MAXIM MAX9015AEKA-T

19-2874; Rev 2; 12/09
SOT23, Dual, Precision, 1.8V, Nanopower
Comparators With/Without Reference
The single MAX9015/MAX9016 and dual MAX9017–
MAX9020 nanopower comparators in space-saving
SOT23 packages feature Beyond-the-Rails™ inputs
and are guaranteed to operate down to 1.8V. The Agrade packages feature an on-board 1.236V ±1% reference, while the B-grade packages feature a 1.24V
±1.75% reference. An ultra-low supply current of 0.85µA
(MAX9019/MAX9020), 1µA (MAX9015/MAX9016), or
1.2µA (MAX9017/MAX9018) makes the MAX9015–
MAX9020 family of comparators ideal for all 2-cell battery monitoring/management applications.
The unique design of the MAX9015–MAX9020 output
stage limits supply-current surges while switching,
which virtually eliminates the supply glitches typical of
many other comparators. This design also minimizes
overall power consumption under dynamic conditions.
The MAX9015/MAX9017/MAX9019 have a push-pull
output stage that sinks and sources current. Large
internal output drivers allow rail-to-rail output swing with
loads up to 6mA. The MAX9016/MAX9018/MAX9020
have an open-drain output stage that makes them suitable for mixed-voltage system design. All devices are
available in the ultra-small 8-pin SOT23 package.
Features
♦ Ultra-Low Total Supply Current
0.85µA (MAX9019/MAX9020)
1.0µA (MAX9015A/MAX9016A)
1.2µA (MAX9017/MAX9018)
♦ Guaranteed Operation Down to 1.8V
♦ Precision VOS < 5mV (max)
♦ Internal 1.236V ±1% Reference (A Grade)
♦ Input Voltage Range Extends 200mV
Beyond-the-Rails
♦ CMOS Push-Pull Output with ±6mA Drive
Capability (MAX9015/MAX9017/MAX9019)
♦ Open-Drain Output Versions Available
(MAX9016/MAX9018/MAX9020)
♦ Crowbar-Current-Free Switching
♦ Internal 4mV Hysteresis for Clean Switching
♦ No Phase Reversal for Overdriven Inputs
♦ Dual Versions in Space-Saving 8-Pin SOT23
Package
Ordering Information
Refer to the MAX9117–MAX9120 data sheet for similar
single comparators with or without reference in a tiny
SC70 package.
Applications
2-Cell Battery
Monitoring/Management
Window Detectors
Ultra-Low Power Systems
Mobile Communications
Notebooks and PDAs
PINPACKAGE
TOP
MARK
MAX9015AEKA-T -40°C to +85°C
8 SOT23
AEIW
MAX9016AEKA-T -40°C to +85°C
8 SOT23
AEIX
MAX9017AEKA-T -40°C to +85°C
8 SOT23
AEIQ
MAX9017BEKA-T
8 SOT23
AEIS
PART
TEMP RANGE
-40°C to +85°C
Sensing at Ground or
Supply Line
Ordering Information continued at end of data sheet.
Telemetry and Remote
Systems
Pin Configurations appear at end of data sheet.
Beyond-the-Rails is a trademark of Maxim Integrated Products, Inc.
Medical Instruments
Threshold Detectors/
Discriminators
Selector Guide
PART
COMPARATOR(S)
INTERNAL REFERENCE (V)
OUTPUT TYPE
SUPPLY CURRENT (µA)
MAX9015A
1
MAX9016A
1
1.236 ±1%
Push-pull
1
1.236 ±1%
Open drain
1
MAX9017A
MAX9017B
2
1.236 ±1%
Push-pull
1.2
2
1.240 ±1.75%
Push-pull
1.2
MAX9018A
2
1.236 ±1%
Open drain
1.2
MAX9018B
2
1.240 ±1.75%
Open drain
1.2
MAX9019
2
—
Push-pull
0.85
MAX9020
2
—
Open drain
0.85
________________________________________________________________ Maxim Integrated Products
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,
or visit Maxim’s website at www.maxim-ic.com.
1
MAX9015–MAX9020
General Description
MAX9015–MAX9020
SOT23, Dual, Precision, 1.8V, Nanopower
Comparators With/Without Reference
ABSOLUTE MAXIMUM RATINGS
Output Short-Circuit Duration (REF, OUT_, REF/INA-) ...........10s
Continuous Power Dissipation (TA = +70°C)
8-Pin SOT23 (derate 9.1mW/°C above +70°C)............727mW
Operating Temperature Range ...........................-40°C to +85°C
Storage Temperature Range .............................-65°C to +150°C
Junction Temperature ......................................................+150°C
Lead Temperature (soldering, 10s) .................................+300°C
Supply Voltage (VCC to VEE) ....................................................6V
IN+, IN-, INA+, INB+, INA-, INB-,
REF/INA-, REF..................................(VEE - 0.3V) to (VCC + 0.3V)
Output Voltage (OUT_)
MAX9015A, MAX9017_, MAX9019....(VEE - 0.3V) to (VCC + 0.3V)
MAX9016A, MAX9018_, MAX9020...................(VEE - 0.3V) to +6V
Output Current (REF, OUT_, REF/INA-)............................±50mA
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability.
