FUJITSU MB84VA2105

FUJITSU SEMICONDUCTOR
DATA SHEET
DS05-50108-1E
MCP (Multi-Chip Package) FLASH MEMORY & SRAM
CMOS
16M (× 8) FLASH MEMORY &
1M (× 8) STATIC RAM
MB84VA2104-10/MB84VA2105-10
■ FEATURES
• Power supply voltage of 2.7 to 3.6 V
• High performance
100 ns maximum access time
• Operating Temperature
–20 to +85°C
— FLASH MEMORY
• Minimum 100,000 write/erase cycles
• Sector erase architecture
One 16 K byte, two 8 K bytes, one 32 K byte, and thirty one 64 K bytes.
Any combination of sectors can be concurrently erased. Also supports full chip erase.
• Boot Code Sector Architecture
MB84VA2104: Top sector
MB84VA2105: Bottom sector
• Embedded EraseTM Algorithms
Automatically pre-programs and erases the chip or any sector
• Embedded ProgramTM Algorithms
Automatically writes and verifies data at specified address
• Data Polling and Toggle Bit feature for detection of program or erase cycle completion
• Ready-Busy output (RY/BY)
Hardware method for detection of program or erase cycle completion
• Automatic sleep mode
When addresses remain stable, automatically switch themselves to low power mode.
• Low VCC write inhibit ≤ 2.5 V
• Erase Suspend/Resume
Suspends the erase operation to allow a read in another sector within the same device
Please refer to "MBM29LV160T/B" data sheet in detailed function
— SRAM
• Power dissipation
Operating : 35 mA max.
Standby : 30 µA max.
• Power down features using CE1s and CE2s
• Data retention supply voltage: 2.0 V to 3.6 V
Embedded EraseTM and Embedded ProgramTM are trademarks of Advanced Micro Devices, Inc.
MB84VA2104-10/MB84VA2105-10
■ BLOCK DIAGRAM
VCCf
VSS
A0 to A20
RY/BY
A0 to A20
16 M bit
Flash Memory
RESET
CEf
DQ0 to DQ7
VCCs
VSS
A0 to A16
WE
OE
CE1s
CE2s
2
1 M bit
Static RAM
MB84VA2104-10/MB84VA2105-10
■ PIN ASSIGNMENTS
(Top View)
A
B
C
D
E
F
G
H
6
CE1s
VSS
DQ1
A1
A2
A4
CE2s
A9
5
A10
DQ5
DQ2
A0
A3
A7
RY/BY
A15
4
OE
DQ7
DQ4
DQ0
A6
A19
RESET
A16
3
A11
A8
A5
N.C.
DQ3
N.C.
A13
A20
2
A14
A18
N.C.
CEf
N.C.
VCCf
DQ6
A12
1
WE
VCCs
A17
VSS
N.C.
N.C.
N.C.
N.C.
Table 1 Pin Configuration
Pin
Function
Input/
Output
A0 to A16
Address Inputs (Common)
I
A17 to A20
Address Input (Flash)
I
DQ0 to DQ7
Data Inputs/Outputs (Common)
I/O
CEf
Chip Enable (Flash)
I
CE1s
Chip Enable (SRAM)
I
CE2s
Chip Enable (SRAM)
I
OE
Output Enable (Common)
I
WE
Write Enable (Common)
I
RY/BY
Ready/Busy Outputs (Flash)
O
RESET
Hardware Reset Pin/Sector Protection Unlock (Flash)
I
N.C.
No Internal Connection
—
VSS
Device Ground (Common)
Power
VCCf
Device Power Supply (Flash)
Power
VCCs
Device Power Supply (SRAM)
Power
3
MB84VA2104-10/MB84VA2105-10
■ PRODUCT LINE UP
Flash Memory
Ordering Part No.
VCC = 3.0 V
+0.6 V
–0.3 V
SRAM
MB84VA2104-10/MB84VA2105-10
Max. Address Access Time (ns)
100
100
Max. CE Access Time (ns)
100
100
Max. OE Access Time (ns)
40
50
■ BUS OPERATIONS
Table 2 User Bus Operations
Operation (1), (3)
Full Standby
CEf
CE2s
H
X
X
L
X
X
H
X
X
L
H
X
X
L
H
Output Disable
X
Read from Flash (2)
L
Write to Flash
CE1s
L
OE
WE
DQ0 to DQ7
RESET
X
X
HIGH-Z
H
H
H
HIGH-Z
H
L
H
DOUT
H
H
L
DIN
H
Read from SRAM
H
L
H
L
H
DOUT
H
Write to SRAM
H
L
H
X
L
DIN
H
H
X
Flash Hardware Reset
X
X
X
HIGH-Z
L
X
L
Legend: L = VIL, H = VIH, X = VIL or VIH. See DC Characteristics for voltage levels.
Notes: 1. Other operations except for indicated this column are inhibited.
2. WE can be VIL if OE is VIL, OE at VIH initiates the write operations.
3. Do not apply CEf = VIL, CE1s = VIL and CE2s = VIH at a time.
4
MB84VA2104-10/MB84VA2105-10
■ FLEXIBLE SECTOR-ERASE ARCHITECTURE on FLASH MEMORY
• One 16 K byte, two 8 K bytes, one 32 K byte, and thirty one 64 K bytes.
