF FREQUENCY (MHz) TC = +85NC 20 TC = +25NC 3600 3800 4000 TC = -40NC 18 3600 3800 VCC = 3.3V PRF = -5dBm/TONE 20 PLO = -3dBm, 0dBm, +3dBm 4000 3800 21 VCC = 3.6V VCC = 3.3V 20 VCC = 3.0V 19 18 3000 3200 3400 3600 3800 4000 3000 3200 3400 3600 3800 2RF - 2LO RESPONSE vs. RF FREQUENCY 2RF - 2LO RESPONSE vs. RF FREQUENCY 2RF - 2LO RESPONSE vs. RF FREQUENCY TC = +85NC 60 50 80 70 PLO = +3dBm 60 PLO = 0dBm 50 TC = -40NC 40 MAX19998 toc42 VCC = 3.3V PRF = -5dBm 40 3200 3400 3600 RF FREQUENCY (MHz) 3800 4000 PRF = -5dBm 80 70 60 VCC = 3.0V, 3.3V, 3.6V 50 PLO = -3dBm 4000 90 2RF - 2LO RESPONSE (dBc) TC = +25NC 90 2RF - 2LO RESPONSE (dBc) MAX19998 toc41 RF FREQUENCY (MHz) 80 4000 PRF = -5dBm/TONE RF FREQUENCY (MHz) VCC = 3.3V PRF = -5dBm 3000 3600 RF FREQUENCY (MHz) 90 70 3400 INPUT IP3 vs. RF FREQUENCY 18 3400 3200 22 19 3200 MAX19998 toc37 3000 RF FREQUENCY (MHz) 21 19 3000 7 INPUT IP3 vs. RF FREQUENCY INPUT IP3 (dBm) INPUT IP3 (dBm) 3400 22 MAX19998 toc38 VCC = 3.3V PRF = -5dBm/TONE 21 VCC = 3.0V, 3.3V, 3.6V RF FREQUENCY (MHz) INPUT IP3 vs. RF FREQUENCY 22 8 6 3000 INPUT IP3 (dBm) 3200 MAX19998 toc39 3000 9 MAX19998 toc40 8 9 MAX19998 toc43 TC = +25NC 7 VCC = 3.3V CONVERSION GAIN vs. RF FREQUENCY 10 CONVERSION GAIN (dB) 9 MAX19998 toc35 VCC = 3.3V CONVERSION GAIN (dB) CONVERSION GAIN (dB) TC = -40NC CONVERSION GAIN vs. RF FREQUENCY 10 MAX19998 toc36 CONVERSION GAIN vs. RF FREQUENCY 10 2RF - 2LO RESPONSE (dBc) MAX19998 SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer 40 3000 3200 3400 3600 RF FREQUENCY (MHz) 3800 4000 3000 3200 3400 3600 RF FREQUENCY (MHz) 12 ������������������������������������������������������������������������������������� 3800 4000 SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer TC = -40°C, +25°C, +85°C 55 65 60 PLO = -3dBm, 0dBm, +3dBm 55 50 3400 3600 3800 4000 3200 RF FREQUENCY (MHz) NOISE FIGURE vs. RF FREQUENCY TC = -40NC 3600 3800 4000 VCC = 3.6V 3000 MAX19998 toc47 VCC = 3.3V 11 3200 10 9 3600 3800 4000 9 7 3000 3200 RF FREQUENCY (MHz) INPUT P1dB vs. RF FREQUENCY 4000 3000 3200 TC = +25NC 3400 3600 3800 4000 RF FREQUENCY (MHz) VCC = 3.3V INPUT P1dB (dBm) INPUT P1dB (dBm) 3800 INPUT P1dB vs. RF FREQUENCY 8 7 3600 9 MAX19998 toc50 VCC = 3.3V TC = +85NC 3400 RF FREQUENCY (MHz) 9 MAX19998 toc46 10 VCC = 3.0V, 3.3V, 3.6V INPUT P1dB vs. RF FREQUENCY 9 VCC = 3.6V INPUT P1dB (dBm) 3400 4000 8 MAX19998 toc51 3200 3800 11 7 3000 3600 NOISE FIGURE vs. RF FREQUENCY 8 7 3400 12 PLO = -3dBm, 0dBm, +3dBm 8 VCC = 3.3V RF FREQUENCY (MHz) NOISE FIGURE (dB) 9 3400 12 NOISE FIGURE (dB) TC = +25NC 60 NOISE FIGURE vs. RF FREQUENCY VCC = 3.3V TC = +85NC 10 65 RF FREQUENCY (MHz) 12 11 VCC = 3.0V 50 3000 MAX19998 toc48 3200 70 55 50 3000 NOISE FIGURE (dB) PRF = -5dBm MAX19998 toc49 60 70 75 8 PLO = -3dBm, 0dBm, +3dBm 7 MAX19998 toc52 65 VCC = 3.3V PRF = -5dBm 3RF - 3LO RESPONSE (dBc) 70 75 3RF - 3LO RESPONSE vs. RF FREQUENCY MAX19998 toc45 VCC = 3.3V PRF = -5dBm 3RF - 3LO RESPONSE (dBc) 3RF - 3LO RESPONSE (dBc) 75 3RF - 3LO RESPONSE vs. RF FREQUENCY MAX19998 toc44 3RF - 3LO RESPONSE vs. RF FREQUENCY 8 VCC = 3.3V 7 VCC = 3.0V TC = -40NC 6 6 3000 3200 3400 3600 RF FREQUENCY (MHz) 3800 4000 6 3000 3200 3400 3600 RF FREQUENCY (MHz) 3800 4000 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) ______________________________________________________________________________________ 13 MAX19998 Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 3.3V, fRF = 3100MHz to 3900MHz, LO is low-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 3.3V, fRF = 3100MHz to 3900MHz, LO is low-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) -30 TC = -40°C, +25°C, +85°C -40 -50 -30 PLO = -3dBm, 0dBm, +3dBm -40 -50 2900 3100 3300 3500 3700 -30 VCC = 3.0V VCC = 3.3V -40 2900 3100 3300 3500 3700 2700 2900 3100 3300 3500 LO FREQUENCY (MHz) LO FREQUENCY (MHz) RF-TO-IF ISOLATION vs. RF FREQUENCY RF-TO-IF ISOLATION vs. RF FREQUENCY RF-TO-IF ISOLATION vs. RF FREQUENCY 30 TC = +25NC TC = -40NC 10 30 PLO = -3dBm, 0dBm, +3dBm 20 10 3200 3400 3600 3800 4000 40 30 VCC = 3.0V, 3.3V, 3.6V 20 10 3000 3200 3400 3600 3800 3000 4000 3200 3400 3600 3800 RF FREQUENCY (MHz) RF FREQUENCY (MHz) LO LEAKAGE AT RF PORT vs. LO FREQUENCY LO LEAKAGE AT RF PORT vs. LO FREQUENCY LO LEAKAGE AT RF PORT vs. LO FREQUENCY TC = -40°C, +25°C, +85°C -30 -35 -40 -25 PLO = -3dBm, 0dBm, +3dBm -30 -35 -40 3000 3500 LO FREQUENCY (MHz) 4000 -20 4000 MAX19998 toc61 VCC = 3.3V LO LEAKAGE AT RF PORT (dBm) -25 -20 LO LEAKAGE AT RF PORT (dBm) VCC = 3.3V MAX19998 toc59 RF FREQUENCY (MHz) -20 3700 MAX19998 toc58 40 50 RF-TO-IF ISOLATION (dB) TC = +85NC 20 VCC = 3.3V MAX19998 toc57 40 50 RF-TO-IF ISOLATION (dB) VCC = 3.3V 2500 VCC = 3.6V LO FREQUENCY (MHz) 50 3000 -20 -50 2700 MAX19998 toc56 2700 RF-TO-IF ISOLATION (dB) -20 -10 MAX19998 toc55 VCC = 3.3V LO LEAKAGE AT IF PORT (dBm) -20 -10 MAX19998 toc60 LO LEAKAGE AT IF PORT (dBm) VCC = 3.3V LO LEAKAGE AT IF PORT (dBm) -10 LO LEAKAGE AT IF PORT vs. LO FREQUENCY MAX19998 toc54 LO LEAKAGE AT IF PORT vs. LO FREQUENCY MAX19998 toc53 LO LEAKAGE AT IF PORT vs. LO FREQUENCY LO LEAKAGE AT RF PORT (dBm) MAX19998 SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer -25 VCC = 3.6V -30 VCC = 3.3V -35 VCC = 3.0V -40 2500 3000 3500 LO FREQUENCY (MHz) 4000 2500 3000 3500 LO FREQUENCY (MHz) 14 ������������������������������������������������������������������������������������� 4000 SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY TC = -40NC -30 TC = +85NC -10 -20 -30 PLO = -3dBm, 0dBm, +3dBm -40 -50 VCC = 3.0V -30 VCC = 3.3V -40 3500 4000 -50 2500 3000 LO FREQUENCY (MHz) 3500 4000 2500 3000 LO FREQUENCY (MHz) 3500 4000 LO FREQUENCY (MHz) RF PORT RETURN LOSS vs. RF FREQUENCY IF PORT RETURN LOSS vs. IF FREQUENCY 0 MAX19998 toc65 0 VCC = 3.3V fIF = 300MHz IF PORT RETURN LOSS (dB) 10 fLO = 3600MHz PLO = -3dBm, 0dBm, +3dBm 20 30 10 MAX19998 toc66 3000 RF PORT RETURN LOSS (dB) -20 VCC = 3.6V -50 20 VCC = 3.0V, 3.3V, 3.6V 30 40 40 3000 3200 3400 3600 3800 50 4000 50 RF FREQUENCY (MHz) LO PORT RETURN LOSS vs. LO FREQUENCY 10 PLO = 0dBm 20 30 3300 3650 LO FREQUENCY (MHz) 410 VCC = 3.6V 500 150 VCC = 3.3V 140 VCC = 3.0V PLO = +3dBm 2950 320 160 SUPPLY CURRENT (mA) VCC = 3.3V 2600 230 SUPPLY CURRENT vs. TEMPERATURE (TC) 0 PLO = -3dBm 140 IF FREQUENCY (MHz) MAX19998 toc67 2500 MAX19998 toc64 VCC = 3.3V 4000 MAX19998 toc68 -40 -10 2LO LEAKAGE AT RF PORT (dBm) TC = +25NC 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY MAX19998 toc63 -20 LO PORT RETURN LOSS (dB) 2LO LEAKAGE AT RF PORT (dBm) VCC = 3.3V 2LO LEAKAGE AT RF PORT (dBm) -10 MAX19998 toc62 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY 130 -40 -15 10 35 60 85 TEMPERATURE (°C) ______________________________________________________________________________________ 15 MAX19998 Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 3.3V, fRF = 3100MHz to 3900MHz, LO is low-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 3100MHz to 3900MHz, LO is high-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) 8 8 PLO = -3dBm, 0dBm, +3dBm TC = +85°C 3600 3800 4000 3200 RF FREQUENCY (MHz) 3400 3600 3800 4000 3000 TC = +25°C 26 MAX19998 toc72 PRF = -5dBm/TONE INPUT IP3 (dBm) 25 TC = -40°C 23 3200 3400 3600 3800 25 4000 3800 PLO = -3dBm, 0dBm, +3dBm PRF = -5dBm/TONE 25 VCC = 5.0V 24 VCC = 4.75V 23 3000 3200 3400 3600 3800 4000 3000 3200 3400 3600 3800 2LO - 2RF RESPONSE vs. RF FREQUENCY 2LO - 2RF RESPONSE vs. RF FREQUENCY 2LO - 2RF RESPONSE vs. RF FREQUENCY 70 TC = +25°C 60 PRF = -5dBm 80 PLO = +3dBm 70 PLO = -3dBm 60 PLO = 0dBm TC = -40°C 50 50 3200 3400 3600 RF FREQUENCY (MHz) 3800 4000 90 2LO - 2RF RESPONSE (dBc) TC = +85°C 2LO - 2RF RESPONSE (dBc) 80 90 MAX19998 toc76 RF FREQUENCY (MHz) MAX19998 toc75 RF FREQUENCY (MHz) PRF = -5dBm 4000 VCC = 5.25V RF FREQUENCY (MHz) 90 3000 3600 INPUT IP3 vs. RF FREQUENCY PRF = -5dBm/TONE 24 3400 26 23 3000 3200 RF FREQUENCY (MHz) INPUT IP3 vs. RF FREQUENCY TC = +85°C 24 VCC = 4.75V, 5.0V, 5.25V RF FREQUENCY (MHz) INPUT IP3 vs. RF FREQUENCY 26 8 6 3000 INPUT IP3 (dBm) 3400 MAX19998 toc73 3200 9 7 6 3000 MAX19998 toc71 MAX19998 toc70 9 7 6 INPUT IP3 (dBm) 10 MAX19998 toc74 9 CONVERSION GAIN vs. RF FREQUENCY 11 CONVERSION GAIN (dB) TC = +25°C 7 10 CONVERSION GAIN (dB) CONVERSION GAIN (dB) MAX19998 toc69 TC = -40°C 10 CONVERSION GAIN vs. RF FREQUENCY 11 4000 PRF = -5dBm 80 MAX19998 toc77 CONVERSION GAIN vs. RF FREQUENCY 11 2LO - 2RF RESPONSE (dBc) MAX19998 SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer 70 60 VCC = 4.75V, 5.0V, 5.25V 50 3000 3200 3400 3600 RF FREQUENCY (MHz) 3800 4000 3000 3200 3400 3600 RF FREQUENCY (MHz) 16 ������������������������������������������������������������������������������������� 3800 4000 SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer TC = +25°C TC = -40°C 65 55 75 PLO = -3dBm, 0dBm, +3dBm 65 55 3200 3400 3600 3800 4000 3200 RF FREQUENCY (MHz) NOISE FIGURE vs. RF FREQUENCY 3400 3600 3800 VCC = 4.75V, 5.0V, 5.25V 65 4000 3000 3200 NOISE FIGURE vs. RF FREQUENCY TC = +25°C 11 8 3600 3800 4000 NOISE FIGURE vs. RF FREQUENCY 12 MAX19998 toc82 MAX19998 toc81 TC = +85°C 3400 RF FREQUENCY (MHz) 12 NOISE FIGURE (dB) NOISE FIGURE (dB) 11 9 75 RF FREQUENCY (MHz) 12 10 85 55 3000 11 NOISE FIGURE (dB) 3000 PRF = -5dBm MAX19998 toc80 85 95 10 9 PLO = -3dBm, 0dBm, +3dBm MAX19998 toc83 75 PRF = -5dBm 3LO - 3RF RESPONSE (dBc) TC = +85°C 85 95 3LO - 3RF RESPONSE vs. RF FREQUENCY MAX19998 toc79 PRF = -5dBm 3LO - 3RF RESPONSE (dBc) 3LO - 3RF RESPONSE (dBc) 95 3LO - 3RF RESPONSE vs. RF FREQUENCY MAX19998 toc78 3LO - 3RF RESPONSE vs. RF FREQUENCY 8 10 9 VCC = 4.75V, 5.0V, 5.25V 8 TC = -40°C 7 3175 3350 3525 3700 7 3000 3175 RF FREQUENCY (MHz) INPUT P1dB vs. RF FREQUENCY 3700 INPUT P1dB vs. RF FREQUENCY TC = +25°C TC = -40°C 11 PLO = -3dBm, 0dBm, +3dBm 3600 RF FREQUENCY (MHz) 3800 4000 3525 3700 VCC = 5.0V 12 VCC = 5.25V 11 VCC = 4.75V 10 9 3400 3350 INPUT P1dB vs. RF FREQUENCY 10 9 3200 3175 13 MAX19998 toc85 12 INPUT P1dB (dBm) 11 3000 3000 RF FREQUENCY (MHz) 13 MAX19998 toc84 TC = +85°C 12 INPUT P1dB (dBm) 3525 RF FREQUENCY (MHz) 13 10 3350 INPUT P1dB (dBm) 3000 MAX19998 toc86 7 9 3000 3200 3400 3600 RF FREQUENCY (MHz) 3800 4000 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) ______________________________________________________________________________________ 17 MAX19998 Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 3100MHz to 3900MHz, LO is high-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 3100MHz to 3900MHz, LO is high-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) LO LEAKAGE AT IF PORT vs. LO FREQUENCY TC = +25°C -20 TC = +85°C -30 -40 -20 -30 PLO = -3dBm, 0dBm, +3dBm 3500 3700 3900 4100 4300 -40 3000 3500 3700 3900 4100 4300 3000 3500 3700 3900 4100 LO FREQUENCY (MHz) RF-TO-IF ISOLATION vs. RF FREQUENCY RF-TO-IF ISOLATION vs. RF FREQUENCY RF-TO-IF ISOLATION vs. RF FREQUENCY TC = +25°C 20 TC = -40°C 10 30 PLO = -3dBm, 0dBm, +3dBm 20 10 3200 3400 3600 3800 4000 40 30 VCC = 4.75V, 5.0V, 5.25V 20 10 3000 3200 3400 3600 3800 4000 3000 3200 3400 3600 3800 RF FREQUENCY (MHz) RF FREQUENCY (MHz) RF FREQUENCY (MHz) LO LEAKAGE AT RF PORT vs. LO FREQUENCY LO LEAKAGE AT RF PORT vs. LO FREQUENCY LO LEAKAGE AT RF PORT vs. LO FREQUENCY -30 TC = +25°C -35 TC = -40°C -40 -30 PLO = -3dBm, 0dBm, +3dBm -35 -40 3550 3800 4050 LO FREQUENCY (MHz) 4300 4000 MAX19998 toc95 MAX19998 toc94 -25 -20 LO LEAKAGE AT RF PORT (dBm) TC = +85°C -20 LO LEAKAGE AT RF PORT (dBm) MAX19998 toc93 -20 4300 MAX19998 toc92 40 RF-TO-IF ISOLATION (dB) RF-TO-IF ISOLATION (dB) 30 50 MAX19998 toc91 50 MAX19998 toc90 TC = +85°C 3300 VCC = 4.75V, 5.0V, 5.25V -30 LO FREQUENCY (MHz) 40 -25 -20 LO FREQUENCY (MHz) 50 3000 MAX19998 toc89 -10 -40 3000 RF-TO-IF ISOLATION (dB) MAX19998 toc88 TC = -40°C -10 LO LEAKAGE AT IF PORT (dBm) MAX19998 toc87 LO LEAKAGE AT IF PORT (dBm) -10 LO LEAKAGE AT IF PORT vs. LO FREQUENCY LO LEAKAGE AT IF PORT (dBm) LO LEAKAGE AT IF PORT vs. LO FREQUENCY LO LEAKAGE AT RF PORT (dBm) MAX19998 SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer -25 -30 VCC = 4.75V, 5.0V, 5.25V -35 -40 3300 3550 3800 4050 LO FREQUENCY (MHz) 4300 3300 3550 3800 4050 LO FREQUENCY (MHz) 18 ������������������������������������������������������������������������������������� 4300 SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY -20 PLO = -3dBm -30 PLO = 0dBm -40 -40 3800 4050 3800 4050 4300 3550 3300 LO FREQUENCY (MHz) LO FREQUENCY (MHz) 20 0 fLO = 4100MHz IF PORT RETURN LOSS (dB) fIF = 300MHz 10 4050 4300 IF PORT RETURN LOSS vs. IF FREQUENCY MAX19998 toc99 0 3800 LO FREQUENCY (MHz) RF PORT RETURN LOSS vs. RF FREQUENCY 30 VCC = 4.75V, 5.0V, 5.25V -30 -40 3550 3300 4300 -20 10 20 30 VCC = 4.75V, 5.0V, 5.25V 40 PLO = -3dBm, 0dBm, +3dBm 40 50 3000 3200 3400 3600 3800 4000 50 230 320 410 IF FREQUENCY (MHz) LO PORT RETURN LOSS vs. LO FREQUENCY SUPPLY CURRENT vs. TEMPERATURE (TC) 250 MAX19998 toc101 0 10 PLO = 0dBm 240 SUPPLY CURRENT (mA) PLO = -3dBm 20 140 RF FREQUENCY (MHz) PLO = +3dBm VCC = 5.25V VCC = 5.0V 500 MAX19998 toc102 3550 RF PORT RETURN LOSS (dB) 3300 MAX19998 toc98 PLO = +3dBm MAX19998 toc100 -30 -10 MAX19998 toc97 MAX19998 toc96 TC = +85°C TC = +25°C -10 2LO LEAKAGE AT RF PORT (dBm) -20 TC = -40°C LO PORT RETURN LOSS (dB) 2LO LEAKAGE AT RF PORT (dBm) -10 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY 2LO LEAKAGE AT RF PORT (dBm) 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY 230 220 VCC = 4.75V 210 200 30 2700 3100 3500 3900 LO FREQUENCY (MHz) 4300 -40 -15 10 35 60 65 TEMPERATURE (°C) ______________________________________________________________________________________ 19 MAX19998 Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 3100MHz to 3900MHz, LO is high-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 2300MHz to 2900MHz, LO is high-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) 8 8 PLO = -3dBm, 0dBm, +3dBm 2750 2900 RF FREQUENCY (MHz) INPUT IP3 vs. RF FREQUENCY 2600 2750 2900 2300 26 25 PLO = -3dBm, 0dBm, +3dBm 24 TC = -40°C 23 2450 2600 2750 2900 26 25 VCC = 5.0V 24 VCC = 4.75V 23 2300 2450 2600 2750 2900 2300 2450 2600 2750 2LO - 2RF RESPONSE vs. RF FREQUENCY 2LO - 2RF RESPONSE vs. RF FREQUENCY TC = -40NC TC = +25NC 50 PLO = +3dBm 80 70 PLO = -3dBm PLO = 0dBm 60 50 2450 2600 2750 RF FREQUENCY (MHz) 2900 2900 90 PRF = -5dBm 2LO - 2RF RESPONSE (dBc) 70 PRF = -5dBm 2LO - 2RF RESPONSE (dBc) 80 90 MAX19998 toc110 2LO - 2RF RESPONSE vs. RF FREQUENCY MAX19998 toc109 RF FREQUENCY (MHz) TC = +85NC 2300 VCC = 5.25V RF FREQUENCY (MHz) PRF = -5dBm 2900 PRF = -5dBm/TONE RF FREQUENCY (MHz) 90 60 2750 27 23 2300 2600 INPUT IP3 vs. RF FREQUENCY PRF = -5dBm/TONE INPUT IP3 (dBm) 25 2450 RF FREQUENCY (MHz) 27 MAX19998 toc106 TC = +25°C 24 2450 INPUT IP3 vs. RF FREQUENCY PRF = -5dBm/TONE TC = +85°C VCC = 4.75V, 5.0V, 5.25V RF FREQUENCY (MHz) 27 26 8 6 2300 INPUT IP3 (dBm) 2600 MAX19998 toc107 2450 9 7 6 2300 MAX19998 toc105 MAX19998 toc104 9 7 TC = +85°C 6 INPUT IP3 (dBm) 10 MAX19998 toc108 9 CONVERSION GAIN vs. RF FREQUENCY 11 CONVERSION GAIN (dB) TC = +25°C 7 10 CONVERSION GAIN (dB) CONVERSION GAIN (dB) MAX19998 toc103 TC = -40°C 10 CONVERSION GAIN vs. RF FREQUENCY 11 VCC = 4.75V 80 MAX19998 toc111 CONVERSION GAIN vs. RF FREQUENCY 11 2LO - 2RF RESPONSE (dBc) MAX19998 SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer 70 VCC = 5.25V VCC = 5.0V 60 50 2300 2450 2600 2750 RF FREQUENCY (MHz) 2900 2300 2450 2600 2750 RF FREQUENCY (MHz) 20 ������������������������������������������������������������������������������������� 2900 SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer TC = +25NC TC = -40NC 65 55 75 PLO = -3dBm, 0dBm, +3dBm 65 55 2600 2750 2900 TC = +25NC 10 TC = -40NC 2600 2750 2900 2300 11 2600 2750 PLO = -3dBm, 0dBm, +3dBm 10 2900 12 2450 2600 2750 2900 12 9 2750 RF FREQUENCY (MHz) 2900 2600 2750 2900 INPUT P1dB vs. RF FREQUENCY 11 PLO = -3dBm, 0dBm, +3dBm 13 VCC = 5.25V VCC = 5.0V 12 11 VCC = 4.75V 10 9 2600 2450 RF FREQUENCY (MHz) 