ELECTRICAL CHARACTERISTICS—MAX9015–MAX9018 (Single and Duals with REF)
(VCC= 5V, VEE = 0V, VIN- = VREF, TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C.) (Note 1)
PARAMETER
Supply Voltage Range
SYMBOL
VCC
CONDITIONS
Inferred from the PSRR test
MAX9015A/
MAX9016A
Supply Current
ICC
MAX9017_/
MAX9018_
MIN
TYP
1.8
MAX
UNITS
5.5
V
VCC = 1.8V, TA = +25°C
1.0
1.5
VCC = 5.0V, TA = +25°C
1.1
1.7
VCC = 5.0V,
TA = TMIN to TMAX
2.0
VCC = 1.8V, TA = +25°C
1.2
1.9
VCC = 5.0V, TA = +25°C
1.4
2.3
VCC = 5.0V,
TA = TMIN to TMAX
μA
2.8
Input Common-Mode
Voltage Range
(MAX9015A/MAX9016A)
VCM
Inferred from VOS test
VEE - 0.2
VCC + 0.2
V
IN+ Voltage Range
(MAX9017_/MAX9018_)
VIN+
Inferred from the output swing test
VEE - 0.2
VCC + 0.2
V
Input Offset Voltage
VOS
VEE - 0.2V < VCM <
VCC + 0.2V (Note 2)
Input-Referred Hysteresis
VHB
Input Bias Current (IN+,
IN-, INA+, INB+, INB-)
IB
Power-Supply Rejection
Ratio
PSRR
Output Voltage Swing High
(MAX9015A/MAX9017_)
Output Voltage Swing Low
(MAX9015A/MAX9016A/
MAX9017_/MAX9018_)
2
VCC - VOH
VOL
TA = +25°C
TA = TMIN to TMAX
VEE - 0.2V < VCM < VCC + 0.2V (Note 3)
TA = +25°C
0.15
4
±0.15
TA = TMIN to TMAX
VCC = 1.8V,
I SOURCE = 1mA
TA = +25°C
VCC = 5.0V,
I SOURCE = 6mA
TA = +25°C
VCC = 5.0V,
I SINK = 6mA
0.1
1
100
200
250
350
TA = TMIN to TMAX
TA = TMIN to TMAX
TA = +25°C
300
nA
mV/V
mV
450
105
200
285
350
TA = TMIN to TMAX
TA = +25°C
mV
mV
±1
±2
VCC = 1.8V to 5.5V
VCC = 1.8V,
I SINK = 1mA
5
10
300
TA = TMIN to TMAX
_______________________________________________________________________________________
450
mV
SOT23, Dual, Precision, 1.8V, Nanopower
Comparators With/Without Reference
(VCC= 5V, VEE = 0V, VIN- = VREF, TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C.) (Note 1)
PARAMETER
Output Leakage Current
(MAX9016A/MAX9018_)
Output Short-Circuit Current
High-to-Low Propagation
Delay (Note 4)
SYMBOL
ILEAK
I SC
t PD-
CONDITIONS
VCC = 5.5V, VOUT = 5.5V
TYP
MAX
UNITS
0.001
1
μA
Sourcing, VOUT =
VEE (MAX9015A/
MAX9017_ only)
VCC = 1.8V
3
VCC = 5.0V
35
Sinking,
VOUT = VCC
VCC = 1.8V
3
VCC = 5.0V
33
VCC = 1.8V
7
VCC = 5.0V
6
VCC = 1.8V
Low-to-High Propagation
Delay (Note 4)
MIN
t PD+
VCC = 5.0V
MAX9015A/MAX9017_
11
MAX9016A/MAX9018_,
RPULLUP = 100k to VCC
12
MAX9015A/MAX9017_
28
MAX9016A/MAX9018_,
RPULLUP = 100k to VCC
31
mA
μs
μs
Rise Time
tRISE
CL = 15pF (MAX9015A/MAX9017_)
1.6
Fall Time
tFALL
CL = 15pF
0.2
μs
1.2
ms
Power-Up Time
t ON
MAX901_A
Reference Voltage
VREF
MAX901_B
Reference Voltage
Temperature Coefficient
TA = +25°C, 1.0%
1.224
TA = TMIN to TMAX, 2.5%
1.205
TA = +25°C, 1.75%
1.218
TA = TMIN to TMAX, 4.5%
1.184
1.236
1.248
1.267
1.240
1.262
V
1.296
40
TCREF
μs
ppm/°C
BW = 10Hz to 1kHz, CREF = 1nF
29
BW = 10Hz to 6kHz, CREF = 1nF
60
VREF/
VCC
1.8V VCC 5.5V
0.5
mV/V
VREF/
I OUT
I OUT = 0 to 100nA
0.03
mV/nA
Reference Output Voltage
Noise
EN
Reference Line Regulation
Reference Load
Regulation
μVRMS
_______________________________________________________________________________________
3
MAX9015–MAX9020
ELECTRICAL CHARACTERISTICS—MAX9015–MAX9018 (Single and Duals with REF)
(continued)
MAX9015–MAX9020
SOT23, Dual, Precision, 1.8V, Nanopower
Comparators With/Without Reference
ELECTRICAL CHARACTERISTICS—MAX9019/MAX9020 (Duals without REF)
(VCC = 5V, VEE = 0V, TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C.) (Note 1)
PARAMETER
Supply Voltage Range
Supply Current
SYMBOL
VCC
ICC
CONDITIONS
TYP
MAX
UNITS
5.5
V
VCC = 1.8V, TA = +25°C
0.85
1.50
VCC = 5.0V, TA = +25°C
1.1
1.70
Inferred from the PSRR test
MAX9019/
MAX9020
VCM
Inferred from VOS test
Input Offset Voltage
VOS
VEE - 0.2V < VCM <
VCC + 0.2V (Note 2)
Input-Referred Hysteresis
VHB
VEE - 0.2V < VCM < VCC + 0.2V (Note 3)
Power-Supply Rejection Ratio
Output Voltage Swing High
(MAX9019 Only)
Output Voltage Swing Low
Output Leakage Current
(MAX9020 Only)
Output Short-Circuit Current
IB
PSRR
VCC - VOH
VOL
ILEAK
I SC
t PD-
1
TA = TMIN to TMAX
4
VCC = 1.8V,
I SOURCE = 1mA
VCC = 5.0V,
I SOURCE = 6mA
TA = +25°C
VCC = 5.0V,
I SINK = 6mA
TA = TMIN to TMAX
TA = +25°C
1
55
200
190
350
300
TA = +25°C
55
200
190
350
300
TA = TMIN to TMAX
nA
mV/V
mV
mV
450
0.001
VCC = 1.8V
3
VCC = 5.0V
35
VCC = 1.8V
3
VCC = 5.0V
33
VCC = 1.8V
7
VCC = 5.0V
6
t PD+
mV
450
TA = TMIN to TMAX
VCC = 5.5V, VOUT = 5.5V
Sourcing, VOUT =
VEE (MAX9019 only)
0.1
TA = TMIN to TMAX
V
mV
1
2
TA = +25°C
VCC = 1.8V,
I SINK = 1mA
5
10
0.15
VCC = 1.8V to 5.5V
VCC = 5.0V
4
VCC + 0.2
TA = TMIN to TMAX
VCC = 1.8V
Low-to-High Propagation
Delay (Note 4)
TA = +25°C
μA
2.0
VEE - 0.2
TA = +25°C
Sinking, VOUT = VCC
High-to-Low Propagation
Delay (Note 4)
1.8
VCC = 5.0V,
TA = TMIN to TMAX
Input Common-Mode
Voltage Range
Input Bias Current
(INA-, INA+, INB+, INB-)
MIN
MAX9019
11
MAX9020, RPULLUP =
100k to VCC
12
MAX9019
28
MAX9020, RPULLUP =
100k to VCC
31
_______________________________________________________________________________________
1
μA
mA
μs
μs
SOT23, Dual, Precision, 1.8V, Nanopower
Comparators With/Without Reference
(VCC = 5V, VEE = 0V, TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C.) (Note 1)
PARAMETER
SYMBOL
CONDITIONS
Rise Time
tRISE
CL = 15pF (MAX9019 only)
Fall Time
tFALL
CL = 15pF
Power-Up Time
t ON
MIN
TYP
MAX
UNITS
1.6
μs
0.2
μs
1.2
ms
Note 1: All devices are 100% tested at TA = +25°C. Specifications over temperature (TA = TMIN to TMAX) are guaranteed by design,
not production tested.