Individual-sector, multiple-sector, or bulk-erase capability.
.
Sector Size
Address Range
Sector Size
Address Range
64 Kbytes
00000H to 0FFFFH
16 Kbytes
00000H to 03FFFH
64 Kbytes
10000H to 1FFFFH
8 Kbytes
04000H to 05FFFH
64 Kbytes
20000H to 2FFFFH
8 Kbytes
06000H to 07FFFH
64 Kbytes
30000H to 3FFFFH
32 Kbytes
08000H to 0FFFFH
64 Kbytes
40000H to 4FFFFH
64 Kbytes
10000H to 1FFFFH
64 Kbytes
50000H to 5FFFFH
64 Kbytes
20000H to 2FFFFH
64 Kbytes
60000H to 6FFFFH
64 Kbytes
30000H to 3FFFFH
64 Kbytes
70000H to 7FFFFH
64 Kbytes
40000H to 4FFFFH
64 Kbytes
80000H to 8FFFFH
64 Kbytes
50000H to 5FFFFH
64 Kbytes
90000H to 9FFFFH
64 Kbytes
60000H to 6FFFFH
64 Kbytes
A0000H to AFFFFH
64 Kbytes
70000H to 7FFFFH
64 Kbytes
B0000H to BFFFFH
64 Kbytes
80000H to 8FFFFH
64 Kbytes
C0000H to CFFFFH
64 Kbytes
90000H to 9FFFFH
64 Kbytes
D0000H to DFFFFH
64 Kbytes
A0000H to AFFFFH
64 Kbytes
E0000H to EFFFFH
64 Kbytes
B0000H to BFFFFH
64 Kbytes
F0000H to FFFFFH
64 Kbytes
C0000H to CFFFFH
64 Kbytes
100000H to 10FFFFH
64 Kbytes
D0000H to DFFFFH
64 Kbytes
110000H to 11FFFFH
64 Kbytes
E0000H to EFFFFH
64 Kbytes
120000H to 12FFFFH
64 Kbytes
F0000H to FFFFFH
64 Kbytes
130000H to 13FFFFH
64 Kbytes
100000H to 10FFFFH
64 Kbytes
140000H to 14FFFFH
64 Kbytes
110000H to 11FFFFH
64 Kbytes
150000H to 15FFFFH
64 Kbytes
120000H to 12FFFFH
64 Kbytes
160000H to 16FFFFH
64 Kbytes
130000H to 13FFFFH
64 Kbytes
170000H to 17FFFFH
64 Kbytes
140000H to 14FFFFH
64 Kbytes
180000H to 18FFFFH
64 Kbytes
150000H to 15FFFFH
64 Kbytes
190000H to 19FFFFH
64 Kbytes
160000H to 16FFFFH
64 Kbytes
1A0000H to 1AFFFFH
64 Kbytes
170000H to 17FFFFH
64 Kbytes
1B0000H to 1BFFFFH
64 Kbytes
180000H to 18FFFFH
64 Kbytes
1C0000H to 1CFFFFH
64 Kbytes
190000H to 19FFFFH
64 Kbytes
1D0000H to 1DFFFFH
64 Kbytes
1A0000H to 1AFFFFH
64 Kbytes
1E0000H to 1EFFFFH
64 Kbytes
1B0000H to 1BFFFFH
32 Kbytes
1F0000H to 1F7FFFH
64 Kbytes
1C0000H to 1CFFFFH
8 Kbytes
1F8000H to 1F9FFFH
64 Kbytes
1D0000H to 1DFFFFH
8 Kbytes
1FA000H to 1FBFFFH
64 Kbytes
1E0000H to 1EFFFFH
16 Kbytes
1FC000H to 1FFFFFH
64 Kbytes
1F0000H to 1FFFFFH
MB84VA2104 Sector Architecture
MB84VA2105 Sector Architecture
5
MB84VA2104-10/MB84VA2105-10
Table 3 Sector Address Tables (MB84VA2104)
6
Sector
Address
A20
A19
A18
A17
A16
A15
A14
A13
Address Range
SA0
0
0
0
0
0
X
X
X
00000H to 0FFFFH
SA1
0
0
0
0
1
X
X
X
10000H to 1FFFFH
SA2
0
0
0
1
0
X
X
X
20000H to 2FFFFH
SA3
0
0
0
1
1
X
X
X
30000H to 3FFFFH
SA4
0
0
1
0
0
X
X
X
40000H to 4FFFFH
SA5
0
0
1
0
1
X
X
X
50000H to 5FFFFH
SA6
0
0
1
1
0
X
X
X
60000H to 6FFFFH
SA7
0
0
1
1
1
X
X
X
70000H to 7FFFFH
SA8
0
1
0
0
0
X
X
X
80000H to 8FFFFH
SA9
0
1
0
0
1
X
X
X
90000H to 9FFFFH
SA10
0
1
0
1
0
X
X
X
A0000H to AFFFFH
SA11
0
1
0
1
1
X
X
X
B0000H to BFFFFH
SA12
0
1
1
0
0
X
X
X
C0000H to CFFFFH
SA13
0
1
1
0
1
X
X
X
D0000H to DFFFFH
SA14
0
1
1
1
0
X
X
X
E0000H to EFFFFH
SA15
0
1
1
1
1
X
X
X
F0000H to FFFFFH
SA16
1
0
0
0
0
X
X
X