10 2450 2300 MAX19998 toc119 13 INPUT P1dB (dBm) TC = +25NC 10 2300 VCC = 5.25V INPUT P1dB vs. RF FREQUENCY 11 TC = -40NC 10 RF FREQUENCY (MHz) MAX19998 toc118 12 VCC = 5.0V 8 2300 INPUT P1dB vs. RF FREQUENCY TC = +85NC 2900 VCC = 4.75V 11 9 RF FREQUENCY (MHz) 13 2750 NOISE FIGURE vs. RF FREQUENCY 8 2450 2600 13 9 8 2450 RF FREQUENCY (MHz) MAX19998 toc116 12 9 2300 65 NOISE FIGURE vs. RF FREQUENCY NOISE FIGURE (dB) NOISE FIGURE (dB) 11 2450 13 MAX19998 toc115 TC = +85NC VCC = 4.75V, 5.0V, 5.25V RF FREQUENCY (MHz) NOISE FIGURE vs. RF FREQUENCY 12 75 55 2300 RF FREQUENCY (MHz) 13 85 MAX19998 toc117 2450 NOISE FIGURE (dB) 2300 INPUT P1dB (dBm) PRF = -5dBm MAX19998 toc114 85 95 MAX19998 toc120 75 PRF = -5dBm 3LO - 3RF RESPONSE (dBc) TC = +85NC 85 95 INPUT P1dB (dBm) 3LO - 3RF RESPONSE (dBc) PRF = -5dBm 3LO - 3RF RESPONSE (dBc) 95 3LO - 3RF RESPONSE vs. RF FREQUENCY MAX19998 toc113 3LO - 3RF RESPONSE vs. RF FREQUENCY MAX19998 toc112 3LO - 3RF RESPONSE vs. RF FREQUENCY 9 2300 2450 2600 2750 RF FREQUENCY (MHz) 2900 2300 2450 2600 2750 2900 RF FREQUENCY (MHz) ______________________________________________________________________________________ 21 MAX19998 Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 2300MHz to 2900MHz, LO is high-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 2300MHz to 2900MHz, LO is high-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) TC = +25°C TC = +85°C -30 TC = -40°C -40 -30 PLO = -3dBm, 0dBm, +3dBm 2750 2900 3050 3200 VCC = 4.75V, 5.0V, 5.25V -40 2600 2750 2900 3050 3200 2600 2750 2900 3050 LO FREQUENCY (MHz) RF-TO-IF ISOLATION vs. RF FREQUENCY RF-TO-IF ISOLATION vs. RF FREQUENCY RF-TO-IF ISOLATION vs. RF FREQUENCY 30 40 PLO = -3dBm, 0dBm, +3dBm VCC = 5.25V 30 2450 2600 2750 2900 VCC = 5.0V 50 VCC = 4.75V 40 30 2300 2450 2600 2750 2900 2300 2450 2600 2750 RF FREQUENCY (MHz) RF FREQUENCY (MHz) RF FREQUENCY (MHz) LO LEAKAGE AT RF PORT vs. LO FREQUENCY LO LEAKAGE AT RF PORT vs. LO FREQUENCY LO LEAKAGE AT RF PORT vs. LO FREQUENCY TC = +25NC TC = +85NC -35 -40 -25 -30 PLO = -3dBm, 0dBm, +3dBm -35 -40 3000 3500 LO FREQUENCY (MHz) 4000 -20 LO LEAKAGE AT RF PORT (dBm) -30 MAX19998 toc128 TC = -40NC -25 -20 LO LEAKAGE AT RF PORT (dBm) MAX19998 toc127 -20 3200 MAX19998 toc126 MAX19998 toc125 50 60 RF-TO-IF ISOLATION (dB) TC = +25NC TC = -40NC 60 RF-TO-IF ISOLATION (dB) MAX19998 toc124 50 2500 -30 RF FREQUENCY (MHz) TC = +85NC 2300 -20 RF FREQUENCY (MHz) 60 40 MAX19998 toc123 MAX19998 toc122 -20 -10 -40 2600 RF-TO-IF ISOLATION (dB) LO LEAKAGE AT IF PORT vs. LO FREQUENCY 2900 MAX19998 toc129 -20 -10 LO LEAKAGE AT IF PORT (dBm) MAX19998 toc121 LO LEAKAGE AT IF PORT (dBm) -10 LO LEAKAGE AT IF PORT vs. LO FREQUENCY LO LEAKAGE AT IF PORT (dBm) LO LEAKAGE AT IF PORT vs. LO FREQUENCY LO LEAKAGE AT RF PORT (dBm) MAX19998 SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer -25 -30 VCC = 4.75V, 5.0V, 5.25V -35 -40 2500 3000 3500 LO FREQUENCY (MHz) 4000 2500 3000 3500 LO FREQUENCY (MHz) 22 ������������������������������������������������������������������������������������� 4000 SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY TC = +85NC -50 -60 PLO = +3dBm -40 PLO = 0dBm -50 PLO = -3dBm -60 3000 3500 4000 VCC = 4.75V -40 VCC = 5.25V -50 3500 4000 3000 2500 LO FREQUENCY (MHz) 20 30 0 fLO = 3000MHz IF PORT RETURN LOSS (dB) fIF = 300MHz 4000 IF PORT RETURN LOSS vs. IF FREQUENCY MAX19998 toc133 0 3500 LO FREQUENCY (MHz) RF PORT RETURN LOSS vs. RF FREQUENCY 10 VCC = 5.0V -60 3000 2500 LO FREQUENCY (MHz) 10 VCC = 4.75V, 5.0V, 5.25V 20 30 40 PLO = -3dBm, 0dBm, +3dBm 50 40 2300 2450 2600 2750 50 2900 230 320 410 IF FREQUENCY (MHz) LO PORT RETURN LOSS vs. LO FREQUENCY SUPPLY CURRENT vs. TEMPERATURE (TC) 250 MAX19998 toc135 0 20 PLO = 0dBm 240 SUPPLY CURRENT (mA) PLO = -3dBm 10 140 RF FREQUENCY (MHz) PLO = +3dBm VCC = 5.25V 500 MAX19998 toc136 RF PORT RETURN LOSS (dB) 2500 -30 MAX19998 toc134 TC = +25NC -30 2LO LEAKAGE AT RF PORT (dBm) 2LO LEAKAGE AT RF PORT (dBm) -40 -20 MAX19998 