Note 2: VOS is defined as the center of the hysteresis band at the input.
Note 3: The hysteresis-related trip points are defined as the edges of the hysteresis band, measured with respect to the center of
the band (i.e., VOS) (Figure 1).
Note 4: Specified with an input overdrive (VOVERDRIVE) of 100mV, and a load capacitance of CL = 15pF. VOVERDRIVE is defined
above and beyond the offset voltage and hysteresis of the comparator input.
Typical Operating Characteristics
(VCC = 5V, VEE = 0V, CL = 15pF, VOVERDRIVE = 100mV, TA = +25°C, unless otherwise noted.)
2.0
2.5 3.0 3.5 4.0 4.5
SUPPLY VOLTAGE (V)
5.0
5.5
1.5
MAX9015 toc04
VCC = 5V
VCC = 3V
VCC = 1.8V
-40
-15
10
35
TEMPERATURE (°C)
60
2.0
2.5 3.0 3.5 4.0 4.5
SUPPLY VOLTAGE (V)
5.0
85
2.0
1.9
1.8
1.7
1.6
1.5
1.4
1.3
1.2
1.1
1.0
0.9
0.8
VCC = 5V
VCC = 1.8V
-15
10
35
TEMPERATURE (°C)
60
MAX9015 toc03
TA = +25°C
TA = -40°C
2.0
2.5 3.0 3.5 4.0 4.5
SUPPLY VOLTAGE (V)
5.0
5.5
MAX9019/MAX9020
SUPPLY CURRENT vs. TEMPERATURE
VCC = 3V
-40
TA = +85°C
1.5
5.5
MAX9017/MAX9018
SUPPLY CURRENT vs. TEMPERATURE
SUPPLY CURRENT (μA)
SUPPLY CURRENT (μA)
MAX9015/MAX9016
SUPPLY CURRENT vs. TEMPERATURE
1.6
1.5
1.4
1.3
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
TA = -40°C
SUPPLY CURRENT (μA)
1.5
TA = +25°C
1.6
1.5
1.4
1.3
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
85
1.6
1.5
1.4
1.3
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
MAX9015 toc06
TA = -40°C
SUPPLY CURRENT (μA)
TA = +25°C
TA = +85°C
MAX9015 toc05
TA = +85°C
2.0
1.9
1.8
1.7
1.6
1.5
1.4
1.3
1.2
1.1
1.0
0.9
0.8
MAX9015 toc02
MAX9015 toc01
1.6
1.5
1.4
1.3
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
MAX9019/MAX9020
SUPPLY CURRENT
vs. SUPPLY VOLTAGE AND TEMPERATURE
MAX9017/MAX9018
SUPPLY CURRENT
vs. SUPPLY VOLTAGE AND TEMPERATURE
SUPPLY CURRENT (μA)
SUPPLY CURRENT (μA)
MAX9015/MAX9016
SUPPLY CURRENT
vs. SUPPLY VOLTAGE AND TEMPERATURE
VCC = 5V
VCC = 3V
VCC = 1.8V
-40
-15
10
35
TEMPERATURE (°C)
60
_______________________________________________________________________________________
85
5
MAX9015–MAX9020
ELECTRICAL CHARACTERISTICS—MAX9019/MAX9020 (Duals without REF) (continued)
Typical Operating Characteristics (continued)
(VCC = 5V, VEE = 0V, CL = 15pF, VOVERDRIVE = 100mV, TA = +25°C, unless otherwise noted.)