100000H to 10FFFFH
SA17
1
0
0
0
1
X
X
X
110000H to 11FFFFH
SA18
1
0
0
1
0
X
X
X
120000H to 12FFFFH
SA19
1
0
0
1
1
X
X
X
130000H to 13FFFFH
SA20
1
0
1
0
0
X
X
X
140000H to 14FFFFH
SA21
1
0
1
0
1
X
X
X
150000H to 15FFFFH
SA22
1
0
1
1
0
X
X
X
160000H to 16FFFFH
SA23
1
0
1
1
1
X
X
X
170000H to 17FFFFH
SA24
1
1
0
0
0
X
X
X
180000H to 18FFFFH
SA25
1
1
0
0
1
X
X
X
190000H to 19FFFFH
SA26
1
1
0
1
0
X
X
X
1A0000H to 1AFFFFH
SA27
1
1
0
1
1
X
X
X
1B0000H to 1BFFFFH
SA28
1
1
1
0
0
X
X
X
1C0000H to 1CFFFFH
SA29
1
1
1
0
1
X
X
X
1D0000H to 1DFFFFH
SA30
1
1
1
1
0
X
X
X
1E0000H to 1EFFFFH
SA31
1
1
1
1
1
0
X
X
1F0000H to 1F7FFFH
SA32
1
1
1
1
1
1
0
0
1F8000H to 1F9FFFH
SA33
1
1
1
1
1
1
0
1
1FA000H to 1FBFFFH
SA34
1
1
1
1
1
1
1
X
1FC000H to 1FFFFFH
MB84VA2104-10/MB84VA2105-10
Table 4 Sector Address Tables (MB84VA2105)
Sector
Address
A20
A19
A18
A17
A16
A15
A14
A13
Address Range
SA0
0
0
0
0
0
0
0
X
00000H to 03FFFH
SA1
0
0
0
0
0
0
1
0
04000H to 05FFFH
SA2
0
0
0
0
0
0
1
1
06000H to 07FFFH
SA3
0
0
0
0
0
1
0
X
08000H to 0FFFFH
SA4
0
0
0
0
1
X
X
X
10000H to 1FFFFH
SA5
0
0
0
1
0
X
X
X
20000H to 2FFFFH
SA6
0
0
0
1
1
X
X
X
30000H to 3FFFFH
SA7
0
0
1
0
0
X
X
X
40000H to 4FFFFH
SA8
0
0
1
0
1
X
X
X
50000H to 5FFFFH
SA9
0
0
1
1
0
X
X
X
60000H to 6FFFFH
SA10
0
0
1
1
1
X
X
X
70000H to 7FFFFH
SA11
0
1
0
0
0
X
X
X
80000H to 8FFFFH
SA12
0
1
0
0
1
X
X
X
90000H to 9FFFFH
SA13
0
1
0
1
0
X
X
X
A0000H to AFFFFH
SA14
0
1
0
1
1
X
X
X
B0000H to BFFFFH
SA15
0
1
1
0
0
X
X
X
C0000H to CFFFFH
SA16
0
1
1
0
1
X
X
X
D0000H to DFFFFH
SA17
0
1
1
1
0
X
X
X
E0000H to EFFFFH
SA18
0
1
1
1
1
X
X
X
F0000H to FFFFFH
SA19
1
0
0
0
0
X
X
X
100000H to 10FFFFH
SA20
1
0
0
0
1
X
X
X
110000H to 11FFFFH
SA21
1
0
0
1
0
X
X
X
120000H to 12FFFFH
SA22
1
0
0
1
1
X
X
X
130000H to 13FFFFH
SA23
1
0
1
0
0
X
X
X
140000H to 14FFFFH
SA24
1
0
1
0
1
X
X
X
150000H to 15FFFFH
SA25
1
0
1
1
0
X
X
X
160000H to 16FFFFH
SA26
1
0
1
1
1
X
X
X
170000H to 17FFFFH
SA27
1
1
0
0
0
X
X
X
180000H to 18FFFFH
SA28
1
1
0
0
1
X
X
X
190000H to 19FFFFH
SA29
1
1
0
1
0
X
X
X
1A0000H to 1AFFFFH
SA30
1
1
0
1
1
X
X
X
1B0000H to 1BFFFFH
SA31
1
1
1
0
0
X
X
X
1C0000H to 1CFFFFH
SA32
1
1
1
0
1
X
X
X
1D0000H to 1DFFFFH
SA33
1
1
1
1
0
X
X
X
1E0000H to 1EFFFFH
SA34
1
1
1
1
1
X
X
X
1F0000H to 1FFFFFH
7
MB84VA2104-10/MB84VA2105-10
Table 5. 1 Flash Memory Autoselect Code
Type
A12
A6
A1
A0
Code (HEX)
Manufacturer’s Code
VIL
VIL
VIL
VIL
04H
MB84VA2104
VIL
VIL
VIL
VIH
C4H
MB84VA2105
VIL
VIL
VIL
VIH
49H
Device Code
Table 5. 2 Expanded Autoselect Code Table
Code
DQ7
DQ6
DQ5
DQ4
DQ3
DQ2
DQ1
DQ0
04H
0
0
0
0
0
1
0
0
MB84VA2104
C4H
1
1
0
0
0
1
0
0
MB84VA2105
49H
0
1
0
0
1
0
0
1
Type
Manufacturer’s Code
Device Code
8
MB84VA2104-10/MB84VA2105-10
Table 6 Flash Memory Command Definitions
Command
Sequence
Bus
Write
Cycles
Req’d
First Bus
Write Cycle
Second Bus Third Bus
Write Cycle Write Cycle
Fourth Bus
Read/Write
Cycle
Fifth Bus
Write Cycle
Sixth Bus
Write Cycle
Addr.