toc131 -20 MAX19998 toc130 TC = -40NC -30 LO PORT RETURN LOSS (dB) 2LO LEAKAGE AT RF PORT (dBm) -20 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY MAX19998 toc132 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY VCC = 5.0V 230 220 VCC = 4.75V 210 30 200 2600 2950 3300 3650 LO FREQUENCY (MHz) 4000 -40 -15 10 35 60 85 TEMPERATURE (°C) ______________________________________________________________________________________ 23 MAX19998 Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 2300MHz to 2900MHz, LO is high-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) MAX19998 SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer VCC 1 RF 2 GND IF+ IF- GND LEXT TOP VIEW IFBIAS Pin Configuration/Functional Diagram 20 19 18 17 16 15 GND 14 VCC 3 13 GND GND 4 12 GND GND 5 11 LO MAX19998 6 7 8 9 10 VCC LOBIAS VCC GND GND EP Pin Description PIN NAME 1, 6, 8, 14 VCC FUNCTION 2 RF 3, 9, 13, 15 GND Ground. Not internally connected. Pins can be grounded. 4, 5, 10, 12, 17 GND Ground. Internally connected to the exposed pad. Connect all ground pins and the exposed pad (EP) together. 7 LOBIAS LO Amplifier Bias Control. Output bias resistor for the LO buffer. Connect a 604I (5V, 230mA bias condition) from LOBIAS to ground. 11 LO Local Oscillator Input. This input is internally matched to 50I. Requires an input DC-blocking capacitor. 16 LEXT External Inductor Connection. Connect a low-ESR 4.7nH inductor from this pin to ground to increase the RF-to-IF and LO-to-IF isolation. Connect this pin directly to ground to reduce the component count at the expense of reduced RF-to-IF and LO-to-IF isolation. 18, 19 IF-, IF+ Mixer Differential IF Output. Connect pullup inductors from each of these pins to VCC (see the Typical Application Circuit). 20 IFBIAS IF Amplifier Bias Control. IF bias resistor connection for the IF amplifier. Connect a 698I (5V, 230mA bias condition) from IFBIAS to GND. — EP Exposed Pad. Internally connected to GND. Solder this exposed pad to a PCB pad that uses multiple ground vias to provide heat transfer out of the device into the PCB ground planes. These multiple via grounds are also required to achieve the noted RF performance. Power Supply. Bypass to GND with 0.01FF capacitors as close as possible to the pin. Single-Ended 50I RF Input. Internally matched and DC shorted to GND through a balun. Provide an input DC-blocking capacitor if required. 24 ������������������������������������������������������������������������������������� SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer The MAX19998 provides high linearity and low noise figure for a multitude of 2300MHz to 4000MHz WiMAX, LTE, and MMDS base-station applications. This device operates over a 2600MHz to 4300MHz LO range and a 50MHz to 500MHz IF range. Integrated baluns and matching circuitry allow 50I single-ended interfaces to the RF and LO ports. The integrated LO buffer provides a high drive level to the mixer core, reducing the LO drive required at the MAX19998’s input to a range of -3dBm to +3dBm. The IF port incorporates a differential output, which is ideal for providing enhanced 2RF - 2LO and 2LO - 2RF performance. RF Input and Balun The MAX19998 RF input provides a 50I match when combined with a series DC-blocking capacitor. This DC-blocking capacitor is required as the input is internally DC shorted to ground through the on-chip balun. When using an 8.2pF DC-blocking capacitor, the RF port input return loss is typically 17dB over the RF frequency range of 3200MHz to 3900MHz. See Table 1 for lower band tuning. LO Inputs, Buffer, and Balun The LO input is internally matched to 50I, requiring only a 2pF DC-blocking capacitor. A two-stage internal LO buffer allows for a -3dBm to +3dBm LO input power range. The on-chip low-loss balun, along with an LO buffer, drives the double-balanced mixer. All interfacing and matching components from the LO inputs to the IF outputs are integrated on-chip. High-Linearity Mixer