VCC = 1.8V
30
25
20
VCC = 3V
15
VCC = 5V
10
0
VCC = 3V
10
VCC = 5V
100
1k
10k
100k
25
20
VCC = 5V
15
VCC = 3V
0
10
100
1k
10k
1
100k
10
100
1k
10k
OUTPUT TRANSITION FREQUENCY (Hz)
OUTPUT TRANSITION FREQUENCY (Hz)
OUTPUT TRANSITION FREQUENCY (Hz)
OUTPUT VOLTAGE LOW
vs. SINK CURRENT
OUTPUT VOLTAGE LOW
vs. SINK CURRENT AND TEMPERATURE
OUTPUT VOLTAGE HIGH
vs. SOURCE CURRENT
500
0.7
0.6
VCC = 3V
TA = +25°C
VCC = 1.8V
0.5
VCC = 5V
VCC - VOH (V)
VOL (mV)
400
300
TA = +85°C
200
2
3
4
5
6
7
8
9
VCC = 5V
0.1
0
0
10
0.3
0.2
0
1
VCC = 1.8V
0.4
TA = -40°C
100
100k
MAX9015 toc12
600
MAX9015 toc11
VCC = 3V
0
VCC = 1.8V
30
5
1
MAX9015 toc10
750
700
650
600
550
500
450
400
350
300
250
200
150
100
50
0
10
35
10
0
1
1
2
3
4
5
6
7
8
9
0
10
1
2
3
4
5
6
7
8
9
10
SINK CURRENT (mA)
SINK CURRENT (mA)
SOURCE CURRENT (mA)
OUTPUT VOLTAGE HIGH
vs. SOURCE CURRENT AND TEMPERATURE
SHORT-CIRCUIT TO VCC (SINK CURRENT)
vs. TEMPERATURE
SHORT-CIRCUIT TO GND
(SOURCE CURRENT) vs.TEMPERATURE
0.3
TA = +85°C
0.2
30
25
20
VCC = 3V
15
10
TA = -40°C
0.1
VCC = 5V
1
2
3
4
5
6
7
SOURCE CURRENT (mA)
8
9
10
VCC = 5V
35
30
25
20
VCC = 3V
15
VCC = 1.8V
5
0
0
0
40
10
VCC = 1.8V
5
0
45
SINK CURRENT (mA)
TA = +25°C
0.4
35
SINK CURRENT (mA)
0.5
50
MAX9015toc15
40
MAX9015 toc13
0.6
MAX9015 toc14
VOL (mV)
20
15
40
5
5
6
VCC = 1.8V
25
45
SUPPLY CURRENT (μA)
35
30
SUPPLY CURRENT (μA)
40
50
MAX9015 toc08
45
SUPPLY CURRENT (μA)
35
MAX9015 toc07
50
MAX9019/MAX9020
SUPPLY CURRENT
vs. OUTPUT TRANSITION FREQUENCY
MAX9017/MAX9018
SUPPLY CURRENT
vs. OUTPUT TRANSITION FREQUENCY
MAX9015 toc09
MAX9015/MAX9016
SUPPLY CURRENT
vs. OUTPUT TRANSITION FREQUENCY
VCC - VOH (V)
MAX9015–MAX9020
SOT23, Dual, Precision, 1.8V, Nanopower
Comparators With/Without Reference
-40
-15
10
35
TEMPERATURE (°C)
60
85
-40
-15
10
35
TEMPERATURE (°C)
_______________________________________________________________________________________
60
85
SOT23, Dual, Precision, 1.8V, Nanopower
Comparators With/Without Reference
(VCC = 5V, VEE = 0V, CL = 15pF, VOVERDRIVE = 100mV, TA = +25°C, unless otherwise noted.)
1.6
1.2
6
VCC = 1.8V
0.8
VOS (mV)
5
4
0.4
0
VCC = 5V
-0.4
3
-0.8
2
30
A GRADE
25
PERCENTAGE OF UNITS (%)
MAX9015 toc17
MAX9015 toc16
-1.2
1
10
5
0
-2.0
0.3 0.6 0.9 1.2 1.5
-40
-15
10
VOS (mV)
35
60
1.232
85
HYSTERESIS VOLTAGE
vs. TEMPERATURE
A GRADE
3.5
3.0
1.236
VCC = 3V
1.234
1.240
1.239
VCC = 5V
1.232
2.5
2.0
10
35
60
85
1.237
1.236
1.234
-40
-15
10
35
60
1.5
85
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
TEMPERATURE (°C)
TEMPERATURE (°C)
SUPPLY VOLTAGE (V)
REFERENCE VOLTAGE
vs. REFERENCE SOURCE CURRENT
REFERENCE VOLTAGE
vs. REFERENCE SINK CURRENT
REFERENCE VOLTAGE vs. REFERENCE
SINK CURRENT AND TEMPERATURE
VCC = 3V
VCC = 5V
1.229
1.244
VCC = 1.8V
1.242
1.240
VCC = 5V
1.238
1.236
VCC = 3V
80
120
160
REFERENCE SOURCE CURRENT (nA)
200
1.245
TA = +25°C
1.240
1.235
TA = -40°C
1.225
1.232
40
TA = +85°C
1.230
1.234
1.226
VCC = 3V
1.250
REFERENCE VOLTAGE (V)
1.235
1.255
MAX9015 toc23
1.246
REFERENCE VOLTAGE (V)
VCC = 1.8V
1.232
1.248
MAX9015 toc22
1.238
0
1.238
1.235
1.230
-15
1.240
REFERENCE VOLTAGE
vs. SUPPLY VOLTAGE
REFERENCE VOLTAGE (V)
4.0
VCC = 1.8V
1.238
1.238
MAX9015 toc21
1.240
REFERENCE VOLTAGE (V)
4.5
1.236
VREF (V)
REFERENCE VOLTAGE
vs. TEMPERATURE
MAX9015 toc19
5.0
-40
1.234
TEMPERATURE (°C)
MAX9015 toc20
-1.5 -1.2 -0.9 -0.6 -0.3 0
VHB (mV)
15
-1.6
0
REFERENCE VOLTAGE (V)
20
MAX9015 toc24
PERCENTAGE OF UNITS (%)
7
REFERENCE VOLTAGE DISTRIBUTION
OFFSET VOLTAGE vs. TEMPERATURE
2.0
MAX9015 toc18
INPUT OFFSET VOLTAGE DISTRIBUTION
8
0
40
80
120
160
REFERENCE SINK CURRENT (nA)
200
0
40
80
120
160
200
REFERENCE SINK CURRENT (nA)
_______________________________________________________________________________________
7
MAX9015–MAX9020
Typical Operating Characteristics (continued)
Typical Operating Characteristics (continued)
(VCC = 5V, VEE = 0V, CL = 15pF, VOVERDRIVE = 100mV, TA = +25°C, unless otherwise noted.)