Data Addr. Data Addr. Data Addr. Data Addr. Data Addr. Data
Read/Reset
1
XXXH
F0H
Read/Reset
3
555H
Autoselect
3
Program
—
—
—
—
—
—
—
—
—
—
AAH 2AAH
55H
555H
F0H
RA
RD
—
—
—
—
555H
AAH 2AAH
55H
555H
90H
—
—
—
—
—
—
4
555H
AAH 2AAH
55H
555H
A0H
PA
PD
—
—
—
—
Chip Erase
6
555H
AAH 2AAH
55H
555H
80H
555H
AAH 2AAH
55H
555H
10H
Sector Erase
6
555H
AAH 2AAH
55H
555H
80H
555H
AAH 2AAH
55H
SA
30H
Sector Erase Suspend Erase can be suspended during sector erase with Addr (“H” or “L”). Data (B0H)
Sector Erase Resume Erase can be resumed after suspend with Addr (“H” or “L”). Data (30H)
Set to
Fast Mode
3
555H
AAH 2AAH
55H
555H
20H
—
—
—
—
—
—
Fast Program
(Note)
2
XXXH
A0H
PA
PD
—
—
—
—
—
—
—
—
Reset from
Fast Mode
(Note)
2
XXXH
90H
XXXH
F0H
—
—
—
—
—
—
—
—
Extended
Sector
Protect
4
XXXH
60H
SPA
60H
SPA
40H
SPA
SD
—
—
—
—
Address bits A11 to A20 = X = “H” or “L” for all address commands except for Program Address (PA) and Sector
Address (SA).
Bus operations are defined in Table 2.
Both Read/Reset commands are functionally equivalent, resetting the device to the read mode.
RA =Address of the memory location to be read.
PA =Address of the memory location to be programmed. Addresses are latched on the falling edge of
the write pulse.
SA =Address of the sector to be erased. The combination of A20, A19, A18, A17, A16, A15, A14, and A13 will
uniquely select any sector.
RD =Data read from location RA during read operation.
PD =Data to be programmed at location PA.
SPA =Sector address to be protected. Set sector address (SA) and (A6, A1, A0) = (0, 1, 0).
SD =Sector protection verify data. Output 01H at protected sector addresses and output 00H at unprotected
sector addresses.
Note:This command is valid while Fast Mode.
9
MB84VA2104-10/MB84VA2105-10
■ ABSOLUTE MAXIMUM RATINGS
Storage Temperature .................................................................................................. –55°C to +125°C
Ambient Temperature with Power Applied .................................................................. –25°C to +85°C
Voltage with Respect to Ground All pins (Note) .......................................................... –0.3 V to VCCf +0.5 V
–0.3 V to VCCs +0.5 V
VCCf/VCCs Supply (Note) .............................................................................................. –0.3 V to +4.6 V
Note: Minimum DC voltage on input or I/O pins are –0.5 V. During voltage transitions, inputs may negativeovershoot
VSS to –2.0 V for periods of up to 20 ns. Maximum DC voltage on output and I/O pins are VCCf +0.5 V or VCCs
+0.5 V. During voltage transitions, outputs may positive overshoot to VCC +2.0 V for periods of up to 20 ns.
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current,
temperature, etc.) in excess of absolute maximum rating conditions. Do not exceed these ratings.
■ RECOMMENDED OPERATING RANGES
Commercial Devices
Ambient Temperature (TA) .........................................................................–20°C to +85°C
VCCf/VCCs Supply Voltages.........................................................................+2.7 V to +3.6 V
Operating ranges define those limits between which the functionality of the device is guaranteed.
WARNING: Recommended operating conditions are normal operating ranges for the semiconductor device. All
the device’s electrical characteristics are warranted when operated within these ranges.
Always use semiconductor devices within the recommended operating conditions. Operation outside
these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on
the data sheet. Users considering application outside the listed conditions are advised to contact their
FUJITSU representative beforehand.
10
MB84VA2104-10/MB84VA2105-10
■ DC CHARACTERISTICS
Parameter
Symbol
Parameter Description
Test Conditions
Min.
Typ.
Max.