The core of the MAX19998 is a double-balanced, highperformance passive mixer. Exceptional linearity is provided by the large LO swing from the on-chip LO buffer. When combined with the integrated IF amplifier, IIP3, 2RF - 2LO rejection, and noise-figure performance are typically +24.3dBm, 67dBc, and 9.7dB, respectively, for low-side LO injection architectures covering the 3000MHz to 4000MHz RF band. Differential IF Output Amplifier The MAX19998 has a 50MHz to 500MHz IF frequency range, where the low-end frequency depends on the frequency response of the external IF components. The MAX19998 mixer is tuned for a 300MHz IF using 390nH external pullup bias inductors. Lower IF frequencies would require higher L1 and L2 inductor values to maintain a good IF match. The differential, open-collector IF output ports require that these inductors be connected to VCC. Note that these differential ports are ideal for providing enhanced 2RF - 2LO performance. Single-ended IF applications require a 4:1 (impedance ratio) balun to transform the 200I differential IF impedance to a 50I single-ended system. Use the TC4-1W-17 4:1 transformer for IF frequencies above 200MHz and the TC4-1W-7A 4:1 transformer for frequencies below 200MHz. The user can use a differential IF amplifier or SAW filter on the mixer IF port, but a DC block is required on both IF+/ IF- ports to keep external DC from entering the IF ports of the mixer. Applications Information Input and Output Matching The RF and LO inputs provide 50I matches when combined with the proper tuning. Use an 8.2pF capacitor value on the RF port for frequencies ranging from 3000MHz to 4000MHz. Use a 3.3nH series inductor and a 0.3pF shunt capacitor on the RF port for frequencies ranging from 2300MHz to 2900MHz. On the LO port, use a 2pF DC-blocking capacitor to cover operations spanning the 2600MHz to 4300MHz range. The IF output impedance is 200I (differential). For evaluation, an external low-loss 4:1 (impedance ratio) balun transforms this impedance down to a 50I single-ended output (see the Typical Application Circuit). Reduced-Power Mode The MAX19998 has two pins (LOBIAS, IFBIAS) that allow external resistors to set the internal bias currents. See Table 1 for nominal values for these resistors. Larger value resistors can be used to reduce power dissipation at the expense of some performance loss. If Q1% resistors are not readily available, substitute with Q5% resistors. Significant reductions in power consumption can also be realized by operating the mixer with an optional supply voltage of 3.3V. Doing so reduces the overall power consumption by 57% (typ). See the 3.3V Supply AC Electrical Characteristics table and the relevant 3.3V curves in the Typical Operating Characteristics section to evaluate the power vs. performance trade-offs. ______________________________________________________________________________________ 25 MAX19998 Detailed Description MAX19998 SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer LEXT Inductor Short LEXT to ground using a 0I resistor. For applications requiring improved RF-to-IF and LO-to-IF isolation, L3 can be changed to optimize performance (see the Typical Operating Characteristics). However, the load impedance presented to the mixer must be such that any capacitances from IF- and IF+ to ground do not exceed several picofarads to ensure stable operating conditions. Since approximately 120mA flows through LEXT, it is important to use a low-DCR wire-wound inductor. Layout Considerations A properly designed PCB is an essential part of any RF/ microwave circuit. Keep RF signal lines as short as possible to reduce losses, radiation, and inductance. The load impedance presented to the mixer must be such that any capacitance from both IF- and IF+ to ground does not exceed several picofarads. For the best performance, route the ground pin traces directly to the exposed pad under the package. The PCB exposed pad MUST be connected