0.600
14
VCC = 5V
10
-0.200
VCC = 1.8V
tPD+ (μs)
tPD- (μs)
0.200
8
6
-1.000
0.5
1.5
2.5
3.5
4.5
5.5
VCC = 3V
20
10
VCC = 5V
VCC = 1.8V
0
0
-40
-15
10
35
60
-40
85
-15
10
35
TEMPERATURE (°C)
TEMPERATURE (°C)
PROPAGATION DELAY (tPD-)
vs. CAPACITIVE LOAD
PROPAGATION DELAY (tPD+)
vs. CAPACITIVE LOAD
PROPAGATION DELAY (tPD-)
vs. INPUT OVERDRIVE
200
160
140
VCC = 3V
VCC = 5V
80
40
VCC = 3V
120
100
80
60
50
tPD- (μs)
100
140
tPD+ (μs)
120
VCC = 1.8V
180
VCC = 5V
30
20
VCC = 1.8V
VCC = 5V
60
40
40
20
20
0
0
10
100
1000
VCC
20= 3V
0
0.01
CAPACITIVE LOAD (nF)
PROPAGATION DELAY (tPD+)
vs. INPUT OVERDRIVE
35
VCC = 5V
1
10
tPD- (μs)
20
15
10
20
160
VCC = 5V
7
VCC = 5V
120
VCC = 3V
80
VCC = 1.8V
40
5
4
0
0
10
20
30
INPUT OVERDRIVE (mV)
40
50
50
VCC = 3V
10
VCC = 1.8V
40
200
6
5
30
PROPAGATION DELAY (tPD+)
vs. PULLUP RESISTANCE
8
25
0
PROPAGATION DELAY (tPD-)
vs. PULLUP RESISTANCE
VCC = 1.8V
9
1000
INPUT OVERDRIVE (mV)
30
VCC = 3V
100
CAPACITIVE LOAD (nF)
10
MAX9015 toc31
40
0.1
tPD+ (μs)
1
10
MAX9015 toc32
0.1
85
MAX9015 toc30
VCC = 1.8V
MAX9015 toc29
180
160
0.01
60
INPUT BIAS VOLTAGE (IN-) (V)
MAX9015 toc28
-0.5
30
VCC = 3V
4
-0.600
tPD- (μs)
40
12
2
8
50
MAX9015 toc33
IN+ = 2.5V
MAX9015 toc26
16
MAX9015 toc25
INPUT BIAS CURRENT (IN-) (nA)
1.000
PROPAGATION DELAY (tPD+)
vs. TEMPERATURE
PROPAGATION DELAY (tPD-)
vs. TEMPERATURE
MAX9015 toc27
INPUT BIAS CURRENT
vs. INPUT BIAS VOLTAGE
tPD+ (μs)
MAX9015–MAX9020
SOT23, Dual, Precision, 1.8V, Nanopower
Comparators With/Without Reference
0
10k
100k
RPULLUP (Ω)
1M
10M
10k
100k
RPULLUP (Ω)
_______________________________________________________________________________________
1M
10M
SOT23, Dual, Precision, 1.8V, Nanopower
Comparators With/Without Reference
(VCC = 5V, VEE = 0V, CL = 15pF, VOVERDRIVE = 100mV, TA = +25°C, unless otherwise noted.)
PROPAGATION DELAY (tPD-) (VCC = 5V)
PROPAGATION DELAY (tPD-) (VCC = 3V)
PROPAGATION DELAY (tPD+) (VCC = 5V)
MAX9015 toc34
MAX9015 toc36
MAX9015 toc35
VOUT
2V/div
VOUT
2V/div
2μs/div
VOUT
2V/div
2μs/div
10μs/div
PROPAGATION DELAY (tPD+) (VCC = 3V)
PROPAGATION DELAY (tPD-) (VCC = 1.8V)
MAX9015 toc37
PROPAGATION DELAY (tPD+) (VCC = 1.8V)
MAX9015 toc38
MAX9015 toc39
VIN+
50mV/div
VIN+
50mV/div
VOUT
2V/div
VOUT
1V/div
10μs/div
2μs/div
1kHz RESPONSE (VCC = 5V)
VIN+
50mV/div
VIN+
50mV/div
VIN+
50mV/div
VOUT
1V/div
10μs/div
POWER-UP RESPONSE
SLOW POWER-UP/DOWN RESPONSE
MAX9015 toc40
VIN+
50mV/div
MAX9015 toc42
MAX9015 toc41
VCC
2V/div
IN+
50mV/div
AC-COUPLED
VCC
1V/div
VOUT
2V/div
OUT
2V/div
VREF
1V/div
VOUT
1V/div
200μs/div
40μs/div
20μs/div
_______________________________________________________________________________________
9
MAX9015–MAX9020
Typical Operating Characteristics (continued)
MAX9015–MAX9020
SOT23, Dual, Precision, 1.8V, Nanopower
Comparators With/Without Reference
Pin Description
PIN
MAX9015/
MAX9016
MAX9017/
MAX9018
MAX9019/
MAX9020
NAME
FUNCTION
1
—
—
REF
1.24V Reference Output
2
—
—
IN-
Comparator Inverting Input
3
—
—
IN+
Comparator Noninverting Input
4
4
4
VEE
Negative Supply Voltage
No Connection. Not internally connected.
5, 8
—
—
N.C.
6
—
—
OUT
Comparator Output
7
8
8
VCC
Positive Supply Voltage
—
1
1
OUTA
Comparator A Output
—
3
3
INA+
Comparator A Noninverting Input
—
5
5
INB+
Comparator B Noninverting Input
—
6
6
INB-
Comparator B Inverting Input
—
7
7
OUTB
—
—
2
INA-
Comparator A Inverting Input
—
REF/
INA-
1.24V Reference Output. Internally connected to the inverting input of
comparator A (MAX9017/MAX9018 only).
—
2
Comparator B Output
Functional Diagrams
7
8
VCC
VCC
8
VCC
3 INA+
3 INA+
3 IN+
OUTA 1
OUT 6
2
OUTA 1
2 REF/INA-
2 INA-
5 INB+
5
IN-
MAX9015
MAX9016
1 REF
REF
1.24V
OUTB 7
OUTB 7
6 INB-
6 INB-
VEE
4
MAX9019
MAX9020
INB+
MAX9017
MAX9018
REF
1.24V
VEE
4
VEE
4
10
______________________________________________________________________________________
SOT23, Dual, Precision, 1.8V, Nanopower
Comparators With/Without Reference
The MAX9015–MAX9018 feature an on-board 1.24V
±0.5% (±1.45% for the B grade) reference, yet draw an
ultra-low supply current. The MAX9019/MAX9020
(duals without reference) consume just 850nA of supply
current. All devices are guaranteed to operate down to
1.8V supply. Their common-mode input voltage range
extends 200mV beyond-the-rails. An internal 4mV hysteresis ensures clean output switching, even with slowmoving input signals. Large internal output drivers
swing rail-to-rail with up to ±6mA loads (MAX9015/
MAX9017/MAX9019).