Unit
ILI
Input Leakage Current
—
–1.0
—
+1.0
µA
ILO
Output Leakage Current
—
–1.0
—
+1.0
µA
ICC1f
Flash VCC Active Current VCCf = VCC Max., CEf = VIL tCYCLE = 10 MHz
(Read)
OE = VIH
tCYCLE = 5 MHz
—
—
30
—
—
15
ICC2f
Flash VCC Active Current VCCf = VCC Max., CEf = VIL, OE = VIH
(Program/Erase)
—
—
35
mA
ICC1s
SRAM VCC Active
Current
VCCs = VCC Max.,
CE1s = VIL, CE2s = VIH
ttCYCLE =10 MHz
—
—
40
mA
tCYCLE = 1 MHz
—
—
12
mA
SRAM VCC Active
Current
CE1s = 0.2 V,
CE2s = VCCs – 0.2 V,
WE = VCCs – 0.2 V
tCYCLE = 10 MHz
—
—
35
mA
ICC2s
tCYCLE = 1 MHz
—
—
8
mA
ISB1f
Flash VCC Standby
Current
VCCf = VCC Max., CEf = VCCf ± 0.3 V
RESET = VCCf ± 0.3 V
—
—
5
µA
ISB2f
Flash VCC Standby
Current (RESET)
VCCf = VCC Max., RESET = VSS ± 0.3 V
—
—
5
µA
ISB1s
SRAM VCC Standby
Current
CE1s = VIH or CE2s = VIL
—
—
2
mA
SRAM VCC Standby
ISB2s** Current
mA
VCCs =
3.0 V
±10%
TA = 25°C
—
1
2
µA
TA = –20 to
+85°C
—
—
35
µA
VCCs =
3.3
V
CE1s = VCC –
0.2 V or CE2s ±0.3 V
= 0.2 V
TA = 25°C
—
2
3
µA
TA = –20 to
+85°C
—
—
40
µA
TA = 25°C
—
—
1
µA
TA = –20 to
+40°C
—
—
3
µA
TA = –20 to
+85°C
—
—
30
µA
VCCs =
3.0 V
VIL
Input Low Level
—
–0.3
—
0.6
V
VIH
Input High Level
—
2.2
—
VCC+0.3*
V
VOL
Output Low Voltage
Level
IOL = 2.1 mA,
VCCf = VCCs = VCC Min.
—
—
0.4
V
VOH
Output High Voltage
Level
IOH = –500 µA,
VCCf = VCCs = VCC Min.
VCC – 0.5
—
—
V
VLKO
Flash Low VCC Lock-Out
Voltage
2.3
—
2.5
V
—
* : VCC indicate lower of VCCf or VCCs
** :During standby mode with CE1s = VCCS – 0.2 V, CE2s should be CE2s < 0.2V or CE2s > VCCS – 0.2V
11
MB84VA2104-10/MB84VA2105-10
■ AC CHARACTERISTICS
• CE Timing
Parameter
Symbols
JEDEC
Standard
—
tCCR
Description
Test Setup
CE Recover Time
—
Min.
• Timing Diagram for alternating SRAM to Flash
CEf
tCCR
tCCR
tCCR
tCCR
CE1s
CE2s
12
-10
Unit
0
ns
MB84VA2104-10/MB84VA2105-10
• Read Only Operations Characteristics (Flash)
Parameter
Symbols
Description
JEDEC
Standard
tAVAV
tRC
Read Cycle Time
tAVQV
tACC
tELQV
-10
(Note)
Test
Setup
Unit
Min.
Max.
—
100
—
ns
Address to Output Delay
CEf = VIL
OE = VIL
—
100
ns
tCEf
Chip Enable to Output Delay
OE = VIL
—
100
ns
tGLQV
tOE
Output Enable to Output Delay
—
—
40
ns
tEHQZ
tDF
Chip Enable to Output High-Z
—
—
30
ns
tGHQZ
tDF
Output Enable to Output High-Z
—
—
30
ns
tAXQX
tOH
Output Hold Time From Addresses,
CEf or OE, Whichever Occurs First
—
0
—
ns
—
tREADY
RESET Pin Low to Read Mode
—
—
20
µs
Note: Test Conditions–Output Load: 1 TTL gate and 30 pF
Input rise and fall times: 5 ns
Input pulse levels: 0.0 V to 3.0 V
Timing measurement reference level
Input: 1.5 V
Output: 1.5 V
13
MB84VA2104-10/MB84VA2105-10
• Read Cycle (Flash)
tRC
Addresses Stable
ADDRESSES
tACC
CEf
tOE
tDF
OE
tOEH
WE
tCE
HIGH-Z
DQ
HIGH-Z
Output Valid
tRC
ADDRESSES
Addresses Stable
tACC
tRH
RESET
tOH
DQ
14
HIGH-Z
Output Valid
MB84VA2104-10/MB84VA2105-10
• Erase/Program Operations (Flash)
Parameter Symbols
Description
JEDEC
Standard
tAVAV
tWC
Write Cycle Time
tAVWL
tAS
tAVEL
-10
Unit
Min.
Typ.
Max.
100
—
—
ns
Address Setup Time (WE to Addr.)
0
—
—
ns
tAS
Address Setup Time (CEf to Addr.)
0
—
—
ns
tWLAX
tAH
Address Hold Time (WE to Addr.)
50
—
—
ns
tELAX
tAH
Address Hold Time (CEf to Addr.)