to the ground plane of the PCB. It is suggested that multiple vias be used to connect this pad to the lower level ground planes. This method provides a good RF/thermal-conduction path for the device. Solder the exposed pad on the bottom of the device package to the PCB. The MAX19998 evaluation kit can be used as a reference for board layout. Gerber files are available upon request at www.maxim-ic.com. Power-Supply Bypassing Proper voltage supply bypassing is essential for highfrequency circuit stability. Bypass each VCC pin with the capacitors shown in the Typical Application Circuit and see Table 1 for component values. Table 1. Component Values DESIGNATION QTY DESCRIPTION COMPONENT SUPPLIER 8.2pF microwave capacitor (0402). Use for RF Murata Electronics North America, Inc. frequencies ranging from 3000MHz to 4000MHz. C1 1 C2, C6, C8, C11 4 0.01FF microwave capacitors (0402) Murata Electronics North America, Inc. C3, C9 0 Not installed, capacitors — C10 1 2pF microwave capacitor (0402) Murata Electronics North America, Inc. C13, C14 2 1000pF microwave capacitors (0402) Murata Electronics North America, Inc. C15 1 82pF microwave capacitor (0402) Murata Electronics North America, Inc. Not installed for RF frequencies ranging from 3000MHz to 4000MHz — 3.3nH microwave inductor (0402). Use for RF Coilcraft, Inc. frequencies ranging from 2300MHz to 2900MHz. C16 1 L1, L2 2 390nH wire-wound high-Q inductors* (0805) Coilcraft, Inc. L3 1 4.7nH wire-wound high-Q inductor (0603) Coilcraft, Inc. R1 1 0.3pF microwave capacitor (0402). Use for RF Murata Electronics North America, Inc. frequencies ranging from 2300MHz to 2900MHz. 698I Q1% resistor (0402). Use for VCC = 5.0V applications. 845I Q1% resistor (0402). Use for VCC = 3.3V applications. 604I Q1% resistor (0402). Use for VCC = 5.0V applications. Digi-Key Corp. R2 1 R3 1 0I resistor (1206) Digi-Key Corp. T1 1 4:1 IF balun TC4-1W-17* Mini-Circuits U1 1 MAX19998 IC (20 Thin QFN-EP) Maxim Integrated Products, Inc. 1.1kI Q1% resistor (0402). Use for VCC = 3.3V applications. Digi-Key Corp. *Use larger value inductors and a TC4-1W-7A 4:1 balun for IF frequencies below 200MHz. 26 ������������������������������������������������������������������������������������� SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer heat from the EP. In addition, provide the EP with a lowinductance path to electrical ground. The EP MUST be soldered to a ground plane on the PCB, either directly or through an array of plated via holes. (EP) of the MAX19998’s 20-pin thin provides a low thermal-resistance is important that the PCB on which mounted be designed to conduct Typical Application Circuit C15 L1 3 6 IF OUTPUT C13 T1 2 L2 R3 1 C14 4 4:1 R1 20 C3 C1 VCC RF 19 LEXT GND 18 17 1 16 15 U1 MAX19998 2 14 GND VCC +5.0V C11 C16* GND GND 3 13 4 12 GND GND EP 11 5 LOBIAS +5.0V C6 9 8 LO C10 LO INPUT 10 GND 7 GND 6 VCC GND VCC RF INPUT C2 IF- +5.0V IF+ IFBIAS L3 R2 +5.0V C8 C9 NOTE: PINS 4, 5, 10, 12, AND 17 ARE ALL INTERNALLY CONNECTED TO THE EXPOSED GROUND PAD. CONNECT THESE PINS TO GROUND TO IMPROVE ISOLATION. PINS 3, 9, 13, AND 15 HAVE NO INTERNAL CONNECTION, BUT CAN BE EXTERNALLY GROUNDED TO IMPROVE ISOLATION. *C16 NOT USED FOR 3000MHz TO 4000MHz APPLICATIONS. ______________________________________________________________________________________ 27 MAX19998 Exposed Pad RF/Thermal Considerations The exposed pad QFN-EP package path to the die. It the MAX19998 is MAX19998 SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer Chip Information PROCESS: SiGe BiCMOS Package Information For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a “+”, “#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status. PACKAGE TYPE PACKAGE CODE DOCUMENT NO. 20 Thin QFN-EP T2055+3 21-0140 Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. 28 © 2009 Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 Maxim Integrated Products Maxim is a registered trademark of Maxim Integrated Products, Inc.