The output stage employs a unique design that minimizes supply-current surges while switching, which virtually eliminates the supply glitches typical of many
other comparators. The MAX9015/MAX9017/MAX9019
have a push-pull output stage that sinks as well as
sources current. The MAX9016/MAX9018/MAX9020
have an open-drain output stage that can be pulled
beyond VCC up to 5.5V above VEE. These open-drain
versions are ideal for implementing wire-ORed output
logic functions.
Input Stage Circuitry
The input common-mode voltage ranges extend from
VEE - 0.2V to VCC + 0.2V. These comparators operate
at any differential input voltage within these limits. Input
bias current is typically ±150pA at the trip point, if the
input voltage is between the supply rails. Comparator
inputs are protected from overvoltage by internal ESD
protection diodes connected to the supply rails. As the
input voltage exceeds the supply rails, these ESD protection diodes become forward biased and begin to
conduct increasing input bias current (see the Input
Bias Current vs. Input Bias Voltage graph in the Typical
Operating Characteristics).
Output Stage Circuitry
The MAX9015–MAX9020 feature a unique breakbefore-make output stage capable of driving ±8mA
loads rail-to-rail. Many comparators consume orders of
magnitude more current during switching than during
steady-state operation. However, with the MAX9015–
MAX9020 family of comparators, the supply-current
change during an output transition is extremely small.
In the Typical Operating Characteristics, the Supply
Current vs. Output Transition Frequency graphs show
the minimal supply-current increase as the output
switching frequency approaches 1kHz. This characteristic reduces the need for power-supply filter capacitors to reduce glitches created by comparator
switching currents. In battery-powered applications,
this characteristic results in a substantial increase in
battery life.
Reference (MAX9015–MAX9018)
The MAX9015–MAX9018s’ internal +1.24V reference
has a typical temperature coefficient of 40ppm/°C over
the full -40°C to +85°C temperature range. The reference is a very-low-power bandgap cell, with a typical
35kΩ output impedance. REF can source and sink up
to 100nA to external circuitry. For applications needing
increased drive, buffer REF with a low input-bias current op amp such as the MAX4162. Most applications
require no REF bypass capacitor. For noisy environments or fast transients, connect a 1nF to 10nF ceramic
capacitor from REF to GND.
Applications Information
Low-Voltage, Low-Power Operation
The MAX9015–MAX9020 are ideally suited for use with
most battery-powered systems. Table 1 lists a variety of
battery types, capacities, and approximate operating
times for the MAX9015–MAX9020, assuming nominal
conditions.
Table 1. Battery Applications Using the MAX9015–MAX9020
RECHARGEABLE
VFRESH
(V)
VEND-OFLIFE (V)
CAPACITY,
AA SIZE
(mA-hr)
MAX9015A/
MAX9016A
OPERATING
TIME (hr)
MAX9017/
MAX9018
OPERATING
TIME (hr)
MAX9019/
MAX9020
OPERATING
TIME (hr)
Alkaline (2 cells)
No
3.0
1.8
2000
2000k
1540k
1333k
Nickel-cadmium
(2 cells)
Yes
2.4
1.8
750
750k
570k
500k
Nickel-metal-hydride
(2 cells)
Yes
2.4
1.8
1000
1000k
770k
660k
Lithium-ion (1 cell)
Yes
3.6
2.9
1000
1000k
770k
660k
BATTERY
TYPE
______________________________________________________________________________________
11
MAX9015–MAX9020
Detailed Description
MAX9015–MAX9020
SOT23, Dual, Precision, 1.8V, Nanopower
Comparators With/Without Reference
Internal Hysteresis
Many comparators oscillate in the linear region of operation because of noise or undesired parasitic feedback. Oscillations can occur when the voltage on one
input is equal or very close to the voltage on the other
input. The MAX9015–MAX9020 have internal 4mV hysteresis to counter parasitic effects and noise.
The hysteresis in a comparator creates two trip points:
one for the rising input voltage (VTHR) and one for the
falling input voltage (VTHF) (Figure 1). The difference
between the trip points is the hysteresis (VHB). When
the comparator’s input voltages are equal, the hysteresis effectively causes one comparator input to move
quickly past the other, thus taking the input out of the
region where oscillation occurs. Figure 1 illustrates the
case in which the comparator’s inverting input has a
fixed voltage applied, and the noninverting input is varied. If the inputs were reversed, the figure would be the
same, except with an inverted output.
Additional Hysteresis
(MAX9015/MAX9017/MAX9019)
(Push-Pull Outputs)
THRESHOLDS
IN+
VTHR
HYSTERESIS
INVTHF
OUT
Figure 1. Threshold Hysteresis Band
VCC
R3
R1
VIN
VCC
R2
The MAX9015/MAX9017/MAX9019 feature a built-in
4mV hysteresis band (VHB). Additional hysteresis can
be generated with three resistors using positive feedback (Figure 2). Use the following procedure to calculate resistor values:
1) Select R3. Input bias current at IN_+ is less than
2nA, so the current through R3 should be at least
0.2µA to minimize errors caused by input bias current. The current through R3 at the trip point is
(VREF - VOUT)/R3. Considering the two possible output states in solving for R3 yields two formulas: R3
= VREF/IR3 or R3 = (VCC - VREF)/IR3. Use the smaller of the two resulting resistor values. For example,
when using the MAX9017 (VREF = 1.24V) and VCC
= 5V, and if we choose IR3 = 0.2µA, then the two
resistor values are 6.2MΩ and 19MΩ. Choose a
6.2MΩ standard value for R3.
2) Choose the hysteresis band required (VHB). For this
example, choose 50mV.
3) Calculate R1 according to the following equation:
⎛ 50mV ⎞
R1 = 6.2MΩ ⎜
⎟ = 12kΩ
⎝ 5V ⎠
12
OUT
VEE
VREF
MAX9015
MAX9017
MAX9019
Figure 2. MAX9015/MAX9017/MAX9019 Additional Hysteresis
4) Choose the trip point for VIN rising (VTHR) such that:
V ⎞
⎛
VTHR > VREF ⎜1 + HB ⎟
⎝
VCC ⎠
where VTHR is the trip point for VIN rising. This is the
threshold voltage at which the comparator switches
its output from low to high as VIN rises above the
trip point. For this example, choose 3V.