50
—
—
ns
tDVWH
tDS
Data Setup Time
50
—
—
ns
tWHDX
tDH
Data Hold Time
0
—
—
ns
—
tOES
Output Enable Setup Time
0
—
—
ns
—
tOEH
Output Enable
Hold Time
Read
0
—
—
ns
Toggle and Data Polling
10
—
—
ns
tGHEL
tGHEL
Read Recover Time Before Write (OE to CEf)
0
—
—
ns
tGHWL
tGHWL
Read Recover Time Before Write (OE to WE)
0
—
—
ns
tWLEL
tWS
WE Setup Time (CEf to WE)
0
—
—
ns
tELWL
tCS
CEf Setup Time (WE to CEf)
0
—
—
ns
tEHWH
tWH
WE Hold Time (CEf to WE)
0
—
—
ns
tWHEH
tCH
CEf Hold Time (WE to CEf)
0
—
—
ns
tWLWH
tWP
Write Pulse Width
50
—
—
ns
tELEH
tCP
CEf Pulse Width
50
—
—
ns
tWHWL
tWPH
Write Pulse Width High
30
—
—
ns
tEHEL
tCPH
CEf Pulse Width High
30
—
—
ns
tWHWH1
tWHWH1
Byte Programming Operation
—
8
—
µs
tWHWH2
tWHWH2
Sector Erase Operation (Note 1)
—
1
—
sec
—
—
15
sec
—
tVCS
VCCf Setup Time
50
—
—
µs
—
tVLHT
Voltage Transition Time (Note 2)
4
—
—
µs
—
tVIDR
Rise Time to VID (Note 2)
500
—
—
ns
—
tRB
Recover Time from RY/BY
0
—
—
ns
—
tRP
RESET Pulse Width
500
—
—
ns
—
tRH
RESET Hold Time Before Read
200
—
—
ns
—
tEOE
Delay Time from Embedded Output Enable
—
—
100
ns
—
tBUSY
Program/Erase Valid to RY/BY Delay
—
—
90
ns
Note : 1. This does not include the preprogramming time.
2. This timing is for Sector Protection Operation.
15
MB84VA2104-10/MB84VA2105-10
• Write Cycle (WE control) (Flash)
3rd Bus Cycle
Data Polling
555H
ADDRESSES
tWC
PA
tAS
PA
tRC
tAH
CEf
tCH
tCS
tCO
OE
tGHWL
tWP
tFOE
tWHWH1
tWPH
WE
tOH
tDS
tDH
DQ
16
A0H
PD
DQ7
DOUT
DOUT
MB84VA2104-10/MB84VA2105-10
• Write Cycle (CEf control) (Flash)
3rd Bus Cycle
ADDRESSES
Data Polling
PA
555H
tWC
tAS
PA
tAH
WE
tWS
tWH
OE
tGHEL
tCP
tWHWH1
tCPH
CEf
tDS
tDH
DQ
Notes: 1.
2.
3.
4.
5.
A0H
PD
DQ7
DOUT
PA is address of the memory location to be programmed.
PD is data to be programmed at byte address.
DQ7 is the output of the complement of the data written to the device.
DOUT is the output of the data written to the device.
Figure indicates last two bus cycles out of four bus cycle sequence.
17
MB84VA2104-10/MB84VA2105-10
• AC Waveforms Chip/Sector Erase Operations (Flash)
2AAH
555H
ADDRESSES
tWC
tAS
555H
555H
SA*1
2AAH
tAH
CEf
tCS
tCH
OE
tGHWL
tWP
tWPH
WE
tDS
tDH
AAH
DQ
30H for Sector Erase
55H
80H
AAH
55H
tVCS
VCC
Note: 1. SA is the sector address for Sector Erase. Addresses = 555H for Chip Erase.
18
10H/
30H
MB84VA2104-10/MB84VA2105-10
• AC Waveforms for Data Polling during Embedded Algorithm Operations (Flash)
CEf
tCH
tOD
tFOE
OE
tOEH
WE
tCO
*
DQ7
DQ7 =
Valid Data
DQ7
Data In
High-Z
tWHWH1 or 2
DQ
(DQ0 to DQ6)
DQ0 to DQ6 = Invalid
Data In
DQ0 to DQ6
Valid Data
High-Z
tEOE
*DQ7 = Valid Data (The device has completed the Embedded operation.)
• AC Waveforms for Taggle Bit during Embedded Algorithm Operations (Flash)
CEf
tOEH
WE
tOES
OE
*
DQ6
Data In
DQ6 = Toggle
DQ6 =
Toggle
DQ6 =
Stop Toggling
DQ0 to DQ7
Data Valid
tEOE
*DQ6 = Stops toggling. (The device has completed the Embedded operation.)
19
MB84VA2104-10/MB84VA2105-10
• RY/BY Timing Diagram during Write/Erase Operations (Flash)
CEf
The rising edge of the last WE signal
WE
Entire programming
or erase operations
RY/BY
tBUSY
• RESET, RY/BY Timing Diagram (Flash)
WE
RESET
tRP
tRB
RY/BY
tREADY
• Temporary Sector Unprotection (Flash)
VCC
tVIDR
tVCS
tVLHT
VID
3V
3V
RESET
CE
WE
tVLHT
Program or Erase Command Sequence
RY/BY
Unprotection period
20
tVLHT
MB84VA2104-10/MB84VA2105-10
• Extended Sector Protection (Flash)
VCC
tVCS
RESET
tVLHT
tVIDR
Add
SPAX
SPAX
SPAY
A0
A1
A6
CE
OE
TIME-OUT
WE
Data
60H
60H
40H
01H
60H
tOE
SPAX : Sector Address to be protected
SPAY : Next Sector Address to be protected
TIME-OUT : Time-Out window = 150 µs (min)
21
MB84VA2104-10/MB84VA2105-10
• Read Cycle (SRAM)
Parameter
Symbol
Parameter Description
Min.