5) Calculate R2 as follows:
R2 =
⎛V ⎞
R1 = R3 ⎜ HB ⎟
⎝ VCC ⎠
For this example, insert the values:
BAND
VHB
R2 =
1
⎡⎛ VTHR ⎞ ⎛ 1 ⎞ ⎛ 1 ⎞ ⎤
⎢⎜
⎟ − ⎜ ⎟ − ⎜ ⎟⎥
⎢⎣⎝ VREF X R1⎠ ⎝ R1⎠ ⎝ R3 ⎠ ⎥⎦
1
= 43.99kΩ
⎡⎛
⎞
3.0 V
⎛ 1 ⎞
⎛ 1 ⎞⎤
−
−
⎢⎜
⎥
⎜
⎟
⎜
⎟
⎟
⎝ 62kΩ ⎠
⎝ 6.2MΩ ⎠ ⎥⎦
⎢⎣⎝ (1.24 V X 62kΩ) ⎠
For this example, choose a 44.2kΩ standard value.
______________________________________________________________________________________
SOT23, Dual, Precision, 1.8V, Nanopower
Comparators With/Without Reference
4) Choose the trip point for VIN rising (VTHR) such that:
VIN rising: = 2.992V, which is equivalent to REF
times R1 divided by the parallel combination of R1,
R2:
⎡⎛ 1 ⎞ ⎛ 1 ⎞ ⎛ 1 ⎞ ⎤
VTHR = VREF x R1 ⎢⎜ ⎟ + ⎜ ⎟ + ⎜ ⎟ ⎥
⎣⎝ R1⎠ ⎝ R2 ⎠ ⎝ R3 ⎠ ⎦
and R3.
VIN falling: = 2.942V:
V ⎞
⎛
VTHR > VREF ⎜1 + HB ⎟
⎝
VCC ⎠
(VTHR is the trip point for VIN rising). This is the
threshold voltage at which the comparator switches
its output from low to high as VIN rises above the
trip point. For this example, choose 3V:
5) Calculate R2 as follows:
R2 =
⎛ R1 x VCC ⎞
VTHF = VTHR − ⎜
⎟
⎝
R3 ⎠
1
⎡⎛ VTHR ⎞
⎛ 1 ⎞ ⎛ 1 ⎞⎤
− ⎜ ⎟ −⎜
⎢⎜
⎟⎥
⎟
⎝ R1⎠ ⎝ R 3 ⎠ ⎥⎦
⎢⎣⎝ VREF x R1⎠
Hysteresis = VTHR - VTHF = 50mV.
Additional Hysteresis
(MAX9016/MAX9018/MAX9020)
(Open-Drain Outputs)
The MAX9016/MAX9018/MAX9020 feature a built-in 4mV
hysteresis band. These devices have open-drain outputs
and require an external pullup resistor (Figure 3).
Additional hysteresis can be generated using positive
feedback, but the formulas differ slightly from those of
the MAX9015/MAX9017/MAX9019. Use the following
procedure to calculate resistor values:
1) Select R3. Input bias current at IN_+ is less than
2nA, so the current through R3 should be at least
0.2µA to minimize errors caused by input bias current. The current through R3 at the trip point is
(VREF - VOUT)/R3. Considering the two possible output states in solving for R3 yields two formulas: R3
= VREF/IR3 or R3 = [(VCC - VREF)/IR3] - R4. Use the
smaller of the two resulting resistor values. For
example, when using the MAX9018 (VREF = 1.24V)
and VCC = 5V, and if we choose IR3 = 0.2µA, and
R4 = 1MΩ, then the two resistor values are 6.2MΩ
and 18MΩ. Choose a 6.2MΩ standard value for R3.
R2 =
1
⎡⎛
⎞
3.0V
⎛ 1 ⎞ ⎛ 1 ⎞⎤
⎢⎜
⎟ − ⎜⎝ 72kΩ ⎟⎠ − ⎜⎝ 6.2MΩ ⎟⎠ ⎥
1
24
V
x
72
k
Ω
.
⎝
⎠
⎢⎣
⎥⎦
For this example, choose a 49.9kΩ standard value.
6) Verify the trip voltages and hysteresis as follows:
⎛⎛ 1 ⎞
⎛ 1⎞
⎛ 1 ⎞⎞
VIN risin g : VTHR = VREF x R1 ⎜ ⎜ ⎟ + ⎜ ⎟ + ⎜
⎟
⎝
⎠
⎝
⎠
⎝ R 3 ⎠ ⎟⎠
R
R
1
2
⎝
= 3.043V
⎛⎛ 1 ⎞
⎛ 1⎞
⎛ 1 ⎞⎞
VIN falling : VTHF = VREF x R1 ⎜ ⎜ ⎟ + ⎜ ⎟ + ⎜
⎟
⎝ R2 ⎠
⎝ R 3 ⎠ ⎟⎠
⎝ ⎝ R1⎠
−
R1
x VCC = 2.993V
R 3 + R4
Hysteresis = VTHR - VTHF = 50mV.
VCC
R3
2) Choose the hysteresis band required (VHB).
3) Calculate R1 according to the following equation.
For this example, insert the values:
⎛V ⎞
R1 = (R3 + R4) ⎜ HB ⎟
⎝ VCC ⎠
⎛ 50mV ⎞
R1 = (6.2MΩ + 1MΩ) ⎜
⎟ = 72kΩ
⎝ 5V ⎠
= 51.1kΩ
R1
R4
VIN
VCC
R2
OUT
VEE
VREF
MAX9016
MAX9018
MAX9020
Figure 3. MAX9016/MAX9018/MAX9020 Additional Hysteresis
______________________________________________________________________________________
13
MAX9015–MAX9020
6) Verify the trip voltages and hysteresis as follows:
MAX9015–MAX9020
SOT23, Dual, Precision, 1.8V, Nanopower
Comparators With/Without Reference
Board Layout and Bypassing
The MAX9015–MAX9020 ultra-low supply current typically requires no power-supply bypass capacitors.