Max.
Unit
100
—
ns
tRC
Read Cycle Time
tAA
Address Access Time
—
100
ns
tCO1
Chip Enable (CE1s) Access Time
—
100
ns
tCO2
Chip Enable (CE2s) Access Time
—
100
ns
tOE
Output Enable Access Time
—
50
ns
tCOE
Chip Enable (CE1s Low and CE2s High) to Output Active
5
—
ns
tOEE
Output Enable Low to Output Active
0
—
ns
tOD
Chip Enable (CE1s High or CE2s Low) to Output High-Z
—
40
ns
tODO
Output Enable High to Output High-Z
—
40
ns
tOH
Output Data Hold Time
10
—
ns
• Read Cycle (Note 1) (SRAM)
tRC
ADDRESSES
tAA
tOH
tCO1
CE1s
tCOE
tOD
tCO2
CE2s
tOD
tOE
OE
tOEE
tODO
tCOE
DQ
Note: 1. WE remains HIGH for the read cycle.
22
VALID DATA OUT
MB84VA2104-10/MB84VA2105-10
•
Write Cycle (SRAM)
Parameter
Symbol
Parameter Description
Min.
Max.
Unit
tWC
Write Cycle Time
100
—
ns
tWP
Write Pulse Width
60
—
ns
tCW
Chip Enable to End of Write
80
—
ns
tAS
Address Setup Time
0
—
ns
tWR
Write Recovery Time
0
—
ns
tODW
WE Low to Output High-Z
—
40
ns
tOEW
WE High to Output Active
0
—
ns
tDS
Data Setup Time
60
—
ns
tDH
Data Hold Time
0
—
ns
• Write Cycle (Note 4) (WE control) (SRAM)
tWC
ADDRESSES
tAS
tWP
tWR
WE
tCW
CE1s
CE2s
DOUT
tCW
tODW
tOEW
Note 2
Note 3
tDS
DIN
Note 5
tDH
VALID DATA IN
Note 5
Notes: 2. If CE1s goes LOW (or CE2s goes HIGH) coincident with or after WE goes LOW, the
output will remain at high impedance.
3. If CE1s goes HIGH (or CE2s goes LOW) coincident with or before WE goes HIGH, the
output will remain at high impedance.
4. If OE is HIGH during the write cycle, the outputs will remain at high impedance.
5. Because I/O signals may be in the output state at this Time, input signals of reverse
polarity must not be applied.
23
MB84VA2104-10/MB84VA2105-10
• Write Cycle (Note 4) (CE1s control) (SRAM)
tWC
ADDRESSES
tAS
tWP
tWR
WE
tCW
CE1s
CE2s
tCW
tCOE
tODW
DOUT
tDS
DIN
Note 5
tDH
VALID DATA IN
Note 5
Notes: 2. If CE1s goes LOW (or CE2s goes HIGH) coincident with or after WE goes LOW, the
output will remain at high impedance.
3. If CE1s goes HIGH (or CE2s goes LOW) coincident with or before WE goes HIGH, the
output will remain at high impedance.
4. If OE is HIGH during the write cycle, the outputs will remain at high impedance.
5. Because I/O signals may be in the output state at this Time, input signals of reverse
polarity must not be applied.
24
MB84VA2104-10/MB84VA2105-10
• Write Cycle (Note 4) (CE2s Control) (SRAM)
tWC
ADDRESSES
tAS
tWP
tWR
WE
tCW
CE1s
CE2s
tCW
tCOE
tODW
DOUT
tDS
DIN
Note 5
tDH
VALID DATA IN
Note 5
Notes: 2. If CE1s goes LOW (or CE2s goes HIGH) coincident with or after WE goes LOW, the
output will remain at high impedance.
3. If CE1s goes HIGH (or CE2s goes LOW) coincident with or before WE goes HIGH, the
output will remain at high impedance.
4. If OE is HIGH during the write cycle, the outputs will remain at high impedance.
5. Because I/O signals may be in the output state at this Time, input signals of reverse
polarity must not be applied.
25
MB84VA2104-10/MB84VA2105-10
■ ERASE AND PROGRAMMING PERFORMANCE (Flash)
Limits
Parameter
Unit
Comment
Min.
Typ.
Max.
Sector Erase Time
—
1
15
sec
Excludes programming time
prior to erasure
Byte Programming Time
—
8
3,600
µs
Excludes system-level
overhead
Chip Programming Time
—
16.8
100
sec
Excludes system-level
overhead
100,000
—
—
cycles
Erase/Program Cycle
■ DATA RETENTION CHARACTERISTICS (SRAM)
Parameter
Symbol
Parameter Description
Min.
Typ.
Max.
Unit
2.0
—
3.6
V
VDH = 3.0 V
—
—
30*
µA
VDH = 3.6 V
—
—
40
µA
Chip Deselect to Data Retention Mode Time
0
—
—
ns
Recovery Time
5
—
—
ms
VDH
Data Retention Supply Voltage
IDDS2
Standby Current
tCDR
tR
* : 5 µA (Max.) at TA = –20°C to +40°C
• CE1s Controlled Data Retention Mode (Note 1)
VCCs
DATA RETENTION MODE
2.7 V
See Note 2
See Note 2
VIH
CE1s
GND
26
VCCS –0.2 V
tCDR
tR
MB84VA2104-10/MB84VA2105-10
• CE2s Controlled Data Retention Mode (Note 3)
VCCs
DATA RETENTION MODE
2.7 V
CE2s
VIH
tCDR
tR
VIL
0.2 V
GND
Notes:
1. In CE1s controlled data retention mode, input level of CE2s should be fixed Vccs to Vccs-0.2V or Vss
to 0.2V during data retention mode. Other input and input/output pins can be used between -0.3V to
Vccs+0.3V.