However, when the supply has high output impedance,
long lead lengths or excessive noise, or fast transients,
bypass VCC to VEE with a 0.1µF capacitor placed as
close to the VCC pin as possible. Minimize signal trace
lengths to reduce stray capacitance. Use a ground
plane and surface-mount components for best performance. If REF is decoupled, use a low-leakage ceramic capacitor.
VIN V
OTH = 4.2V
VUTH = 2.9V
R3
VCC
INA+
OUTA
1) Select R1. The input bias current into INB- is normally less than 2nA, so the current through R1
should exceed 100nA for the thresholds to be accurate. In this example, choose R1 = 1.24MΩ
(1.24V/1µA).
2) Calculate R2 + R3. The overvoltage threshold
should be 4.2V when V IN is rising. The design
equation is as follows:
⎡⎛
⎤
⎞
VOTH
R2 + R3 = R1 x ⎢⎜
− 1⎥
⎟
⎢⎣⎝ VREF + VHB ⎠
⎥⎦
⎡⎛
⎤
⎞
4.2V
= 1.24MΩ x ⎢⎜
⎟ − 1⎥
⎢⎣⎝ 1.24V + 0.004 ⎠
⎦⎥
REF
1.24V
R2
INB+
VEE
MAX9018
OUTB
INBR1
VEE
Figure 4. Window Detector Circuit
For this example, choose a 499kΩ standard value 1%
resistor.
4) Calculate R3:
R3 = (R2 + R3) - R2
= 2.95MΩ - 546kΩ
= 240MΩ
5) Verify the resistor values. The equations are as follows, evaluated for the above example:
Overvoltage threshold:
VOTH = (VREF + VHB ) x
= (1.24MΩ + 2.95MΩ) x
= 546kΩ
14
(1.236)
− 1.24MΩ
2.9
(R1 + R2 + R3)
= 4.20V
R1
Undervoltage threshold:
=2.95MΩ
3) Calculate R2. The undervoltage threshold should
be 2.9V when VIN is falling. The design equation is
as follows:
− VHB ⎞
⎛V
R2 = (R1 + R2 + R3) x ⎜ REF
⎟ − R1
⎝
⎠
VUTH
POWERGOOD
REF/INA-
Window Detector
The MAX9018 is ideal for window detectors (undervoltage/overvoltage detectors). Figure 4 shows a window
detector circuit for a single-cell Li+ battery with a 2.9V
end-of-life charge, a peak charge of 4.2V, and a nominal value of 3.6V. Choose different thresholds by
changing the values of R1, R2, and R3. OUTA provides
an active-low undervoltage indication, and OUTB provides an active-low overvoltage indication. ANDing the
two open-drain outputs provides an active-high, powergood signal.
The design procedure is as follows:
5V
VUTH = (VREF − VHB ) x
(R1 + R2 + R3)
= 2.97V
(R1 + R2)
where the internal hysteresis band, VHB, is 4mV.
Zero-Crossing Detector
Figure 5 shows a zero-crossing detector application.
The MAX9015/MAX9016/MAX9019/MAX9020s’ inverting input is connected to ground, and its noninverting
input is connected to a 100mVP-P signal source. As the
signal at the noninverting input crosses zero, the comparator’s output changes state.
______________________________________________________________________________________
SOT23, Dual, Precision, 1.8V, Nanopower
Comparators With/Without Reference
PART
TEMP RANGE
VCC
100mVP-P
IN+
OUT
IN-
VEE
PINPACKAGE
TOP
MARK
MAX9018AEKA-T -40°C to +85°C
8 SOT23
MAX9018BEKA-T
-40°C to +85°C
8 SOT23
AEIT
MAX9019EKA-T
-40°C to +85°C
8 SOT23
AEIU
MAX9020EKA-T
-40°C to +85°C
8 SOT23
AEIV
MAX9015
MAX9016
MAX9019
MAX9020
AEIR
Typical Application Circuit
VIN V
OTH = 4.2V
VUTH = 2.9V
Figure 5. Zero-Crossing Detector
5V
R3
VCC
INA+
Logic-Level Translator
The open-drain comparators can be used to convert 5V
logic to 3V logic levels. The MAX9020 can be powered
by the 5V supply voltage, and the pullup resistor for the
MAX9020’s open-drain output is connected to the 3V
supply voltage. This configuration allows the full 5V
logic swing without creating overvoltage on the 3V logic
inputs. For 3V to 5V logic-level translations, connect the
3V supply voltage to VCC and the 5V supply voltage to
the pullup resistor.
OUTA UNDERVOLTAGE
REF/INAREF
1.24V
R2
INB+
VEE
MAX9017
OUTB OVERVOLTAGE
INB-
Chip Information
R1
TRANSISTOR COUNT: 349
PROCESS: BiCMOS
VEE
Pin Configurations
TOP VIEW
REF 1
IN- 2
IN+
3
MAX9015
MAX9016
VEE 4
SOT23
8
N.C.
OUTA 1
7
VCC
REF/INA- 2
6
OUT
5
N.C.
INA+
3
MAX9017
MAX9018
VEE 4
SOT23
8
VCC
7
OUTB
6
INB-
5
INB+
OUTA 1
INA- 2
INA+
3
MAX9019
MAX9020
VEE 4
8
VCC
7
OUTB
6
INB-
5
INB+
SOT23
______________________________________________________________________________________
15
MAX9015–MAX9020
Ordering Information (continued)
VCC
MAX9015–MAX9020
SOT23, Dual, Precision, 1.8V, Nanopower
Comparators With/Without Reference
Package Information
For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a “+”, “#”, or “-” in the
package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the
package regardless of RoHS status.
16
PACKAGE TYPE
PACKAGE CODE
DOCUMENT NO.
8 SOT23
K8-5
21-0078
______________________________________________________________________________________
SOT23, Dual, Precision, 1.8V, Nanopower
Comparators With/Without Reference
REVISION
NUMBER
REVISION
DATE
2
12/09
DESCRIPTION
Updated EC table parameters after final test changes
PAGES
CHANGED
2, 4
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 17
© 2009 Maxim Integrated Products
Maxim is a registered trademark of Maxim Integrated Products, Inc.
MAX9015–MAX9020
Revision History