2.When CE1s is operating at the VIH min. level (2.2 V), the standby current is given by ISB1s during the
transition of VCCs from 3.6 to 2.2 V.
3. In CE2s controlled data retention mode, input and input/output pins can be used between between
-0.3V to Vccs+0.3V.
■ PIN CAPACITANCE
Parameter
Symbol
Parameter Description
Test Setup
Typ.
Max.
Unit
CIN
Input Capacitance
VIN = 0
T.B.D
T.B.D
pF
COUT
Output Capacitance
VOUT = 0
T.B.D
T.B.D
pF
CIN2
Control Pin Capacitance
VIN = 0
T.B.D
T.B.D
pF
Note: Test conditions TA = 25°C, f = 1.0 MHz
■ HANDLING OF PACKAGE
Please handle this package carefully since the sides of packages are right angle.
■ CAUTION
1. )The high voltage (VID) can not apply to address pins and control pins except RESET. Therefore, it can not
use autoselect and sector protect function by applying the high voltage (VID) to specific pins.
2. )For the sector protection, since the high voltage (VID) can be applied to the RESET, it can be protected the
sector useing "Extended sector protect" command.
27
MB84VA2104-10/MB84VA2105-10
■ PACKAGE
48-pin plastic FBGA
(BGA-48P-M10)
■ PACKAGE DIMENSIONS
48-pin plastic BGA
(BGA-48P-M10)
Note: The actual shape of coners may differ from the dimension.
14.00±0.15(.551±.006)
1.40±0.20
(.055±.008)
0.30±0.10
(.012±.004)
7.00±0.15(.276±.006)
10.00±0.15
(.394±.006)
5.00±0.15
(.197±.006)
1st PIN
INDEX
C
28
1998 FUJITSU LIMITED MCM-M002-3-2
0.15(.006)
Ø0.40±0.10
(Ø.016±.004)
1.00±0.15
(.039±.006)
INDEX
Dimension in mm (inches).
MB84VA2104-10/MB84VA2105-10
FUJITSU LIMITED
For further information please contact:
Japan
FUJITSU LIMITED
Corporate Global Business Support Division
Electronic Devices
KAWASAKI PLANT, 4-1-1, Kamikodanaka
Nakahara-ku, Kawasaki-shi
Kanagawa 211-8588, Japan
Tel: (044) 754-3763
Fax: (044) 754-3329
http://www.fujitsu.co.jp/
North and South America
FUJITSU MICROELECTRONICS, INC.
Semiconductor Division
3545 North First Street
San Jose, CA 95134-1804, USA
Tel: (408) 922-9000
Fax: (408) 922-9179
Customer Response Center
Mon. - Fri.: 7 am - 5 pm (PST)
Tel: (800) 866-8608
Fax: (408) 922-9179
http://www.fujitsumicro.com/
Europe
FUJITSU MIKROELEKTRONIK GmbH
Am Siebenstein 6-10
D-63303 Dreieich-Buchschlag
Germany
Tel: (06103) 690-0
Fax: (06103) 690-122
http://www.fujitsu-ede.com/
Asia Pacific
FUJITSU MICROELECTRONICS ASIA PTE LTD
#05-08, 151 Lorong Chuan
New Tech Park
Singapore 556741
Tel: (65) 281-0770
Fax: (65) 281-0220
All Rights Reserved.
The contents of this document are subject to change without
notice. Customers are advised to consult with FUJITSU sales
representatives before ordering.
The information and circuit diagrams in this document presented
as examples of semiconductor device applications, and are not
intended to be incorporated in devices for actual use. Also,
FUJITSU is unable to assume responsibility for infringement of
any patent rights or other rights of third parties arising from the
use of this information or circuit diagrams.
FUJITSU semiconductor devices are intended for use in
standard applications (computers, office automation and other
office equipment, industrial, communications, and measurement
equipment, personal or household devices, etc.).
CAUTION:
Customers considering the use of our products in special
applications where failure or abnormal operation may directly
affect human lives or cause physical injury or property damage,
or where extremely high levels of reliability are demanded (such
as aerospace systems, atomic energy controls, sea floor
repeaters, vehicle operating controls, medical devices for life
support, etc.) are requested to consult with FUJITSU sales
representatives before such use. The company will not be
responsible for damages arising from such use without prior
approval.
Any semiconductor devices have inherently a certain rate of
failure. You must protect against injury, damage or loss from
such failures by incorporating safety design measures into your
facility and equipment such as redundancy, fire protection, and
prevention of over-current levels and other abnormal operating
conditions.
If any products described in this document represent goods or
technologies subject to certain restrictions on export under the
Foreign Exchange and Foreign Trade Control Law of Japan, the
prior authorization by Japanese government should be required
for export of those products from Japan.
http://www.fmap.com.sg/
F9805
 FUJITSU LIMITED Printed in Japan
29